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Abstract

In his well–known paper in Proc. London Math. Soc.,
1915, Ramanujan defined and studied highly composite
numbers. A highly composite number is a positive integer m
with more divisors than any positive integer smaller than m.

This work was pursued in 1944 by L. Alaoglu and P. Erdős
(On highly composite and similar numbers, Trans. Amer.
Math. Soc.), who raised a question which is related with this
topic and which belongs to transcendental number theory.

A simple instance is the following open question : does
there exist a real irrational number t such that 2t and 3t are
integers ?

We plan to survey the development of this problem.
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Jean-Louis Nicolas and Guy Robin

Ramanujan, Srinivasa. Highly composite numbers. Annotated
by Jean-Louis Nicolas and Guy Robin. Ramanujan J. 1, No. 2,
119-153 (1997).

In 1915, the London Mathematical Society published in its
Proceedings a paper of Ramanujan entitled “Highly composite
numbers” [Proc. Lond. Math. Soc. (2) 14, 347–409 (1915 ;
JFM 45.0286.02)]. But it was not the whole work on the
subject, and in “The lost notebook and other unpublished
papers”, one can find a manuscript, handwritten by
Ramanujan, which is the continuation of the paper published
by the London Mathematical Society.
This paper is the typed version of the above mentioned
manuscript with some notes, mainly explaining the link
between the work of Ramanujan and the works published after
1915 on the subject.



The sequence of highly composite numbers

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, . . .

Number of divisors

1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 18, 20, 24, 30, 32, . . .

http://oeis.org/A002182 http://oeis.org/A002183

Neil J. A. Sloane

http://oeis.org/A002182
http://oeis.org/A002183


The divisor function d(n)

The divisor function d(n) =
∑

d|n 1 :

n = 1 2 3 4 5 6 7 8 9
d(n) = 1 2 2 3 2 4 2 4 3

http://oeis.org/A000005

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, . . .

http://oeis.org/A000005


The divisor function d(n)

The divisor function d(n) =
∑

d|n 1 :

n = 1 2 3 4 5 6 7 8 9
d(n) = 1 2 2 3 2 4 2 4 3

Prime numbers : d(n) = 2 :

n = 1 2 3 4 5 6 7 8 9
d(n) = 2 2 2 2

http://oeis.org/A000040

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, . . .

http://oeis.org/A000040


The divisor function d(n)

The divisor function d(n) =
∑

d|n 1 :

n = 1 2 3 4 5 6 7 8 9
d(n) = 1 2 2 3 2 4 2 4 3

• Highly composite numbers : A highly composite number is a
positive integer m with more divisors than any positive
integer smaller than m.

n = 1 2 3 4 5 6 7 8 9
d(n) = 1 2 3 4



The divisor function d(n)

At
n = pa11 · · · pass =

∏
p

pa(p),

the divisor function d(n) = σ0(n) takes the value

d(n) = (a1 + 1) · · · (as + 1) =
∏
p

(a(p) + 1).
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Highly composite numbers

• Highly composite numbers : A highly composite number is a
positive integer with more divisors than any smaller positive
integer.

Sequence of highly composite numbers

n = 1 2 4 6 12 24 36 48 60 . . .
d(n) = 1 2 3 4 6 8 9 10 12 . . .

http://oeis.org/A002182

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, . . .
This sequence is infinite : since 2n has more divisors than n, if
n is a highly composite number, then there is a highly
composite number larger than n and at most 2n.

http://oeis.org/A002182
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The smallest highly composite numbers

n d(n)
1 = 1 1
2 = 2 2
4 = 22 3
6 = 2 · 3 4
12 = 22 · 3 6
24 = 23 · 3 8
36 = 22 · 32 9
48 = 24 · 3 10
60 = 22 · 3 · 5 12

120 = 23 · 3 · 5 16
180 = 22 · 32 · 5 18
240 = 24 · 3 · 5 20
360 = 23 · 32 · 5 24
720 = 24 · 32 · 5 30
840 = 23 · 3 · 5 · 7 32



Pál Erdős and Jean-Louis Nicolas

Let Q(x) be the number of highly composite numbers ≤ x.
Pál Erdős (1944) :

Q(x) ≥ (log x)a.

Jean-Louis Nicolas (1988) :

Q(x) ≤ (log x)b.



Smooth, abundant, practical numbers
• A B–smooth number is an integer which factors completely
into prime numbers ≤ B. (Used in cryptography).

Highly composite numbers are smooth numbers.

• An abundant number is a number for which the sum of its
proper divisors is greater than the number itself.

A highly composite number higher than 6 is also an
abundant number.
http://oeis.org/A005101

12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, . . .

• A practical number is a positive integer n such that all
smaller positive integers can be represented as sums of distinct
divisors of n.

Every highly composite number is a practical number.
http://oeis.org/A005153

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, . . .

http://oeis.org/A005101
http://oeis.org/A005153
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Sum of divisors

Sum of divisors :

σ(n) = σ1(n) =
∑
d|n

d.

http://oeis.org/A000203

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, . . .

