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Let α1, . . . , αn be nonzero algebraic numbers and b1, . . . , bn rational integers.
Assume αb11 · · ·αbn

n �= 1. According to Liouville’s inequality (Proposition 1.13),
the lower bound ∣∣αb11 · · ·αbn

n − 1
∣∣ ≥ e−cB

holds with B = max{|b1|, . . . , |bn|} and with a positive number c depending
only on α1, . . . , αn. A fundamental problem is to prove a sharper estimate.

Transcendence methods lead to linear independence measures, over the
field of algebraic numbers, for logarithms of algebraic numbers. Such measures
are nothing else than lower bounds for numbers of the form

Λ = β0 + β1 logα1 + · · ·+ βn logαn,

where β0, . . . , βn are algebraic numbers, α1, . . . , αn are nonzero algebraic num-
bers, while logα1, . . . , logαn are logarithms of α1, . . . , αn respectively.

In the special case where β0 = 0 and β1, . . . , βn are rational integers,
writing bi for βi, we have

Λ = b1 logα1 + · · ·+ bn logαn,

which is the so-called homogeneous rational case. The importance of this spe-
cial case is due to the fact that for |Λ| ≤ 1/2 we have

1
2
|Λ| ≤

∣∣eΛ − 1
∣∣ ≤ 2|Λ|

with
eΛ − 1 = αb11 · · ·αbn

n − 1.

Hence we are back to the problem of estimating from below the distance
between 1 and a number of the form αb11 · · ·αbn

n .
The first three lectures are devoted to the qualitative theory of transcen-

dental numbers, the last three ones to the quantitative theory of Diophantine
approximation.
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According to Hermite-Lindemann’s Theorem, a number Λ = β − logα,
with algebraic α and β, is zero only in the trivial case β = logα = 0. We start
by assuming further that α and β are positive integers. It is a nontrivial fact
that a positive integer b cannot be the logarithm of another positive integer
a. In the first lecture we give two proofs of this result: the first one uses an
auxiliary function, the second one uses an interpolation determinant together
with a zero estimate. In the second lecture we complete the proof of Hermite-
Lindemann’s Theorem in the general case (with algebraic α and β), by means
of the interpolation determinant method, but without a zero estimate: this is
achieved thanks to an extrapolation argument.

In the third lecture we introduce Baker’s Theorem on the linear indepen-
dence of logarithms of algebraic numbers. After a brief survey of the available
methods, we produce a proof by means of an interpolation determinant in-
volving an extrapolation.

An introduction to Diophantine approximation is given in Section 4, where
we address the question of estimating from below the distance between b and
log a, for a and b positive integers. A conjecture attributed to K. Mahler states
that this distance should be at least a negative power of a:

|b− log a|
?
≥ a−c for a ≥ 2.

So far one does not know how to prove this result with a constant exponent,
but only with exponent a constant times log log a (K. Mahler; see (4.3) below):

|b− log a| ≥ a−c log log a for a ≥ 3.

We discuss a proof of this result by means of a method which is inspired by a
recent work of M. Laurent and D. Roy [15].

The last two sections are devoted to Baker’s method and to the question
of measures of linear independence for an arbitrary number of logarithms of
algebraic numbers. In the fifth lecture we survey available methods and in
the last one we explain how to replace Matveev’s auxiliary function by an
interpolation determinant.

Notation. As a general rule we use the notation of [34]. In particular the
absolute logarithmic height is denoted by h. The length of a polynomial P ∈
C[X1, . . . , Xn] (which is nothing else than the sum of the absolute values of
its coefficients) is denoted by L(P ).

For z = (z1, . . . , zn) ∈ Cn, we set

|z| = max
1≤i≤n

|zi| and ‖z‖ = |z1| + · · ·+ |zn|.

In Section 4.1, ‖ · ‖Z denotes the distance of a real number to the nearest
integer:

‖x‖Z = min
k∈Z

|x− k|.
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For x ∈ R we set

log+ x = log max{1, x} and |x|+ = max{1, |x|}.

The integral part of x is denoted by [x]:

[x] ∈ Z, 0 ≤ x− [x] < 1

while �x� denotes the least integer ≥ x:

�x� ∈ Z, 0 ≤ �x� − x < 1.

For r ≥ 0 we denote by

Bn(0, r) =
{
z ∈ Cn ; |z| ≤ r

}
the closed polydisk of Cn of center 0 and radius r, by |f |r the supremum norm
of a continuous function f : Bn(0, r) → C and by Hn(r) the set of continuous
functions f : Bn(0, r) → C which are holomorphic in the interior of Bn(0, r).

Several differential operators will be used. For k = (k1, . . . , kn) ∈ Nn and
F a function of n variables z1, . . . , zn, DkF is the derivative(

∂

∂z1

)k1
· · ·

(
∂

∂zn

)kn

F.

For a function F of a single variable z we write F (k) in place of (d/dz)kF .
The notation k! stands for k1! · · · kn! and zk for zk11 · · · zkn

n . In Section 3
for x = (x0, . . . , xn) ∈ Cn+1 we shall introduce also the notation

Dx = x0
∂

∂z0
+ · · ·+ xn

∂

∂zn
·

In Section 4 we shall denote by Db the following derivation, attached to a
complex number b,

∂

∂X
+ bY

∂

∂Y
,

on the ring C[X,Y ].
For n and k rational integers, the binomial coefficient(

n

k

)
=

n!
k!(n− k)!

is considered to be 0 unless 0 ≤ k ≤ n.
The symmetric group on {1, . . . , L} will be denoted by SL.

Acknowledgements. Many thanks to Stéphane Fischler who carefully checked
a preliminary version of the first draft and made a lot of useful comments. It
is also a great pleasure to thank Francesco Amoroso, Umberto Zannier and
the Fondazione C.I.M.E. (Centro Internazionale Matematico Estivo) for their
invitation to deliver these lectures in the superb surroundings provided by
Grand Hotel San Michele in Cetraro (Cosenza).



252 Michel Waldschmidt

1 First Lecture. Introduction to Transcendence Proofs

We shall provide two proofs of the following result.

Theorem 1.1. Let a and b be two positive integers. Then eb �= a.

This statement is a special case of Hermite-Lindemann’s Theorem:

Theorem 1.2. Let α and β be two nonzero algebraic numbers. Then eβ �= α.

A proof of Theorem 1.2 will be given in Section 2.

1.1 Sketch of Proof

Here are the basic ideas of both proofs of Theorem 1.1. The guest star of
these proofs is the exponential function ez. It is a transcendental function:
this means that the exponential monomials zτetz (τ ≥ 0, t ≥ 0) are linearly
independent. Consider the values at a point z = sb with s ∈ N:(

zτetz
)
(sb) = (sb)τ (eb)ts.

If both b and eb are integers, then this number is also a rational integer.
We need to use a special property for the number e: Theorem 1.1 would

not be true if e were replaced by 2 for instance! We take derivatives of our
exponential monomials. For σ = 0, 1, . . .,(

d

dz

)σ (
zτetz

)
=

min{τ,σ}∑
κ=0

σ!τ !
κ!(σ − κ)!(τ − κ)!

zτ−κtσ−κetz, (1.1)

and (
d

dz

)σ (
zτetz

)
(sb) =

min{τ,σ}∑
κ=0

σ!τ !
κ!(σ − κ)!(τ − κ)!

(sb)τ−κtσ−κ(eb)ts.

These numbers again belong to the ring Z[eb, b].
Starting with these numbers, there are several ways of performing the

proof. We indicate two of them.
The first one rests on the construction of an auxiliary polynomial (AP)1.

Since the functions z and ez are algebraically independent, if P ∈ Z[X,Y ]
is a nonzero polynomial, the exponential polynomial F (z) = P (z, ez) is not
the zero function. Together with its derivatives, it takes values in Z[eb, b] at
all points sb, s ∈ N. Assuming b and eb are in Z, one wants to construct
such a nonzero polynomial P for which F is the zero function, which will
be a contradiction. Now the numbers F (σ)(sb) are rational integers, hence

1 With Masser’s notation in [19].
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have absolute value either 0 or at least 1; this is the lower bound (LB). If
P is constructed so that many numbers F (σ)(sb) have absolute value < 1,
then F will have a lot of zeroes, hence (by a rigidity principle for analytic
functions, called Schwarz’ Lemma) |F | will be small on a rather large disk:
this is the upper bound (UB). This will enable us to deduce that F (σ)(sb)
vanishes for further values of (σ, s). Once we succeed in increasing the number
of known zeroes of F , there is an alternative: either we proceed by induction
and extrapolate until we get so many zeroes that F has to be the zero function
(for instance if all derivatives of F vanish at one point), or else we prove an
auxiliary result (the zero estimate, or non-vanishing condition (NV)) which
yields the desired conclusion.

One should say a little bit more about the initial construction of P , for
which many numbers F (σ)(sb) have absolute value < 1. One solution is to
select P so that the first coefficients in the Taylor expansion at the origin of
F have small absolute values (see [34], Section 4.5 and [26]). Another (more
classical) way is to require that many numbers F (σ)(sb) vanish. Then the
existence of P �= 0 is clear as soon as the number of equations we consider is
smaller than the number of unknowns (the unknowns are the coefficients of
P ), because the conditions are linear and homogeneous. In the special case
we consider here with b a real positive number, it can be proved that when
the number of unknowns is the same as the number of equations, then the
determinant of the system is not zero (Pólya’s Lemma 1.6). Therefore the
extrapolation can be reduced to the minimum. On the other hand for the
proof of Theorem 1.1 such an argument is not required.

The second method was suggested by M. Laurent [13]: instead of solving
a system of homogeneous linear equations F (σ)(sb) = 0 for several values of
(σ, s), consider the matrix of this system. To be more precise the matrix one
considers is the one which arises from the zero estimate: if the zero estimate
shows, for a given set of pairs (σ, s), that no nonzero polynomial P (with
suitable bounds for its degree) can satisfy all equations F (σ)(sb) = 0, then the
matrix of the associated linear system has maximal rank. Consider a maximal
nonsingular submatrix and its nonzero determinant ∆. The main observation
of M. Laurent is that a sharp upper bound for |∆| can be reached by means
of Schwarz’ Lemma. Since ∆ lies in the ring Z[eb, b], as soon as the estimate
0 < |∆| < 1 is established one deduces that one at least of the two numbers
b, eb is not a rational integer.

1.2 Tools for the Auxiliary Function

We introduce four main tools for the proof of Theorem 1.1 by means of an
auxiliary function: Liouville’s inequality (LB), Schwarz’ Lemma (UB), the
Zero Estimate (NV) and Thue-Siegel’s Lemma (AP).

We shall use here only a trivial case of Liouville’s inequality (a more general
statement is Proposition 1.13 below):
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For any n ∈ Z with n �= 0 we have |n| ≥ 1. (1.2)

The analytic upper bound for our auxiliary function is a consequence of
the following Schwarz’ Lemma (see [34] Exercise 4.3, [9] and also Lemma 1.12
for a quantitative refinement):

Lemma 1.3. Let m, σ1, . . . , σm be positive integers and r, R positive real
numbers with r ≤ R. Let ζ1, . . . , ζm be distinct elements in the disk |ζ| ≤ R and
F ∈ H1(R) an analytic function which vanishes at each ζi with multiplicity
≥ σi (1 ≤ i ≤ m). Then

|F |r ≤ |F |R
m∏
i=1

(
R2 + r|ζi|
R(r + |ζi|)

)−σi

·

We recall the definition: a function F vanishes at a point ζ with multiplicity
≥ σ if F (k)(ζ) = 0 for 0 ≤ k < σ.

In our applications, we shall introduce a parameter E > 1 such that R ≥
Er and R ≥ E|ζi| for 1 ≤ i ≤ m. The conclusion yields

|F |r ≤ |F |R
(
E2 + 1

2E

)−N

where N = σ1 + · · · + σm is a lower bound for the number of zeroes of F in
the disk |z| ≤ R/E. In practice N will be large, E ≥ e, and E−N will be the
main term in the right hand side. In particular |F |R will not be too large, and
from the conclusion of Lemma 1.3 we shall infer that |F |r is quite small.

For our first transcendence proof the zero estimate is a very simple one:

• If F is a nonzero analytic function near z0, there exists σ ∈ N such that

F (σ)(z0) �= 0.

Our last tool is Thue-Siegel’s Lemma:

Lemma 1.4. Let m and n be positive integers with n > m and aij (1 ≤ i ≤ n,
1 ≤ j ≤ m) rational integers. Define

A = max
{
1, max

1≤i≤n
1≤j≤m

|aij |
}
.

There exist rational integers x1, . . . , xn which satisfy

0 < max{|x1|, . . . , |xn|} ≤ (nA)m/(n−m)

and
n∑
i=1

aijxi = 0 for 1 ≤ j ≤ m.

For a proof of this result, we refer for instance to [2] Lemma 1, Chap. 2, [6],
Theorem 6.1, Chap. 1, Section 6.1, [7], Theorem 1.10, Chap. 1, Section 4.1
or [11], Lemma 1, Chap. VII, Section 2.
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1.3 Proof with an Auxiliary Function and without Zero Estimate

Here is a first proof of Theorem 1.1. Let b be a positive integer such that eb

is also a positive integer. We denote by T0, T1, S0 and S1 positive integers
which we shall choose later: during the proof we shall introduce conditions on
these parameters and at the end of the proof we shall check that it is possible
to select the parameters so that these conditions are satisfied. Right now let
us just say that these integers will be sufficiently large.

We want to deduce from Lemma 1.4 that there exists a nonzero polynomial
P ∈ Z[X,Y ], of degree < T0 in X and degree < T1 in Y , such that the
exponential polynomial F (z) = P (z, ez) has a zero of multiplicity ≥ S0 at
each point 0, b, 2b, . . . , (S1 − 1)b. If this unknown polynomial P is

P (X,Y ) =
T0−1∑
τ=0

T1−1∑
t=0

cτtX
τY t,

then the conditions

F (σ)(sb) = 0 (0 ≤ σ < S0, 0 ≤ s < S1)

can be written

T0−1∑
τ=0

T1−1∑
t=0

cτt

(
d

dz

)σ (
zτetz

)
(sb) = 0 (0 ≤ σ < S0, 0 ≤ s < S1).

Finding P amounts to solving a system of S0S1 linear equations, with rational
integers coefficients, in T0T1 unknowns cτt (0 ≤ τ < T0, 0 ≤ t < T1). We
are going to apply Lemma 1.4 with n = T0T1 and m = S0S1. In place of the
condition n > m we shall require n ≥ 2m, so that the so-called “Dirichlet’s
exponent” m/(n−m) is at most 1. This yields the first main condition on our
parameters:

T0T1 ≥ 2S0S1.

We need an upper bound for the number A occurring in Lemma 1.4. Con-
sider (1.1). We wish to estimate from above the modulus of the complex
number

min{τ,σ}∑
κ=0

σ!τ !
κ!(σ − κ)!(τ − κ)!

zτ−κtσ−κ

for |z| ≤ R with R > 0, and for 0 ≤ t < T1. A first upper bound is given by

τ∑
κ=0

τ !
κ!(τ − κ)!

σκRτ−κT σ−κ
1 = T σ1

(
σ

T1
+R

)τ
and another one is
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σ∑
κ=0

σ!
κ!(σ − κ)!

τκRτ−κT σ−κ
1 = Rτ

( τ
R

+ T1

)σ
.

Putting these estimates together yields

sup
|z|≤R

∣∣∣∣∣∣
min{τ,σ}∑
κ=0

σ!τ !
κ!(σ − κ)!(τ − κ)!

zτ−κtσ−κ

∣∣∣∣∣∣
≤ RτT σ1 min

{(
1 +

σ

T1R

)τ
;
(

1 +
τ

T1R

)σ}
. (1.3)

Similar estimates are known for more general exponential polynomials,
also in several variables: see for instance [34] Lemmas 4.9 and 13.6.

Here we shall not use the full force of this estimate. Taking z = bs, R = bS1
we deduce

A ≤ TS0
1 (bS1 + S0)T0ebT1(S1−1).

Hence a nonzero polynomial P exists, satisfying the required conditions and
with

max
0≤τ<T0
0≤t<T1

|cτt| ≤ T0T1A.

We need an upper bound for the length

L(P ) =
T0−1∑
τ=0

T1−1∑
t=0

|cτt|

of P . As soon as T0, T1, S0, S1 are sufficiently large, we have

bS1 ≤
1
4
bS0S1, S0 ≤

1
4
bS0S1, T 2

0 ≤ 2T0 , T 2
1 ≤ ebT1 ,

hence
bS1 + S0 ≤

1
2
bS0S1, T 2

0 (bS1 + S0)T0 ≤ (bS0S1)T0

and therefore
L(P ) ≤ T 2

0 T
2
1A ≤ TS0

1 (bS0S1)T0ebT1S1 .

Since the two functions z and ez are algebraically independent, the function
F is not the zero function: at each point sb with 0 ≤ s < S1 its vanishing
order is finite (and ≥ S0, by construction). We denote by S′

0 the minimum of
these orders. In other terms S′

0 is the largest integer such that the conditions

F (σ)(sb) = 0 (0 ≤ σ < S′
0, 0 ≤ s < S1)

hold and therefore there is an integer s′ in the range 0 ≤ s′ < S1 with

F (S′
0)(s′b) �= 0.
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An upper bound for S′
0 follows from Lemma 1.6 below, namely:

S′
0S1 ≤ T0T1,

but this estimate will not be used in the present proof: we need only the lower
bound S′

0 ≥ S0.
By assumption the number F (S′

0)(s′b) is a nonzero rational integer, hence
has absolute value ≥ 1. We shall deduce from Cauchy’s inequalities and
Schwarz’ Lemma 1.3 an upper bound for this number in terms of the pa-
rameters T0, T1, S0 and S1. It will then suffice to check that the parameters
can be selected so that this upper bound is less than 1 and the contradiction
will follow.

Cauchy’s inequalities yield∣∣∣F (S′
0)(s′b)

∣∣∣ ≤ S′
0!|F |r

for any r ≥ s′b+1. We take r = 2bS1. Next we apply Lemma 1.3 with R = Er,
where E > 1 is a new parameter which we are free to choose. As we shall see
a suitable choice is E = S′

0/b; notice that E, which is selected at this stage of
the proof, is allowed to depend on S′

0, while S′
0 in turn depends on T0, T1, S0

and S1.
Define m = S1, σ1 = · · · = σm = S′

0 and ζi = (i− 1)b (1 ≤ i ≤ m). Since
max1≤i≤m |ζi| ≤ r, by Lemma 1.3 we have

|F |r ≤
(
E2 + 1

2E

)−S′
0S1

|F |R.

It remains to bound |F |R from above:

|F |R ≤
T0−1∑
τ=0

T1−1∑
t=0

|cτt| sup
|z|=R

∣∣zτetz∣∣
≤ (T/S)TS0

1 (bS0S1)T0ebT1S1RT0eT1R

≤ TS0
1 (bES0S1)2T0e3bET1S1 .

Hence
|F |r ≤ (E/2)−S′

0S1TS0
1 (bES0S1)2T0e3bET1S1 .

This explains our second main condition on the parameters: taking into ac-
count the inequality S′

0!|F |r ≥ 1, we shall deduce the desired contradiction as
soon as we are able to check

S′
0!T

S0
1 (bES0S1)2T0e3bET1S1 < (E/2)S

′
0S1 .

Here is an admissible choice for these parameters. Recall that b is a fixed
positive integer. We start by selecting a sufficiently large, but fixed, positive
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integer S1 and we set T1 = S1. Next let S0 be an integer, which is much larger
than S1; the required estimates below are easy to check by letting S0 → ∞.
Now define T0 = 3S0 and E = S′

0/b. With this choice we have

T0T1 > 2S0S1,

S′
0! < (S′

0)
S′

0 < (E/2)S
′
0S1/4

because S′
0 < E2 < (E/2)S1/4,

TS0
1 < (E/2)S

′
0S1/4

because T1 < E/2 < (E/2)S1/4 and S0 ≤ S′
0,

bES0S1 < (S′
0)

3 and (S′
0)

6T0 < (E/2)S
′
0S1/4,

and finally

3bET1S1 = 3S′
0T1S1 <

1
4
S′

0S1 log(E/2).

This completes the proof of Theorem 1.1. ��

Remark. To a certain extent this proof of Theorem 1.1 involves an extrap-
olation: we get more and more derivatives of F vanishing at all points
0, b, . . . , (S1 − 1)b. It is only a matter of presentation: instead of defining S′

0
as we did, it amounts to the same to check by induction on S′

0 ≥ S0 that F
has a zero of multiplicity at least S′

0 at each point sb with 0 ≤ s < S1. At the
end of the induction we get a contradiction.

We could also extrapolate on the points at the same time as on the deriva-
tives. Here is a variant of the proof.

We may assume2 b ≥ 3. Fix a large3 positive integer N and set

T0(N) = 2N2b[log b], T1(N) = N2[log b],

S0(N) = N3b[log b], S1(N) = N [log b]

and L(N) = T0(N)T1(N), so that

L(N) = 2N4b[log b]2 = 2S0(N)S1(N).

The first step in the preceding proof yields a nonzero polynomial P ∈ Z[X,Y ]
of degree < T0(N) in X and < T1(N) in Y , of length bounded by

2 For the proof of Theorem 1.1, this involves no loss of generality and the only
reason for this assumption is that we prefer to write log b in place of log+ b. For
the same reason when we shall need to introduce log log b later we shall assume
b ≥ 16.

3 We assume that N is larger than some absolute constant (independent of b); here
one could assume as well than N is larger than some function of b, but it turns
out not to be necessary. The relevance of this fact will appear in Section 4 only.
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L(P ) ≤ TS0
1 (bS0S1)T0ebT1S1

≤ exp{3L(N)(logN)/N}
≤ exp{L(N)/

√
N},

such that the function F (z) = P (z, ez) satisfies

F (σ)(sb) = 0 for 0 ≤ σ < S0(N) and 0 ≤ s < S1(N).

The second step is an inductive argument: we prove that for any M ≥ N we
have

F (σ)(sb) = 0 for 0 ≤ σ < S0(M) and 0 ≤ s < S1(M). (1.4)

This is true by construction for M = N . Assuming (1.4) is true for M , we
deduce it for M + 1 as follows. Let (σ′, s′) ∈ N2 satisfy 0 ≤ σ′ < S0(M + 1)
and 0 ≤ s′ < S1(M+1). Combining the induction hypothesis with Lemma 1.3
where we choose

m = S1(M), ζi = (i− 1)b (1 ≤ i ≤ m), σ1 = · · · = σm = S0(M),
r = 2bS1(M + 1) and R = 2er,

we deduce
|F |r ≤ e−S0(M)S1(M)|F |R

≤ e−S0(M)S1(M)L(P )RT0(N)eT1(N)R

≤ e−S0(M)S1(M)/2,

because

log L(P ) + T0(N) logR+ T1(N)R ≤ 1
2
S0(M)S1(M).

Since
log(S0(M + 1)!) ≤ 1

4
S0(M)S1(M),

Cauchy’s inequalities yield ∣∣∣F (σ′)(s′b)
∣∣∣ < 1

for 0 ≤ σ′ < S0(M + 1) and 0 ≤ s′ < S1(M + 1). Since the left hand side is a
rational integer, we deduce F (σ′)(s′b) = 0 and the inductive argument follows.

Plainly we conclude F = 0, which completes this new proof of Theorem 1.1.

Remark. In this inductive argument from M to M + 1, the first step (with
M = N) is the hardest one: as soon as M is large with respect to N , the
required estimates are easier to check.
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1.4 Tools for the Interpolation Determinant Method

Some tools which have already been introduced above will be needed for the
proof involving interpolation determinants. For instance Liouville’s inequality
is just the same (1.2). On the other hand in place of Schwarz’ Lemma 1.3 we
shall use M. Laurent’s fundamental observation that interpolation determi-
nants have a small absolute value (see [13], Section 6.3, Lemma 3 and [14],
Section 6, Lemma 6). The following estimate ([34] Lemma 2.8) is a conse-
quence of the case m = 1, ζ1 = 0 of Lemma 1.3.

Lemma 1.5. Let ϕ1, . . . , ϕL be entire functions in C, ζ1, . . . , ζL elements of
C, σ1, . . . , σL nonnegative integers and 0 < r ≤ R real numbers, with |ζµ| ≤ r
(1 ≤ µ ≤ L). Then the absolute value of the determinant

∆ = det
(
ϕ

(σµ)
λ (ζµ)

)
1≤λ,µ≤L

is bounded from above by

|∆| ≤
(
R

r

)−(L(L−1)/2)+σ1+···+σL

L!
L∏
λ=1

max
1≤µ≤L

sup
|z|=R

∣∣∣ϕ(σµ)
λ (z)

∣∣∣ .
The zero estimate we need is the following result due to G. Pólya ([34]

Corollary 2.3):

Lemma 1.6. Let w1, . . . , wn be pairwise distinct real numbers, x1, . . . , xm also
pairwise distinct real numbers and τ1, . . . , τn, σ1, . . . , σm nonnegative integers,
with

τ1 + · · ·+ τn = σ1 + · · ·+ σm.

