
Yogyakarta, CIMPA School UGM, February 27, 2020

Linear recurrence sequences,

Michel Waldschmidt

Sorbonne University, Paris
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Abstract

Linear recurrence sequences are ubiquitous. They occur in
biology, economics, computer science (analysis of algorithms),
digital signal processing and number theory. We give a survey
of this subject, together with connections with linear
combinations of powers, with powers of matrices and with
linear differential equations.
We first work over a field of any characteristic. Next we
consider linear recurrence sequences over finite fields.



Applications of linear recurrence sequences

Combinatorics

Elimination

Symmetric functions

Hypergeometric series

Language

Communication, shift registers

Finite difference equations

Logic

Approximation

Pseudo–random sequences



Applications of linear recurrence sequences

• Biology (Integrodifference equations, spatial ecology).

• Computer science (analysis of algorithms).

• Digital signal processing (infinite impulse response (IIR)
digital filters).

• Economics (time series analysis).

https://en.wikipedia.org/wiki/Recurrence_relation

https://en.wikipedia.org/wiki/Recurrence_relation


Linear recurrence sequences : definitions

A linear recurrence sequence is a sequence of numbers
u = (u0, u1, u2, . . . ) for which there exist a positive integer d
together with numbers a1, . . . , ad with ad 6= 0 such that, for
n ≥ 0,

(?) un+d = a1un+d−1 + · · ·+ adun.

Here, a number means an element of a field K.

Given a = (a1, . . . , ad) ∈ Kd, the set Ea of linear recurrence
sequences u = (un)n≥0 satisfying (?) is a K–vector subspace
of dimension d of the space KN of all sequences.

A basis of this space is obtained by taking for the initial d
values (u0, u1, . . . , ud−1) the elements of the canonical basis of
Kd.
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Generating series, characteristic polynomial
The generating series is the formal series∑

n≥0

unX
n.

Let γ ∈ K× ; the sequence (γn)n≥0 satisfies the linear
recurrence

(?) un+d = a1un+d−1 + · · ·+ adun.

if and only if γd = a1γ
d−1 + · · ·+ ad.

The characteristic (or companion) polynomial of the linear
recurrence is

f(X) = Xd − a1Xd−1 − · · · − ad.

Recall that 0 is not a root of this polynomial (ad 6= 0).
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Linear recurrence sequences : examples
• Constant sequence : un = u0.
Linear recurrence sequence of order 1 : un+1 = un.
Characteristic polynomial : f(X) = X − 1.
Generating series : ∑

n≥0

u0X
n =

u0
1−X

·

• Geometric progression : un = u0γ
n.

Linear recurrence sequence of order 1 : un = γun−1.
Characteristic polynomial f(X) = X − γ.
Generating series : ∑

n≥0

u0γ
nXn =

u0
1− γX

·
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Linear recurrence sequences : examples
• un = n. This is a linear recurrence sequence of order 2 :

n+ 2 = 2(n+ 1)− n.

Characteristic polynomial

f(X) = X2 − 2X + 1 = (X − 1)2.

Generating series ∑
n≥0

nXn =
1

1− 2X +X2
·

Power of matrices :(
0 1
−1 2

)n

=

(
−n+ 1 n
−n n+ 1

)
.



Linear recurrence sequences : examples

• un = p(n), where p is a polynomial of degree d. This is a
linear recurrence sequence of order d+ 1.

Proof. The sequences

(p(n))n≥0, (p(n+ 1))n≥0, · · · , (p(n+ k))n≥0

are K–linearly independent in KN for k = d− 1 and linearly
dependent for k = d.

A basis of the space of polynomials of degree d is given by the
d+ 1 polynomials

p(X), p(X + 1), . . . , p(X + d).

Question : which is the characteristic polynomial ?
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Linear sequences which are ultimately recurrent

The sequence
(1, 0, 0, . . . )

is not a linear recurrence sequence.

The condition
un+1 = un

is satisfied only for n ≥ 1.

The relation
un+2 = un+1 + 0un

with d = 2, ad = 0 does not fulfil the requirement ad 6= 0.



Linear sequences which are ultimately recurrent

The sequence
(1, 0, 0, . . . )

is not a linear recurrence sequence.

The condition
un+1 = un

is satisfied only for n ≥ 1.

The relation
un+2 = un+1 + 0un

with d = 2, ad = 0 does not fulfil the requirement ad 6= 0.



Linear sequences which are ultimately recurrent

The sequence
(1, 0, 0, . . . )

is not a linear recurrence sequence.