For n =
∏
p

pa(p), σ(n) =
∏
p

pa(p)+1 − 1

p− 1
·

• Perfect number : σ(n) = 2n.
• Abundant number : σ(n) > 2n.

http://oeis.org/A000203


Sum of divisors

Sum of divisors :

σ(n) = σ1(n) =
∑
d|n

d.

http://oeis.org/A000203

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, . . .

For n =
∏
p

pa(p), σ(n) =
∏
p

pa(p)+1 − 1

p− 1
·

• Perfect number : σ(n) = 2n.

• Abundant number : σ(n) > 2n.

http://oeis.org/A000203


Sum of divisors

Sum of divisors :

σ(n) = σ1(n) =
∑
d|n

d.

http://oeis.org/A000203

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, . . .

For n =
∏
p

pa(p), σ(n) =
∏
p

pa(p)+1 − 1

p− 1
·

• Perfect number : σ(n) = 2n.
• Abundant number : σ(n) > 2n.

http://oeis.org/A000203


Superabundant numbers

• Superabundant number :

σ(n)

n
>
σ(k)

k
for k < n.

Sequence http://oeis.org/A004394 in OEIS:

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, . . .
Leonidas Alaoglu and Pál Erdős (1944).

http://en.wikipedia.org/wiki/Superabundant−number

Unknown to Alaoglu and Erdős, about 30 pages of
Ramanujan’s 1915 paper ”Highly Composite Numbers” were
suppressed. Those pages were finally published in The
Ramanujan Journal 1 (1997), 119-153. In section 59 of that
paper, Ramanujan defines generalized highly composite
numbers, which include the superabundant numbers.

http://oeis.org/A004394
http://en.wikipedia.org/wiki/Superabundant_number
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Alaoglu and Erdős

Ramanujan (1915) listed 102
highly composite numbers up
to 6 746 328 388 800, but
omitted 293 318 625 600.

Alaoglu and Erdős,
On highly composite and
similar numbers, Trans. AMS
56 (3), 1944, 448–469.

highly abundant numbers,
super abundant numbers,
colossally abundant numbers.



Alaoglu and Erdős



Alaoglu and Erdős

. . .this makes qx rational. It is very likely that qx and px can
not be rational at the same time except if x is an integer. This
would show that the quotient of two consecutive colossally
abundant numbers is a prime. At present we can not show
this. Professor Siegel has communicated to us the result that
qx, rx and sx cannot be simultaneously rational except if x is
an integer. Hence the quotient of two consecutive colossally
abundant numbers is either a prime or the product of two
distinct primes.



Colossally abundant numbers

• Colossally abundant number : a positive integer n for which
there exists ε > 0 such that, for all k > 1,

σ(n)

n1+ε
≥ σ(k)

k1+ε
·

Sequence A004490 in OEIS:

2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, . . .
Successive quotients : 3, 2, 5, 2, 3, 7, 2, 11, 13, 2, . . .

2 6 12 60 120
3 2 5 2 3

360 2520 5040 55440 720720
7 2 11 13

http://oeis.org/A004490
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2t may be algebraic and t not an integer
Example : For t =

log 1729

log 2
, we have 2t = 1729 ∈ Z,

but

3t = exp((log 3)(log 1729)/ log 2) = 135451.44 . . .

is not an integer.

Also 3t is an integer for some values of t not in Z – for

instance for t =
log 691

log 3
· But then

2t = exp((log 2)(log 691)/ log 3) = 61.87 . . .

is not an integer.

Can these values of t be the same producing integer values for
both 2t and 3t ?

Let t be a real number such that 2t and 3t are integers. Does
it follow that t is a positive integer ?
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Special case of the four exponentials Conjecture

Conjecture [Special case of the four exponentials Conjecture]
Let p and q be two distinct prime numbers. If t is a real
number such that pt and qt are both algebraic, then t is a
rational number.

Theorem [Special case of the Six Exponentials Theorem]
If the three numbers pt, qt and rt are algebraic for three
distinct primes p, q, r, then t is a rational number.

Corollary : The quotient of two consecutive colossally
abundant numbers is either a prime or a product of two
distinct primes.
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1972 Putnam Prize Competition
Using the calculus of finite differences, show that, if t ∈ R is
such that nt ∈ Z for all n ≥ 1, then t ∈ N.
First method H. Halberstam. – Transcendental numbers ;
The Mathematical Gazette 58 (1976), 276–284.

Second method R. Balasubramanian. cf. M. Waldschmidt.
– Linear independence of logarithms of algebraic numbers.
The Institute of Mathematical Sciences, Madras, IMSc
Report N◦ 116, (1992), 168 pp.