Choose any ordering for the pairs (τ, i) with 0 ≤ τ < τi and 1 ≤ i ≤ n and
any ordering for the pairs (σ, j) with 0 ≤ σ < σj and 1 ≤ j ≤ m. Then the
square matrix (( d

dz

)σ(
zτewiz

)
(xj)

)
(τ,i)
(σ,j)

is nonsingular.

We call this result a zero estimate because it can be stated as follows: if
cτi are complex numbers (0 ≤ τ < τi, 1 ≤ i ≤ n), not all of which are zero,
then the exponential polynomial

f(z) =
n∑
i=1

τi−1∑
τ=0

cτiz
τewiz

cannot vanish at each xj with multiplicity ≥ σj (1 ≤ j ≤ m).
One main characteristic of Laurent’s interpolation determinant method is

that there is no need of Thue-Siegel’s Lemma 1.4.



Linear independence measures for logarithms of algebraic numbers 261

1.5 Proof with an Interpolation Determinant and a Zero Estimate

Here is another proof of Theorem 1.1.
We start with a positive real number b ≥ 1, without any other assump-

tion. We introduce auxiliary parameters T0, T1, S0 and S1, which are positive
integers and E > 1 a real number. These parameters will be specified later,
but it is convenient to assume T0, T1, S0 and S1 are all ≥ 2.

Consider the matrix

M =
(( d

dz

)σ(
zτetz

)
(sb)

)
0≤τ<T0, 0≤t<T1
0≤σ<S0, 0≤s<S1

,

with T0T1 rows labeled with (τ, t) and S0S1 columns labeled with (σ, s). Here
we shall work with a square matrix, which means that we require

T0T1 = S0S1.

We denote by L this number, so that M is a square L×L matrix. By Lemma 1.6
with n = T1,

wi = i− 1, τi = T0 (1 ≤ i ≤ n),

m = S1 and
xj = (j − 1)b, σj = S0 (1 ≤ j ≤ m),

it follows that M is nonsingular. Let ∆ be the determinant of M. By Lemma 1.5
with

{ϕ1, . . . , ϕL} = {zτetz ; 0 ≤ τ < T0, 0 ≤ t < T1},
{(σ1, ζ1), . . . , (σL, ζL)} = {(σ, sb) ; 0 ≤ σ < S0, 0 ≤ s < S1}

and r = bS1, R = Er, we have

|∆| ≤ E−L(L−1−S0)/2L!
T0−1∏
τ=0

T1−1∏
t=0

max
0≤σ<S0

sup
|z|=R

∣∣∣∣( d

dz

)σ (
zτetz

)∣∣∣∣ .
Since, for 0 ≤ σ < S0 and |z| = R, we have by (1.3) and (1.1)∣∣∣∣( d

dz

)σ (
zτetz

)∣∣∣∣ ≤ TS0
1 (R+ S0)T0eT1R

≤ TS0
1 (bES0S1)T0ebET1S1 ,

we deduce

|∆| ≤ E−L(L−1−S0)/2L!TLS0
1 (bES0S1)LT0ebELT1S1

≤ E−L2/2LL(ET1)LS0(bES0S1)LT0ebELT1S1 .

This estimate holds unconditionally. If we can select our parameters so that
|∆| < 1, then this will prove that the nonzero number ∆ cannot be a rational
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integer, hence one at least of b and eb is not a rational integer. Therefore the
proof of Theorem 1.1 will be completed if we show that our parameters may
be selected so that

EL/2 > L(ET1)S0(bES0S1)T0ebET1S1 .

Here is an admissible choice: let N be a sufficiently large positive integer
(independent of b). Assuming b ≥ 3, define E = e,

T0 = N2b[log b], T1 = N2[log b],

S0 = N3b[log b], S1 = N [log b],

so that L = N4b[log b]2.
This completes the proof of Theorem 1.1. ��

1.6 Remarks

In this last proof of Theorem 1.1, we did not need to assume that b and eb

are integers: Liouville’s inequality (1.2) is used at the very end and provides
the conclusion. More precisely it is plain that the interpolation determinant
method of Section 1.5 yields the following explicit result.

Proposition 1.7. Let b be a positive real number. Let T0, T1, S0, S1 and L
be positive integers satisfying

L = T0T1 = S0S1.

Let E be a positive number, E > 1. Then there exists a polynomial f ∈
Z[Z1, Z2], of degree < LT1S1 in Z1 and < LT0 in Z2, of length bounded by

L(f) ≤ L!TLS0
1 (S0S1)LT0 ,

such that

0 < |f(eb, b)| ≤ E−L2/2L!(ET1)LS0(|b|+ES0S1)LT0e|b|ELT1S1 .

We now explain how to modify the first proof (in Section 1.3) involving
an auxiliary function and deduce the following variant of Proposition 1.7.

Proposition 1.8. Let b be a positive real number. Let T0, T1, S0, S1 and L
be positive integers such that

L = T0T1 = S0S1.

Let E, U , V , W be positive real numbers satisfying

E ≥ e, W ≥ 12 logE,
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U ≥ logL+ T0 log(|b|+ES1) + |b|+ET1S1 (1.5)

and
4(U + V +W )2 ≤ LW logE. (1.6)

There exists a nonzero polynomial f ∈ Z[Z1, Z2] of degree < T1S1 in Z1 and
< T0 in Z2, of length

L(f) ≤ LeWTS0
1 (S0 + S1)T0 ,

such that
0 < |f(eb, b)| ≤ S0!e−V .

Remark. It is interesting to compare the two estimates provided by Proposi-
tions 1.7 and 1.8. Condition (1.6) is satisfied with4

U = V = W =
1
36
L logE.

Up to terms of smaller order (when T0, T1, S0 and S1 are all sufficiently
large), the estimates one deduces from Proposition 1.7 for the degrees, the
logarithm of the length and the logarithm of the absolute value are L times
the corresponding ones in Proposition 1.8.

For all practical purposes, Proposition 1.8, which is obtained by the auxil-
iary function method, is much sharper that Proposition 1.7. This fact has been
an obstacle during a while to develop the interpolation determinant method.
For instance it took several years before proofs of algebraic independence
results could be achieved by means of Laurent’s interpolation determinant
method. A nice solution has been provided by M. Laurent and D. Roy in [15],
who point out that the polynomial f given by the proof of Proposition 1.7
has a further quite interesting property: its first derivatives(

∂

∂Z1

)k1 ( ∂

∂Z2

)k2
f

with (k1, k2) ∈ N2 satisfying, say, k1 + k2 < L/2, also have a small absolute
value at the point (eb, b). We shall develop this argument later (see Theo-
rem 4.5).

Our proof of Proposition 1.8 uses an auxiliary function. Since we do not
assume b and eb are integers, we cannot apply Lemma 1.4 as we did in Section
1.3. Instead of solving linear equations, we select (again by means of Dirichlet’s
box principle) the coefficients cτt of the auxiliary polynomial P so that a set
of inequalities is satisfied. There are several possibilities. Here we shall use the
following auxiliary function.

4 This choice yields a weak upper bound for the length of f . From this point of
view a better choice is for instance U = V = (1/20N)L log E and W = U/N with
N ≥ 5.
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Lemma 1.9. Let L be a positive integer, U , V , W , R, r positive real numbers
and ϕ1, . . . , ϕL functions in H1(R). Assume

U + V +W ≥ 12, e ≤ R

r
≤ e(U+V+W )/6,

L∑
λ=1

|ϕλ|R ≤ eU

and
4(U + V +W )2 ≤ LW log(R/r).

Then there exist rational integers p1, . . . , pL, with

0 < max
1≤λ≤L

|pλ| ≤ eW ,

such that the function F = p1ϕ1 + · · ·+ pLϕL satisfies

|F |r ≤ e−V .

We do not give the proof of Lemma 1.9 (see [34] Proposition 4.10, which
provides a similar statement in several variables). It suffices to say that it
combines Dirichlet’s box principle (Lemma 1.10) with an interpolation formula
(Lemma 1.11).

Here is Lemma 4.12 of [34].

Lemma 1.10. Let ν, µ, X be positive integers, U , V positive real numbers
and uij (1 ≤ i ≤ ν, 1 ≤ j ≤ µ) complex numbers. Assume

ν∑
i=1

|uij | ≤ eU , (1 ≤ j ≤ µ)

and (√
2XeU+V + 1

)2µ ≤ (X + 1)ν .

Then there exists (ξ1, . . . , ξν) ∈ Zν satisfying

0 < max
1≤i≤ν

|ξi| ≤ X

and

max
1≤j≤µ

∣∣∣∣∣
ν∑
i=1

uijξi

∣∣∣∣∣ ≤ e−V .

The next result is Lemma 4.13 of [34] (in case r = 0 we agree that r‖k‖ = 1
for k = 0). For the proof of Lemma 1.9, the case n = 1 suffices, but we shall
need the general case in Section 4.4.

Lemma 1.11. Let n, K be positive integers, r and R real numbers satisfying
0 ≤ r < R and F an entire function in Cn. Then

|F |r ≤ (1 +
√
K)

( r
R

)K
|F |R +

∑
‖k‖<K

|DkF (0)|r
‖k‖

k!
·
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Proof of Proposition 1.8. We apply Lemma 1.9 to the functions

{ϕ1, . . . , ϕL} = {zτetz ; 0 ≤ τ < T0, 0 ≤ t < T1}

with
r = |b|+S1, R = Er.

From hypothesis (1.5) we derive

L∑
λ=1

|ϕλ|R =
T0−1∑
τ=0

T1−1∑
t=0

sup
|z|=R

∣∣zτetz∣∣ ≤ LRT0eT1R

≤ L(|b|+ES1)T0e|b|+ET1S1 ≤ eU .

We deduce the existence of a nonzero polynomial

P (X,Y ) =
T0−1∑
τ=0

T1−1∑
t=0

cτtX
τY t ∈ Z[X,Y ],

of degree < T0 in X and < T1 in Y , with integer coefficients bounded in
absolute value by eW , such that the function F (z) = P (z, ez) satisfies

|F |r ≤ e−V .

By Lemma 1.6 there is a nonzero element γ in the set{
F (σ)(sb) ; 0 ≤ σ < S0, 0 ≤ s < S1

}
.

From Cauchy’s inequality, and since r ≥ s|b|+ 1, we deduce the upper bound

|γ| ≤ S0!|F |r ≤ S0!e−V .

Writing
γ = F (σ)(sb),

define f ∈ Z[Z1, Z2] by

T0−1∑
τ=0

T1−1∑
t=0

cτt

min{τ,σ}∑
κ=0

σ!τ !
κ!(σ − κ)!(τ − κ)!

sτ−κtσ−κZts1 Z
τ−κ
2

so that, using (1.1), we can write

γ = f(eb, b).

The degrees of f plainly satisfy the required conditions in the conclusion of
Proposition 1.8, and finally the length of f is bounded thanks to (1.3):

L(f) ≤
T0−1∑
τ=0

T1−1∑
t=0

|cτt|
min{τ,σ}∑
κ=0

σ!τ !
κ!(σ − κ)!(τ − κ)!

sτ−κtσ−κ

≤ LeWTS0
1 (S0 + S1)T0 .

��
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One can prove a variant of Proposition 1.8 by constructing the auxiliary
function F (z) = P (z, ez) in a slightly different way. One applies Lemma 1.10
again, but now we require that many values at points sb of the function F
and of its first derivatives have a small absolute value5. A rigidity principle
for analytic functions (Lemma 1.12) enables us to deduce that |F |r is rather
small for a suitable parameter r. We are back to the situation of our first
proof: we invoke Pólya’s Lemma 1.6 and produce a nonzero value of F (or of
one of its derivatives). This nonzero number is the value at the point (eb, b)
of a polynomial f ∈ Z[Z1, Z2] which satisfies the desired conclusion.

Lemma 1.11 is quite simple, since only one point z = 0 is involved. For
functions of a single variable one can consider an arbitrary finite set of points6.
Here is Lemma 5.1 of [26].

Lemma 1.12. Let � be a positive integer, w1, . . . , w� pairwise distinct complex
numbers and m1, . . . ,m� positive integers. Put

L =
�∑
j=1

mj , # = max
1≤j≤�

max
{
1, |wj |

}
,

and
δ1 = min

1≤j≤�

∏
1≤j′≤�
j′ �=j

|wj − wj′ |mj′/L,

δ2 = min
{
1 , min

1≤j,j′≤�
j �=j′

|wj − wj′ |mj′/L
}
,

with the convention that δ1 = δ2 = 1 when � = 1. Then, for any pair of real
numbers r and R with R ≥ 2r and r ≥ 2# and for any function F ∈ H1(R),
we have

|F |r ≤
( 6r
δ1δ2

)L
max
1≤j≤�

0≤κ<mj

1
κ!

∣∣∣F (κ)(wj)
∣∣∣ +

(6r
R

)L
|F |R.

Each of the two Propositions 1.7 and 1.8 yields the real case of Hermite-
Lindemann’s Theorem 1.2: in place of the trivial Liouville’s inequality (1.2)
we have used so far, it suffices to invoke the next result, which is Proposition
3.14 of [34]:

Proposition 1.13. (Liouville’s Inequality). Let K be a number field of degree
D, v an Archimedean absolute value of K and ν1, . . . , ν� positive integers. For

5 Lemma 1.9 is proved in [34] by constructing P so that the first Taylor coefficients
of F at the origin have a small absolute value; hence it may be considered as a
variant of this approach, which consists in taking only s = 0 at this stage of the
proof - the number b does not occur in this case.

6 Such a statement is called an “approximate Schwarz’ Principle” in [23], Section
3.a.
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1 ≤ i ≤ �, let γi1, . . . , γiνi be elements of K. Further, let f be a polynomial in
ν1+· · ·+ν� variables, with coefficients in Z, which does not vanish at the point
γ =

(
γij

)
1≤j≤νi,1≤i≤�. Assume f has total degree at most Ni with respect to

the νi variables corresponding to γi1, . . . , γiνi . Then

log |f(γ)|v ≥ −(D − 1) log L(f) −D

�∑
i=1

Nih(1: γi1 : · · · : γiνi
).

Finally the complex case of Hermite-Lindemann’s Theorem 1.2 can also
be proved easily by the same arguments, either with an auxiliary function or
with an interpolation determinant. The only new feature is to replace Pólya’s
Lemma 1.6 by another zero estimate, for instance Lemma 4.3. We refer to [2],
Chap. 1, Section 3, [6], Chap. 1, Section 9, [7], Chap. 2, Section 2 and [30], Sec-
tion 3.1 for proofs of the Hermite-Lindemann’s Theorem by means of an aux-
iliary function and to [34] Chap. 2 for the interpolation determinant method
with a zero estimate.

In the next section we provide a new proof of Hermite-Lindemann’s The-
orem 1.2 by means of an interpolation determinant but without any zero
estimate: we shall extrapolate like in Section 1.3.

2 Second Lecture. Extrapolation with Interpolation
Determinants

The proof given in Section 1.3 rests on an auxiliary function and involves an
extrapolation; this extrapolation enabled us to conclude without using the
zero estimate Lemma 1.6. We explain here how to perform an extrapolation
by means of the interpolation determinant method of Section 1.5.

2.1 Upper Bound for a Determinant in a Single Variable

We are looking for an upper bound for an interpolation determinant. Lemma
1.5 is proved by M. Laurent in [14], Section 6 (also in [34] Lemma 2.8) by
means of Schwarz’ Lemma 1.3 for the function

Φ : z �−→ det
(
ϕ

(σµ)
λ (zζµ)

)
1≤λ,µ≤L

which has a zero at the origin of multiplicity at least

0 + 1 + · · ·+ (L− 1) − (σ1 + · · ·+ σL) =
L(L− 1)

2
−

L∑
µ=1

σµ.
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Example 2.1. (See Masser’s Lecture 1 in [19]). Define

ϕ(z) = z + z2 + z4 + z8 + · · · =
∞∑
m=0

z2m

.

Set L = 6 and take for ϕ1, . . . , ϕ6 the functions

1, z, ϕ(z), zϕ(z), ϕ2(z), zϕ2(z).

Further set

σ1 = 0, σ2 = 1, σ3 = 2, σ4 = 3, σ5 = 4, σ6 = 0

and
ζ1 = ζ2 = ζ3 = ζ4 = ζ5 = 0, ζ6 = 1.

The function

Φ(z)
6∏

µ=1

1
σµ!

= det
(

1
σµ!

ϕ
(σµ)
λ (zζµ)

)
1≤λ,µ≤L

= det


1 0 0 0 0 1
0 1 0 0 0 z
0 1 1 0 1 ϕ(z)
0 0 1 1 0 zϕ(z)
0 0 1 2 1 ϕ2(z)
0 0 0 1 2 zϕ2(z)


= 2zϕ2(z) + 4zϕ(z) − 3ϕ2(z) + z − ϕ(z)

has a zero of multiplicity ≥ 5 at the origin; as pointed out by D.W. Masser [19],
actually the multiplicity is 6.

Back to the general case, we need to take into account further zeroes.
Such an upper bound is given in Corollary 2.4 of [33]; the proof relies on a
Schwarz Lemma for Cartesian products (see [33] Proposition 2.3; see also [9]
for a general discussion of this issue). Philippon ([23] Lemme 4) also gave
upper estimates for interpolation determinants and he does not need to deal
with Cartesian products: he uses a much more simple inductive argument
which suffices for interpolation determinants (but does not seem to extend to
Cartesian products). Here we follow his approach.

We first combine Schwarz’ Lemma 1.3 with Cauchy’s inequalities.

Lemma 2.2. Let R, r, # and E be positive real numbers, F an element of
H1(R), m a positive integer, ζ1, . . . , ζm pairwise distinct complex numbers, ξ
a complex number and κ, σ1, . . . , σm nonnegative integers. Set

N = σ1 + · · ·+ σm.
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Assume

R ≥ max{r, |ξ| + #}, r ≥ max
1≤i≤m

|ζi| and 1 ≤ E ≤ R2 + r(|ξ| + #)
R(r + |ξ| + #)

·

Assume also that F satisfies

F (σ)(ζi) = 0 for 0 ≤ σ < σi and 1 ≤ i ≤ m.

Then ∣∣∣F (κ)(ξ)
∣∣∣ ≤ κ!#−κE−N |F |R.

Proof. By Cauchy’s inequalities∣∣∣F (κ)(ξ)
∣∣∣ ≤ κ!#−κ|F ||ξ|+�.

Since F has at least N zeroes (counting multiplicities) in the disk B1(0, r),
we deduce from Schwarz’ Lemma 1.3:

|F ||ξ|+� ≤ E−N |F |R.

Hence the result. ��

The next result is an extension of Corollary 2.4 of [33] where we include
multiplicities.

Proposition 2.3. Let R be a positive real number, ϕ1, . . . , ϕL elements of
H1(R) with L ≥ 1, ξ1, . . . , ξL complex numbers in B1(0, R) and κ1, . . . , κL
nonnegative integers. Consider the determinant

∆ = det
(
ϕ

(κµ)
λ (ξµ)

)
1≤λ,µ≤L

.

Further let m1, . . . ,mL be nonnegative integers and, for 1 ≤ µ ≤ L and 1 ≤
i ≤ mµ, let ζµi be a complex number and σµi a nonnegative integer. We assume
that for each µ = 1, . . . , L, the mµ numbers ζµ1, . . . , ζµmµ are pairwise distinct.
Set

Nµ =
mµ∑
i=1

σµi (1 ≤ µ ≤ L).

For 1 ≤ µ ≤ L, let rµ, Rµ, #µ and Eµ be positive real numbers satisfying

R ≥ Rµ ≥ max{rµ, |ξµ| + #µ}, rµ ≥ max
1≤i≤mµ

|ζµi|

and

1 ≤ Eµ ≤
R2
µ + rµ(|ξµ| + #µ)

Rµ(rµ + |ξµ| + #µ)
·
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Denote by Φ the analytic mapping

(ϕ1, . . . , ϕL) : B1(0, R) → CL.

Assume that for any (µ, i, κ) ∈ N3 satisfying 1 ≤ µ ≤ L, 1 ≤ i ≤ mµ and
0 ≤ κ < σµi, the µ vectors

Φ(κ1)(ξ1), . . . , Φ(κµ−1)(ξµ−1), Φ(κ)(ζµi) (2.1)

in CL are linearly dependent. Then

|∆| ≤ L! max
τ∈SL

L∏
µ=1

(
κµ!#−κµ

µ E−Nµ
µ |ϕτ(µ)|Rµ

)
.

Proof. We prove Proposition 2.3 by induction on L. For L = 1 we have Φ = ϕ1,

∆ = Φ(κ1)(ξ1), 1 ≤ E1 ≤
R2

1 + r1(|ξ1| + #1)
R1(r1 + |ξ1| + #1)

and hypothesis (2.1) reads

Φ(κ)(ζ1i) = 0 for 0 ≤ κ < σ1i and 1 ≤ i ≤ m1.

From Lemma 2.2 we deduce

|∆| ≤ κ1!#−κ1
1 E−N1

1 |ϕ1|R1 .

Hence Proposition 2.3 is true in case L = 1.
Assume now that the conclusion is true for L replaced by L − 1. Define

F ∈ B1(0, R) by

F (z) = det
(
Φ(κ1)(ξ1), . . . , Φ(κL−1)(ξL−1), Φ(z)

)
.

By assumption (2.1) with µ = L, for 1 ≤ i ≤ mL and 0 ≤ κ < σLi, we have

F (κ)(ζLi) = 0.

Since
∆ = F (κL)(ξL),

we deduce from Lemma 2.2

|∆| ≤ κL!#−κL

L E−NL

L |F |RL
.

We expand the determinant F with respect to the last column: define, for
1 ≤ λ ≤ L,

Φλ =
(
ϕ1, . . . , ϕλ−1, ϕλ+1, . . . , ϕL

)
: B1(0, R) → CL−1
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and let ∆λ denote the determinant of the (L− 1) × (L− 1) matrix(
Φ

(κ1)
λ (ξ1), . . . , Φ

(κL−1)
λ (ξL−1)

)
,

so that

F (z) =
L∑
λ=1

(−1)L−λϕλ(z)∆λ.

Hence
|F |RL

≤ L max
1≤λ≤L

|ϕλ|RL
|∆λ|

and therefore
|∆| ≤ κL!L#−κL

L E−NL

L max
1≤λ≤L

|ϕλ|RL
|∆λ|.

We fix an index λ0 ∈ {1, . . . , L} such that

|∆| ≤ κL!L#−κL

L E−NL

L |ϕλ0 |RL
|∆λ0 |.

Using the induction hypothesis, we deduce that there exists a bijective map t
from {1, . . . , L− 1} to {1, . . . , λ0 − 1, λ0 + 1, . . . , L} such that

|∆λ0 | ≤ (L− 1)!
L−1∏
µ=1

(
κµ!#−κµ

µ E−Nµ
µ |ϕt(µ)|Rµ

)
.

Define τ ∈ SL by τ(µ) = t(µ) for 1 ≤ µ < L and τ(L) = λ0. Proposition 2.3
follows. ��

We shall use a special case of Proposition 2.3.
We consider a finite sequence (ζ0, . . . , ζN ) of complex numbers, which are

not supposed to be pairwise distinct. We define the associated multiplicity
sequence (σ0, . . . , σN ) as follows:

σν = Card{i; 0 ≤ i < ν , ζi = ζν} (0 ≤ ν ≤ N).

If ζ0, . . . , ζN are pairwise distinct then σ0 = · · · = σN = 0. In general,
(ζ0, . . . , ζN ) consists of � distinct complex numbers w1, . . . , w�, where wj is
repeated mj times (1 ≤ j ≤ �), so that

N∏
ν=0

(z − ζν) =
�∏
j=1

(z − wj)mj and m1 + · · ·+m� = N + 1.

Then for an analytic function F the N + 1 equations

F (σν)(ζν) = 0 for 0 ≤ ν ≤ N

are nothing else than
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F (κ)(wj) = 0 for 0 ≤ κ < mj and 1 ≤ j ≤ �.

The pairs (σν , ζν) (0 ≤ ν ≤ N) are pairwise distinct and for each ν = 0, . . . , N
and each σ = 0, . . . , σν there is an index µ in the range 0 ≤ µ ≤ ν with
(σµ, ζµ) = (σ, ζν).

Corollary 2.4. Let L, N be integers with 1 ≤ L ≤ N + 1, R a positive real
number and (ζ0, . . . , ζN ) a sequence of N + 1 elements in B1(0, R). Denote
by (σ0, . . . , σN ) the associated multiplicity sequence. Let 0 = ν0 ≤ ν1 < · · · <
νL ≤ N be integers and ϕ1, . . . , ϕL elements of H1(R). Consider the determi-
nant

∆ = det
(
ϕ

(σνµ )
λ (ζνµ)

)
1≤λ,µ≤L

.

For 1 ≤ µ ≤ L, let rµ, Rµ, #µ and Eµ be positive real numbers satisfying

R ≥ Rµ ≥ max{rµ, |ζνµ | + #µ}, rµ ≥ max
0≤ν<νµ

|ζν |

and

1 ≤ Eµ ≤
R2
µ + rµ(|ζνµ | + #µ)

Rµ(rµ + |ζνµ
| + #µ)

·

Denote by Φ the analytic mapping

(ϕ1, . . . , ϕL) : B1(0, R) → CL.