The condition
un+1 = un

is satisfied only for n ≥ 1.

The relation
un+2 = un+1 + 0un

with d = 2, ad = 0 does not fulfil the requirement ad 6= 0.



Order of a linear recurrence sequence

If u = (un)n≥0 satisfies the linear recurrence, the characteristic
polynomial of which is f , then, for any monic polynomial
g ∈ K[X] with g(0) 6= 0, this sequence u also satisfies the
linear recurrence, the characteristic polynomial of which is fg.
Example : for g(X) = X − γ with γ 6= 0, from

(?) un+d−a1un+d−1−· · ·−adun = 0

we deduce

un+d+1 − a1un+d − · · · − adun+1

− γ(un+d − a1un+d−1 − · · · − adun) = 0.

The order of a linear recurrence sequence is the smallest d
such that (?) holds for all n ≥ 0.
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Generating series of a linear recurrence sequence
Let u = (un)n≥0 be a linear recurrence sequence

(?) un+d = a1un+d−1+· · ·+adun for n ≥ 0

with characteristic polynomial

f(X) = Xd − a1Xd−1 − · · · − ad.

Denote by f− the reciprocal polynomial of f :

f−(X) = Xdf(X−1) = 1− a1X − · · · − adXd.

Then
∞∑
n=0

unX
n =

r(X)

f−(X)
,

where r is a polynomial of degree less than d determined by
the initial values of u.



Generating series of a linear recurrence sequence

Assume

un+d = a1un+d−1 + · · ·+ adun for n ≥ 0.

Then
∞∑
n=0

unX
n =

r(X)

f−(X)
·

Proof. Comparing the coefficients of Xn for n ≥ d shows that

f−(X)
∞∑
n=0

unX
n

is a polynomial of degree less than d.
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Taylor coefficients of rational functions

Conversely, the sequence of coefficients in the Taylor expansion
of any rational fraction a(X)/b(X) with deg a < deg b and
b(0) 6= 0 satisfies the recurrence relation with characteristic
polynomial f ∈ K[X] given by f(X) = b−(X).

Therefore a sequence u = (un)n≥0 satisfies the recurrence
relation (?) with characteristic polynomial f ∈ K[X] if and
only if

∞∑
n=0

unX
n =

r(X)

f−(X)
,

where r is a polynomial of degree less than d determined by
the initial values of u.
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Linear differential equations
Given a sequence (un)n≥0 of numbers, its exponential
generating power series is

ψ(z) =
∑
n≥0

un
zn

n!
·

For k ≥ 0, the k-the derivative ψ(k) of ψ satisfies

ψ(k)(z) =
∑
n≥0

un+k
zn

n!
·

Hence the sequence satisfies the linear recurrence relation

(?) un+d = a1un+d−1+· · ·+adun for n ≥ 0

if and only if ψ is a solution of the homogeneous linear
differential equation

y(d) = a1y
(d−1) + · · ·+ ad−1y

′ + ady.
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Matrix notation for a linear recurrence sequence

The linear recurrence sequence

(?) un+d = a1un+d−1+· · ·+adun for n ≥ 0

can be written
un+1

un+2
...

un+d

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
ad ad−1 ad−2 · · · a1




un
un+1

...
un+d−1

 .



Matrix notation for a linear recurrence sequence

Un+1 = AUn

with

Un =


un
un+1

...
un+d−1

 , A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
ad ad−1 ad−2 · · · a1

 .

The determinant of IdX − A (the characteristic polynomial of
A) is nothing but

f(X) = Xd − a1Xd−1 − · · · − ad,
the characteristic polynomial of the linear recurrence sequence.
By induction

Un = AnU0.
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Powers of matrices

Let A = (aij)1≤i,j≤d ∈ GLd×d(K) be a d× d matrix with
coefficients in K and nonzero determinant. For n ≥ 0, define

An =
(
a
(n)
ij

)
1≤i,j≤d.

Then each of the d2 sequences
(
a
(n)
ij

)
n≥0, (1 ≤ i, j ≤ d) is a

linear recurrence sequence. The roots of the characteristic
polynomial of these linear recurrences are the eigenvalues of A.

In particular the sequence
(
Tr(An)

)
n≥0 satisfies the linear

recurrence, the characteristic polynomial of which is the
characteristic polynomial of the matrix A.
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Conversely :

Given a linear recurrence sequence u ∈ KN, there exist an
integer d ≥ 1 and a matrix A ∈ GLd(K) such that, for each
n ≥ 0,

un = a
(n)
11 .