Carl Ludwig Siegel and Serge Lang

Carl Ludwig Siegel
(1896 - 1981)

Serge Lang
(1927 - 2005)

http://www-history.mcs.st-andrews.ac.uk/history/

Mathematicians/Siegel.html

Mathematicians/Lang.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Siegel.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Siegel.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Lang.html


Ramachandra’s contributions to the theory of

transcendental numbers

[1968].– Contributions to the

theory of transcendental

numbers (I) ; Acta Arith., 14

(1968), 65–72 ; (II), id., 73–88.

http://matwbn.icm.edu.pl/tresc.php?wyd=6&tom=14

http://matwbn.icm.edu.pl/tresc.php?wyd=6&tom=14




K. Ramachandra (1933–2011)



Ramachandra’s house in Bangalore

Photos taken on April 26, 2011, after a colloquium talk I gave
in Bangalore in memory of K. Ramachandra.



Atle Selberg

Atle Selberg
1917 - 2007

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Selberg.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Selberg.html


Four exponentials Conjecture

Set 2t = a and 3t = b. Then the determinant∣∣∣∣log 2 log 3
log a log b

∣∣∣∣
vanishes.
Four exponentials Conjecture. Letlogα1 logα2

log β1 log β2


be a 2× 2 matrix whose entries are logarithms of algebraic
numbers. Assume the two columns are Q -linearly independent
and the two rows are also Q -linearly independent. Then the
matrix is regular.



Four exponentials Conjecture and first problem of

Schneider

Problem 1 :

logα1

logα2

=
logα3

logα4

Problem 8 : One at least of
the two numbers

ee, ee
2

.

is transcendental.



Introduction aux Nombres Transcendants

Theodor Schneider

Einführung in die
Transzendenten Zahlen

Springer, 1957.

Traduction française par
Pierre Eymard

Gauthier-Villars, 1959



Matrices and exponentials

A 2× 2 matrix with complex entries has rank ≤ 1 if and only
if it can be written x1y1 x1y2

x2y1 x2y2


with x1, x2, y1, y2 in C.

For such a matrix, the two rows are linearly independent over
Q if and only if x1 and x2 are linearly independent over Q
(means : x2/x1 is irrational), while the two colums are linearly
independent over Q if and only if y1 and y2 are linearly
independent over Q (means : y2/y1 is irrational).
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Connection with the four exponentials Conjecture

Set αij = exiyj for i, j = 1, 2. Then the matrixlogα11 logα12

logα21 logα22

 =

x1y1 x1y2

x2y1 x2y2


has rank ≤ 1.



Four exponentials Conjecture

Conjecture. Let x1, x2 be Q–linearly independent complex
numbers and y1, y2 be also Q–linearly independent complex
numbers. Then one at least of the four numbers

ex1y1 , ex1y2 , ex2y1 , ex2y2

is transcendental.



Six exponentials Theorem

Theorem (Siegel, Lang, Ramachandra). Let x1, x2 be two
Q–linearly independent complex numbers and y1, y2, y3 be also
Q–linearly independent complex numbers. Then one at least
of the 6 numbers

exiyj , (i = 1, 2, j = 1, 2, 3)

is transcendental.



Six exponentials Theorem

Theorem (Siegel, Lang, Ramachandra). Letlogα1 logα2 logα3

log β1 log β2 log β3


be a 2× 3 matrix whose entries are logarithms of algebraic
numbers. Assume the three columns are linearly independent
over Q and the two rows are also linearly independent over Q.
Then the matrix has rank 2.



Six exponentials Theorem
Let d and ` be positive integers with d` > d+ `. This means
d ≥ 2 and ` ≥ 3 or d ≥ 3 and ` ≥ 2.
Theorem. Let x1, . . . , xd be Q–linearly independent complex
numbers and y1, . . . , y` be also Q–linearly independent
complex numbers. Then one at least of the d` numbers

exiyj , (1 ≤ i ≤ d, 1 ≤ j ≤ `)

is transcendental.

Equivalently :
If the entries of a d× ` matrix(

logαij
)
1≤i≤d, 1≤j≤`

are logarithms of algebraic numbers, if the d rows are Q
-linearly independent and the ` columns are also Q -linearly
independent, then the matrix has rank ≥ 2.
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Transcendence of 2t, 2t
2
, 2t

3

In the six exponentials Theorem, select

x1 = 1, x2 = t

and
y1 = log 2, y2 = t log 2, y3 = t2 log 2

where t is an irrational number. The numbers exiyj are 2, 2t,
2t

2
, 2t

3
, hence one at least of the three numbers 2t, 2t

2
, 2t

3
is

transcendental.

In case t is algebraic, these three numbers are transcendental
(Gel’fond–Schneider’s Theorem).
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Transcendence of 2t
k

With
x1 = 1, x2 = ta

and
y1 = log 2, y2 = tb log 2, y3 = tc log 2

where t is a transcendental number and a, c > b are positive
integers, one deduce the transcendence of one at least of the
numbers

2t
a

, 2t
b

, 2t
c

, 2t
a+b

2t
a+c

.

For instance with c = a+ b it follows that for a and b positive
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Is 2π transcendental ?

One conjectures that all numbers 2π
n

(n ≥ 1) are
transcendental.

A special case of the four exponentials Conjecture is that one
at least of the two numbers 2π, 2π

2
is transcendental.