Assume that for any (µ, ν) ∈ N2 satisfying 1 ≤ µ ≤ L and νµ−1 ≤ ν < νµ, the
µ vectors

Φ(σν1 )(ζν1), . . . , Φ
(σνµ−1 )(ζνµ−1), Φ

(σν)(ζν)

in CL are linearly dependent. Then

|∆| ≤ L! max
τ∈SL

L∏
µ=1

(
σνµ

!#
−σνµ
µ E−νµ

µ |ϕτ(µ)|Rµ

)
.

Proof. We apply Proposition 2.3 with

ξµ = ζνµ
and κµ = σνµ

(1 ≤ µ ≤ L).

We define mµ, ζµi and σµi as follows: for 1 ≤ µ ≤ L, we denote by mµ

the number of distinct elements in the sequence (ζ0, . . . , ζνµ−1), by ζµi these
distinct elements and by σµi the number of ν in the range 0 ≤ ν < νµ such
that ζν = ζµi. Therefore

Nµ = σµ1 + · · ·+ σµmµ
= νµ.

��
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Remark. Corollary 2.4 includes Corollary 2.4 of [33]: if some σνµ is zero, then
#

−σνµ
µ = 1 even if we replace #µ by 0 in the definitions of Rµ and Eµ. Another

special case of Corollary 2.4 is related to Lemma 2.5 of [34], which is nothing
else than the case σ1 = · · · = σL = 0 of Lemma 1.5. Indeed we can take in
Corollary 2.4

ζ0, . . . , ζL−1 pairwise distinct, N = L− 1, σ0 = · · · = σL−1 = 0,

νµ = µ− 1, Rµ = R, rµ = r, Eµ = (R2 + r2)/2rR (1 ≤ µ ≤ L),

with
R ≥ r ≥ max{|ζ0|, . . . , |ζL−1|}.

Since ν1 + · · ·+ νL = L(L− 1)/2, we deduce from Corollary 2.4∣∣∣∣det
(
ϕλ(ζµ)

)
1≤λ,µ≤L

∣∣∣∣ ≤ (
R2 + r2

2rR

)−L(L−1)/2

L!
L∏
λ=1

sup
|z|=R

|ϕλ(z)| .

Apart from the quantity (R2+r2)/2rR which replaces R/r, this is the estimate
of Lemma 2.5 of [34].

It is not clear to me whether Proposition 2.3 contains the general case of
Lemma 1.5 (without the restriction σ1 = · · · = σL = 0).

2.2 Proof of Hermite-Lindemann’s Theorem with an Interpolation
Determinant and without Zero Estimate

Thanks to Corollary 2.4, one can modify the proof of Section 1.5 involving an
interpolation determinant so that Lemma 1.6 (zero estimate) is not required
any more. In this section we explain how to extrapolate and to increase either
the number of derivatives, or the number of points, or both.

Proof of Hermite-Lindemann’s Theorem 1.2. Let α and β be two complex
numbers with β �= 0 and α = eβ .

Step 1. Introducing the Parameters
Consider two nondecreasing sequences (S0(N))N≥0 and (S1(N))N≥0 of

nonnegative integers with S0(0) = S1(0) = 0 and such that the sequence
(S0(N)S1(N))N≥0 is increasing.

We construct a sequence ζ0, ζ1, . . . as follows. For each N ≥ 0, the sequence(
ζS0(N)S1(N), . . . , ζS0(N+1)S1(N+1)−1

)
consists of

• each element sβ with 0 ≤ s < S1(N) repeated S0(N + 1) − S0(N) times,

and

• each element sβ with S1(N) ≤ s < S1(N + 1) repeated S0(N + 1) times.
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Denote by (σ0, σ1, . . . , σν , . . .) the associated multiplicity sequence.
For each ν ≥ 0 denote by Nν the least integer N ≥ 1 for which ν <

S0(N)S1(N). Hence we have N0 = 1 and for ν ≥ 0

S0(Nν − 1)S1(Nν − 1) ≤ ν < S0(Nν)S1(Nν),
σν < S0(Nν) and |ζν | < S1(Nν)|β|.

(2.2)

We also introduce two sufficiently large integers T0 and T1 and we set L =
T0T1.

Step 2. The Matrix M and the Determinant ∆
Consider the matrix with L rows and infinitely many columns

M =
(
C0, C1, . . . , Cν , . . .

)
,

where Cν is the column vector (with L = T0T1 rows)(( d

dz

)σν(
zτetz

)
(ζν)

)
0≤τ<T0, 0≤t<T1

.

We claim that the rank of M is L. Indeed a linear relation between the rows
T0−1∑
τ0=0

T1−1∑
t=0

cτt

( d

dz

)σν(
zτetz

)
(ζν) = 0 for ν ≥ 0

would mean that the exponential polynomial

F (z) =
T0−1∑
τ0=0

T1−1∑
t=0

cτtz
τetz

satisfies
F (σν)(ζν) = 0 for ν ≥ 0.

These relations can also be written

F (σ)(sb) = 0 for σ ≥ 0 and s ≥ 0,

and they plainly imply cτt = 0 for 0 ≤ τ < T0 and 0 ≤ t < T1.
We select L columns of M as the minimal ones in the lexicographic ordering

such that we obtain a nonsingular matrix. Concretely we define ν1, . . . , νL as
follows:

ν1 = min{ν ≥ 0, Cν �= 0},
and for 2 ≤ µ ≤ L

νµ = min{ν > νµ−1 ; Cν1 , . . . , Cνµ−1 , Cν are linearly independent}.

Hence we have 0 = ν1 < ν2 < · · · < νL and the matrix(
Cν1 , . . . , CνL

)
is nonsingular. We denote its determinant by ∆.
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Remark. We may assume ζ0 = 0 and σ0 = 0; in this case the first column has
T1 components 1 (those with index (0, t) such that 0 ≤ t < T1) and (T0−1)T1
components 0 (the other ones, with index (τ, t) such that 1 ≤ τ < T0 and
0 ≤ t < T1).

Step 3. Upper Bound for |∆|
We apply Corollary 2.4 with #µ = 1, rµ = |β|+S1(Nνµ), Rµ = 3erµ, Eµ = e
and

{ϕ1, . . . , ϕL} =
{
zτetz ; 0 ≤ τ < T0, 0 ≤ t < T1

}
.

We deduce

|∆| ≤ L!
L∏
µ=1

(
e−νµσνµ !RT0

µ eT1Rµ
)
≤ L! exp

(
L∑
µ=1

ρµ

)
.

where

ρµ = −νµ + log
(
S0(Nνµ)!

)
+ T0 log

(
3e|β|+S1(Nνµ)

)
+ 3e|β|+T1S1(Nνµ).

Step 4. Lower Bound for |∆|
The number ∆ is not zero and lies in the ring Z[α, β]: there is a polynomial
f ∈ Z[Z1, Z2] such that

∆ = f(α, β),

the degree of f in Z1 and Z2 respectively is at most

L∑
µ=1

T1S1(Nνµ) and LT0,

while the length of f is bounded by

L(f) ≤ L!
L∏
µ=1

T
S0(Nνµ )
1

(
S0(Nνµ) + S1(Nνµ)

)T0
.

Assume now that α and β are both algebraic. Then we may use Liouville’s
inequality Proposition 1.13:

|∆| ≥ L!−D+1e−LDT0h(β)

×
L∏
µ=1

(
T

−(D−1)S0(Nνµ )
1

(
S0(Nνµ

) + S1(Nνµ
)
)−(D−1)T0

e−DT1S1(Nνµ )h(α)
)
.

Step 5. Choice of parameters
Define, for N ≥ 0,

S0(N) = N3 and S1(N) = N.
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By (2.2) we have for ν ≥ 1

(Nν − 1)4 ≤ ν < N4
ν ,

hence

S0(Nν) ≤ (ν1/4 + 1)3 ≤ 8ν3/4, S1(Nν) ≤ ν1/4 + 1 ≤ 2ν1/4.

Fix a sufficiently large integer T0 (larger than some constant depending only
on α and β) and define T1 = T0, so that L = T 2

0 .
For 1 ≤ µ ≤ L the following estimates are plain:

D logL+DT0h(β) + (D − 1)T0 log
(
S0(Nνµ

)S1(Nνµ
)
)

+ T0 log
(
3e|β|+S1(Nνµ)

)
≤ (c1 + c2 log νµ)T0

and
(D − 1)S0(Nνµ

) log
(
T1S0(Nνµ

)
)
≤ c3ν

3/4
µ log(T0νµ),

T1S1(Nνµ
)
(
Dh(α) + 3e|β|+

)
≤ c4T0ν

1/4
µ ,

where c1, . . . , c4 are positive real numbers which depend only on α and β.
Therefore we have

D logL+DT0h(β) + (D − 1)T0 log
(
S0(Nνµ

)S1(Nνµ
)
)

+ T0 log
(
3e|β|+S1(Nνµ)

)
+ (D − 1)S0(Nνµ) log T1

+ S0(Nνµ) log
(
S0(Nνµ)

)
+ T1S1(Nνµ)

(
Dh(α) + 3e|β|+

)
≤ Qµ,

where
Qµ = c5T0ν

1/4
µ + c6ν

3/4
µ log(T0νµ)

and again c5, c6 depend only on α and β.

Step 6. Conclusion
We claim

L∑
µ=1

(νµ −Qµ) > 0. (2.3)

Indeed, since µ �→ Qµ is increasing, we have∑
1≤µ≤L/2

Qµ ≤
∑

L/2<µ≤L
Qµ.

The estimate
νµ ≥ 0 for 1 ≤ µ ≤ L/2

is trivial, while for L/2 < µ ≤ L the lower bound

νµ ≥ µ− 1 ≥ (L− 1)/2 = (T 2
0 − 1)/2
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implies
ν3/4
µ > 4c5T0 and ν1/4

µ > 4c6 log(T0νµ),

hence
νµ > 2Qµ for L/2 < µ ≤ L.

Therefore our claim (2.3) is vindicated.
According to steps 5 and 6, the conclusions of steps 3 and 4 are not com-

patible, hence one at least of the two numbers α, β is transcendental.
This completes the proof of Hermite-Lindemann’s Theorem 1.2. ��

3 Third Lecture. Linear Independence of Logarithms of
Algebraic Numbers

The main result, due to A. Baker ([1] and [2] Th. 1.2), is the following:

Theorem 3.1. Let α1, . . . , αn be nonzero algebraic numbers. For each i =
1, . . . , n, let λi ∈ C satisfy eλi = αi. Assume the n numbers λ1, . . . , λn are
linearly independent over Q. Then the n+1 numbers 1, λ1, . . . , λn are linearly
independent over the field Q of algebraic numbers.

We shall use the notation logαi in place of λi. One should keep in mind
that this notation may be troublesome: for instance Theorem 3.1 can be ap-
plied with

α1 = α2 = 2, λ1 = log 2, λ2 = log 2 + 2iπ,

and the conclusion shows that the three numbers 1, log 2, π are linearly in-
dependent over Q. However the same conclusion can be obtained by taking
α1 = 2 and α2 = −1 for instance.

By the way, when α1, . . . , αn are nonzero complex numbers, for any choice
(λ1, . . . , λn) ∈ Cn with eλi = αi (1 ≤ i ≤ n), the following conditions are
clearly equivalent:

(i) The numbers α1, . . . , αn are multiplicatively independent, which means
that any relation

αa1
1 · · ·αan

n = 1

with (a1, . . . , an) ∈ Zn implies a1 = · · · = an = 0.
(ii) The n + 1 complex numbers 2πi, λ1, . . . , λn are linearly independent

over Q.

Hence, given complex numbers λ1, . . . , λn, the multiplicative subgroup of C×

generated by eλ1 , . . . , eλn has rank (as a Z-module) equal to r− 1, where r is
the dimension of the Q-vector space spanned by 2πi, λ1, . . . , λn. In particular,
if λ1, . . . , λn are Q-linearly independent, then this rank is{

n if 2πi, λ1, . . . , λn are linearly independent over Q,

n− 1 if 2πi, λ1, . . . , λn are Q − linearly dependent.
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Proofs of Baker’s Theorem 3.1 on linear independence of logarithms are
given in [2] Chap. 2, [6] Chap. 10, Section 1, [7], Chap. 4, Section 1.3, [30],
Chap. 8 and [34], Section 10.1. A “dual” argument (extension of Schneider’s
method, while Baker’s method is an extension of Gel’fond’s method) is worked
out in [34] Chap. 6 (for the homogeneous case) and Section 9.1 (for the non-
homogeneous case). See also [34], Section 4.2 for a proof, following Bertrand
and Masser, which rests on Schneider-Lang’s Criterion for Cartesian products
(involving again Gel’fond’s method).

Here we consider only Baker’s method. In Section 3.1 we explain why
Baker’s method can be introduced by means of functions of either one or sev-
eral variables. A proof of Theorem 3.1 by means of Baker’s method, involving
an auxiliary function with an extrapolation argument, is given in Section 3.2,
which includes also a sketch of proof with an interpolation determinant but
without any extrapolation. For both proofs the zero estimate which is used
there is due to Philippon [22]. In Section 3.3 we show how to replace this zero
estimate by a much simpler one, due to R. Tijdeman, by means of a further ex-
trapolation with the auxiliary function. Our ultimate goal in this third lecture
is to extrapolate with an interpolation determinant (Section 3.5), in order to
complete the proof of Theorem 3.1 without any auxiliary function, and with
Tijdeman’s zero estimate in place of Philippon’s one. This is achieved thanks
to a generalization (in Section 3.4) in several variables of the results of Section
2.1 giving upper bounds for interpolation determinants.

3.1 Introduction to Baker’s Method

We explain the basic ideas of the proof of Theorem 3.1 by means of Baker’s
method with an auxiliary function involving an extrapolation.

Assume α1, . . . , αn are nonzero algebraic numbers, logα1, . . . , logαn are
linearly independent over Q, β0, . . . , βn−1 are algebraic numbers, and

logαn = β0 + β1 logα1 + · · ·+ βn−1 logαn−1. (3.1)

We shall eventually reach a contradiction.
From now on αz stands for exp(z logα), which has a meaning as soon as

a complex number λ = logα has been selected with eλ = α.
Hence relation (3.1) implies

αn = eβ0αβ1
1 · · ·αβn−1

n−1 ,

and more generally for z ∈ C

αzn = eβ0zαβ1z
1 · · ·αβn−1z

n−1 .

To each polynomial P ∈ Z[Y0, Y1, . . . , Yn] we associate analytic functions of 1,
n and n+ 1 complex variables. The proof of Baker’s qualitative Theorem 3.1
on linear independence of logarithms of algebraic numbers requires a Schwarz’
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Lemma, while the quantitative refinements (measures of linear independence;
see Section 5) will require an approximate Schwarz’ Lemma. A fundamental
fact is that one needs such auxiliary results only for functions of a single vari-
able: even if we introduce functions of several variables, we shall consider only
the values of our functions at multiples of a single point (but derivatives are
taken in several directions); therefore it would be possible to avoid completely
the introduction of several variables, but we use them only to explain the role
of certain differential operators.

a) Using a Single Variable

Consider the entire functions

z, αz1, . . . , α
z
n.

To the auxiliary polynomial P ∈ Z[Y ] is attached the exponential polynomial

G(z) = P (z, αz1, . . . , α
z
n),

which can be written also

G(z) = P
(
z, αz1, . . . , α

z
n−1, e

β0zαβ1z
1 · · ·αβn−1z

n−1

)
.

In order to take (3.1) into account, we consider derivatives of G. We avoid dif-
ficulties (related with Liouville’s inequality) arising from the unwanted tran-
scendental numbers logαi (1 ≤ i < n) by writing the derivatives of G as
polynomials in logα1, . . . , logαn−1, and the coefficients of these polynomials
are themselves exponential polynomials with algebraic coefficients.

We start with the first derivative G′(z) = (d/dz)G(z) of G: this is the
value, at (z, αz1, . . . , α

z
n), of the polynomial(

∂

∂Y0
+

n∑
k=1

(logαk)
∂

∂Yk

)
P =

(
∂0 + ∂1 logα1 + · · ·+ ∂n−1 logαn−1

)
P,

where ∂0, . . . , ∂n−1 are the differential operators

∂0 =
∂

∂Y0
+ β0Yn

∂

∂Yn
, ∂k = Yk

∂

∂Yk
+ βkYn

∂

∂Yn
(1 ≤ k ≤ n− 1)

on the ring C[Y ]
We now take higher derivatives. For σ = (σ0, . . . , σn−1) ∈ Nn we write ∂σ

in place of
∂σ0
0 · · · ∂σn−1

n−1 .

Since
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∂0 + ∂1 logα1 + · · ·+ ∂n−1 logαn−1

)k
=

∑
‖σ‖=k

k!
σ!

(logα1)σ1 · · · (logαn−1)σn−1∂σ,

we have

G(k)(z) =
∑

‖σ‖=k

k!
σ!

(logα1)σ1 · · · (logαn−1)σn−1Gσ(z),

where
Gσ(z) = Pσ(z, αz1, . . . , α

z
n) and Pσ = ∂σP ∈ C[Y ].

Now if we compose derivations we easily deduce for σ and λ in Nn

∂σ+λ = ∂σ ◦ ∂λ,

which yields the fundamental relation for σ ∈ Nn and � ∈ N

G(�)
σ (z) =

∑
‖λ‖=�

�!
λ!

(logα1)λ1 · · · (logαn−1)λn−1Gσ+λ(z). (3.2)

As a consequence, if S0 and S1 are positive integers for which

Gσ(s) = 0 for ‖σ‖ < S0 and 0 ≤ s < S1, (3.3)

then for any σ ∈ Nn with ‖σ‖ < S0 the function Gσ has a zero at s =
0, . . . , S1 − 1 of multiplicity ≥ S0 − ‖σ‖.

This is really the main point in Baker’s method [1], I, p.212, which has no
counterpart in the dual method of [34] Chap. 6 (there is no efficient extrapola-
tion so far when one deals with functions of several variables). By means of the
one dimensional approximate Schwarz’ Lemma 1.12, one deduces from (3.3)
a sharp upper bound for |Gσ|r and gets more equations like (3.3): this is the
extrapolation.

Remark. If we were to replace (3.1) by an algebraic relation between loga-
rithms of algebraic numbers, for instance

logαn = A(logα1, . . . , logαn−1)

where A is a polynomial of total degree > 1, then one could also write the
derivatives of G as polynomials in (logα1, . . . , logαn−1), but there are no
nice relations like (3.2) between the corresponding exponential polynomials
replacing the Gσ.
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b) Introducing n Variables

As we said, from a strict logical point of view, introducing functions of several
variables is not required. But it may help to understand better the meaning
of the differential operators ∂k (0 ≤ k < n).

To the auxiliary polynomial P is also associated an analytic function of n
complex variables

Φ(z0, z1 . . . , zn−1) = P
(
z0, e

z1 , . . . , ezn−1 , eβ0z0+β1z1+···+βn−1zn−1
)
.

We take derivatives of Φ with respect to the n variables, and consider the
values of these derivatives at the point

v = (1, logα1, . . . , logαn−1) ∈ Cn.

Obviously we have
Φ(zv) = G(z)

for z ∈ C, but what is more interesting is the connection between the deriva-
tives. From the definition of the differential operators ∂0, . . . , ∂n−1, it is plain
that for 0 ≤ k ≤ n− 1 we have

∂

∂zk
Φ(z0, z1 . . . , zn−1) = (∂kP )

(
z0, e

z1 , . . . , ezn−1 , eβ0z0+β1z1+···+βn−1zn−1
)
.

Hence for σ = (σ0, . . . , σn−1) ∈ Nn and z ∈ C we have

Gσ(z) = (DσΦ)(zv)

where

Dσ =
(

∂

∂z0

)σ0

· · ·
(

∂

∂zn−1

)σn−1

.

c) Introducing n + 1 Variables

Instead of working with n variables it is sometimes convenient (for instance
for the zero estimate) to consider n+ 1 variables: define

F (z0, z1 . . . , zn) = P
(
z0, e

z1 , . . . , ezn
)
.

The point
u = (1, logα1, . . . , logαn) ∈ Cn+1

lies in the hyperplane W of equation

zn = β0z0 + β1z1 + · · ·+ βn−1zn−1.

A basis of W is w = (w0, . . . , wn−1) where
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wk = (δk0, . . . , δk,n−1, βk) (0 ≤ k ≤ n− 1).

These elements w0, . . . , wn−1 are the n column vectors of the matrix
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
β0 β1 · · · βn−1

 =

 In

β0 · · · βn−1

 .

Since

z0w0 + · · ·+ zn−1wn−1 = (z0, . . . , zn−1, β0z0 + · · ·+ βn−1zn−1),

we have
Φ(z0, . . . , zn−1) = F (z0w0 + · · ·+ zn−1wn−1),

and one may view Φ as the restriction of F to the hyperplane W , equipped
with the basis w, by means of the isomorphism

Cn −→ W
(z0, . . . , zn−1) �−→ z0w0 + · · ·+ zn−1wn−1.

To take the derivatives of Φ in all n directions amounts to taking the deriva-
tives of F in the directions of W . More precisely, for x = (x0, . . . , xn) ∈ Cn+1,
define

Dx = x0
∂

∂z0
+ · · ·+ xn

∂

∂zn
·

For instance
Dwk

=
∂

∂zk
+ βk

∂

∂zn
for 0 ≤ k ≤ n− 1,

hence for 0 ≤ k ≤ n− 1

Dwk
F (z0, . . . , zn) = (∂kP )(z0, ez1 , . . . , ezn).

Define also, for σ = (σ0, . . . , σn−1) ∈ Nn,

Dσw = Dσ0
w0

· · · Dσn−1
wn−1

.

Then
DσwF (z0, . . . , zn) = (∂σP )(z0, ez1 , . . . , ezn)

and

DσwF (z0, . . . , zn−1, β0z0 + · · ·+ βn−1zn−1)

=
(

∂

∂z0

)σ0

· · ·
(

∂

∂zn−1

)σn−1

Φ(z0, . . . , zn−1).

In particular
Gσ(z) = DσwF (zu).
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3.2 Proof of Baker’s Theorem

We prove Theorem 3.1 following basically [30] Chap. 8. One main difference
is that we shall use a sharper zero estimate than Theorem 6.1.1 of [30], and
therefore we do not need a long extrapolation like in [30]: here a single step
will be sufficient. This explains why the interpolation determinant method
could easily be used in [34], Section 10.1. In Section 3.3 we shall explain how
a longer extrapolation enables one to use a weaker zero estimate.

Denote by K the number field

K = Q
(
α1, . . . , αn, β0, . . . , βn−1

)
.

Let T0, T1, . . . , Tn, S0 and S1 be sufficiently large positive integers. Explicit
conditions on these parameters will occur along the proof, and we shall discuss
them later, but it may help the reader to know that a suitable choice is

T0 = 2[K : Q]N2n+1, T1 = · · · = Tn = N2n−1,

S0 = N2n+1, S1 = N.
(3.4)

We also set L = T0T1 · · ·Tn and T = T1 + · · ·+ Tn.

a) Construction of the Auxiliary Polynomial

By means of Thue-Siegel’s Lemma 1.4, we show the existence of a nonzero
auxiliary polynomial P ∈ Z[Y0, . . . , Yn], with degree < Ti in Yi (0 ≤ i ≤ n),
such that the equations (3.3) hold.

These conditions amount to a homogeneous linear system of equations
with coefficients in K, where the unknowns are the coefficients of P .

Our first condition on the parameters will be

2[K : Q]
(
S0 + n− 1

n

)
S1 ≤ L,

so that the number of equations is at most half the number of unknowns7.
The coefficients of the linear system are the numbers

γ
(σ,s)
τt = ∂σ

(
Y τ0 Y

t1
1 · · ·Y tnn

)(
s, αs1, . . . , α

s
n

)
(3.5)

with 0 ≤ τ < T0, 0 ≤ ti < Ti (1 ≤ i ≤ n) and σ ∈ Nn, ‖σ‖ < S0, 0 ≤ s < S1.
We write them explicitly by computing the derivatives of

zτ0 e
t1z1 · · · etn−1zn−1etn(β0z0+···+βn−1zn−1).

One obtains easily

7 One could construct P with coefficients in the field K, and then omit the factor
[K : Q].
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γ
(σ,s)
τt =

min{τ,σ0}∑
κ=0

σ0!τ !
κ!(σ0 − κ)!(τ − κ)!

sτ−κ(β0tn)σ0−κ
n−1∏
i=1

(ti + tnβi)σi

n∏
j=1

α
tjs
j .

One should use a variant of Lemma 1.4 taking into account the fact that the
coefficients of our linear system are in K rather than in Z, but anyway a rough
estimate shows that we end up with a nonzero polynomial P of length at most

L(P ) ≤ exp{c1(T0 + S0) logL+ c2TS1}.

Here and below, c1, . . . , c16 denote positive numbers which do not depend on
T0, T1, . . . , Tn, S0, S1. For instance with our choice (3.4) we get

L(P ) ≤ exp{c3N2n+1 logN}.