The characteristic polynomial of A is the characteristic
polynomial of the linear recurrence sequence.

Everest G., van der Poorten A., Shparlinski I., Ward T. –
Recurrence sequences, Mathematical Surveys and Monographs (AMS,
2003), volume 104.
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Linear recurrence sequences : simple roots

A basis of Ea over K is obtained by attributing to the initial
values u0, . . . , ud−1 the values given by the canonical basis of
Kd.
Given γ in K×, a necessary and sufficient condition for a
sequence (γn)n≥0 to satisfy (?) is that γ is a root of the
characteristic polynomial

f(X) = Xd − a1Xd−1 − · · · − ad.

If this polynomial has d distinct roots γ1, . . . , γd in K,

f(X) = (X − γ1) · · · (X − γd), γi 6= γj,

then a basis of Ea over K is given by the d sequences
(γi

n)n≥0, i = 1, . . . , d.
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Linear recurrence sequences : double roots

The characteristic polynomial of the linear recurrence
un = 2γun−1 − γ2un−2 is X2 − 2γX + γ2 = (X − γ)2 with a
double root γ.

The sequence (nγn)n≥0 satisfies

nγn = 2γ(n− 1)nγn−1 − γ2(n− 2)γn−2.

A basis of Ea for a1 = 2γ, a2 = −γ2 is given by the two
sequences (γn)n≥0, (nγn)n≥0.

Given γ ∈ K×, a necessary and sufficient condition for the
sequence nγn to satisfy the linear recurrence relation (?) is
that γ is a root of multiplicity ≥ 2 of f(X).
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Linear recurrence sequences : multiple roots

In general, when the characteristic polynomial splits as

Xd − a1Xd−1 − · · · − ad =
∏̀
i=1

(X − γi)ti ,

a basis of Ea is given by the d sequences

(nkγi
n)n≥0, 0 ≤ k ≤ ti − 1, 1 ≤ i ≤ `.



Polynomial combinations of powers

The sum and the product of any two linear recurrence
sequences are linear recurrence sequences.

The set ∪aEa of all linear recurrence sequences with
coefficients in K is a sub–K–algebra of KN.

Given polynomials p1, . . . , p` in K[X] and elements γ1, . . . , γ`
in K×, the sequence(

p1(n)γ1
n + · · ·+ p`(n)γn`

)
n≥0

is a linear recurrence sequence.

Conversely, any linear recurrence sequence is of this form.
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Consequence

• When p is a polynomial of degree < d, the characteristic
polynomial of the sequence un = p(n) divides (X − 1)d.

Proof.

Set

A =



1 1 0 · · · 0 0
0 1 1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 1
0 0 0 · · · 0 1


= Id +N

where Id is the d× d identity matrix and N is nilpotent :
Nd = 0.



Consequence

The characteristic polynomial of A is (X − 1)d. Hence for

1 ≤ i, j ≤ d, the sequence un of the coefficient a
(n)
ij of An

satisfies the linear recurrence relation

(?) un+d = a1un+d−1 + · · ·+adun,

that is

un+d = dun+d−1−
(
d

2

)
un+d−2+· · ·+(−1)d−2dun+1+(−1)d−1un.

The characteristic polynomial of this recurrence relation is
(X − 1)d.



Characteristic polynomial of the recurrence

sequence p(n).
Since, for 1 ≤ i, j ≤ d and n ≥ 0, we have

a
(n)
ij =

(
n

j − i

)
(where we agree that

(
n
k

)
= 0 for k < 0 and for k > n, while(

d
0

)
=
(
d
d

)
= 1), we deduce that each of the d polynomials

1,
X(X + 1) · · · (X + k − 1)

k!
k = 1, 2, . . . , d− 1

namely

1, X,
X(X + 1)

2
, . . . ,

X(X + 1) · · · (X + d− 2)

(d− 1)!
,

satisfies the recurrence (?). These d polynomials constitute a
basis of the space of polynomials of degree < d.



Sum of polynomial combinations of powers

If u1 and u2 are two linear recurrence sequences of
characteristic polynomials f 1 and f 2 respectively, then
u1 + u2 satisfies the linear recurrence, the characteristic
polynomial of which is

f 1f 2

gcd(f 1, f 2)
·



Product of polynomial combinations of powers

If the characteristic polynomials of the two linear recurrence
sequences u1 and u2 are respectively

f 1(T ) =
∏̀
j=1

(T − γj)tj and f 2(T ) =
`′∏

k=1

(T − γ′k)t
′
k ,

then u1u2 satisfies the linear recurrence, the characteristic
polynomial of which is

∏̀
j=1

`′∏
k=1

(T − γjγ′k)tj+t′k−1.