According to the six exponentials Theorem, one at least of the
three numbers 2π, 2π

2
, 2π

3
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Algebraic approximations to 2π
k

(T.N. Shorey)

When α1, α2, α3 are algebraic
numbers, T.N. Shorey (1974)
gave a lower bound for
|2π − α1|+ |2π

2 − α2|+ |2π
3 − α3|

in terms of the heights and
degrees of α1, α2, α3.

[T.N. Shorey, 1974].– On the sum
∑3

k=1 |2π
k − αk|, αk algebraic

numbers, J. Number Theory 6 (1974), 248-260.



Algebraic approximations to 2π
k

(S. Srinivasan)

S. Srinivasan : Using a theorem of Szemeredi, investigates the
number of algebraic numbers among the numbers 2π

k
,

(1 ≤ k ≤ N). :

O
(√

N
)
.

[Srinivasan, 1974].– On algebraic approximations to 2π
k

(k = 1, 2, 3, . . .) ; Indian J. Pure Appl. Math., 5 (1974),
513–523.

[Srinivasan, 1979].– On algebraic approximations to 2π
k

(k = 1, 2, 3, . . .), (II) ; J. Indian Math. Soc., 43 (1979), 53–60.



Algebraic numbers among 2π
k

Number of algebraic numbers among the numbers 2π
k
,

(1 ≤ k ≤ N) :

≤ (2 + ε)
√
N

.

[K. Ramachandra and S. Srinivasan, 1983].– A note to a paper by
Ramachandra on transcendental numbers ; Hardy-Ramanujan
Journal, 6 (1983), 37–44.



Algebraic numbers among 2π
k

Number of algebraic numbers among the numbers 2π
k
,

(1 ≤ k ≤ N) :

≤ (
√

2 + ε)
√
N

.

[K. Ramachandra and R. Balasubramanian, 1982].–
Transcendental numbers and a lemma in combinatorics ; Proc.
Sem. Combinatorics and Applications, Indian Stat. Inst.,
(1982), 57–59.



The five exponentials Theorem (1985)

Theorem Let x1, x2 be two Q–linearly independent complex
numbers and y1, y2 be also two Q–linearly independent
complex numbers. Then one at least of the 5 numbers

ex1y1 , ex1y2 , ex2y1 , ex2y2 , ex2/x1

is transcendental.
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The five exponentials Theorem (matrix form)

Theorem (1985). Let M be a 2× 3 matrix whose entries are
either algebraic numbers or logarithms of algebraic numbers.
Assume the three columns are linearly independent over Q and
the two rows are also linearly independent over Q. Then M
has rank 2.

Assume exiyj = αij are algebraic for i, j = 1, 2 and that also
ex2/x1 = γ is algebraic. Then the 2× 3 matrixlogα11 logα12 1

logα21 logα22 log γ

 =

x1y1 x1y2 1

x2y1 x2y1 x2/x1


has rank 1.
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The field Q, the Q–space L and the Q–space L̃

We denote by Q the field of algebraic numbers.

Denote by L the Q-vector subspace of C of logarithms of
algebraic numbers : it consists of the complex numbers λ for
which eλ is algebraic (say λ = logα).

Further denote by L̃ the Q-vector space spanned by 1 and L :
hence L̃ is the set of linear combinations with algebraic
coefficients of logarithms of algebraic numbers :

L̃ = {Λ = β0 + β1λ1 + · · ·+ βnλn ; n ≥ 0, βi ∈ Q, λi ∈ L}.

Notice that L̃ ⊃ Q ∪ L.



The field Q, the Q–space L and the Q–space L̃

We denote by Q the field of algebraic numbers.

Denote by L the Q-vector subspace of C of logarithms of
algebraic numbers : it consists of the complex numbers λ for
which eλ is algebraic (say λ = logα).

Further denote by L̃ the Q-vector space spanned by 1 and L :
hence L̃ is the set of linear combinations with algebraic
coefficients of logarithms of algebraic numbers :

L̃ = {Λ = β0 + β1λ1 + · · ·+ βnλn ; n ≥ 0, βi ∈ Q, λi ∈ L}.

Notice that L̃ ⊃ Q ∪ L.



The field Q, the Q–space L and the Q–space L̃

We denote by Q the field of algebraic numbers.

Denote by L the Q-vector subspace of C of logarithms of
algebraic numbers : it consists of the complex numbers λ for
which eλ is algebraic (say λ = logα).

Further denote by L̃ the Q-vector space spanned by 1 and L :
hence L̃ is the set of linear combinations with algebraic
coefficients of logarithms of algebraic numbers :

L̃ = {Λ = β0 + β1λ1 + · · ·+ βnλn ; n ≥ 0, βi ∈ Q, λi ∈ L}.

Notice that L̃ ⊃ Q ∪ L.



The field Q, the Q–space L and the Q–space L̃

We denote by Q the field of algebraic numbers.

Denote by L the Q-vector subspace of C of logarithms of
algebraic numbers : it consists of the complex numbers λ for
which eλ is algebraic (say λ = logα).