Remark. The whole point in this argument is that (3.1) allows us to consider
values of polynomials in n− 1 variables at the point

(logα1, . . . , logαn−1)

in place of values of polynomials in n variables at the point

(logα1, . . . , logαn).

Without (3.1) it would be necessary to replace(
S0 + n− 1

n

)
with

(
S0 + n

n+ 1

)
and the only difference with the present proof is that no choice of parameters
would be admissible!

b) Extrapolation on Integral Points

We introduce further parameters S′
0 and S′

1 which are positive integers with
S′

0 < S0 and S′
1 > S1, and we are going to prove

Gσ(s) = 0 for (σ, s) ∈ Nn × N

with ‖σ‖ < S′
0 and 0 ≤ s < S′

1.
(3.6)

With the choice of parameters (3.4) we shall take

S′
0 =

[
S0/2], S′

1 = N2.

Fix σ ∈ Nn with ‖σ‖ < S′
0. The function

Gσ(z) = ∂σP (z, αz1, . . . , α
z
n)
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has a zero at each point s = 0, . . . , S1 − 1 of multiplicity ≥ S0 − S′
0. The

one variable Schwarz’ Lemma 1.3 with r = S′
1, E = e, R = 2er provides the

following upper bound:

|Gσ|r ≤ e−(S0−S′
0)S1 |Gσ|R.

This yields an upper bound for |Gσ(s)| with s ∈ Z in the range 0 ≤ s < S′
1

which is not compatible with Liouville’s lower bound provided that

c4(T0 + S0) logL+ c5TS
′
1 < (S0 − S′

0)S1.

Hence (3.6).

c) Using Philippon’s Zero Estimate

The next auxiliary Lemma is a very special case of Philippon’s zero esti-
mate [22] (see also Chap. 8 of [34] by D. Roy).

Proposition 3.2. Let α1, . . . , αn be nonzero complex numbers which generate
a multiplicative subgroup of C× of rank ≥ n− 1 and let β0, . . . , βn−1 be com-
plex numbers. Assume that 1, β1, . . . , βn−1 are linearly independent over Q.
Let T0, T1, . . . , Tn, S0, S1 and L be positive integers satisfying the following
conditions:

L = T0T1 · · ·Tn, T1 ≤ T2 ≤ · · · ≤ Tn,

S0 > (n+ 1)Tn, S0S1 >
1
2
n!(n+ 1)! max

{
T0, 2Tn

}
,

and (
S0 + n− 1

n

)
S1 > (n+ 1)!T0T1 · · ·Tn. (3.7)

Assume also

• either β0 �= 0
• or else n ≥ 2 and (

S0 + n− 2
n− 1

)
S1 > (n+ 1)!T1 · · ·Tn. (3.8)

For τ ∈ N, t ∈ Nn, σ ∈ Nn and s ∈ N, consider the number γ
(σs)
τt given

by (3.5) and build up the matrix:

M =
(
γ

(σs)
τt

)
(τ,t)
(σ,s)

where the index of rows (τ, t) runs over the elements in N×Nn with 0 ≤ τ < T0,
0 ≤ ti < Ti (1 ≤ i ≤ n), while the index of columns (σ, s) runs over the
elements in Nn ×N with ‖σ‖ < (n+ 1)S0 and 0 ≤ s < (n+ 1)S1. Then M has
rank L.
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Remark. Using (3.7) it is easily checked that (3.8) can be replaced by

nT0 > S0 + n− 1.

Remark. Given Q-linearly independent complex numbers λ1, . . . , λn, the n
numbers αi = eλi (1 ≤ i ≤ n) generate a multiplicative subgroup of C×

of rank ≥ n − 1. Conversely, if α1, . . . , αn are nonzero elements of C which
generate a multiplicative subgroup of C× of rank ≥ n − 1, then there exist
Q-linearly independent complex numbers λ1, . . . , λn such that αi = eλi for
1 ≤ i ≤ n.

Proposition 3.2 is essentially Proposition 10.2 of [34], with a few differences:

• We do not assume β0 �= 0 here. At the same time our points are
(s, αs1, . . . , α

s
n) in place8 of (sβ0, α

s
1, . . . , α

s
n).

• We work with polynomials in Y0, . . . , Yn of degree < Ti in Yi (0 ≤ i ≤ n),
while in [34] we considered polynomials in X0, X

±1
1 , . . . , X±1

n of degree
≤ T0 in X0 and degree ≤ T1 in each of the variables X±1

i . Also here we
consider nonnegative integers s with 0 ≤ s < (n + 1)S1, while in [34] we
had s ∈ Z with |s| ≤ (n + 1)S1. Also here we use strict inequalities for
‖σ‖.

These changes introduce few modifications in the proof of Proposition 10.2
of [34], but for the convenience of the reader we provide the details.

Proof. Consider the algebraic groups G0 = Ga, G1 = Gn
m, G = G0 × G1,

of dimensions d0 = 1, d1 = n and d = n + 1 respectively. Let W be the
hyperplane in Cn+1 of equation

β0z0 + β1z1 + · · ·+ βn−1zn−1 = zn.

Introduce also the set

Σ =
{
(s, αs1, . . . , α

s
n) ; s ∈ N, 0 ≤ s < S1

}
⊂ G(C) = C × (C×)n.

If the rank of the matrix M is less than L, then there exists a nonzero polyno-
mial P in C[Y0, Y1, . . . , Yn], of degree < Ti in Yi (0 ≤ i ≤ n), for which the
functions Gσ(z) = ∂σP

(
z, αz1, . . . , α

z
n

)
satisfy

Gσ(s) = 0 for (σ, s) ∈ Nn × N

with ‖σ‖ < (n+ 1)S0 and 0 ≤ s < (n+ 1)S1.

According to Philippon’s zero estimate there exists an algebraic subgroup
G∗ of G of dimension d∗ ≤ n and codimension d′ = n+ 1 − d∗ such that(

S0 + �0 − 1
�0

)
Card

(
Σ +G∗

G∗

)
H(G∗; T ) ≤ H(G; T ), (3.9)

8 This was an oversight in Proposition 10.2 of [34]!
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where

�0 =

{
d′ − 1 if Te(G∗) ⊂W,

d′ otherwise.

The notation H(G∗; T ) stands for a multihomogeneous Hilbert-Samuel poly-
nomial (see [34], Section 5.2.3); for instance H(G; T ) = (n+ 1)!L.

We first check that this inequality (3.9) is not satisfied with G∗ = {e}:
indeed when G∗ = {e} we have

d∗ = 0, �0 = n, Card
(
Σ +G∗

G∗

)
= Card(Σ) = S1, H(G∗; T ) = 1,

so that by (3.7)(
S0 + �0 − 1

�0

)
Card

(
Σ +G∗

G∗

)
H(G∗; T ) > (n+ 1)!L.

Therefore d∗ ≥ 1.
Write G∗ = G∗

0 ×G∗
1 where G∗

0 is an algebraic subgroup of G0 and G∗
1 an

algebraic subgroup of G1. Denote by d∗
0 and d∗

1 the dimensions of G∗
0 and G∗

1
respectively, and by d′

0 and d′
1 their codimensions:

d∗
0 + d′

0 = d0 = 1, d∗
1 + d′

1 = d1 = n.

Assume first Te(G∗) ⊂ W . Since 1, β1, . . . , βn−1 are linearly independent
over Q, the hyperplane of Cn of equation

β1z1 + · · ·+ βn−1zn−1 = zn

does not contain any nonzero element of Qn. Since Te(G∗
1) is a subspace of Cn

which is rational over Q, we deduce G∗
1 = {e}, hence G∗ = Ga × {e}, d∗ = 1,

d′ = n, �0 = n − 1 and H(G∗; T ) = T0. Now the condition Te(G∗) ⊂ W
implies β0 = 0, hence (3.8) gives n ≥ 2 and(

S0 + n− 2
n− 1

)
S1 > (n+ 1)!T1 · · ·Tn.

Since n ≥ 2 and since α1, . . . , αn generate a subgroup of C× of rank ≥ n− 1,
we have

Card
(
Σ +G∗

G∗

)
= Card

{
(αs1, . . . , α

s
n) ; s ∈ N, 0 ≤ s < S1

}
= S1.

Hence (3.9) does not hold and we get a contradiction.
Therefore Te(G∗) �⊂W and �0 = d′.
Consider the case G∗

0 = {0}. We have d∗
0 = 0, d∗ = d∗

1, d
′ = n+ 1 − d∗

1,

H(G∗; T ) ≥ (d∗
1 + 1)!T1 · · ·Td∗

1
and Card

(
Σ +G∗

G∗

)
= S1.
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Therefore (3.9) implies(
S0 + d′ − 1

d′

)
S1 ≤

(n+ 1)!
(n+ 2 − d′)!

T0Td∗
1+1 · · ·Tn,

hence

Sd
′

0 S1 ≤
(n+ 1)!d′!

(n+ 2 − d′)!
T0Td∗

1+1 · · ·Tn.

However we have S0 > Tn, 1 ≤ d′ ≤ n and

d′!
(n+ 2 − d′)!

≤ 1
2
n!,

hence we get a contradiction with the inequality

S0S1 >
1
2
n!(n+ 1)!T0.

So we have d∗
0 = 1, d∗ = d∗

1 + 1, d′ = n− d∗
1 and

H(G∗; T ) ≥ (d∗
1 + 1)!T0T1 · · ·Td∗

1
.

Now (3.9) gives(
S0 + d′ − 1

d′

)
Card

(
Σ +G∗

G∗

)
≤ (n+ 1)!

(n+ 1 − d′)!
Td∗

1+1 · · ·Tn

from which we deduce

Sd
′

0 Card
(
Σ +G∗

G∗

)
≤ (n+ 1)!d′!

(n+ 1 − d′)!
Td∗

1+1 · · ·Tn.

Using the estimates

S0 > Tn, 1 ≤ d′ ≤ n,
d′!

(n+ 1 − d′)!
≤ n!

and
S0S1 > n!(n+ 1)!Tn

we obtain

Card
(
Σ +G∗

G∗

)
< S1,

which means Σ ∩G∗ �= {e}. The assumption on the rank of the subgroup of
C∗ generated by α1, . . . , αn then implies d∗

1 = n − 1, d′ = 1 and we get the
estimate

S0 ≤ (n+ 1)Tn

which is not compatible with our assumptions. ��
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d) End of the Proof of Baker’s Theorem 3.1

We apply Proposition 3.2 with S0 and S1 replaced respectively by

�S′
0/(n+ 1)� and �S′

1/(n+ 1)�.

From (3.4) and (3.6), using the estimates

S′
0 > (n+ 1)2T, S′

0S
′
1 > n!(n+ 1)!(n+ 1)2 max

{
1
2
T0, T

}
,

nT0 > S0 + n− 1 and S′
0
n
S′

1 > n!(n+ 1)!L,

we deduce a contradiction, which completes the proof of Baker’s Theorem 3.1.
��

Remark. The basic ideas for a proof of Baker’s Theorem with an interpolation
determinant in [34], Section 10.1.4 are essentially the same. Instead of using
Dirichlet’s pigeonhole principle to solve a system of linear equations, we only
consider the matrix of this linear system. More precisely the relevant matrix
M is the one occurring in the zero estimate (Proposition 3.2): it has maximal
rank, and enables one to start with a nonzero determinant ∆. As usual the re-
quired lower bound for |∆| is given by Liouville’s estimate (Proposition 1.13).
On the other hand the argument occurring above turns out to be perfectly
adaptable to yield an upper bound for |∆| which gives just what we need.

The difference between the proof with an auxiliary function and the proof
with an interpolation determinant is that in the latter Dirichlet’s box principle
is not required. However there is a substitute to the auxiliary function, which
is the (explicit) exponential polynomial given by a determinant

det
(
C1, . . . , CL−1, Φ(z)

)
,

where C1, . . . , CL−1 are L−1 vector columns of M, while the last column vector
Φ : C → CL is given by(

zταt1z1 · · ·αtnzn

)
0≤τ<T0, 0≤ti<Ti (1≤i≤n).

3.3 Further Extrapolation with the Auxiliary Function

In this section we shall explain how to replace, in the previous proof, Philip-
pon’s zero estimate (Proposition 3.2) by a simpler one. The idea is to extrap-
olate further and to prove by induction on j = 0, 1, . . .,

Gσ(s) = 0 for (σ, s) ∈ Nn × N

with ‖σ‖ < S0/2j and 0 ≤ s < S
(j)
1 ,
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with S(0)
1 = S1 and S(1)

1 = S′
1. One cannot continue such an induction forever

(in any case one needs 2j ≤ S0). On the other hand, obviously, when the
number of equations increases, it is easier to derive a contradiction by means of
a zero estimate. This is not only of historical interest: our motivation is related
with the problem of linear independence measures, where a short extrapolation
yields weaker estimates than a longer one (see Section 5).

Baker used a variety of arguments for concluding his proofs, including
clever non-vanishing results for certain determinants. In the real case one
could just appeal to Pólya’s Lemma 1.6. Dealing with the general case of
complex algebraic numbers αi and βj , we shall use Tijdeman’s zero estimate
for exponential polynomials in one variable ([29]; see also [6], Chap. 9, Section
4, Lemma 8.9, [2], Chap. 12, Section 2, Lemma 6 and [30], Chap. 6).

Lemma 3.3. Let a1, . . . , an be polynomials in C[z], not all of which are zero,
of degrees d1, . . . , dn. Let w1, . . . , wn be pairwise distinct complex numbers.
Define

Ω = max{|w1|, . . . , |wn|}.
Then for R > 0 the number of zeroes (counting multiplicities) of the function

F (z) =
n∑
i=1

ai(z)ewiz

in the disk B1(0, R) is at most 2(d1 + · · ·+ dn + n− 1) + 5RΩ.

We complete the proof of Baker’s Theorem 3.1 as follows. We repeat the
argument of Section 3.2 b) and perform an induction on j with 1 ≤ j ≤ J . We
introduce further parameters S(j)

0 and S
(j)
1 which are positive integers with

S
(0)
0 = S0, S

(0)
1 = S1, S

(1)
0 = S′

0, S
(1)
1 = S′

1,

S
(j)
0 < S

(j−1)
0 and S

(j)
1 > S

(j−1)
1 (1 ≤ j ≤ J).

One may keep in mind the following picture:

S
(j−1)
0

S
(j)
0

0 S
(j−1)
1 S

(j)
1

We want to prove, for 0 ≤ j ≤ J ,

Gσ(s) = 0 for ‖σ‖ < S
(j)
0 and 0 ≤ s < S

(j)
1 . (3.10)
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This is true by construction (Section 3.2, a) for j = 0, and by the first extrap-
olation (Section 3.2, b) for j = 1. Relations (3.10) for j + 1 follow from those
for j provided that

c6(T0 + S0) log
(
LS

(j+1)
1

)
+ c7TS

(j+1)
1 <

(
S

(j)
0 − S

(j+1)
0

)
S

(j)
1 .

Assuming (3.4), let us choose

J = 2n2, S
(j)
0 =

[
S0/2j ], S

(j)
1 = N j+1 (1 ≤ j ≤ J). (3.11)

At the end of the induction (j = J) we get an exponential polynomial G with
a zero at each point s with 0 ≤ s < S

(J)
1 of multiplicity ≥ S

(J)
0 . Since

S
(J)
0 S

(J)
1 > 2L+ c8TS

(J)
1 ,

we get a contradiction with Lemma 3.3.

3.4 Upper Bound for a Determinant in Several Variables

Let F ∈ Hn(R) be a function with a zero of multiplicity ≥ S0 at S1 distinct
points of Bn(0, r)∩Cv with r ≤ R. Then G(z) = F (vz) (which may be viewed
as the restriction of F to Cv) is a function of a single variable with S0S1 zeroes
in B1(0, r/|v|)9. From Schwarz’ Lemma 1.3 we deduce

sup
z∈Bn(0,r)∩Cv

|F (z)| = |G|r/|v| ≤
(
R2 + r2

2rR

)−S0S1

|G|R/|v|

≤
(
R2 + r2

2rR

)−S0S1

|F |R.

Unfortunately there is no similar upper bound for |F |r and we cannot use
Cauchy’s inequalities to bound derivatives of F in other directions than
Cv. For instance taking n = 2, v = (1, 0), F (z1, z2) = zL2 , we have
G(z) = F (z, 0) = 0, but (

∂

∂z2

)L
F (z, 0) = L!.

According to Baker’s remark (see Section 3.1, a)), for ‖σ‖ < S0, the one
variable function Gσ(z) = DσF (vz) has at least (S0 − ‖σ‖)S1 zeroes in
B1(0, r/|v|). Hence

9 Here we do not use all the information: a zero of multiplicity ≥ S0 for F involves(
S0+n−1

n

)
conditions, while for G it involves only S0 conditions.



292 Michel Waldschmidt

sup
z∈Bn(0,r)∩Cv

|DσF (z)| ≤
(
R2 + r2

2rR

)−(S0−‖σ‖)S1

|DσF |R.

This is the key point which explains why, in Baker’s extrapolation argument,
the order of derivation needs to decrease; one compensates by increasing the
set of points.

Assuming for simplicity ‖σ‖ ≤ S0/2, the exponent of 2rR/(R2 + r2) is
≥ S0S1/2. For a function of n variables with S1 zeroes of multiplicity ≥ S0, one
should expect only an exponent S0S

1/n
1 (up to a small absolute multiplicative

constant), but the point here is that these zeroes lie on a complex line, and
this explains why the exponent can be as large as a constant multiple of
S0S1. It is interesting to compare with the interpolation determinant method:
the exponent which arises more naturally (see [34], Section 10.1.4) is S0S

1/n
1

and this is sufficient to achieve nontrivial estimates, but a refinement can be
included (see [34] Proposition 10.5), so that one reaches the same exponent
(namely S0S1, up to a constant) as with the auxiliary function.

We extend Corollary 2.4 to the situation arising in Baker’s method. We
deal with derivatives of functions of several variables, but the points we con-
sider lie on a complex line V = Cv ⊂ Cn.

We first give a variant of Lemma 2.2 for functions of several variables.

Lemma 3.4. Let n ≥ 1 be an integer, V a complex subspace of dimension
1 of Cn, R, r, # and E be positive real numbers, F an element of Hn(R),
ζ
1
, . . . , ζ

m
pairwise distinct elements of V , v an element of V , σ1, . . . , σm

nonnegative integers and κ an element of Nn. Set

M =
m∑
i=1

max{0, σi − ‖κ‖}.

Assume

R ≥ #+ max{r, |v|}, r ≥ max
1≤i≤m

|ζ
i
| and 1 ≤ E ≤ (R− #)2 + r|v|

(R− #)(r + |v|) .

Assume also that F satisfies

DσF (ζ
i
) = 0 for σ ∈ Nn with ‖σ‖ < σi and 1 ≤ i ≤ m.

Then
|DκF (v)| ≤ κ!#−‖κ‖E−M |F |R.

Proof. Let v0 ∈ V satisfy |v0| = 1. Define a function G ∈ H1(R) of a single
variable z by

G(z) = DκF (v0z).

Define also ζ1, . . . , ζm in B1(0, r) by ζ
i
= v0ζi (1 ≤ i ≤ m). The formula
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G(k)(z) =
∑

‖τ‖=k

k!
τ !
v
τ
0Dκ+τF (v0z) (k ≥ 0)

shows that G has a zero of multiplicity ≥ max{0, σi−‖κ‖} at ζi for 1 ≤ i ≤ m.
According to Lemma 1.3 (with r replaced by |v| and R by R− #) we have

|G||v| ≤ E−M |G|R−�.

We derive the conclusion from Cauchy’s inequalities:

|G|R−� = sup
|z|=R−�

|DκF (v0z)| ≤ κ!#−‖κ‖|F |R.

��

Remark. For n = 1 Lemma 3.4 contains Lemma 1.3, but not Lemma 2.2 when
κ > 0.

The next result is a variant of Proposition 2.3 for functions of several
variables.

Proposition 3.5. Let n ≥ 1 be an integer, V a complex line in Cn, R a
positive real number, ϕ1, . . . , ϕL elements of Hn(R), ξ

1
, . . . , ξ

L
elements of

V ∩Bn(0, R) and κ1, . . . , κL elements of Nn. Consider the determinant

∆ = det
(
Dκµϕλ(ξµ)

)
1≤λ,µ≤L

.

Let m1, . . . ,mL be nonnegative integers and, for 1 ≤ µ ≤ L and 1 ≤ i ≤ mµ,
let ζ

µi
be an element of V and σµi a nonnegative integer. We assume that for

each µ = 1, . . . , L, the mµ elements ζ
µ1
, . . . , ζ

µmµ
are pairwise distinct. Set

Mµ =
mµ∑
i=1

max{0, σµi − ‖κµ‖} (1 ≤ µ ≤ L).

For 1 ≤ µ ≤ L, let rµ, Rµ, #µ and Eµ be positive real numbers satisfying

R ≥ Rµ ≥ #µ + max{rµ, |ξµ|}, rµ ≥ max
1≤i≤mµ

|ζ
µi
|

and

1 ≤ Eµ ≤
(Rµ − #µ)2 + rµ|ξµ|
(Rµ − #µ)(rµ + |ξ

µ
|) ·

Denote by Φ the analytic mapping

(ϕ1, . . . , ϕL) : Bn(0, R) → CL.

Assume that for any (µ, i, κ) ∈ N2+n satisfying 1 ≤ µ ≤ L, 1 ≤ i ≤ mµ and
‖κ‖ < σµi, the µ vectors
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Dκ1Φ(ξ
1
), . . . ,Dκµ−1Φ(ξ

µ−1
), DκΦ(ζ

µi
) (3.12)

in CL are linearly dependent. Then

|∆| ≤ L! max
τ∈SL

L∏
µ=1

(
κµ!#

−‖κµ‖
µ E−Mµ

µ |ϕτ(µ)|Rµ

)
.

Proof. We prove Proposition 3.5 by induction on L. For L = 1 we have Φ = ϕ1,

∆ = Dκ1Φ(ξ
1
), 1 ≤ E1 ≤

(R1 − #1)2 + r1|ξ1|
(R1 − #1)(r1 + |ξ

1
|)

and hypothesis (3.12) reads

DκΦ(ζ
1i

) = 0 for ‖κ‖ < σ1i and 1 ≤ i ≤ m1.

From Lemma 3.4 we deduce

|∆| ≤ κ1!#
−‖κ1‖
1 E−M1

1 |ϕ1|R1 .

Hence Proposition 3.5 is true in case L = 1.
Assume now that the conclusion is true for L replaced by L − 1. Define

F ∈ Bn(0, R) by

F (z) = det
(
Dκ1Φ(ξ

1
), . . . ,DκL−1Φ(ξ

L−1
), Φ(z)

)
. (3.13)

By assumption (3.12) with µ = L, for 1 ≤ i ≤ mL and ‖κ‖ < σLi, we have

DκF (ζ
Li

) = 0.

Since
∆ = DκLF (ξ

L
),

we deduce from Lemma 3.4

|∆| ≤ κL!#−‖κL‖
L E−ML

L |F |RL
.

We expand the determinant in the right hand side of (3.13) with respect to
the last column: define, for 1 ≤ λ ≤ L,

Φλ =
(
ϕ1, . . . , ϕλ−1, ϕλ+1, . . . , ϕL

)
: Bn(0, R) → CL−1

and let ∆λ denote the determinant of the (L− 1) × (L− 1) matrix(
Dκ1Φλ(ξ1), . . . ,D

κL−1Φλ(ξL−1
)
)
.

We have
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F (z) =
L∑
λ=1

(−1)L−λϕλ(z)∆λ,

hence
|F |RL

≤ L max
1≤λ≤L

|ϕλ|RL
|∆λ|

and therefore

|∆| ≤ κL!L#−‖κL‖
L E−ML

L max
1≤λ≤L

|ϕλ|RL
|∆λ|.

We fix an index λ0 ∈ {1, . . . , L} such that

|∆| ≤ κL!L#−‖κL‖
L E−ML

L |ϕλ0 |RL
|∆λ0 |.

Using the induction hypothesis, we deduce that there exists a bijective map t
from {1, . . . , L− 1} to {1, . . . , λ0 − 1, λ0 + 1, . . . , L} such that

|∆λ0 | ≤ (L− 1)!
L−1∏
µ=1

(
κµ!#

−‖κµ‖
µ E−Mµ

µ |ϕt(µ)|Rµ

)
.

Define τ ∈ SL by τ(µ) = t(µ) for 1 ≤ λ < L and τ(L) = λ0. Proposition 3.5
follows. ��

We shall use a special case of Proposition 3.5.
Given a sequence (σν , ζν)0≤ν≤N of elements in Nn × C, an index ν in the

range 0 ≤ ν ≤ N and a complex number ζ, we define the weight wν(ζ) of
index ν of ζ in this sequence as follows: wν(ζ) = 0 if ζi �= ζ for 0 ≤ i ≤ ν
and otherwise

wν(ζ) = max
{
‖σ‖ ; ∃i with 0 ≤ i ≤ ν such that (σi, ζi) = (σ, ζ)

}
. (3.14)

We consider a sequence (σν , ζν)0≤ν≤N which satisfies the following prop-
erty:

For 0 ≤ ν ≤ N and for any σ ∈ Nn satisfying ‖σ‖ < ‖σν‖,
there exists i with 0 ≤ i < ν such that (σi, ζi) = (σ, ζν). (3.15)

Such a sequence will be called admissible.
In the case n = 1 the sequence (σν , ζν)0≤ν≤N which occurred in the hy-

potheses of Corollary 2.4 is admissible and satisfies

wν(ζν) = σν for 0 ≤ ν ≤ N.