Linear recurrence sequences and

Brahmagupta–Pell–Fermat Equation

Let d be a positive integer, not a square. The solutions
(x, y) ∈ Z× Z of the Brahmagupta–Pell–Fermat Equation

x2 − dy2 = ±1

form a sequence (xn, yn)n∈Z defined by

xn +
√
dyn = (x1 +

√
dy1)

n.

From
2xn = (x1 +

√
dy1)

n + (x1 −
√
dy1)

n

we deduce that (xn)n≥0 is a linear recurrence sequence. Same
for yn, and also for n ≤ 0.
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Doubly infinite linear recurrence sequences

A sequence (un)n∈Z indexed by Z is a linear recurrence
sequence if it satisfies

(?) un+d = a1un+d−1 + · · ·+ adun.

for all n ∈ Z.

Recall ad 6= 0.

Such a sequence is determined by d consecutive values.
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Doubly infinite linear recurrence sequences

A sequence (un)n∈Z indexed by Z is a linear recurrence
sequence if it satisfies

(?) un+d = a1un+d−1 + · · ·+ adun.

for all n ∈ Z.

Recall ad 6= 0.

Such a sequence is determined by d consecutive values.



Discrete version of linear differential equations

A sequence u ∈ KN can be viewed as a linear map N −→ K.
Define the discrete derivative D by

Du : N −→ K
n 7−→ un+1 − un.

A sequence u ∈ KN is a linear recurrence sequence if and only
if there exists Q ∈ K[T ] with Q(1) 6= 1 such that

Q(D)u = 0.

Linear recurrence sequences are a discrete version of linear
differential equations with constant coefficients.

The condition Q(1) 6= 0 reflects ad 6= 0 – otherwise one gets ultimately
recurrent sequences.



Conclusion
The same mathematical object occurs in a different guise :

• Linear recurrence sequences

un+d = a1un+d−1 + · · ·+ adun.

• Linear combinations with polynomial coefficients of powers

p1(n)γ1
n + · · ·+ p`(n)γn` .

• Taylor coefficients of rational functions.

• Coefficients of power series which are solutions of
homogeneous linear differential equations.

• Sequence of coefficients of powers of a matrix.



Reference
Everest, Graham ; van der Poorten, Alf ;
Shparlinski, Igor ; Ward, Tom – Recurrence
sequences, Mathematical Surveys and Monographs (AMS,
2003), volume 104. 1290 references.

Graham Everest Alf van der Poorten

Igor Shparlinski Tom Ward



Linear recurrence sequences over finite fields

Reference: Chapter 8 : Linear recurring sequences of

Lidl, Rudolf ; Niederreiter, Harald.
Finite fields. Paperback reprint of the hardback 2nd edition
1996. (English)
Encyclopedia of Mathematics and Its Applications 20.
Cambridge University Press (ISBN 978-0-521-06567-2/pbk).
xiv, 755 p. (2008).

Harald Niederreiter



Linear recurring sequences

Given a, a0, . . . , ak−1 in a finite field Fq, consider a k–th order
linear recurrence relation : for n = 0, 1, 2, . . . ,

un+k = ak−1un+k−1 + ak−2un+k−2 + · · ·+ a1un+1 + a0un + a

Homogeneous : a = 0.

Initial values : u0, u1, . . . , uk−1.

State vector : un = (un, un+1, . . . , un+k−1).

Initial state vector : u0 = (u0, u1, . . . , uk−1).
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Linear recurring sequences
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Feedback shift register
Electronic switching circuit : adder, constant multiplier,
constant adder, delay element (flip-flop)

un+k = ak−1un+k−1 + ak−2un+k−2 + · · ·+ a1un+1 + a0un + a



The least period of a linear recurrence sequence

Since Fq is finite, any linear recurrence sequence (un)n≥0 in Fq

is ultimately periodic : there exists r > 0 and n0 ≥ 0 such that
un = un+r for n ≥ n0. The least n0 for which this relation
holds is the preperiod.

Any period is a multiple of the least period.