Further denote by L̃ the Q-vector space spanned by 1 and L :
hence L̃ is the set of linear combinations with algebraic
coefficients of logarithms of algebraic numbers :

L̃ = {Λ = β0 + β1λ1 + · · ·+ βnλn ; n ≥ 0, βi ∈ Q, λi ∈ L}.

Notice that L̃ ⊃ Q ∪ L.



The Strong Six Exponentials Theorem

Theorem (D.Roy, 1992). If x1, x2 are Q–linearly independent
complex numbers and y1, y2, y3 are Q–linearly independent
complex numbers, then one at least of the six numbers

x1y1, x1y2, x1y3, x2y1, x2y2, x2y3

is not in L̃.



The Strong Four Exponentials Conjecture

Conjecture. If x1, x2 are Q–linearly independent complex
numbers and y1, y2 are Q–linearly independent complex
numbers, then one at least of the four numbers

x1y1, x1y2, x2y1, x2y2

is not in L̃.



Lower bound for the rank of matrices

I Rank of matrices. An alternative form of the strong Six
Exponentials Theorem (resp. the strong four exponentials
Conjecture) is the fact that a 2× 3 (resp. 2× 2) matrix

with entries in L̃(
Λ11 Λ12 Λ13

Λ21 Λ22 Λ23

)
(resp.

(
Λ11 Λ12

Λ21 Λ22

)
),

the rows of which are linearly independent over Q and the
columns of which are also linearly independent over Q,
has maximal rank 2.



The strong Six Exponentials Theorem

References :

D. Roy – � Matrices whose coefficients are linear forms
in logarithms �, J. Number Theory 41 (1992), no. 1,
p. 22–47.

M. Waldschmidt – Diophantine approximation on
linear algebraic groups, Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical
Sciences], vol. 326, Springer-Verlag, Berlin, 2000.



Rank of matrices with entries in L
The six exponentials Theorem has been generalized in 1980 to
lower bounds for the rank of matrices of any size.

Under suitable assumptions, the rank r of a d× ` matrix with
entries in L (logarithms of algebraic numbers) satisfies

r ≥ d`

d+ `
,

which is half of what is expected.

Hence, when d = `,

r ≥ d

2
·

p– adic analog : Leopoldt’s Conjecture, `–adic representations
(cf lecture by C. Khare).
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Rank of matrices with entries in L̃

In 1992, D. Roy extended this result to matrices with entries L̃
(linear combinations of 1 and logarithms of algebraic
numbers).

More precisely, D. Roy defines the structural rank rstr(M) of a

matrix M with entries in L̃ and proves that the rank r of M
satisfies :

r ≥ 1

2
rstr(M).
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Schanuel’s Conjecture

Let x1, . . . , xn be Q-linearly independent complex numbers.
Then at least n of the 2n numbers x1, . . . , xn, e

x1 , . . . , exn are
algebraically independent.

In other terms, the conclusion is

tr degQQ
(
x1, . . . , xn, e

x1 , . . . , exn
)
≥ n.

Remark : For almost all tuples (with respect to the Lebesgue
measure) the transcendence degree is 2n.
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Dale Brownawell and Stephen Schanuel



Origin of Schanuel’s Conjecture

Course given by Serge Lang
(1927–2005) at Columbia in
the 60’s

S. Lang – Introduction to transcendental numbers,
Addison-Wesley 1966.



Easy consequence of Schanuel’s Conjecture

According to Schanuel’s Conjecture, the following numbers are
algebraically independent :

e+ π, eπ, πe, ee, ee
2

, . . . , ee
e

, . . . , ππ, ππ
2

, . . . ππ
π

. . .

log π, log(log 2), π log 2, (log 2)(log 3), 2log 2, (log 2)log 3 . . .

Proof : Use Schanuel’s Conjecture several times.
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Further consequences of Schanuel’s Conjecture

Ram Murty Kumar Murty N. Saradha

Transcendental values of class group L–functions, of Gamma
values, of log Gamma values, . . .
Joint works of R. Murty with S. Gun and P. Rath (2008,
2009).



Ubiquity of Schanuel’s Conjecture

Other contexts : p–adic numbers, Leopoldt’s Conjecture on
the p–adic rank of the units of an algebraic number field
Non-vanishing of Regulators
Non–degenerescence of heights
Conjecture of B. Mazur on rational points
Diophantine approximation on tori

Dipendra Prasad Gopal Prasad



Schanuel’s Conjecture for n = 1

For n = 1, Schanuel’s Conjecture is the Hermite–Lindemann
Theorem :

If x is a non–zero complex numbers, then one at
least of the 2 numbers x, ex is transcendental.

Equivalently, if x is a non–zero algebraic number, then ex is a
transcendental number.

Another equivalent statement is that if α is a non–zero
algebraic number and logα any non–zero logarithm of α, then
logα is a transcendental number.

Consequence : transcendence of numbers like

e, π, log 2, e
√
2.
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Charles Hermite et Ferdinand Lindemann

(1822 – 1901)

Hermite (1873) :
Transcendance de e
e = 2, 718 281 . . .

(1852 – 1939)

Lindemann (1882) :
Transcendance de π
π = 3, 141 592 . . .