For an admissible sequence (σν , ζν)0≤ν≤N , for an analytic function F of n
variables and for v ∈ Cn, the N + 1 conditions

DσνF (vζν) = 0 for 0 ≤ ν ≤ N (3.16)
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imply that the one-variable function G(z) = F (vz) has a zero of multiplicity
≥ wN (ζ) at each point ζ ∈ C. Moreover, for any τ ∈ Nn, the same condi-
tions (3.16) imply that the function Gτ (z) = DτF (vz) has a zero at ζ of
multiplicity

≥ max
{
0, wN (ζ) − ‖τ‖

}
.

Corollary 3.6. Let n and L be positive integers, ϕ1, . . . , ϕL elements of
Hn(R), 0 = ν0 ≤ ν1 < · · · < νL ≤ N nonnegative integers, σ0, . . . , σN el-
ements of Nn, ζ0, . . . , ζN complex numbers and v ∈ Cn \ {0}. Consider the
determinant

∆ = det
(
Dσνµϕλ(vζνµ)

)
1≤λ,µ≤L .

Assume (σν , ζν)0≤ν≤N is an admissible sequence. For 0 ≤ ν ≤ N define

Mν =
∑

ζ∈B1(0,R/|v|)
max

{
0, wν(ζ) − ‖σν‖

}
.

For 1 ≤ µ ≤ L, let rµ, Rµ and #µ be positive real numbers satisfying

R ≥ Rµ ≥ #µ + max{rµ, |vζνµ |} and rµ ≥ max
0≤ν<νµ

|vζν |.

Let Eµ satisfy

1 ≤ Eµ ≤
(Rµ − #µ)2 + rµ|vζνµ |
(Rµ − #µ)(rµ + |vζνµ |)

·

Denote by Φ the analytic mapping

(ϕ1, . . . , ϕL) : Bn(0, R) → CL.

Assume that for 0 ≤ µ ≤ L − 1 and for νµ ≤ ν < νµ+1 the system of µ + 1
vectors

Dσν1Φ(vζν1), . . . ,D
σνµΦ(vζνµ), DσνΦ(vζν)

in CL is linearly dependent. Then

|∆| ≤ L! max
τ∈SL

L∏
µ=1

(
σνµ

!#
−‖σνµ

‖
µ E

−Mνµ
µ |ϕτ(µ)|Rµ

)
.

Remark. This statement does not contain Corollary 2.4, because the exponent
Mν is usually smaller than ∑

ζ∈B1(0,R/|v|)
wν(ζ).

It does not seem clear how to get a result containing both the one variable
Proposition 2.3 and Corollary 3.6. It might be easier to combine Corollary 3.6
with Proposition 10.5 of [34].
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Proof. We apply Proposition 3.5 with V = Cv,

ξ
µ

= vζνµ and κµ = σνµ
(1 ≤ µ ≤ L).

We define mµ, ζµi and σµi as follows: for 1 ≤ µ ≤ L, we consider the sequence
(ζ0, . . . , ζνµ

) given by the hypotheses of Corollary 3.6, we denote by mµ the
number of distinct elements in this sequence, by ζµi these distinct elements,
by σµi the weight of index νµ of ζµi in this sequence, and we set ζ

µi
= vζµi.

Therefore

∑
ζ∈B1(0,R/|v|)

max
{
0, wνµ(ζ)−‖σνµ

‖
}
≥

mµ∑
i=1

max{0, σµi−‖κµ‖} (1 ≤ µ ≤ L).

Corollary 3.6 follows. ��

3.5 Extrapolation with an Interpolation Determinant

We give a proof of Baker’s Theorem 3.1 by means of an interpolation deter-
minant and an extrapolation; the zero estimate which will enable us to get
the conclusion is Tijdeman’s Lemma 3.3.

Let T0, T1, . . . , Tn, J , S(j)
0 and S

(j)
1 (0 ≤ j ≤ J) be positive integers.

Assume that the sequence (S(j)
0 )0≤j≤J is decreasing and that the sequence

(S(j)
1 )0≤j≤J increases. We write S0 and S1 for S(0)

0 and S
(0)
1 respectively and

we set L = T0 · · ·Tn, T = T1 + · · ·+ Tn.
We denote by {ϕ1, . . . , ϕL} the L exponential monomials

zταt1z1 · · ·αtnzn for 0 ≤ τ < T0 and 0 ≤ ti < Ti (1 ≤ i ≤ n).

For 0 ≤ j ≤ J , define Sj as the set of (σ, s) in Nn × N satisfying ‖σ‖ < S
(j)
0

and 0 ≤ s < S
(j)
1 . We need to choose an ordering (σν , sν)0≤ν<NJ

on the union
S of these sets. Define

N−1 = 0, N0 =
(
S0 + n− 1

n

)
S1

and, for 1 ≤ j ≤ J ,

Nj = Nj−1 +
(
S

(j)
0 + n− 1

n

)
(S(j)

1 − S
(j−1)
1 ).

We choose an ordering so that{
(σν , sν) ; 0 ≤ ν < N0

}
=
{
(σ, s) ∈ Nn × N ; ‖σ‖ < S0 and 0 ≤ s < S1

}
and, for 1 ≤ j ≤ J ,
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(σν , sν) ; Nj−1 ≤ ν < Nj

}
=
{
(σ, s) ∈ Nn × N ; ‖σ‖ < S

(j)
0 and S

(j−1)
1 ≤ s < S

(j)
1

}
.

It remains to specify the order inside each intervalNj−1≤ ν < Nj (0 ≤ j ≤ J).
There is no complete rigidity, but it suffices to say that we choose an order
for which the resulting sequence is admissible (see (3.15)).

For each τ , t, σ and s, consider the algebraic number γ(σs)
τt given by (3.5)

and build up the matrix

M =
(
γ

(σνsν)
τt

)
(τ,t)

0≤ν<NJ

with L rows indexed by (τ, t) with 0 ≤ τ < T0 and 0 ≤ ti < Ti (1 ≤ i ≤ n),
and NJ columns indexed by ν with 0 ≤ ν < NJ .

We first deduce from Lemma 3.3 that M has rank L. Indeed otherwise there
exists a nonzero polynomial P ∈ C[Y0, . . . , Yn] for which

∂σνP
(
sν , α

sν
1 , . . . , αsν

n

)
= 0 for 0 ≤ ν < NJ ,

which means

∂σP
(
s, αs1, . . . , α

s
n

)
= 0 for (σ, s) ∈ S.

In particular the function G(z) = P (z, αz1, . . . , α
z
n) satisfies

G(k)(s) = 0 for 0 ≤ k < S
(J)
0 and 0 ≤ s < S

(J)
1 .

In order to apply Lemma 3.3, we assume

S
(J)
0 S

(J)
1 > 2L+ c8TS

(J)
1 .

Since M has maximal rank L, one can select L columns which produce a nonzero
determinant ∆. We select them minimal as in the proof of Section 2.2 and we
write

∆ = det
(
γ

(σνµ
sνµ )

τt

)
(τ,t)

1≤µ≤L

.

We want to derive from Corollary 3.6 an upper bound for |∆|. Set

v = (1, logα1, . . . , logαn−1).

We need first to estimate the weights (3.14) related to our sequence

(σν , sν)0≤ν<NJ
.

Let ν be an index with N0 ≤ ν < NJ ; define j in the range 1 ≤ j ≤ J by
Nj−1 ≤ ν < Nj . Thanks to the construction of the sequence (σν , sν)0≤ν<NJ

,
we have
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wν(s) = S
(j−1)
0 − 1 for 0 ≤ s < S

(j−1)
1 .

Since ‖σν‖ < S
(j)
0 , it follows that the number

Mν =
∑

ζ∈B1(0,R/|v|)
max

{
0, wν(ζ) − ‖σν‖

}
satisfies

Mν ≥
(
S

(j−1)
0 − S

(j)
0

)
S

(j−1)
1 . (3.17)

For each µ with 1 ≤ µ ≤ L we define jµ ∈ {0, . . . , J} by

Njµ−1 ≤ νµ < Njµ .

Since N−1 = 0, for νµ < N0 we have jµ = 0. Hence for any µ = 1, . . . , L, we
have

‖σνµ
‖ < S

(jµ)
0 and 0 ≤ sνµ < S

(jµ)
1 .

We want to use (3.17) for each νµ with µ in the range L/2 < µ ≤ L, so we
need to check νµ ≥ N0 for these µ. For this reason we require our parameters
to satisfy

2
(
S0 + n− 1

n

)
S1 ≤ L. (3.18)

Since
∆ = det

(
Dσνµϕλ(vsνµ)

)
1≤λ,µ≤L ,

we may apply Corollary 3.6 with

rµ = c9S
(jµ)
1 , #µ = 1, Rµ = 3erµ, Eµ = e.

We deduce

|∆| ≤ L!
L∏
µ=1

(
σνµ

!e−MνµRT0
µ ec10TRµ

)

≤ L! exp

{
L∑
µ=1

(
−Mνµ

+ c11
(
T0 + S0

)
log

(
LS

(jµ)
1

)
+ c12TS

(jµ)
1

)}

(recall that S(j)
0 ≤ S0 for 0 ≤ j ≤ J).

Since ∆ is a nonzero number in the field K, Liouville’s Proposition 1.13
produces a lower bound for |∆|:

|∆| ≥ L!−D+1 exp

{
L∑
µ=1

(
−c13(T0 + S0) log

(
LS

(jµ)
1

)
− c14TS

(jµ)
1

)}
.
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Define, for 1 ≤ µ ≤ L,

Qµ = c15(T0 + S0) log
(
LS

(jµ)
1

)
+ c16TS

(jµ)
1 .

We assume our parameters are selected so that

2Qµ <
(
S

(jµ−1)
0 − S

(jµ)
0

)
S

(jµ−1)
1 .

Then we have
Mνµ ≥ 0 for 1 ≤ µ <

L

2
− 1,∑

1≤µ≤L/2
Qµ ≤

∑
L/2<µ≤L

Qµ

and by (3.17)

Mνµ
> 2Qµ for

L

2
− 1 ≤ µ ≤ L.

Therefore
L∑
µ=1

(Mνµ −Qµ) > 0,

and the contradiction follows.
It remains to select our parameters. We take the same values as in Section

3.3, namely (3.4) and (3.11):

T0 = 2[K : Q]N2n+1, T1 = · · · = Tn = N2n−1, S0 = N2n+1, S1 = N

and

J = 2n2, S
(j)
0 =

[
S0/2j ], S

(j)
1 = N j+1 (1 ≤ j ≤ J).

4 Fourth Lecture. Introduction to Diophantine
Approximation

4.1 On a Conjecture of Mahler

Consider the successive powers of e, namely

e, e2, e3, e4, . . . ,

and their distances to the nearest integer

‖e‖Z, ‖e2‖Z, ‖e3‖Z, ‖e4‖Z, . . .
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It is an open problem to prove that these numbers are equidistributed10 in the
interval (0, 1/2). We are interested in estimating Ψ(B) = min1≤b≤B ‖eb‖Z as
B → ∞ from below, but let us first say one word on upper bounds. Essentially
nothing is known: it is not yet proved that Ψ(B) tends to 0 when B → ∞:

(?) For any ε > 0 there exists b ∈ N such that ‖eb‖Z < ε,

but it is expected that BΨ(B) tends to 0 when B → ∞:

(?) For any ε > 0 there exists b ∈ N such that ‖eb‖Z <
ε

b
·

We come back to lower bounds for Ψ(B). In [17] p. 397, K. Mahler says:

• . . . one can easily show that

| log a− b| < 1
a

for an infinite increasing sequence of positive integers a and suitable inte-
gers b.

Indeed, this inequality holds for each pair (a, b) of positive integers for which
log a < b < log(a+ 1).

For a given positive integer B, if the B numbers

‖eb‖Z (1 ≤ b ≤ B)

were evenly distributed in the interval (0, 1/2), the smallest of them would
not be less than a constant times 1/B. This is likely to be too optimistic for
a conjecture, but a more reasonable question is:

• Is there an absolute constant κ ≥ 1 such that

|eb − a| ≥ 1
bκ

(4.1)

for any positive integers a and b with b ≥ 2?

A straightforward computation shows that this inequality holds with κ = 2.25
for 2 ≤ b ≤ 100.

If |eb − a| is small, then b is close to log a, hence

eb − a = a
(
eb−log a − 1

)
is close to a(b− log a). One easily deduces that (4.1) is equivalent to:

10 A result of Koksma ([10], Chap. VIII, Section 3, N◦ 12 Satz 16) states that for
almost all real θ ≥ 1 (in the sense of Lebesgue measure) the sequence of fractional
parts of θk is uniformly distributed modulo 1. On the other hand there there is
no known example of a transcendental number which satisfies this property.
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• Is there an absolute constant κ ≥ 1 such that

|b− log a| ≥ 1
a(log a)κ

(4.2)

for any positive integers a and b with a ≥ 3?

A symmetric refinement of both (4.1) and (4.2) could be formulated by re-
stricting to large values of a and b, say a ≥ a0 and b ≥ b0, and by introducing
functions x(log x)(log2 x) · · · (logk−1 x)(logk x)κ, where log2 = log log and logk
is the k-th iterated logarithm; but since (4.1) and (4.2) are not yet known,
it seems more reasonable to consider weaker statements rather than stronger
ones!

A weaker estimate than (4.1) and (4.2), which is still an open question,
is usually attributed to Mahler (for instance in [34] Chap. 14, open problems
and [35]) but is not explicit in [17] nor in [18].

Conjecture 4.1. Does there exist a positive absolute constant c such that, for
any positive rational integers a and b with a ≥ 2,

|eb − a| ≥ a−c ?

The same argument as above shows that Conjecture 4.1 amounts to the exis-
tence of c′ > 1 with

|b− log a|
?
≥ e−c′b.

If we restrict to sufficiently large a and b, then c′ is essentially c+ 1.
The best known estimate in the direction of Conjecture 4.1 is due to Mahler

himself [17]:

|eb − a| ≥ a−c log log a and |b− log a| ≥ b−cb (4.3)

for a ≥ 3 and b ≥ 2, with an absolute constant c > 0. Assuming a is sufficiently
large, K. Mahler in [17] gave a sharp explicit numerical value for c, namely
c = 40 (for both estimates), which he refined in [18], getting c = 33. A
further refinement is due to F. Wielonsky [36]: for sufficiently large a, Mahler’s
estimates (4.3) hold with c = 20.

Fel’dman proved several lower bounds for |eβ − α| and |β − logα| when α
and β are algebraic numbers. References are given in [21], where a refinement
including most previously known results was established.

The following result is a slight refinement of the main estimate of [21]
(apart from the fact that our constant c is not explicit).

Theorem 4.2. There is an absolute constant c > 0 with the following prop-
erty. Let α, β be two nonzero algebraic numbers and λ a logarithm of α. Define
K = Q(α, β) and D = [K : Q]. Let A, B and E be positive real numbers sat-
isfying E ≥ e,
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logA ≥ max
{
h(α) , D−1 logE , E|λ|/D

}
and11

logB ≥ h(β) + log(D logA) + logD +
1
D

logE. (4.4)

Then

|β − λ| ≥ exp
{
−cD2(logA)(logB)

(
D logD + logE

)
(logE)−2

}
.

According to Theorem 5 of [21], if we replace the condition (4.4) on B by

logB ≥ h(β) + log+ logA+ logD + logE,

then c = 105 500 is an admissible value. It is not a big challenge to produce a
smaller numerical value; for instance, taking D = 1 and E = e, one deduces
from [21] that for any positive rational numbers a and b,

|eb − a| ≥ exp
{
−1000

(
h(b) + log logA+ 12

)(
logA+ 12

)}
,

where logA = max{1,h(a)}. In particular we recover Mahler’s results (4.3)
on |eb − a| and |b− log a| as a consequence of Theorem 4.2.

On the other hand, any further improvement of Theorem 4.2 in terms of
either A, B, D or E seems to require a new idea.

For the proof of Theorem 4.2, a refinement of Propositions 1.7 and 1.8 is
needed. To begin with, assume for simplicity that α = a and β = b are positive
integers. As we shall see, the condition f(eb, b) �= 0, which occurs in both
Propositions 1.7 and 1.8, does not suffice any more, but we need f(a, b) �= 0.
This is achieved by the following zero estimate due to Yu.V. Nesterenko.
Let b be a complex number. The derivation Db = (∂/∂X)+bY (∂/∂Y ), on the
ring of polynomials in two variables X and Y , has the following remarkable
property: for a polynomial P ∈ C[X,Y ], the derivative of the complex function
P (z, ebz) is the exponential polynomial (DbP )(z, ebz).

Here is Lemma 2 of [21] (see also [34] Prop. 2.14).

Lemma 4.3. Assume b �= 0. Let T0, T1, S0 and S1 be positive integers satis-
fying

S0S1 > (T0 + S1 − 1)T1.

Let (ξ0, η0), . . . , (ξS1−1, ηS1−1) be elements in C×C× with ξ0, . . . , ξS1−1 pair-
wise distinct. Then there is no nonzero polynomial P ∈ C[X,Y ], of degree
< T0 in X and of degree < T1 in Y , which satisfies

Dσ
bP (ξs, ηs) = 0 for 0 ≤ s < S1 and 0 ≤ σ < S0.

11 It does not make any difference if one omits the summand log(D log A) in (4.4),
provided that one replaces the factor (log B) in the conclusion by (log B +
log(D log A)).
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Remark. An obvious necessary condition for the nonexistence of P is

S0S1 ≥ T0T1.

Indeed if S0S1 < T0T1, then the homogeneous linear system of equations
given by the conditions Dσ

bP (ξµ, ηµ) = 0 has a nontrivial solution, because
the number of unknowns (which are the coefficients of P ) is larger than the
number of equations. On the other hand, if η0 = · · · = ηS1−1 and S0 < T1,
then

(Y − η0)S0

is a nontrivial solution.
Hence one cannot replace T0 + S1 − 1 in the hypothesis of Lemma 4.3 by

a smaller number than max{T0 , S1}.

Sketch of proof of Theorem 4.2 . We first consider the special case where α = a
and β = b are positive integers with, say, b ≥ 3. Our goal is to check

|b− log a| ≥ exp{−cb(log b)} (4.5)

for some absolute constant c > 0 (which we shall not compute explicitly).
Recall that when b and log a are close together, then b(log b) is close to
(log a)(log b).

Here the parameter E of Theorem 4.2 is not helpful and we shall just take
E = e, but we shall keep it for a while to show why we cannot get a better
result by taking a large quotient R/r in Schwarz’ Lemma.

If we were following the proof of Proposition 1.8 in Section 1.6, we would
get b(log b)2 instead of b log b in (4.5). Let us explain why.

As we shall see in (4.10), the conclusion will have the shape

|b− log a| ≥ E−L.

Set U = V = W = (1/36)L logE, so that (1.6) holds (for simplicity we
forget the upper bound for the length of f). In order to check (1.5) we need
the number L logE to be larger than bET1S1 and than T0 log(bE). Since
L = T0T1, we get the conditions

T0 logE > bES1 and T1 logE > log b.

Writing now S0 = T0T1/S1, we obtain

S0 > b(log b)E(logE)−2.

In particular this explains our choice E = e.
The conclusion of Proposition 1.8 involves S0!, so we shall require L >

log(S0!), hence S1 > logS0 (we discard lower order terms), and therefore
L = S0S1 should satisfy L > b(log b)2.
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From this point of view the choice of parameters in Section 1.5 yields the
smallest possible value for L in terms of b.

The main term which is responsible for (log b)2 is S0!. If we could forget
it, we would get only a constant times b(log b)(log log b) for L by taking

T0 = N2b, T1 = N2[log b], S0 = N3b[log b], and S1 = N

with a suitable (sufficiently large) integer N . The quantity b(log b)(log log b)
arises from the term S0 log T1 which appears in the estimate for the length of
f in Proposition 1.8.

We perform a very simple change of variables12 which will allow us to take
a smaller value for S0. In place of evaluating the functions zτetz at the points
z = sb, we consider rather zτebtz at the points z = s. This means that we
replace(

d

dz

)σ (
zτetz

)
(sb) =

min{τ,σ}∑
κ=0

σ!τ !
κ!(σ − κ)!(τ − κ)!

(sb)τ−κtσ−κetsb

by

(
d

dz

)σ (
zτebtz

)
(s) =

min{τ,σ}∑
κ=0

σ!τ !
κ!(σ − κ)!(τ − κ)!

sτ−κ(tb)σ−κetsb.

While the former number is a positive real number bounded from above by

(bS1)τT σ1 min
{(

1 +
σ

bT1S1

)τ
;
(

1 +
τ

bT1S1

)σ}
ebT1S1 ,

(see (1.3)), the latter is at most

Sτ1 (bT1)σ min
{(

1 +
σ

bT1S1

)τ
;
(

1 +
τ

bT1S1

)σ}
ebT1S1 .

Thanks to this change of variables a variant of Proposition 1.8 can be deduced,
where the upper bound for the length of f is

LeWST0
1 (T0 + T1)S0 ,

the degree of f in Z2 is < S0 and (1.5) is replaced by

U ≥ logL+ T0 log(ES1) + |b|+ET1S1.

A suitable choice for the parameters is then

12 Compare with the “duality” of [34], Section 13.7.
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T0 = N2b[log b], T1 = N2[log log b],

S0 = N3b[log log b], S1 = N [log b],

which may be used to prove (4.5) with

exp{−cb(log b)} replaced by exp{−cb(log b)(log log b)}

(for b ≥ 16, say).
In order to remove the extra factor log log b and to reach the desired esti-

mate (4.5) involving only exp{−cb(log b)}, we need to get rid of the term ST0
1

in the upper bound for L(f) in Proposition 1.8, so that one could take

T0 = N2b[log b], T1 = N2, S0 = N3b, and S1 = N [log b].

This is achieved by means of the so-called Fel’dman’s polynomials. We use
here a variant due to E.M. Matveev (see [34] Lemma 9.8): we replace zτ by
the polynomials13 !(z; τ, T �0) which we now define.

4.2 Fel’dman’s Polynomials

For r a nonnegative integer and z ∈ C, consider the binomial (or Fel’dman’s)
polynomial

!(z; r) =
z(z + 1) · · · (z + r − 1)

r!
if r > 0 and !(z; 0) = 1.

Let τ ≥ 0 and T �0 > 0 be two integers. Following Matveev [20], I, Section
7, we define a polynomial !(z; τ, T �0) ∈ Q[z] of degree τ by

!(z; τ, T �0) =
(
!(z;T �0)

)q · !(z; r),

where q and r are the quotient and remainder of the division of τ by T �0 :

τ = T �0q + r, 0 ≤ r < T �0 .

For σ ≥ 0, define

!(z; τ, T �0 , σ) =
(
d

dz

)σ
! (z; τ, T �0).

For any positive integer n, denote by ν(n) the least common multiple of
1, 2, . . . , n. The estimate

ν(n) ≤ e107n/103

13 The polynomial denoted here by �(z; τ, T �
0 ) is denoted δ

T
�
0
(z; τ) in [34], Section

9.2.1, while our notation �(z; τ, T �
0 , σ) corresponds to δ

T
�
0
(z; τ, σ) in [34], Section

9.2.1. Here we follow Matveev’s notation in [20], I, Section 7.
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can be deduced from the prime number Theorem (see for instance [34], Section
9.2.1).

The next result is due to Matveev [20], I, Lemma 7.1 (see also [34] Lemma
9.8).

Lemma 4.4. Let T �0 > 0, τ > 0 and σ ≥ 0 be rational integers. For any
integer κ in the interval 0 ≤ κ ≤ σ and any rational integer m ∈ N, the
number

ν(T �0)σ · 1
κ!

! (m; τ, T �0 , κ)

is a nonnegative rational integer. Moreover, for any complex number z, we
have

σ∑
κ=0

(
σ

κ

)∣∣!(z; τ, T �0 , κ)
∣∣ ≤ σ!eτ+T

�
0

(
|z|
T �0

+ 1

)τ
.

4.3 Output of the Transcendence Argument

Here is the basic estimate which follows from the transcendence proof (by
means of the interpolation determinant method) and will enable us to deduce
Theorem 4.2. It is worth to notice that Theorem 4.5 does not involve any
arithmetic assumption (the proof does not use Liouville’s inequality).

Theorem 4.5. Let b be a nonzero complex number. Let T0, T
�
0 , T1, S0, S1,

K be positive integers and E a real number with E ≥ e. Set L = T0T1 and
assume 0 ≤ K < L and

S0S1 > (T0 + S1 − 1)T1.