A linear recurrence sequence (un)n≥0 is periodic if there exists
a period r > 0 such that un = un+r for n ≥ 0. In this case
this relation holds for the least period ; the preperiod is 0. If
a0 6= 0, then the sequence is periodic.

The least period r of a (homogeneous) linear recurrence
sequence in Fq of order k satisfies r ≤ qk − 1.
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The companion matrix

The linear recurrence sequence

un+k = ak−1un+k−1 + · · ·+ a0un for n ≥ 0

can be written
un = u0A

n

where

A =


0 0 0 · · · 0 a0
1 0 0 · · · 0 a1
0 1 0 · · · 0 a2
...

...
...

. . .
...

...
0 0 0 · · · 1 ak−1

 .



The least period

Assume a0 6= 0

The least period of the linear recurrence sequence divides the
order of the matrix A in the general linear group GLk(Fq).

The impulse response sequence is the linear recurrence
sequence with the initial state (0, 0, . . . , 0, 1).

The least period of a linear recurrence sequence divides the
least period of the corresponding impulse response sequence.
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Further examples of linear recurrence sequences

I Fibonacci

I Lucas

I Perrin

I Padovan

I Narayana

References
Linear recurrence sequences : an introduction.
http://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/LinearRecurrenceSequencesIntroduction.pdf

Linear recurrence sequences, exponential polynomials and Diophantine
approximation.
http://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/LinRecSeqDiophAppxVI.pdf

http://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/LinearRecurrenceSequencesIntroduction.pdf
http://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/LinRecSeqDiophAppxVI.pdf


Leonardo Pisano (Fibonacci)

Fibonacci sequence (F n)n≥0,

0, 1, 1, 2, 3, 5, 8, 13, 21,

34, 55, 89, 144, 233, . . .

is defined by

F 0 = 0, F 1 = 1,

F n+2 = F n+1+F n for n ≥ 0.

http://oeis.org/A000045

Leonardo Pisano (Fibonacci)
(1170–1250)

http://oeis.org/A000045


Lucas sequence http://oeis.org/000032

The Lucas sequence (Ln)n≥0 satisfies the same recurrence
relation as the Fibonacci sequence, namely

Ln+2 = Ln+1 + Ln for n ≥ 0,

only the initial values are different :

L0 = 2, L1 = 1.

The sequence of Lucas numbers starts with

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, . . .

A closed form involving the Golden ratio Φ is

Ln = Φn + (−Φ)−n,

from which it follows that for n ≥ 2, Ln is the nearest integer
to Φn.

http://oeis.org/000032


Lucas sequence http://oeis.org/000032

The Lucas sequence (Ln)n≥0 satisfies the same recurrence
relation as the Fibonacci sequence, namely

Ln+2 = Ln+1 + Ln for n ≥ 0,

only the initial values are different :

L0 = 2, L1 = 1.

The sequence of Lucas numbers starts with

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, . . .

A closed form involving the Golden ratio Φ is

Ln = Φn + (−Φ)−n,

from which it follows that for n ≥ 2, Ln is the nearest integer
to Φn.

http://oeis.org/000032


Perrin sequence http://oeis.org/A001608

The Perrin sequence (also called skiponacci sequence) is the
linear recurrence sequence (P n)n≥0 defined by

P n+3 = P n+1 + P n for n ≥ 0,

with the initial conditions

P 0 = 3, P 1 = 0, P 2 = 2.

It starts with

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, . . .

François Olivier Raoul Perrin (1841-1910) :
https://en.wikipedia.org/wiki/Perrin_number

http://oeis.org/A001608
https://en.wikipedia.org/wiki/Perrin_number
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Narayana sequence https://oeis.org/A000930

Narayana sequence is defined by the recurrence relation

Cn+3 = Cn+2 + Cn

with the initial values C0 = 2, C1 = 3, C2 = 4.

It starts with

2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, . . .

Real root of x3 − x2 − 1

3

√
29 + 3

√
93

2
+

3

√
29− 3

√
93

2
+ 1

3
= 1.465571231876768 . . .

https://oeis.org/A000930
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Padovan sequence https://oeis.org/A000931

The Padovan sequence (pn)n≥0 satisfies the same recurrence

pn+3 = pn+1 + pn

as the Perrin sequence but has different initial values :

p0 = 1, p1 = p2 = 0.

It starts with

1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, . . .

Richard Padovan
http://mathworld.wolfram.com/LinearRecurrenceEquation.html

https://oeis.org/A000931
http://mathworld.wolfram.com/LinearRecurrenceEquation.html
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