Schanuel’s Conjecture for n = 2

For n = 2 Schanuel’s Conjecture is not yet known :

? If x1, x2 are Q–linearly independent complex
numbers, then among the 4 numbers x1, x2, ex1 , ex2 ,
at least 2 are algebraically independent.

A few consequences :
With x1 = 1, x2 = iπ : algebraic independence of e and π.
With x1 = 1, x2 = e : algebraic independence of e and ee.
With x1 = log 2, x2 = (log 2)2 : algebraic independence of
log 2 and 2log 2.
With x1 = log 2, x2 = log 3 : algebraic independence of log 2
and log 3.
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Lindemann Weierstraß

Lindemann–Weierstraß Theorem = case where x1, . . . , xn are
algebraic.

Let β1, . . . , βn be algebraic numbers which are linearly
independent over Q. Then the numbers eβ1 , . . . , eβn are
algebraically independent over Q.



Algebraic independence of logarithms of algebraic

numbers

It is not known that there exist two logarithms of algebraic
numbers which are algebraically independent.

Even the non–existence of non–trivial quadratic relations
among logarithms of algebraic numbers is not yet established.

According to the four exponentials Conjecture, any quadratic
relation (logα1)(logα4) = (logα2)(logα3) is trivial : either
logα1 and logα2 are linearly dependent, or else logα1 and
logα3 are linearly dependent.



Algebraic independence of logarithms of algebraic

numbers

It is not known that there exist two logarithms of algebraic
numbers which are algebraically independent.

Even the non–existence of non–trivial quadratic relations
among logarithms of algebraic numbers is not yet established.

According to the four exponentials Conjecture, any quadratic
relation (logα1)(logα4) = (logα2)(logα3) is trivial : either
logα1 and logα2 are linearly dependent, or else logα1 and
logα3 are linearly dependent.



Algebraic independence of logarithms of algebraic

numbers

It is not known that there exist two logarithms of algebraic
numbers which are algebraically independent.

Even the non–existence of non–trivial quadratic relations
among logarithms of algebraic numbers is not yet established.

According to the four exponentials Conjecture, any quadratic
relation (logα1)(logα4) = (logα2)(logα3) is trivial : either
logα1 and logα2 are linearly dependent, or else logα1 and
logα3 are linearly dependent.



Algebraic independence of logarithms of algebraic

numbers

One of the main problems in transcendental number theory is
to prove that Q –linearly independent logarithms of algebraic
numbers are algebraically independent. Such a result would
solve the question of the rank of matrices having entries in the
space of logarithms of algebraic numbers.

Baker’s results provide a satisfactory answer for the linear
independence of such numbers over the field of algebraic
numbers. But he says nothing about algebraic independence.



Algebraic independence of logarithms of algebraic

numbers

One of the main problems in transcendental number theory is
to prove that Q –linearly independent logarithms of algebraic
numbers are algebraically independent. Such a result would
solve the question of the rank of matrices having entries in the
space of logarithms of algebraic numbers.

Baker’s results provide a satisfactory answer for the linear
independence of such numbers over the field of algebraic
numbers. But he says nothing about algebraic independence.



Roy’s Theorem (1999)

The conjecture on algebraic
independence of logarithms is
equivalent to the question of
the rank of matrices with
entries logarithms of algebraic
numbers.



A result of Damien Roy

Let k be a field and P ∈ k[X1, . . . , Xn] a polynomial in n
variables. Then there exists a square matrix M , whose entries
are linear polynomials in 1, X1, . . . , Xn, such that P is the
determinant of M .



Towards Schanuel’s Conjecture

Ch. Hermite, F. Lindemann, C.L. Siegel, A.O. Gel’fond,
Th. Schneider, A. Baker, S. Lang, W.D. Brownawell,
D.W. Masser, D. Bertrand, G.V. Chudnovsky, P. Philippon,
G. Wüstholz, Yu.V. Nesterenko, D. Roy.



Damien Roy

Strategy suggested by D. Roy
in 1999, Journées
Arithmétiques, Roma :

Conjecture equivalent to
Schanuel’s Conjecture.



Transcendence of p–adic numbers – open

problems

The p–adic analog of Lindemann–Weierstrass’s Theorem on
independence of the exponentials of algebraic numbers is not
known.

p–adic analog of Dirichlet’s unit Theorem : p–adic rank of the
units of an algebraic number field, Leopoldt’s Conjecture,
p–adic regulator.
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Leopoldt’s Conjecture

Leopoldt’s Conjecture (1962)

rank
(
logp σi(εj)

)
= r

r = r1 + r2 − 1

Heinrich-Wolfgang Leopoldt
(August 22, 1927 – July 28,
2011)



Preda Mihăilescu

arXiv:0905.1274

Date : Fri, 8 May 2009
14 :52 :57 GMT (16kb)

Title : On Leopoldt’s
conjecture and some
consequences

Author : Preda Mihăilescu

arXiv:0905.1274


http ://arxiv.org/abs/0905.1274

The conjecture of Leopoldt states that the p - adic regulator
of a number field does not vanish. It was proved for the
abelian case in 1967 by Brumer, using Baker theory. If the
Leopoldt conjecture is false for a galois field K, there is a
phantom Zp - extension of K∞ arising. We show that this is
strictly correlated to some infinite Hilbert class fields over K∞,
which are generated at intermediate levels by roots from units
from the base fields. It turns out that the extensions of this
type have bounded degree. This implies the Leopoldt
conjecture for arbitrary finite number fields.