Then there exists a set {f1, . . . , fM} of polynomials in the ring Z[Z1, Z2], each
of degree < LT1S1 in Z1 and degree < LS0 in Z2, of length at most

L!ν(T �0)LS0(S0!)Le(T
�
0+T0)L

(
S1

T �0
+ 1

)T0L

TS0L
1 ,

such that the polynomials {f1(Z1, b), . . . , fM (Z1, b)} in C[Z1] have no common
zero in C× and such that

1
L

max
k∈N2

‖k‖<K

log
∣∣∣∣ 1
k!
Dkfi(eb, b)

∣∣∣∣ ≤ − 1
2L

(L−K)(L−K − 1) logE + log(8L)

+ S0 log
(
ν(T �0)S0E

)
+ T �0 + T0 + T0 log

(
S1E

T �0
+ 1

)
+ S0 log(2T1|b|+) + T1S1E|b|

for 1 ≤ i ≤M .
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In the conclusion Dk stands for (∂/∂Z1)k1(∂/∂Z2)k2 .
For the proof of Theorem 4.5 we shall need the following refinement of

Lemma 1.5:

Lemma 4.6. Let L and L′ be positive integers with L′ ≤ L and ϕ1, . . . , ϕL′

entire functions in C. Let also ζ1, . . . , ζL be complex numbers and σ1, . . . , σL
nonnegative integers. Let S0 satisfy S0 ≥ max1≤µ≤L σµ. Furthermore, for
L′ + 1 ≤ λ ≤ L and 1 ≤ µ ≤ L let δλµ be a complex number. For 1 ≤ λ ≤ L′

and 1 ≤ µ ≤ L we define
δλµ = ϕ

(σµ)
λ (ζµ).

Finally, let E > 1 and Q1, . . . , QL be positive real numbers satisfying

Qλ ≥ log sup
|z|=E

max
1≤µ≤L

|ϕ(σµ)
λ (zζµ)| (1 ≤ λ ≤ L′),

Qλ ≥ log max
1≤µ≤L

|δλ,µ| (L′ + 1 ≤ λ ≤ L).

We consider the determinant

∆ = det
(
δλµ

)
1≤λ,µ≤L

.

Then we have

log |∆| ≤ −1
2
L′(L′ − 1) logE + L′S0 logE + log(L!) +Q1 + · · ·+QL.

Proof. Lemma 4.6 is essentially the case n = 1 of Lemma 7.5 in [34] but it
includes derivatives like in Proposition 9.13 of [34].

For 1 ≤ µ ≤ L, we define functions d1µ(z), . . . , dLµ(z) by

dλµ(z) =


ϕ

(σµ)
λ (ζµz) for 1 ≤ λ ≤ L′,

δλµ for L′ < λ ≤ L.

From Lemma 9.2 of [34] we deduce that the function

D(z) = det
(
dλµ(z)

)
1≤λ,µ≤L

has a zero at the origin of multiplicity ≥ (1/2)L′(L′−1)−L′S0. As D(1) = ∆,
we conclude the proof of Lemma 4.6 by using Schwarz’ Lemma 1.3. ��

Proof of Theorem 4.5. For each a ∈ C× we shall construct a polynomial
f ∈ Z[Z1, Z2] (depending on a) satisfying the required conditions and such
that

f(a, b) �= 0.

Since the degrees and lengths of these polynomials will be bounded (indepen-
dently of a), this will mean that we end up with a finite set of polynomials
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{f1, . . . , fM} in Z[Z1, Z2], such that the only possible common zero in C of
the polynomials fi(Z1, b) (i = 1, . . . ,M) is Z1 = 0.

Define, for 0 ≤ τ < T0 and 0 ≤ t < T1,

ϕτt(z) = !(z; τ, T �0)etbz.

For σ = 0, 1, . . . , S0 − 1, we have

ϕ
(σ)
τt (z) =

σ∑
κ=0

(
σ

κ

)
! (z; τ, T �0 , κ)(tb)σ−κetbz.

Define f̃ (σs)
τt ∈ Q[Z1, Z2] by

f̃
(σs)
τt (Z1, Z2) =

σ∑
κ=0

(
σ

κ

)
! (s; τ, T �0 , κ)(tZ2)σ−κZts1 ,

so that14

f̃
(σs)
τt (eb, b) = ϕ

(σ)
τt (s) (4.6)

and
f̃

(σs)
τt (a, b) = Dσ

b

(
!(X; τ, T �0)Y t

)
(s, as).

This polynomial f̃ (σs)
τt has rational coefficients. In order to get a polynomial

with integer coefficients, we multiply it by a denominator: using Lemma 4.4,
define f (σs)

τt ∈ Z[Z1, Z2] by

f
(σs)
τt (Z1, Z2) = ν(T �0)σ f̃ (σs)

τt (Z1, Z2).

In place of the exponent σ for ν(T �0) we could as well put the exponent
min{σ, τ}, because !(z; τ, T �0 , κ) = 0 for κ > τ . Notice also that we use
only the fact that

ν(T �0)σ ! (s; τ, T �0 , κ)

is an integer; indeed, according to Lemma 4.4, it is a multiple of κ!, but we
do not use this fact15.

The polynomial f (σs)
τt has degree ≤ ts in Z1, degree ≤ σ in Z2 and length

at most

ν(T �0)σ
σ∑
κ=0

(
σ

κ

)
! (s; τ, T �0 , κ)tσ−κ ≤ ν(T �0)S0S0!eT

�
0+T0

(
S1

T �0
+ 1

)T0

TS0
1 .

Consider the matrix

14 The upper index (σs) in the notation f̃
(σs)
τt is not a derivation, while ϕ

(σ)
τt =

(d/dz)σϕτt.
15 Maybe one should, in order to remove the extra log log A which arises in log B +

log log A. . .
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M =
(
f

(σs)
τt (a, b)

)
(τ,t)
(σ,s)

with L rows indexed by (τ, t), (0 ≤ τ < T0, 0 ≤ t < T1) and S0S1 columns
indexed by (σ, s) with 0 ≤ σ < S0, 0 ≤ s < S1.

We claim that M has rank L = T0T1. Indeed consider a linear dependence
relation between the rows:

T0−1∑
τ=0

T1−1∑
t=0

cτtf
(σs)
τt (a, b) = 0 for 0 ≤ σ < S0 and 0 ≤ s < S1.

Define

P (X,Y ) =
T0−1∑
τ=0

T1−1∑
t=0

cτt ! (X; τ, T �0)Y t.

Then we have

Dσ
bP (s, as) =

T0−1∑
τ=0

T1−1∑
t=0

cτtf̃
(σs)
τt (a, b),

hence
Dσ
bP (s, as) = 0 for 0 ≤ σ < S0 and 0 ≤ s < S1.

According to Lemma 4.3 with

ξs = s, ηs = as (0 ≤ s < S1)

and thanks to the assumption

S0S1 > (T0 + S1 − 1)T1,

we deduce cτt = 0 for 0 ≤ τ < T0 and 0 ≤ t < T1.
Hence M has rank L = T0T1. Select L columns of M with indices (σµ, sµ)

(1 ≤ µ ≤ L), which are linearly independent. This means that the polynomial

f(Z1, Z2) = det
(
f

(σµsµ)
τt (Z1, Z2)

)
(τ,t)

1≤µ≤L

does not vanish at the point (a, b). The degree of f in Z1 is < LT1S1 and in
Z2 is < LS0. We bound from above the length of f as follows: write

f
(σµsµ)
τt (Z1, Z2) = Z

tsµ

1

σµ∑
j=0

qjτtµZ
j
2

with

qjτtµ = ν(T �0)σµ

(
σµ
j

)
! (sµ; τ, T

�
0 , σµ − j)tj .

By Lemma 4.4 we have
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L(f (σµsµ)
τt ) =

σµ∑
j=0

|qjτtµ|

≤ ν(T �0)S0

σµ∑
j=0

(
σµ
j

)
! (sµ; τ, T

�
0 , σµ − j)tj

≤ ν(T �0)S0S0!eT
�
0+T0

(
S1

T �0
+ 1

)T0

TS0
1 .

Therefore

L(f) ≤ L!ν(T �0)LS0S0!LeL(T �
0+T0)

(
S1

T �0
+ 1

)LT0

TLS0
1 .

These crude estimates could be slightly improved, but this is irrelevant for our
purpose, since we do not pay too much attention to the absolute constants.

We want to estimate from above the number

max
k∈N2

‖k‖<K

log
∣∣∣∣ 1
k!
Dkf(eb, b)

∣∣∣∣ .
Fix k ∈ N2 with ‖k‖ < K. We have

1
k!
Dkf(eb, b) =

∑
κ

∆κ with ∆κ = det
( 1
κτt!

Dκτtf
(σµsµ)
τt (eb, b)

)
(τ,t)

1≤µ≤L

,

where κ ranges over the set of elements

(κτt) 0≤τ<T0
0≤t<T1

∈ (N2)L with
T0−1∑
τ=0

T1−1∑
t=0

κτt = k. (4.7)

For k = (k1, k2) the number of such κ is(
k1 + L− 1
L− 1

)(
k2 + L− 1
L− 1

)
< 2K+2L < 23L.

Fix κ satisfying (4.7) and define

∆̃κ = det
( 1
κτt!

Dκτt f̃
(σµsµ)
τt (eb, b)

)
(τ,t)

1≤µ≤L

,

so that

∆κ = ∆̃κ ν(T
�
0)σ1+···+σL .
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It remains to check the hypotheses of Lemma 4.6 with ζµ = sµ, L′ = L −K
and

Qτt = log(S0!) + T0 + T �0 + T0 log

(
S1E

T �0
+ 1

)
+ S0 log(2T1|b|+) + T1S1E|b|

for 0 ≤ τ < T0 and 0 ≤ t < T1.
From (4.7) it follows that there are at least L − K indices (τ, t) with

0 ≤ τ < T0 and 0 ≤ t < T1 for which κτt = (0, 0); for these indices we
use (4.6). We conclude by means of the estimates

max
1≤µ≤L

sup
|z|=E

∣∣∣ϕ(σµ)
τt (sµz)

∣∣∣ ≤ eQτt

and, for κτt = (κ1, κ2),∣∣∣∣ 1
κτt!

Dκτt f̃
(σµsµ)
τt (eb, b)

∣∣∣∣
≤

σµ∑
κ=0

(
σµ
κ

)
! (sµ; τ, T

�
0 , κ)tσµ−κ

(
σµ − κ

κ2

)
|b|σµ−κ−κ2

+

(
tsµ
κ1

)
e|b|(tsµ−κ1),

which implies

max
1≤µ≤L

∣∣∣∣ 1
κτt!

Dκτt f̃
(σµsµ)
τt (eb, b)

∣∣∣∣
≤ S0!eT0+T

�
0

(
S1

T �0
+ 1

)T0

(2|b|+T1)S0(2e|b|)T1S1 ≤ eQτt .

��

4.4 From Polynomial Approximation to Algebraic Approximation

Let θ ∈ Cn and γ ∈ Q
n
. We want to estimate from below |θ − γ|. Our

strategy is as follows (see [34] Proposition 15.3 and Exercise 15.3). Assume
there is a polynomial f ∈ Z[X] such that f(γ) �= 0 while |f(θ)| is sufficiently
small. Liouville’s inequality (Proposition 1.13) yields a lower bound for |f(γ)|
(depending on the degrees and length of f , as well as the degrees and heights
of the components of γ). Since |f(θ) − f(γ)| can be estimated from above in
terms of |θ − γ|, we deduce the desired lower bound for |θ − γ|.

A refined estimate can be obtained when not only f(θ), but also the values
of several derivatives of f at θ, have a small absolute value. The required
upper bound for |f(θ)− f(γ)| in terms of |θ− γ| will be a consequence of the
interpolation formula (Lemma 1.11).
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Lemma 4.7. Let �, K, ν1, . . . , ν�, N1, . . . , N� be positive integers. Define

m = ν1 + · · ·+ ν�.

Let K be a number field of degree D = [K : Q]. For 1 ≤ i ≤ �, write

θi = (θi1, . . . , θiνi
) ∈ Cνi and γ

i
= (γi1, . . . , γiνi

) ∈ Kνi .

Set
θ = (θ1, . . . , θ�) ∈ Cm and γ = (γ

1
, . . . , γ

�
) ∈ Km

and assume
|θ − γ| ≤ 1

2m
.

Let f be a polynomial with integer coefficients in m variables Xij (1 ≤ j ≤ νi,
1 ≤ i ≤ �), of total degree ≤ Ni with respect to the variables Xi1, . . . , Xiνi ,
(1 ≤ i ≤ �), such that

f(γ) �= 0.

Define

ε =
1
2
L(f)−D exp

{
−D

�∑
i=1

Nih
(
1: γi1 : · · · : γiνi

)}
and assume

max
k∈Nm

‖k‖<K

1
k!
|Dkf(θ)| ≤ 1

2
εL(f). (4.8)

Then

|θ − γ|K ≥ ε(1 +
√
K)−1

�∏
i=1

(1 + |θi|)−Ni .

Proof. We use the interpolation formula of Lemma 1.11 with F (z) = f(θ+z),
r = |θ − γ|, R = 1. We estimate |F |R from above as follows:

|F |R ≤ L(f)
�∏
i=1

(1 + |θi|)Ni .

Since ∑
k∈Nm

‖k‖<K

r‖k‖ ≤
∑
k∈Nm

r‖k‖ = (1 − r)−m

and since (
1 − 1

2m

)−m
≤ 2,

by the assumption r ≤ 1/(2m) we have:
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k∈Nm

‖k‖<K

r‖k‖ ≤ 2.

Therefore

|f(γ)| ≤ |θ − γ|K(1 +
√
K)L(f)

�∏
i=1

(1 + |θi|)Ni + 2 max
‖k‖<K

1
k!
|Dkf(θ)|.

By Liouville’s inequality (Proposition 1.13), we deduce from the assumption
f(γ) �= 0:

|f(γ)| ≥ L(f)1−D
�∏
i=1

e−DNih(1: γi1 : ··· : γiνi
).

Hence

L(f)1−D
�∏
i=1

e−DNih(1: γi1 : ··· : γiνi
)

≤ |θ − γ|K(1 +
√
K)L(f)

�∏
i=1

(1 + |θi|)Ni + 2 max
‖k‖<K

1
k!
|Dkf(θ)|. (4.9)

We now use the definition of ε and the assumption (4.8): the left hand side
of (4.9) is ≥ 2εL(f) and the second term on the right hand side is at most
εL(f), hence

|θ − γ|K(1 +
√
K)

�∏
i=1

(1 + |θi|)Ni ≥ ε.

��

Remark. In the special case m = 1 (hence � = ν1 = 1, θ ∈ C, and, say,
N = N1), here is a slightly different estimate, suggested by Exercise 15.3.a
of [34]:

|θ − γ|K ≥ ε

K

(
N

K

)
(1 + |θ|)N−K

·

The proof is quite similar, but one replaces Lemma 1.11 by Taylor’s expansion

f(γ) =
K−1∑
k=0

1
k!
f (k)(θ)(γ − θ)k +

1
(K − 1)!

∫ γ

θ

f (K)(t)(γ − t)K−1dt.

The conclusion follows from the estimates

K−1∑
k=0

1
k!

∣∣f (k)(θ)
∣∣ |γ − θ|k ≤ εL(f), |f(γ)| ≥ 2εL(f)
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and

1
(K − 1)!

sup
{∣∣f (K)(t)

∣∣ ; t = θ(1 − u) + γu, 0 ≤ u ≤ 1
}

≤ K

(
N

K

)
L(f)(1 + |θ|)N−K .

4.5 Proof of Theorem 4.2

We start by selecting a sufficiently large absolute constant N . Next we assume
the hypotheses of Theorem 4.2 are satisfied. From the assumptions we deduce
logB ≥ (1/D) + logD ≥ 1, hence

log max{B,N} ≤ (logN)(logB).

Replacing if necessary c by c logN , we may assume B ≥ N .
Next from Liouville’s inequality (see [34] Exercise 3.7) we deduce

|β| ≥ e−Dh(β),

hence there is no loss of generality to assume |β| ≤ 2|λ| (and consequently
λ �= 0).

Define first T1, S1 and T �0 by

T1 =
[
N2D logD + logE

logE

]
, S1 =

[
N
D logB
logE

]
, T �0 = [logB],

and then T0 and S0 by

T0 =
[
N
D logA
logE

]
S1, S0 = 2

[
N
D logA
logE

]
T1.

Plainly the number L = T0T1 is also equal to (1/2)S0S1. Up to terms of lower
order16, L logE is

N4D2(logA)(logB)
(
D logD + logE

)
(logE)−2,

which is the main term in the final estimate of the conclusion of Theorem 4.2.
Denoting by c1, . . . , c12 positive absolute constants, the following estimates

are plain:

T1S1 ≤
c1L logE
ND logA

, S0 ≤
c2L logE
ND logB

,

T �0S0 ≤
c3
ND

L logE, logS0 ≤
c4
ND

S1 logE,

log T1 ≤
c5
ND

S1 logE and T1S1E|β| ≤
c6
N
L logE.

16 Beware of integral parts!
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We apply Theorem 4.5 with b = β and K = [L/2]. Since the polynomials
fi(Z1, β) (1 ≤ i ≤ n) have no common zero in C×, one of f1, . . . , fM , say f ,
has f(α, β) �= 0. This polynomial has degree at most

N1 =
c7L

2 logE
ND logA

and N2 =
c8L

2 logE
ND logB

in Z1 and Z2 respectively, and length at most

exp
(
c9L

2 logE
ND

)
.

Moreover, if we set � = m = 2, ν1 = ν2 = 1, (θ1, θ2) = (eβ , β) and (γ1, γ2) =
(α, β), then the left hand side of (4.8) is at most

E−c10L2
.

Since
ε ≥ E−c11L2/N

we deduce from Lemma 4.7

|eβ − α|L/2 ≥ E−c12L2/N .

Therefore
|β − logα| ≥ E−L (4.10)

and the conclusion of Theorem 4.2 follows. ��

5 Fifth Lecture. Measures of Linear Independence of
Logarithms of Algebraic Numbers

5.1 Introduction

The last two lectures are devoted to the question of measures of linear inde-
pendence for logarithms of algebraic numbers. Here are a few references on
this topic.

A simple proof for a homogeneous measure of linear independence of an
arbitrary number of logarithms is given in Chap. 7 of [32], using an exten-
sion of Schneider’s method. A refined estimate (relying on the same ideas) is
given in Chap. 7 of [34]. The sharpest known estimate (in the general case,
homogeneous or not) arising from this method is established in Chap. 9 of [34].

Baker’s method is explained in [2] Chap. 3, [11] Chap. 8, 10 and 11, [6]
Chap. 10, [28] Chap. 3, [7] Chap. 4 and [34], Section 10.1 (see also the in-
troduction of [20], I, for a historical survey). While these proofs involve an
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auxiliary function, a measure of linear independence for logarithms of alge-
braic numbers is obtained in Section 10.2 of [34] by means of an interpolation
determinant (without extrapolation).

A comparative discussion of these methods can be found in [34] (see Section
14.4), where a more general estimate is established (the so-called quantitative
version of the linear subgroup Theorem).

The state of the art including references to the sharpest known measures
of Q-linear independence for logarithms of algebraic numbers is given in [34],
Section 10.4.6. Now one should add to this picture Matveev’s recent result
in [20], II, (see Theorem 6.1; we refer also to Nesterenko’s lectures).

Here is the main result for the rational case.

Theorem 5.1. For each positive integer n there exists a positive constant
C(n) with the following property. Let α1, . . . , αn be nonzero algebraic num-
bers and logα1, . . . , logαn logarithms of α1, . . . , αn respectively. Assume that
the numbers logα1, . . . , logαn are Q-linearly independent. Let b1, . . . , bn be
rational integers. Denote by D the degree of the number field Q(α1, . . . , αn)
over Q. Further, let W , E, E∗ be positive real numbers, each ≥ e and let
V1, . . . , Vn be positive real numbers. Assume

Vj ≥ max
{

h(αj),
E| logαj |

D
,

logE
D

}
(1 ≤ j ≤ n),

logE∗ ≥ max
{

1
D

logE, log
(

D

logE

)}
and W ≥ logE∗. Further, assume bn �= 0 and

eW ≥ max
1≤j≤n−1

{
|bn|
Vj

+
|bj |
Vn

}
· logE

D
·

Then the number
Λ = b1 logα1 + · · ·+ bn logαn

has absolute value bounded from below by

|Λ| > exp{−C(n)Dn+2WV1 · · ·Vn(logE∗)(logE)−n−1}.

For several applications (especially for solving explicitly Diophantine equa-
tions) it is quite important to produce an estimate with a small numerical
constant C(n), even to the cost of relaxing the dependence in some parame-
ters. A striking example arises with the case n = 2 where a very small value of
C(2) can be reached, provided that W is replaced by W 2 (see Theorem 5.10
below). We shall explain in an appendix to this Section 5 how such an esti-
mate can be used also for the case n ≥ 2 in order to get a lower bound for
|Λ| which involves a small constant – we need to replace W by eκW for some
κ > 0, but the point is that an admissible value for κ is < 1, hence the result
is not trivial.
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Apart from the explicit value for C, Theorem 5.1 includes essentially all
known estimates on this number |Λ|.

Admissible numerical values for C are given in [34], Section 10.4.6. As-
suming E = e, Matveev proved recently in [20], II, that C(n) can be replaced
by Cn where now C is a positive absolute constant (see Section 6).

Our goal is to explain some of the main ideas of the proof of Theorem 5.1
by means of Baker’s method. In this lecture we discuss the classical approach
following Baker’s method with an auxiliary function and in the last one we
shall show how to replace the auxiliary function by an interpolation determi-
nant.

5.2 Baker’s Method with an Auxiliary Function

Our main goal is to introduce the strategy of the proof, with an emphasis on
the ideas and tools. We do not produce exact estimates, but we consider only
the dominating terms which will explain the choice of parameters and at the
same time provide some explanation for the limitation of the present method.

a) Main Conditions on the Parameters

Assume the hypotheses of Theorem 5.1 are satisfied: α1, . . . , αn are nonzero
algebraic numbers, logα1, . . . , logαn are Q-linearly independent, b1, . . . , bn
are rational integers, bn �= 0 and

Λ = b1 logα1 + · · ·+ bn logαn.

As usual we need to introduce parameters: let T0, T1, . . . , Tn, T
�
0 , S0, S1 and L

be positive integers with L = T0 · · ·Tn. We also introduce another important
parameter, U , which is a positive real number and will play the main role:
assuming

0 < |Λ| ≤ e−U ,

we plan to derive a contradiction as soon as U is sufficiently large. Of course
all the point is to be explicit on this condition that U is large enough.

The proof will have a lot in common with the transcendence proof of
Theorem 3.1 in Section 3 (where the assumption was Λ = 0). Instead of
setting βk = −bk/bn and β0 = 0, it is slightly more convenient to change the
definitions of ∂0, . . . , ∂n−1 and to set now

∂0 =
∂

∂Y0
, ∂k = bnYk

∂

∂Yk
− bkYn

∂

∂Yn
(1 ≤ k ≤ n− 1).

The auxiliary polynomial will have the shape

P (Y0, . . . , Yn) =
∑
(τ,t)

cτ,t ! (Y0; τ, T
�
0)Y t11 · · ·Y tnn .
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In the sum, (τ, t) ranges over the set of all elements in N×Nn with 0 ≤ τ < T0
and 0 ≤ tj < Tj (1 ≤ j ≤ n).

We are interested in the algebraic numbers

∂σP (s, αs1, . . . , α
s
n)

for (σ, s) ∈ Nn×N satisfying ‖σ‖ < S0 and 0 ≤ s < S1. They can be explicitly
written down as ∑

(τ,t)

cτ,tγ
(σs)
τt ,

where
γ

(σs)
τt = ∂σ

(
!(Y0; τ, T

�
0)Y t11 · · ·Y tnn

)
(s, αs1, . . . , α

s
n)

and

∂σ
(
!(Y0; τ, T

�
0)Y t11 · · ·Y tnn

)
= !(Y0; τ, T

�
0 , σ0)

n−1∏
k=1

(bntk− bktn)σk ·Y t11 · · ·Y tnn .

The auxiliary polynomial P is selected so that equations (3.3) hold.
Our first condition on the parameters will be written

1
n!
Sn0 S1 < L. (5.1)

This is a lousy way of requiring that the number of equations is less than
the number of unknowns (namely the coefficients cτt). Here we do not pay
attention to the exact value of the absolute constants which come into the
picture, but we are only interested with the main constraints. For the same
reason we do not look at the estimate for the coefficients cτt.

For σ ∈ Nn define

Gσ(z) = ∂σP (z, αz1, . . . , α
z
n).

According to their definitions, the operators ∂σ are related to derivatives
along the hyperplane W of equation b1z1 + · · ·+ bnzn = 0 in Cn+1. The point
v = (1, logα1, . . . , logαn) does not lie in this hyperplane (because Λ �= 0), but
it is not far from it: to a certain extent |Λ| measures the “distance” between
v and W . If the point v were on the hyperplane W , the conditions (3.3)
would imply that the one variable entire function Gσ has a zero of multiplicity
≥ S0 − ‖σ‖ as each integer s with 0 ≤ s < S1. When |Λ| is small, the first
S0 − ‖σ‖ derivatives of Gσ at these points have a small absolute value. More
precisely define

gσ(z) = ∂σP
(
z, αz1, . . . , α

z
n−1, (α

b1
1 · · ·αbn−1

n−1 )−z/bn
)
.