Preda Mihăilescu
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Replaced with revised version

Date : Sat, 27 Jun 2009 17 :57 :24 GMT (33kb)

Title : The T and T ∗ components of Λ - modules and
Leopoldt’s conjecture

Author : Preda Mihăilescu

Comments : Modified second version. Added many details of
proofs. The final argument is modified and the proof now
extends also to the conjecture of Gross.
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Replaced with revised version

Date : Tue, 15 Sep 2009 08 :01 :02 GMT (69kb)

Title : The T and T ∗ components of Λ - modules and
Leopoldt’s conjecture

Author : Preda Mihăilescu

Comments : Modified third version. Largely extended the build
up and proofs and added an Appendix for the technical details.
Contains now the Kummer theory of class field radicals needed
for the proofs of the Leopoldt and Gross-Kuz’min Conjectures.
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Cite as : arXiv :0905.1274v4

Date : Sat, 27 Jun 2009 17 :57 :24 GMT (33kb)
(Submitted on 8 May 2009 (v1), last revised 20 Sep 2010 (this
version, v4))

Title : The T and T ∗ components of Λ - modules and
Leopoldt’s conjecture

Author : Preda Mihăilescu

Comments : In the fourth version there is a modification of
Proposition 5 which supports the final argument of proof of
Leopoldt’s conjecture. Please note also the new series
“Seminar Notes on Open Questions in Iwasawa Theory”
(snoqit).



http ://arxiv.org/abs/0909.2738
Date : Tue, 15 Sep 2009 08 :09 :10 GMT (11kb)
Title : Applications of Baker Theory to the Conjecture of
Leopoldt
Authors : Preda Mihăilescu
Comments : A proof variant for the Leopoldt conjecture, using
Diophantine approximation. The final step of the proof uses class
field theory and for this we draw back on some results from the
third version of arXiv :0905.1274

In this paper we use Baker theory for giving an alternative proof of

Leopoldt’s Conjecture for totally real extensions K. This approach

uses a formulation of the Conjecture for relative extensions which

can be proved by Diophantine approximation and reduces the

problem to the fact that the module of classes containing products

of p - units, is finite. The proof of this fact is elementary, but

requires class field theory. The methods used here are a sharpening

of the ones presented at the SANT meeting in Göttingen, 2008

and exposed in [M1] and [M2]



http ://arxiv.org/abs/1105.5989

Date : Submitted on 30 May 2011

Title : SNOQIT I : Growth of Λ–modules and Kummer theory

Authors : Preda Mihăilescu

Comments : The paper contains at the end a proof of the

conjecture of Gross - Kuz’min, for CM extensions of Q. The main

topic of the paper is the investigation of the growth of order and

ranks at finite levels of some Lambda modules (p-parts of ideal

class groups).

SNOQIT : Seminar Notes on Open Questions in Iwasawa
Theory



Problem of K. Mahler et Yu Manin

Transcendence of J(q) for q = e2iπτ algebraic .

Kurt Mahler Yuri Manin



Le théorème stéphanois

A special case of a conjecture
by Ramachandra generalizing
the four exponentials
conjecture to elliptic
functions : problem of Mahler
and Manin, solved by
K. Barré–Siriex, G. Diaz,
F. Gramain and G. Philibert
(1996).

François Gramain



Transcendence and modular forms

Yu.V.Nesterenko (1996)
Algebraic independence of
Γ(1/4), π and eπ.
Also : Algebraic
independence of
Γ(1/3), π and eπ

√
3.

Corollary : The numbers π = 3.141 592 653 5 . . . and
eπ = 23.140 692 632 7 . . . are algebraically independent.

Transcendence of values of Dirichlet’s L–functions :
Sanoli Gun, Ram Murty and Purusottam Rath (2009).



Mazur’s problem

Density of rational points on
varieties
Special case of algebraic
groups : generalization of the
four exponentials conjecture.

Periods of K3 surfaces (2003
with H. Shiga)

Barry Mazur



References on density questions related to the
four exponentials Conjecture and the six

exponentials Theorem

C. Bertolin – � Périodes de 1-motifs et
transcendance �, J. Number Theory 97 (2002), no. 2,
p. 204–221.

J.-L. Colliot-Thélène, A. N. Skorobogatov &
P. Swinnerton-Dyer – � Double fibres and double
covers : paucity of rational points �, Acta Arith. 79
(1997), no. 2, p. 113–135.

H. Kisilevsky – � Ranks of elliptic curves in cubic
extensions �, manuscript, 2007.



B. Mazur – � The topology of rational points �,
Experiment. Math. 1 (1992), no. 1, p. 35–45.

— , � Questions of decidability and undecidability in
number theory �, J. Symbolic Logic 59 (1994), no. 2,
p. 353–371.

— , � Speculations about the topology of rational points :
an update �, Astérisque (1995), no. 228, p. 4, 165–182,
Columbia University Number Theory Seminar (New York,
1992).

— , � Open problems regarding rational points on curves
and varieties �, in Galois representations in arithmetic
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Cambridge, 1998, p. 239–265.



D. Prasad – � An analogue of a conjecture of Mazur : a
question in Diophantine approximation on tori �, in
Contributions to automorphic forms, geometry, and
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G. Prasad & A. S. Rapinchuk – � Zariski-dense
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D. Roy – � Simultaneous approximation in number
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un groupe algébrique �, Experiment. Math. 3 (1994),
no. 4, p. 329–352.

— , � On Ramachandra’s contributions to transcendental
number theory �, Ramanujan Mathematical Society
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Density of an additive subgroup of R

Kronecker : The additive group

Z + Zθ =
{
a+ bθ ; (a, b) ∈ Z2

}
is dense in R if and only if θ is irrational (means : 1 and θ are
Q linearly independent).

Example : Z + Ze and Z + Zπ are dense in R.

Also Z + Zeπ + Z(e+ π) is dense in R. Hence there exists a
subgroup of rank 2 which is also dense. But no one knows how
to produce one explicitly.
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Density of an additive subgroup of Rn

Kronecker : Let θ1, . . . , θn be real numbers. Then the subgroup

Zn + Z(θ1, . . . , θn)

of Rn is dense if and only if the numbers 1, θ1, . . . , θn are
linearly independent over Q.

Footnote : According to his own taste, the reader will find a
reference either in
N. Bourbaki, Eléments de Mathématique, Topologie Générale,
Herman 1974, Chap. VII, § 1, N◦1, Prop. 2 ;
or else in
G.H. Hardy and A.M. Wright, An Introduction to the Theory
of Numbers, Oxford Sci. Publ., 1938, Chap. XXIII.
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Additive subgroups of Rn

Zn + Z(θ1, . . . , θn) ⊂ Rn

is the set of tuples

(a1 + a0θ1, . . . , an + a0θ
n)

with (a0, a1, . . . , an) ∈ Zn+1.



Multiplicative groups of (R×+)
n

Multiplicative analog : for positive real numbers αij,
(1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1) consider the set of tuples(

αa1i,1 · · ·α
an+1

i,n+1

)
1≤i≤n ∈ (R×+)n

with (a1, a2, . . . , an+1) ∈ Zn+1.

Additive vs multiplicative groups :
Take exponential or logarithm and change basis.
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Density of a multiplicative subgroup of R×+

The multiplicative subgroup of rank 1 of R×+ generated by 2 :{
. . . ,

1

16
,

1

8
,

1

4
,

1

2
, 1, 2, 4, 8, 16, . . .

}
is not dense in R×+,

but the subgroup of rank 2 generated by 2, 3, namely{
2a3b ; (a, b) ∈ Z2

}
is dense in R×+.

Explanation : the number (log 2)/(log 3) is irrational.



Density of a multiplicative subgroup of R×+

The multiplicative subgroup of rank 1 of R×+ generated by 2 :{
. . . ,

1

16
,

1

8
,

1

4
,

1

2
, 1, 2, 4, 8, 16, . . .

}
is not dense in R×+,

but the subgroup of rank 2 generated by 2, 3, namely{
2a3b ; (a, b) ∈ Z2

}
is dense in R×+.

Explanation : the number (log 2)/(log 3) is irrational.



Density of a multiplicative subgroup of (R×+)
2

Let αi and βi be positive real numbers. The multiplicative
subgroup generated by (α1, β1), (α2, β2), (α3, β3) in (R×+)2,
namely the set of (

αa11 α
a2
2 α

a3
3 , β

a1
1 β

a2
2 β

a3
3

)
for (a1, a2, a3) ∈ Z2, is dense in (R×+)2 if and only if, for any
(s1, s2, s3) ∈ Z3 \ {0}, the 3× 3 matrixlogα1 logα2 logα3

log β1 log β2 log β3
s1 s2 s3


has maximal rank 3.



A question from transcendental number theory

Equivalent :
the matrix(

s3 logα1 − s1 logα3 s3 logα2 − s2 logα3

s3 log β1 − s1 log β3 s3 log β2 − s2 log β3

)
has maximal rank 2.

A fundamental problem is to study the rank of matrices with
entries which are logarithms of algebraic numbers.
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Example of an open question

For α = a+ b
√

2 ∈ Q(
√

2), write α = a− b
√

2.

Define

α1 := 2
√

2− 1, α2 := 3
√

2− 1, α2 := 4
√

2− 1,

and let Γ be the set of elements in (R×)2 of the form(
αa11 α

a2
2 α

a3
3 , α

a1
1 α

a2
2 α

a3
3

)
with (a1, a2, a3) ∈ Z3.

Question : Is Γ dense in (R×)2 ?

This is a special case of the four exponentials Conjecture !
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