Then



320 Michel Waldschmidt

Gσ(z) − gσ(z)

=
∑
(τ,t)

cτ,t ! (z; τ, T �0 , σ0)
n−1∏
k=1

(bntk − bktn)σk ·
n∏
i=1

αtizi ·
(
1 − e−tnzΛ/bn

)
.

From the inequality |ew−1| ≤ |w|e|w| which is valid for any w ∈ C one deduces∣∣1 − e−tnzΛ/bn
∣∣ ≤ |tnzΛ/bn|e|tnzΛ/bn|,

hence |Gσ(z) − gσ(z)| is quite small for |z| not too large:

|Gσ(z) − gσ(z)| ≤ |Λ|1/2 = e−U/2

for all relevant σ and z. In particular from the relationsGσ(s) = 0 for ‖σ‖ < S0
and 0 ≤ s < S1 one deduces ∣∣∣g(�)

σ (s)
∣∣∣ ≤ e−U/3

for ‖σ‖ < S0 − S′
0 and 0 ≤ s < S1. Using an approximate Schwarz’ Lemma

like Lemma 1.3 one deduces

|gσ(s)| ≤ e−2U ′

for the same σ, s, with

U ′ = min{U, (S0 − S′
0)S1 logE}.

Hence
|Gσ(s)| ≤ e−U ′

for the same σ and s. Combining this estimate with Liouville’s inequality
(Proposition 1.13) we deduce that Gσ satisfies (3.6). This conclusion can be
reached only if the parameters satisfy certain conditions. In the estimate aris-
ing from Liouville’s inequality (Proposition 1.13), the dominating terms are
the following ones:

e−DWS0(E∗)−DT0 arising from ! (s;T �0 , τ, σ0)

and
n∏
j=1

e−DTjVjS
′
1 arising from

n∏
j=1

α
−tjs
j .

The exact conditions which motivate the definitions of V1, . . . , Vn, W and E∗

are explained in [34] Chap. 9 and 10. In particular the difference between the
“homogeneous rational case” considered here and the “general case” (where
the rational coefficients bi’s are replaced by algebraic numbers βi, and there
may be also an extra β0) occurs here: the factor



Linear independence measures for logarithms of algebraic numbers 321

(bntk − bktn)σk

like it stands would require stronger assumptions on W , namely

W ≥ max
1≤k≤n

log Vk and W ≥ max
1≤k≤n

log |bk|,

so that DS0 log Ti is bounded by U ′ for 1 ≤ i ≤ n. In order to deal with our
weaker condition on W , the idea is to replace this factor by

!(bntk − bktn, σk).

See [34] Lemma 9.11.
Therefore it is reasonable to require

T0 ≤
U ′

D logE∗ , S0 ≤
U ′

DW
and Tj ≤

U ′

nDS′
1Vj

(1 ≤ j ≤ n).

Let us take

T0 =
[
c1

U

D logE∗

]
, S0 =

[
c2

U

DW

]
, Tj =

[
c3

U

nDS′
1Vj

]
(1 ≤ j ≤ n),

(5.2)
where c1, c2, c3 (as well as c4, . . . , c11 below) denote absolute positive con-
stants, which we are not interested in.

From condition (5.1) we deduce

U > c4S1(S′
1/W )nDV1 · · ·Vn(logE∗). (5.3)

At the end of this first extrapolation step we derive (3.6), provided that

(S0 − S′
0)S1 logE ≥ U.

As a first try, let us take S′
0 = [S0/2] and then

S1 =
[
c5
DW

logE

]
. (5.4)

We started with
(
S0+n
n

)
S1 equations and we end up with

(
S′

0+n
n

)
S′

1 new equa-
tions. It is conceivable that no real progress has been achieved unless the
number of new equations exceeds the number of old equations, which means
essentially that S′

0
n
S′

1 should not be smaller than Sn0 S1. Hence we need at
least S′

1 ≥ 2nS1.
There are several possibilities now. The easiest one is to apply immediately

a zero estimate. This is possible only if (S′
0
n
/n!)S′

1 is somewhat larger than
L = T0T1 · · ·Tn (which is the opposite of (5.1) when S0 and S1 are replaced
by S′

0 and S′
1). So if we wish to conclude immediately by means of the zero

estimate we need to require
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S′

0 + n− 1
n

)
S′

1 > cZEL, (5.5)

where cZE = (n + 1)! is the loss arising from Proposition 3.2 (this cZE is a
notation of [34], Section 13.5). This gives rise to the condition

S′
0
n
S′

1 > n!2L.

Comparing with (5.1) gives S′
1 > n!S1, hence (5.3) yields the condition

U > cn6 (n!)nDn+2WV1 · · ·Vn(logE∗)(logE)−n−1. (5.6)

The estimate (5.6) corresponds to the sharpest available result with respect
to V1, . . . , Vn, W , E and E∗ (but not with respect to n), and the choice of
parameters is given by (5.2) and (5.4).

b) End of the Proof

What we have shown so far is only that the above scheme of proof cannot reach
a better estimate than |Λ| ≥ e−U with U satisfying (5.6). It is a different issue
to prove that one can indeed reach such an estimate by means of these argu-
ments. However let us now say that there is mainly a single serious difficulty
in doing so: (5.5) is only a necessary condition for applying the zero esti-
mate (see (3.7)). More precisely the zero estimate enables one to conclude the
proof, unless there is a linear dependence relation between the rational inte-
gers b1, . . . , bn with “small” coefficients. Indeed, starting from 0 < |Λ| ≤ e−U ,
the transcendence machinery produces a tuple (t1, . . . , tn) ∈ Zn\{0} such that
t1b1 + · · · + tnbn = 0 together with a sharp upper bound for max1≤i≤n |ti|.
This small linear dependence relation is the explanation for the fact that the
system of equations (3.6) is somehow degenerate.

At this stage, the idea is to eliminate one bi thanks to this relation and to
work with a linear combination of n−1 logarithms instead of n. This is not the
most efficient way; one may proceed by induction indeed, but it is better to
repeat the transcendence argument and to take these relations into account.
In [24] (and also [25] for a more general situation dealing with commutative
algebraic groups), the induction is done as follows. The zero estimate produces
an algebraic subgroup of Ga ×Gn

m and the strategy is to start the proof from
scratch (construction of the auxiliary polynomial) with such an obstructing
subgroup. Thanks to this obstructing subgroup one has a better control on
the rank of the system of linear equations to which we apply Thue-Siegel’s
Lemma. After the extrapolation, one produces a new set of relations (3.6)
to which one applies again the zero estimate; the extremality of the initial
obstructing subgroup enables one to conclude (by contradiction).

A different way of performing this induction is used by [5], but the un-
derlying ideas are basically the same. This induction is somewhat technical
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but it is well under control now, and we shall not tell more about it. We as-
sume implicitly that there is no “small” linear dependence relation between
the bi’s, in which case the zero estimate shows that there is no nonzero poly-
nomial P ∈ C[Y0, . . . , Yn] for which a set of equalities (3.6) holds for (σ, s)
ranging over a set with slightly more than T0T1 · · ·Tn elements (compare with
condition (5.1)).

So our goal is to get more than T0T1 · · ·Tn equations (3.6) for P .

c) Baker’s Method with an Interpolation Determinant and
without Extrapolation

This Section 5.2 is devoted to Baker’s method with an auxiliary function,
but we make a small digression to point out that the arguments described in
Section 5.2, a) and Section 5.2, b) involving an auxiliary function work out
perfectly well for the interpolation determinant method. This is the topic of
Chap. 10 of [34].

The basic scheme of proof is the following: Philippon’s zero estimate en-
ables us to produce a nonzero determinant ([34], Proposition 10.9) which is an
algebraic number. Liouville’s estimate provides a lower bound for its absolute
value. The upper bound is obtained by analytic means ([34], Proposition 10.5).
In this analytic argument, one takes into account the order of vanishing of an
interpolation determinant at the origin only: extrapolation like in Section 3.5
is not necessary.

The role of the obstructing subgroup in connection with interpolation de-
terminants is explained in [34], Section 10.2.3.

d) Dependence on n

We consider the dependence on n now.
The factor (n!)n in (5.6) is very large (it is comparable with the estimate

which occurs in the interpolation determinant method of [34] Chap. 10 — see
Section 14.4.3).

Even if one were to replace the condition S′
1 > n!S1 by the weaker S′

1 >

2nS1, one would get a large “constant” in terms of n, involving 2n
2
.

In order to refine condition (5.6), an obvious solution would be to improve
the zero estimate. However if one could replace (n+ 1)! in (3.7) by, say, nc7 ,
then one would still end up with nc8n in place of cn6 (n!)n in the right hand
side of (5.6)17.

As soon as we wish to increase S′
1/S1 by a factor λ > 1, we get a factor

λn in U . Hence we should not take S′
1/S1 larger than an absolute constant

if we do not wish to introduce some nn. We shall take S′
1 = 2S1. Now, since

17 This is a significative difference with the “dual” method in Chap. 9 of [34], dealing
with the algebraic group Gn

a ×Gm, where any improvement of the constant in the
zero estimate immediately applies to the final estimate of Theorem 5.1.
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we want to end up with at least as many equations as we started with, we
need that S′

0
n
S′

1 is not less than Sn0 S1. It is natural to require that S′
0/S0 is

comparable with 2−1/n, which is not far from 1− (c9/n). Let us take

S′
0 = S0

(
1 − 1

2n

)
.

We need to replace (5.4) by

S1 =
[
c10n

DW

logE

]
.

From (5.3) we obtain the condition

U > cn11n
nDn+2WV1 · · ·Vn(logE∗)(logE)−n−1. (5.7)

We shall see later ( Section 5.2, h)) how to remove the coefficient nn in the
right hand side of (5.7), but let us continue.

It seems we have not earned much: we started with roughly (Sn0 /n!)S1
equations and we got (S′

0
n
/n!)S′

1 new ones, which is about the same. The
only improvement concerns the term S0S1 logE, that we can replace at the
end of this extrapolation by S′

0S
′
1 logE, which is essentially twice as large.

This procedure may be repeated: we do it n times (this seems to be an
optimal choice) with

S
(j)
0 = S0

(
1 − j

2n

)
and S

(j)
1 = 2jS1.

There is a small cost: at the end we shall get |Λ| ≥ e−2nU in place of |Λ| ≥
e−U . If one wishes to keep the conclusion |Λ| ≥ e−U then one should replace
everywhere else U by U/2n. Indeed this is just the choice of parameters in [31].

At the end of the n extrapolation steps one has S(n)
0 = S0/2 and S

(n)
1 =

2nS1. The number of equations is not large enough to apply immediately the
zero estimate 3.2.

Since we have been unable to increase the number of equations enough, we
shall follow another strategy which originates in works by Baker and Stark and
relies on arguments arising from Kummer’s theory. The idea is to introduce
division points and prove

∂σP (s/p, αs/p1 , . . . , αs/pn ) = 0 (5.8)

for various σ ∈ Nn, s ∈ Z and p. At an early stage of the theory, p was
selected as a sufficiently large prime number. Later, another argument, which
we explain in Section 5.2, f), enabled us to work with a smaller value for p,
until it was realized that p = 2 also works!

We refer to [11] for several proofs involving (5.8):
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• In Chap. 8, Section 2 and Section 6, for many values (s, p) with σ = 0.
• In Chap. 10, Section 2 and Section 5, for a single sufficiently large prime

number p and several values (σ, s).
• In Chap. 11, Section 2 and Section 4, (5.8) is applied with p = 2 only.

In recent works involving Kummer’s theory only p = 2 is used; however it may
be instructive to recall briefly what was done earlier with a large prime p.

e) Kummer’s Theory

In this section we denote by n a positive integer, K a number field and
α1, . . . , αn nonzero elements of K.

We first quote Lemma 3 of [4].

Lemma 5.2. Let p be a prime. For 1 ≤ j ≤ n denote by α
1/p
j any p-th root

of αj. For 1 ≤ r ≤ n set

Kr = K
(
α

1/p
1 , . . . , α1/p

r

)
.

Assume
[Kn : Kn−1

]
< p.

Then there exist an element γ ∈ K× and integers j1, . . . , jn−1 satisfying 0 ≤
j� < p (1 ≤ � ≤ n− 1), such that

αn = αj11 · · ·αjn−1
n−1 γ

p. (5.9)

Remark. Lemma 5.2 is proved by induction in [4]. When K contains the p-th
roots of unity it can also be proved by using arguments from Kummer’s theory
as follows. Define

G0 =
{
xp ; x ∈ K×}

and, for 1 ≤ r ≤ n let Gr denote the multiplicative subgroup of K× spanned
by G0, α1, . . . , αr. According to [12] Chap. 6, Section 8 Th. 8.1, the field Kr

is an abelian extension of K and the degree of this extension is the index of
G0 in Gr. Assume p is such that [Kn : Kn−1

]
< p. Then (Gn : Gn−1) < p,

hence there is a relation

αan
n = αa1

1 · · ·αan−1
n−1 β

p,

with some β ∈ K× and integers a1, . . . , an satisfying 0 ≤ a� < p (1 ≤ � ≤
n− 1) and 1 ≤ an < p. Writing Bézout’s relation anu+ pv = 1 with rational
integers u, v, one deduces the desired relation (5.9).

Lemma 5.3. For 1 ≤ i ≤ n select a complex logarithm logαj of αj. Assume
that the numbers logα1, . . . , logαn are linearly independent over Q and denote
by G the set of λ ∈ C such that
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eλ ∈ K× and λ, logα1, . . . , logαn are linearly dependent over Q.

Then G is a free Z-module of rank n, containing Z logα1 + · · ·+ Z logαn as a
subgroup of finite index.

Further, if log θ1, . . . , log θn is a basis of G over Z, then for any prime p
for which K contains a primitive p-th root of unity, we have[

K
(
θ
1/p
1 , . . . , θ1/p

n

)
: K

]
= pn,

where θ1/p
i stands for exp{(1/p) log θi} (1 ≤ i ≤ n).

Remark. The assumption in the last sentence that K contains a primitive p-
th root of unity cannot be omitted. Here is an example: take K = Q, n = 1,
α1 = 1 and logα1 = 2iπ. In this case log θ1 = ±2iπ and for each odd prime p
we have [

K(θ1/p
1 ) : K

]
= p− 1.

Proof. It will be more convenient to work with

Λ =
{
(r1, . . . , rn) ∈ Qn ; r1 logα1 + · · ·+ rn logαn ∈ G

}
,

which is a subgroup of Rn isomorphic to G under the mapping

Λ −→ G
r �−→ r1 logα1 + · · ·+ rn logαn.

We have Zn ⊂ Λ ⊂ Qn. We first want to check that Λ is discrete in Rn. For
X > 0 and for r ∈ Λ satisfying |r| ≤ X we have

h(αr11 · · ·αrn
n ) ≤ X

n∑
i=1

h(αi),

hence αr11 · · ·αrn
n belongs to a finite subset of K× as r ranges over the elements

of Λ∩Bn(0, X). This means that the image of Λ∩Bn(0, X) under the mapping

Λ −→ K×

r �−→ αr11 · · ·αrn
n

is finite. Hence the proof that Λ ∩ Bn(0, X) is finite will be completed if we
check that for each r0 ∈ Qn ∩ Bn(0, X), the set of r ∈ Qn ∩ Bn(0, X) such
that

αr11 · · ·αrn
n = α

r01
1 · · ·αr

0
n
n

is finite. Indeed, since logα1, . . . , logαn are linearly independent over Q, there
exists s ∈ Qn such that{

r ∈ Qn ; αr11 · · ·αrn
n = 1

}
= Zs;
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we deduce that the set{
r ∈ Qn ∩Bn(0, 2X) ; αr11 · · ·αrn

n = 1
}

is finite.
This shows that Λ is a lattice (discrete subgroup of rank n) in Rn, hence

a free Z-module, and therefore G is also a free Z-module of rank n.
Let log θ1, . . . , log θn be a basis of G over Z. Assume[

K
(
θ
1/p
1 , . . . , θ1/p

n

)
: K

]
< pn

for some prime p. Let m be minimal with 1 ≤ m ≤ n such that[
K
(
θ
1/p
1 , . . . , θ1/p

m

)
: K

]
< pm.

We use Lemma 5.2:
θm = θj11 · · · θjm−1

m−1 γ
p,

for some γ ∈ K× and 0 ≤ j� < p, (1 ≤ � ≤ m− 1). Define

λ =
1
p

log θm −
m−1∑
�=1

j�
p

log θ�.

Since K contains the p-th roots of unity, from (eλ/γ)p ∈ K× we deduce eλ ∈
K×, hence λ ∈ G, and therefore λ ∈ Z log θ1 + · · · + Z log θn, which is clearly
a contradiction. ��

In the transcendence proof following Baker’s method, Lemma 5.3 is applied
as follows: when we need estimates for the height, we use the algebraic numbers
αi, while when we want to apply Kummer’s condition, we use the numbers
θi. This does not make a difference when using interpolation determinants; if
we use an auxiliary function, the systems of equations are equivalent, but in
order to investigate small values we need estimates for the transition matrix.
The index N of Zn in Λ plays an important role in Matveev’s paper [20], II.

f) Kummer’s Theory with a Large Prime p

The results in this subsection are no more used in recent papers dealing with
linear independence measures for logarithms of algebraic numbers, but they
keep their independent interest.

We denote by n a positive integer and by α1, . . . , αn nonzero algebraic
numbers.

Lemma 5.4. Let K be a number field containing α1, . . . , αn and let p be a
sufficiently large prime.
a) Assume α1, . . . , αn are multiplicatively independent. Denote by α

1/p
i any

p-th root of αi (1 ≤ i ≤ n). Then
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K
(
α

1/p
1 , . . . , α1/p

n

)
: K

]
= pn.

b) Assume α1 is a primitive q-th root of unity for some positive integer q,
while α2, . . . , αn are multiplicatively independent. Denote by α1/p

1 a primitive
pq-th root of unity and by α1/p

i any p-th root of αi (2 ≤ i ≤ n). Then[
K
(
α

1/p
1 , . . . , α1/p

n

)
: K

]
= (p− 1)pn−1.

Proof. a) To start with, consider the case n = 1. The assumption is that
α = α1 is not a root of unity, and the conclusion amounts to say that if α
is a p-th power in K, then p is bounded (depending on α and K). We prove
this claim by using heights: if α = βp for some β ∈ K, then h(β) = (1/p)h(α).
Moreover β has degree ≤ [K : Q] and is not a root of unity. From a result of
Kronecker’s (see for instance [34], Section 3.6) h(β) is bounded from below by
a positive constant c depending only on [K : Q]. Hence p ≤ c−1h(α).

More generally, assume α1, . . . , αn are multiplicatively independent. Define

Kr = K
(
α

1/p
1 , . . . , α1/p

r

)
(1 ≤ r ≤ n)

and K0 = K. Let p be a prime number such that [Kn : K] < pn. Denote by r
the least integer such that [Kr : K] < pr. We have 1 ≤ r ≤ n, [Kr−1 : K] = pr−1

and [Kr : Kr−1
]
< p. By Lemma 5.2 there exists a nontrivial relation

αr = αj11 · · ·αjr−1
r−1 γ

p (5.10)

with j� ∈ Z, 0 ≤ j� < p (1 ≤ � < r) and γ ∈ K×. From the properties of the
height (see for instance [34] Chap. 3) we deduce

h(γ) ≤ h(α1) + · · ·+ h(αr),

hence γ belongs to a finite subset of K× which depends only on α1, . . . , αn. For
each fixed γ there is a unique multiplicative dependence relation like (5.10),
hence p is bounded. Moreover explicit upper bounds for the exponents in such
a multiplicative dependence relation are known, depending only on α1, . . . , αr
and [K : Q] (see for instance [34] Lemma 7.19).

b) Assume now α1 is a primitive q-th root of unity, while α1/p
1 is a primitive

pq-th root of unity. For any prime p which does not divide q the number α1 is a
p-th power of an element in K: indeed writing up+ vq = 1 we get α1 = (αu1 )p.
Hence the field K1 = K

(
α

1/p
1

)
has degree < p over K. Moreover, since αq1

is a primitive p-th root of unity, the field Q(αq1) is the cyclotomic field of
degree p− 1 and discriminant ±pp−2. Hence, as soon as p does not divide the
discriminant of K, the field K1 has degree p− 1 over K.

Next we apply part a) of this Lemma 5.4 to the numbers α2, . . . , αn and
the field K: we deduce [

K
(
α

1/p
2 , . . . , α1/p

n

)
: K

]
= pn−1.

Finally, K
(
α

1/p
1 , . . . , α

1/p
n

)
is the compositum of K1 and K

(
α

1/p
2 , . . . , α

1/p
n

)
,

hence has degree (p− 1)pn−1 over K. ��
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Lemma 5.5. Assume α1, . . . , αn are multiplicatively independent. Then there
exists a positive integer D with the following property: if

Q ∈ K[X1, . . . , Xn]

is a nonzero polynomial of degree < D in each variable Xi (1 ≤ i ≤ n) and
p a prime with p ≥ D, then

Q
(
α

1/p
1 , . . . , α1/p

n

)
�= 0.

Proof. Using Lemma 5.4, take D sufficiently large so that for p ≥ D,[
K
(
α

1/p
1 , . . . , α1/p

n

)
: K

]
= pn.

For such a p we prove the result by induction on n. For n = 1, since α1/p
1 has

degree p ≥ D > degQ over K, and since Q has coefficients in K, it follows
that α1/p

1 is not a root of Q.
If Lemma 5.5 holds for n− 1, then the polynomial

P (X) = Q
(
α

1/p
1 , . . . , α

1/p
n−1, X

)
∈ Kn−1[X]

is nonzero, has degree < D and coefficients in the field

Kn−1 = K
(
α

1/p
1 , . . . , α

1/p
n−1

)
,

while α1/p
n is algebraic of degree p ≥ D over this field Kn−1. Hence α1/p

n is not
a root of P . ��

Lemma 5.6. Assume α1, . . . , αn are multiplicatively independent. Then there
exists a positive integer D with the following property. Let

Q ∈ K[X0, X1, . . . , Xn]

be a nonzero polynomial of degree < D0 in X0 and < D in each variable Xi

(1 ≤ i ≤ n). Let p be a prime with p > D and S a subset of Z with at least D0
elements such that (s, p) = 1 for any s ∈ S. Then one at least of the numbers

Q
(
s/p, α

s/p
1 , . . . , αs/pn

)
(s ∈ S)

is not 0.

Proof. For (s, p) = 1 Bézout’s relations imply

Q(α, α1/p) = Q(α, αs/p).

Therefore the same arguments as for Lemma 5.5 yield Lemma 5.6. ��

Lemmas 5.5 and 5.6 occurred in Baker’s method at an earlier stage of
the theory (see [11] pp. 176–177 and 185). Later, similar results taking into
account several values of σ were required (see [11], pp. 223–226 and 237–238).
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g) Kummer’s Theory with p = 2

Let p be a prime for which the field generated over K = Q(α1, . . . , αn) by the
p-th roots α1/p

i = exp((1/p) logαi) with 1 ≤ i ≤ n has maximal degree pn:

[K(α1/p
1 , . . . , α1/p

n ) : K] = pn. (5.11)

This condition (5.11) yields a decomposition of each relation (5.8)∑
(τ,t)

cτ,t ! (s/p; τ, T �0 , σ0)
n−1∏
k=1

(bntk − bktn)σk · αt1s/p1 · · ·αtns/pn = 0

for which s is prime to p into pn equations, where the sum over (τ, t) is
restricted to the elements with ti ≡ t0i (mod p). For one at least of these
equations, say corresponding to some t0 ∈ Nn with 0 ≤ t0i < p, the coefficients
cτ,t with

ti ≡ t0i (mod p) (1 ≤ i ≤ n)

do not all vanish. We reduce the number of coefficients of P as follows: fix
such a t0, write ti = t0i + pt′i (1 ≤ i ≤ n) and consider now the new auxiliary
polynomial obtained as a chunk of P∑

(τ,t′)

cτ,t0+pt′ ! (Y0; τ, T
�
0)Y t

′
1

1 · · ·Y t
′
n
n .

In this process the number of coefficients18 of the auxiliary polynomial P
decreases (the upper bound Ti for the degree in Yi with 1 ≤ i ≤ n is divided
by p). It turns out that the number of relations (3.6) will be essentially fixed
along the inductive process, but at the end of the extrapolation the number
of relations will be higher than the number of coefficients of the last auxiliary
polynomial P , which is what we were looking for.

Each time Kummer’s condition (5.11) is used with, say, p = 2, we replace
Ti by Ti/2. If one performs this extrapolation sufficiently far, one ends up
(after the double induction) with some Tj , say Tn, replaced by 0 and the
system of equations one gets in this case is easily shown (see Lemma 5.7) to
have no nontrivial solution: there is no need to appeal to the zero estimate 3.2.

If one wishes to get Tn/2J < 1 (after J steps), we need 2J > Tn. It turns
out that such a long extrapolation procedure has a cost: there is another
factor log Vn−1 (assuming V1 ≤ · · · ≤ Vn−1 ≤ Vn) in the final estimate. This is
exactly the main result in [31], which improves earlier results by Baker in [3].
See also [20], I, as well as [37] for the p-adic case.

Now Proposition 3.2 enables us to perform a shorter extrapolation, which
avoids this cost of log Vn−1. This is done in [24] as well as in [5] and [20], II.
See also [38], I, for the p-adic case.
18 By “the number of coefficients” of P we mean the number T0 · · · Tn where Ti is

the known upper bound for the degree of P with respect to Yi (1 ≤ i ≤ n). This
is a loose way of speaking, but the values of T0, . . . , Tn should be clear from the
context.
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h) A Simple Zero Estimate

As we saw in Section 5.2, f), combining the extrapolation with (5.11), one
reduces the set of coefficients of the auxiliary polynomial. The next result
shows that we reach a contradiction as soon as all coefficients cτt with 1 ≤
tn < Tn vanish.

Lemma 5.7. Let T0, . . . , Tn−1, S0, S1 be positive integers and α1, . . . , αn−1
nonzero complex numbers. Assume

S0S1 ≥ T0 and S0 ≥ Tj for 1 ≤ j < n.

Then the matrix

M =
(
∂σ
(
Y τ0 Y

t1
1 · · ·Y tn−1

n−1

)
(s, αs1, . . . , α

s
n−1)

)
(τ,t)
(σ,s)

,

where the rows are indexed by (τ, t) and the columns by (σ, s) with

0 ≤ τ < T0, 0 ≤ ti < Ti (1 ≤ i ≤ n− 1) and ‖σ‖ < S0, 0 ≤ s < S1,

has rank T0T1 · · ·Tn−1.

Remark. Because of (5.2) and (5.4), the conditions S0S1 ≥ T0 and S0 ≥ Tj
are responsible for the requirements D logE∗ ≥ logE and Vj ≥ logE in the
hypotheses of Theorem 5.1.

Proof. On the subring C[Y0, Y1, . . . , Yn−1] of C[Y0, Y1, . . . , Yn], we have

∂σ =
(

∂

∂Y0

)σ0

· · ·
(

∂

∂Yn−1

)σn−1

.

Hence the problem is reduced to a Cartesian product situation which one
deals with by induction as follows.

Consider a relation between the rows of M:

T0−1∑
τ=0

T1−1∑
t1=0

· · ·
Tn−1−1∑
tn−1=0

cτt∂
σ
(
Y τ0 Y

t1
1 · · ·Y tn−1

n−1

)
(s, αs1, . . . , α

s
n−1) = 0

for any (σ, s) satisfying ‖σ‖ < S0 and 0 ≤ s < S1. This means that the
polynomial

P (Y ) =
T0−1∑
τ=0

T1−1∑
t1=0

· · ·
Tn−1−1∑
tn−1=0

cτtY
τ
0 Y

t1
1 · · ·Y tn−1

n−1

satisfies

∂σP (s, αs1, . . . , α
s
n−1) = 0 for ‖σ‖ < S0 and 0 ≤ s < S1.
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For (σ0, . . . , σn−2) ∈ Nn−1 with σ0 + · · ·+ σn−2 < S0 and for 0 ≤ s < S1, the
polynomial(

∂

∂Y0

)σ0

· · ·
(

∂

∂Yn−2

)σn−2

P (s, αs1, . . . , α
s
n−2, Yn−1) ∈ C[Yn−1]

has degree < Tn−1 ≤ S0 and a zero at the point αsn−1 of multiplicity ≥ S0,
hence this polynomial is 0. By induction one shows in the same way that for
1 ≤ k < n, (σ0, . . . , σk−1) ∈ Nk with σ0 + · · · + σk−1 < S0 and 0 ≤ s < S1,
the polynomial(

∂

∂Y0

)σ0

· · ·
(

∂

∂Yk−1

)σk−1

P (s, αs1, . . . , α
s
k−1, Yk, . . . , Yn−1) ∈ C[Yk, . . . , Yn−1]

is zero. Hence for k = 1 we get(
∂

∂Y0

)σ0

P (s, Y1, . . . , Yn−1) = 0 for 0 ≤ σ0 < S0 and 0 ≤ s < S1.

Since S0S1 > T0 we deduce P = 0, and therefore M has rank T0T1 · · ·Tn−1.
��

Remark. There is nothing special with the field C: the result is valid for
any field of zero characteristic. Also the same result holds if we select an-
other basis than Y τ0 Y

t1
1 · · ·Y tn−1

n−1 for the space C[Y0, . . . , Yn−1], for instance
!(Y0; τ, T

�
0)Y t11 · · ·Y tn−1

n−1 .

i) Removing nn under Kummer’s Condition

In [20], I, E.M. Matveev succeeds to remove the factor nn in (5.7) under
Kummer’s condition (5.11) for p = 2. The idea is the following. He restricts
the set of exponents (τ, t) of his auxiliary polynomial to a subset satisfying∣∣t1 logα1 + · · ·+ tn logαn

∣∣ ≤ U

MES1
, (5.12)

where M ≥ 1 is a new parameter. This allows him to take a larger radius
R for the disk where he will apply a Schwarz Lemma (or an approximate
Schwarz Lemma): in place of R = Er, he may take (almost without extra
cost at this place) R = EMr. In the conclusion, in place of (logE)−n−1

appears now
(
log(ME)

)−n−1. On the other hand, for application of Thue-
Siegel’s Lemma in the construction of P , it is necessary to estimate from
below the number of such elements (τ, t). Matveev in [20], I, uses arguments
from geometry of numbers. Yu Kunrui [38], II, worked out simpler arguments,
using only Dirichlet’s box principle, which suffice (the final numerical estimate
may be not as sharp, but the argument works as well for the p-adic case; see
also [34], Section 9.3 for another adaptation of this argument). Essentially,
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requiring (5.12) divides the number of tuples (τ, t) by M . So in the final
result the new parameter U is the old one multiplied by M

(
log(ME)

)−n−1.
Assuming E = e and taking M = cn, one gets rid of the unwanted term nn

in (5.7).

Appendix. From 2 to n Logarithms

In this appendix we develop a remark which originates in Gel’fond’s work and
has been also used by Bombieri, Bilu and Bugeaud (see [34], Theorem 1.9 and
Corollary 10.18). The goal is to deduce, from a nontrivial irrationality measure
for the quotient of two logarithms of algebraic numbers, a nontrivial measure
of linear independence for n logarithms. The idea is to write the coefficients
bi as b̃qi + ri with integers b̃, q1, . . . , qn, r1, . . . , rn, so that the linear form

b1X1 + · · ·+ bnXn

has the same value at the point (λ1, . . . , λn) than the binary form

b̃Y1 + Y2

at the point (
q1λ1 + · · ·+ qnλn, r1λ1 + · · ·+ rnλn

)
.

We need to select b̃ so that the “remainders” ri ∈ Z have comparatively small
absolute values.

We expand this argument in the following lemma.

Lemma 5.8. Let K be a number field of degree D, λ1, . . . , λn elements of L
such that the algebraic numbers αi = eλi are in K. Define V1, . . . , Vn and V
by

Vi = max
{
h(αi),

|λi|
D

, 1
D

}
(i = 1, . . . , n) and V = max{V1, . . . , Vn}.

Further, let b1, . . . , bn be rational integers and let B be a positive integer sat-
isfying B ≥ max{|b1|, . . . , |bn|}.

Then there exist λ̃1, λ̃2 in L and b̃ in Z such that α̃1 = eλ̃1 and α̃2 = eλ̃2

are in K,
b1λ1 + · · ·+ bnλn = b̃ λ̃1 + λ̃2,

1 ≤ b̃ ≤ B, and such that the numbers

Ṽi = max

{
h(α̃i),

|λ̃i|
D

, i
D

}
(i = 1, 2)

satisfy

Ṽ1Ṽ2 ≤ 2n2B1−κnV 2 with κn =
1

2n− 1
·
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For the proof of Lemma 5.8, we shall use Minkowski’s Linear Forms The-
orem (see for instance [27], Chap. II, S 1, Theorem 2C)19.

Lemma 5.9. Let
(
xij

)
1≤i,j≤n be a n × n matrix with determinant ±1. Let

A1, . . . , An be positive real numbers with product A1 · · ·An = 1. Then there
exists (q1, . . . , qn) ∈ Zn \ {0} such that

|q1xi1 + · · ·+ qnxin| < Ai (1 ≤ i < n)

and
|q1xn1 + · · ·+ qnxnn| ≤ An.

Proof of Lemma 5.8. In the trivial case b1 = · · · = bn = 0 we set b̃ = 1,
λ̃1 = λ̃2 = 0 and the conclusion is satisfied. So we may assume (b1, . . . , bn) �= 0.
By symmetry, we may assume b1 ≥ |bi| for 1 ≤ i ≤ n.

Further, if n = 1, we set

b̃ = b1, λ̃1 = λ1, λ̃2 = 0,

so that Ṽ1 = V1, Ṽ2 = 2/D and again the conclusion is satisfied. Hence we
shall assume n ≥ 2.

Define
Q = B(n−1)κn .

Notice that the exponent is

(n− 1)κn =
1
2
(1 − κn).

Using Lemma 5.9, we deduce that there exist rational integers q1, . . . , qn,
not all of which are zero, satisfying∣∣∣ bi

b1
q1 − qi

∣∣∣ < Q−1/(n−1) for 2 ≤ i ≤ n and |q1| ≤ Q.

Since

|qi| <
∣∣∣∣ bib1 · q1

∣∣∣∣+ 1 ≤ |q1| + 1,

we have |qi| ≤ |q1|. In particular q1 �= 0. Replacing, if necessary, all qi by −qi,
we may assume q1 > 0.

We define
b̃ =

[
b1/q1

]
.

Clearly the inequalities 1 ≤ b̃ ≤ B are satisfied. Further, set

19 If one applies Dirichlet’s box principle in place of Minkowski’s Theorem, one de-
duces a weaker estimate for Ṽ1Ṽ2, where 2n2B1−κnV 2 is replaced by 4n2B1−κnV 2.
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ri = bi − b̃qi (1 ≤ i ≤ n),

λ̃1 =
n∑
i=1

qiλi and λ̃2 =
n∑
i=1

riλi,

so that

b̃λ̃1 + λ̃2 =
n∑
i=1

(̃bqi + ri)λi =
n∑
i=1

biλi.

It remains to estimate Ṽ1 and Ṽ2. Define R = max1≤i≤n |ri|. We have

Ṽ1 ≤ nq1V, Ṽ2 ≤ nRV,

hence
Ṽ1Ṽ2 ≤ n2q1RV

2.

Finally from the inequalities

|bi − b̃qi| ≤
1
q1
|biq1 − b1qi| + |qi|

∣∣∣∣ b1q1 − b̃

∣∣∣∣ ≤ q−1
1 B1−κn + q1

and
q21 ≤ Q2 ≤ B1−κn

we deduce
q1R ≤ B1−κn + q21 ≤ 2B1−κn .

��

We shall combine Lemma 5.8 with the following sharp estimate for two
logarithms (Corollary 1 in [16]).

Theorem 5.10. Let λ1, λ2 be two elements in L and b1, b2 two nonzero ra-
tional integers. Define

α1 = eλ1 , α2 = eλ2 and D = [Q(α1, α2) : Q].

Assume α1 and α2 are multiplicatively independent. Let V1, V2 and W be
positive real numbers satisfying

Vi = max
{
h(αi),

|λi|
D

, 1
D

}
(i = 1, 2)

and

W ≥ 1, W ≥ 21
D
, eW ≥ |b2|

DV1
+

|b1|
DV2

·

Then
|b1λ1 + b2λ2| ≥ exp

{
−31D4V1V2W

2}.
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Corollary 5.11. Let α1, . . . , αn be nonzero multiplicatively independent al-
gebraic numbers. Under the assumptions of Theorem 5.1, if we set V =
max{V1, . . . , Vn}, E = e,

B = max
{
e, e21/D, |b1|, . . . , |bn|

}
and κn = 1/(2n− 1), then we have

|Λ| > exp{−62n2D4B1−κn(logB)2V 2}.

Further similar estimates are easy to produce.

Remark. Such an argument is used in [8] in order to reduce a linear form in
logarithms from 5 to 2 terms and to show that all integer solutions to the
Diophantine equation in 3 variables

x5 + (z − 1)2x4y − (2z3 + 4z + 4)x3y2 + (z4 + z3 + 2z2 + 4z − 3)x2y3

+ (z3 + z2 + 5z + 3)xy4 + y5 = ±1

are the trivial ones given by

±(x, y) =

{
(1, 0), (0, 1), z �= −1, 0,
(1, 0), (0, 1), (±1, 1), (−2, 1), z ∈ {−1, 0}.

6 Sixth Lecture. Matveev’s Theorem with Interpolation
Determinants

We refer to Nesterenko’s lectures for an introduction to Matveev’s proof of
the following Theorem:

Theorem 6.1. There exists an absolute positive constant C with the following
property. Let n be a positive integer, α1, . . . , αn nonzero algebraic numbers and
logα1, . . . , logαn logarithms of α1, . . . , αn respectively. Assume that the num-
bers logα1, . . . , logαn are Q-linearly independent. Let b1, . . . , bn be rational
integers, not all of which are zero. Denote by D the degree of the number field
Q(α1, . . . , αn) over Q. Further, let W , V1, . . . , Vn be positive real numbers.
Assume

Vj ≥ max
{

h(αj),
e| logαj |

D

}
(1 ≤ j ≤ n) and W ≥ 1 + logD.

Further, assume bn �= 0 and

eW ≥ 1
D

max
1≤j≤n−1

{
|bn|
Vj

+
|bj |
Vn

}
.
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Then the number
Λ = b1 logα1 + · · ·+ bn logαn

has absolute value bounded from below by

|Λ| > exp{−CnDn+2(1 + logD)WV1 · · ·Vn}.

Our goal is to explain how to prove Matveev’s Theorem 6.1 by means
of interpolation determinants and to avoid the construction of an auxiliary
function involving Thue-Siegel-Bombieri-Vaaler’s Lemma in [20], II. We aim
at obtaining the conclusion with an unspecified (but effectively computable)
value for the absolute constant C.

6.1 First Extrapolation

Matveev uses several auxiliary polynomials which are of the form

P (Y ) =
∑

(τ,t)∈L
cτ,t ! (Y0; τ, T

�
0)Y t11 · · ·Y tnn ∈ C[Y0, . . . , Yn],

where L is a suitable set of (τ, t) ∈ N × Nn with 0 ≤ τ < T0 and 0 ≤ tj < Tj
(1 ≤ j ≤ n). He starts the construction by means of Bombieri-Vaaler’s version
of Thue-Siegel’s Lemma and solves a system of equations (3.3). Next a first
extrapolation enables him to get more relations like (3.6), say

∂σP (s, αs1, . . . , α
s
n) = 0 for ‖σ‖ < S

(j)
0

and 0 ≤ s < S
(j)
1 (0 ≤ j ≤ J).

(6.1)

At this stage of his proof we consider the matrix M of the linear system
given by equations (6.1). We write this matrix as follows. Consider the column
vector with |L| rows and entries in Q[Y ]:

P(Y ) =
(
!(Y0; τ, T

�
0)Y t11 · · ·Y tnn

)
(τ,t)∈L

.

For each σ ∈ Nn, define

Gσ(z) = ∂σP(z, αz1, . . . , α
z
n)

and set
M =

(
Gσ(s)

)
(σ,s)

,

where (σ, s) ranges over the set of elements in Nn × N such that ‖σ‖ < S
(j)
0

and 0 ≤ s < S
(j)
1 for at least one j in the range 0 ≤ j ≤ J .

We consider two cases. The first one is when the rank of M is maximal, equal
to |L|. In this case the proof is very short: we select a maximal nonvanishing
determinant
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∆ = det
(
Gσµ

(sµ)
)

1≤µ≤|L|

by taking the first |L| columns in minimal lexicographic ordering like in Sec-
tion 2.2 and Section 3.5, we bound its absolute value from below by means of
Liouville’s inequality (Proposition 1.13), and from above thanks to analytic
arguments. Corollary 3.6 is not quite sufficient for this purpose: it corresponds
to a Schwarz’ Lemma like Lemma 1.3 for a function with many zeroes, while
we need a statement corresponding to an approximated Schwarz’ Principle like
Lemma 1.12 for a function with many small values. These estimates provide
the required conclusion.

Now we assume M has rank < |L|. Denote by L1 − 1 this rank. We select
a subset L1 of L with L1 elements such that, if we set

P1(Y ) =
(
!(Y0; τ, T

�
0)Y t11 · · ·Y tnn

)
(τ,t)∈L1

and
G(1)
σ (z) = ∂σP1(z, αz1, . . . , α

z
n),

then the associated truncated matrix with L1 rows only

M1 =
(
G(1)
σ (s)

)
(σ,s)

has rank L1−1. Thanks to Lemma 5.7 we may assume that all (τ, t) ∈ L with
tn = 0 belong to L1.

Again we select the first L1 − 1 columns of M1 which are linearly indepen-
dent like in Section 2.2 and Section 3.5, say

G(1)
σ1

(s1), . . . ,G(1)
σL1−1

(sL1−1),

and we consider the polynomial

P1(Y ) = det
(
G(1)
σ1

(s1), . . . ,G(1)
σL1−1

(sL1−1),P1(Y )
)
.

From the construction it follows that P1 is not zero. We extrapolate on the
division points as follows: for ‖σ‖ < S

(J+1)
0 and 0 ≤ s < S

(J+1)
1 we prove

∂σP1(s/2, α
s/2
1 , . . . , αs/2n ) = 0.

Thanks to Lemma 5.3, for odd s each such equation decomposes into 2n

equations. We explain now how to use this fact.

6.2 Using Kummer’s Condition

Lemma 6.2. Let �, L1, . . . , L�, M , N be positive integers, L a field, K a
subfield of L, t1, . . . , t� elements in L which are linearly independent over K,
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A1, . . . , A�, B1, . . . , B� matrices with entries in K, where Aν has size Lν ×M
and Bν size Lν ×N (1 ≤ ν ≤ �). Define

A =

A1
...
A�

 and C =

A1 t1B1
...

...
A� t�B�


and assume

rank(C) = rank(A) < L1 + · · ·+ L�.

Then for at least one index ν in the range 1 ≤ ν ≤ � we have

rank(Bν) < Lν .

Proof. For 1 ≤ ν ≤ �, write

Bν =
(
b
(ν)
λj

)
1≤λ≤Lν
1≤j≤N

=
(
b
(ν)
1 , . . . , b

(ν)
N

)
,

where b(ν)1 , . . . , b
(ν)
N are the column vectors in KLν . Let r be the rank of the

matrix A. Since C has also rank r, each of the column vectors
t1b

(1)
j
...

t�b
(�)
j

 of

t1B1
...

t�B�


(1 ≤ j ≤ N) belongs to the space spanned by the column vectors of A. We
write the N relations

rank


A1 t1b

(1)
j

...
...

A� t�b
(�)
j

 = r (1 ≤ j ≤ N)

expanding by minors:
�∑

ν=1

Lν∑
λ=1

α
(�)
νλ tνb

(ν)
λj = 0 for 1 ≤ # ≤ R and 1 ≤ j ≤ N,

where the coefficients α(�)
νλ are in K (independent of j) and are not all zero

(because A has rank r). Since t1, . . . , t� are linearly independent over K, we
deduce

Lν∑
λ=1

α
(�)
νλ b

(ν)
λj = 0 for 1 ≤ # ≤ R, 1 ≤ j ≤ N and 1 ≤ ν ≤ �. (6.2)

There is at least one ν in the range 1 ≤ ν ≤ � such that the coefficients α(�)
νλ

with 1 ≤ # ≤ R and 1 ≤ j ≤ N are not all zero. For such a ν the relations (6.2)
yield a nontrivial dependence relation between the row vectors of Bν , hence
Bν has rank < Lν . ��
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6.3 Second Extrapolation

At this stage of the proof, after the first extrapolation including division
points, we get a new matrix

M2 =
(
G(2)
σ (s)

)
(σ,s)

built with
G(2)
σ (s) = ∂σP2(s, αs1, . . . , α

s
n)

and
P2(Y ) =

(
!(Y0; τ, T

�
0)Y t11 · · ·Y tnn

)
(τ,t)∈L2

.

Now the set L1 has been reduced to L2, with

|ti| < Ti/2 for (τ, t) ∈ L2 and 1 ≤ i ≤ n,

while the set of (σ, s) is bigger than for M1, say

‖σ‖ < S
(2,j)
0 and 0 ≤ s < S

(2,j)
1 (0 ≤ j ≤ J2). (6.3)

The upper index (2, j) corresponds to the j-th step in the second extrapolation
(hence we may set S(1,j)

0 = S
(j)
0 and S

(1,j)
1 = S

(j)
1 ).

Before starting our second induction let us have a look at Matveev’s argu-
ments in [20], II: his second auxiliary polynomial P2 is a linear combination
of the components of P2(Y ); he shows by induction on j the relations

∂σP2(s, αs1, . . . , α
s
n) = 0

for all (σ, s) ∈ Nn × N in (6.3).
As far as we are concerned we repeat the argument of Section 5.1. However

it is necessary to be slightly careful with the construction of the next matrix:
for an efficient application of the analytic argument we need to introduce a
condition like (3.18). This difficulty did not arise in the first extrapolation
(Section 6.1), because the condition

|L| > 2
(
S0 + n− 1

n

)
S1

was in force: Matveev needed it to solve his system of linear equations and
produce his first auxiliary polynomial. For the second extrapolation this con-
dition is not there and we proceed as follows.

Let L2 − 1 be the rank of M2. Define µ0 = L2/2n+2. We select the first
µ0 columns which are linearly independent. Next we consider the matrix M̃2
which consists of these µ0 columns together with all other columns of M2 for
which

‖σ‖ < S̃
(2,j)
0 and 0 ≤ s < S

(2,j)
1 (0 ≤ j ≤ J2),
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where S̃
(2,0)
0 = 1

2

(
S

(2,0)
0 + S

(2,1)
0

)
S̃

(2,j)
0 = S

(2,j)
0 for 1 ≤ j ≤ J2.

When µ0 is large, there is no point to distinguish between M2 and M̃2, but
otherwise the picture is the following:

S
(2,0)
0

S̃
(2,0)
0

S
(2,1)
0

0 µ0 S
(j−1)
1 S

(j)
1

Denote by L̃2 the rank of M̃2. We already selected µ0 columns, we select
L̃2 − µ0 further columns in the usual way in order to get a maximal number
of independent columns.

If L̃2 − 1 = |L2|, we easily conclude the proof by usual means: M̃2 is a
nonsingular square matrix with nonzero determinant, say ∆2. We bound the
absolute value of ∆2 from below by arithmetic means and from above by
analytic means.

If L̃2 < µ0 = L2/2n+2, then the second extrapolation is complete: our goal
is precisely to produce a matrix with such a low rank.

Assume now L2/2n+2 ≤ L̃2 ≤ |L2|. We select L̃2 rows of M̃2, corresponding
to a subset L̃2 of L2 with L̃2 elements. Our new auxiliary polynomial is the
determinant P̃2(Y ) of the square matrix(

G̃(2)
σ1

(s1), . . . , G̃(2)
σL̃2−1

(sL̃2−1), P̃2(Y )
)
.

We extrapolate on division points and complete the second induction as we
did for the first one.

6.4 An Approximate Schwarz Lemma for Interpolation
Determinants

The results of Section 3.4 deal with zeroes of interpolation determinants and
involve Schwarz’ Lemma. They are sufficient for the proof of qualitative state-
ments like Baker’s Theorem 3.1.

In Section 4, we were able to prove a quantitative result by means of
Lemma 4.6, which is also a Schwarz’ Lemma; however only the zero at the
origin is used, and there is no extrapolation; this explains why the required
approximate Schwarz’ Lemma in the proof of Lemma 4.7 is just the interpo-
lation formula of Lemma 1.11 (or just Taylor’s expansion as in the remark in
Section 4.4).
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Such an argument does not seem to suffice when we want to extrapolate.
Indeed the determinant(

∂σP
(
s, αs1, . . . , α

s
n−1, (α

b1
1 · · ·αbn−1

n−1 )−s/bn
)
(sµ)

)
does not satisfy the assumption (3.12) of Proposition 3.5.

Another attempt is to follow the method of Section 7.3 in [34]: in this
case we return to the results of Section 3.4 but we replace in Proposition 3.5
Dκµϕλ(ξµ) by Dκµϕλ(ξµ) + ελµ with sufficiently small complex numbers ελµ.
Unfortunately this does not seem to work either: the main hypothesis (3.12)
of Proposition 3.5 is not satisfied for a matrix where some entries are replaced
by constants.

Finally the only way so far is to combine Lemmas 1.12 and 3.4 by proving
an approximate Schwarz Lemma for interpolation determinants.

Details will appear elsewhere.
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