Yogyakarta, CIMPA School UGM, February 27, 2020

Linear recurrence sequences,

Michel Waldschmidt

Sorbonne University, Paris
Institut de Mathématiques de Jussieu
http://www.imj-prg.fr/~michel.waldschmidt/

Abstract

Linear recurrence sequences are ubiquitous. They occur in biology, economics, computer science (analysis of algorithms), digital signal processing and number theory. We give a survey of this subject, together with connections with linear combinations of powers, with powers of matrices and with linear differential equations.
We first work over a field of any characteristic. Next we consider linear recurrence sequences over finite fields.

Applications of linear recurrence sequences

Combinatorics
Elimination
Symmetric functions
Hypergeometric series
Language
Communication, shift registers
Finite difference equations
Logic
Approximation
Pseudo-random sequences

Applications of linear recurrence sequences

- Biology (Integrodifference equations, spatial ecology).
- Computer science (analysis of algorithms).
- Digital signal processing (infinite impulse response (IIR) digital filters).
- Economics (time series analysis).
https://en.wikipedia.org/wiki/Recurrence_relation

Linear recurrence sequences: definitions

A linear recurrence sequence is a sequence of numbers $\mathbf{u}=\left(u_{0}, u_{1}, u_{2}, \ldots\right)$ for which there exist a positive integer d together with numbers a_{1}, \ldots, a_{d} with $a_{d} \neq 0$ such that, for $n \geq 0$,
$(\star) \quad u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}$.

Here, a number means an element of a field \mathbb{K}.
Given $\underline{a}=\left(a_{1}, \ldots a_{d}\right) \in \mathbb{K}^{d}$, the set F_{d} of linear recurrence sequences $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ satisfying (\star) is a \mathbb{K}-vector subspace of dimension d of the space $\mathbb{K}^{\mathbb{N}}$ of all sequences.

A basis of this space is obtained by taking for the initial d values $\left(u_{0}, u_{1}, \ldots, u_{d-1}\right)$ the elements of the canonical basis of \mathbb{K}^{d}

Linear recurrence sequences: definitions

A linear recurrence sequence is a sequence of numbers
$\mathbf{u}=\left(u_{0}, u_{1}, u_{2}, \ldots\right)$ for which there exist a positive integer d together with numbers a_{1}, \ldots, a_{d} with $a_{d} \neq 0$ such that, for $n \geq 0$,
$(\star) \quad u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}$.

Here, a number means an element of a field \mathbb{K}.
Given $\underline{a}=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{K}^{d}$, the set $E_{\underline{a}}$ of linear recurrence
sequences $\mathrm{u}=\left(u_{n}\right)_{n \geq 0}$ satisfying (\star) is a \mathbb{K}-vector subspace
of dimension d of the space $\mathbb{K}^{\mathbb{N}}$ of all sequences.
A basis of this space is obtained by taking for the initial d values $\left(u_{0}, u_{1}, \ldots, u_{d-1}\right)$ the elements of the canonical basis of \mathbb{K}^{d}

Linear recurrence sequences: definitions

A linear recurrence sequence is a sequence of numbers
$\mathbf{u}=\left(u_{0}, u_{1}, u_{2}, \ldots\right)$ for which there exist a positive integer d together with numbers a_{1}, \ldots, a_{d} with $a_{d} \neq 0$ such that, for $n \geq 0$,
(夫) $\quad u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}$.

Here, a number means an element of a field \mathbb{K}.
Given $\underline{a}=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{K}^{d}$, the set $E_{\underline{a}}$ of linear recurrence sequences $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ satisfying (\star) is a \mathbb{K}-vector subspace of dimension d of the space $\mathbb{K}^{\mathbb{N}}$ of all sequences.

A basis of this space is obtained by taking for the initial d values $\left(u_{0}, u_{1}, \ldots, u_{d-1}\right)$ the elements of the canonical basis of

Linear recurrence sequences: definitions

A linear recurrence sequence is a sequence of numbers
$\mathbf{u}=\left(u_{0}, u_{1}, u_{2}, \ldots\right)$ for which there exist a positive integer d together with numbers a_{1}, \ldots, a_{d} with $a_{d} \neq 0$ such that, for $n \geq 0$,
(夫) $\quad u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}$.

Here, a number means an element of a field \mathbb{K}.
Given $\underline{a}=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{K}^{d}$, the set $E_{\underline{a}}$ of linear recurrence sequences $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ satisfying (\star) is a \mathbb{K}-vector subspace of dimension d of the space $\mathbb{K}^{\mathbb{N}}$ of all sequences.
A basis of this space is obtained by taking for the initial d values $\left(u_{0}, u_{1}, \ldots, u_{d-1}\right)$ the elements of the canonical basis of \mathbb{K}^{d}.

Generating series, characteristic polynomial

 The generating series is the formal series$$
\sum_{n \geq 0} u_{n} X^{n}
$$

Let $\gamma \in K^{\times}$; the sequence $\left(\gamma^{n}\right)_{n>0}$ satisfies the linear

recurrence
\square $u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}$.
if and only if $\gamma^{d}=a_{1} \gamma^{d-1}+\cdots+a_{d}$.
The characteristic (or companion) polynomial of the linear recurrence is

Generating series, characteristic polynomial

The generating series is the formal series

$$
\sum_{n \geq 0} u_{n} X^{n}
$$

Let $\gamma \in K^{\times}$; the sequence $\left(\gamma^{n}\right)_{n \geq 0}$ satisfies the linear recurrence
(\star

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}
$$

if and only if $\gamma^{d}=a_{1} \gamma^{d-1}+\cdots+a_{d}$.
The characteristic (or companion) polynomial of the linear recurrence is

Generating series, characteristic polynomial

The generating series is the formal series

$$
\sum_{n \geq 0} u_{n} X^{n}
$$

Let $\gamma \in K^{\times}$; the sequence $\left(\gamma^{n}\right)_{n \geq 0}$ satisfies the linear recurrence
(*)

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}
$$

if and only if $\gamma^{d}=a_{1} \gamma^{d-1}+\cdots+a_{d}$.
The characteristic (or companion) polynomial of the linear recurrence is

$$
f(X)=X^{d}-a_{1} X^{d-1}-\cdots-a_{d}
$$

Recall that 0 is not a root of this polynomial $\left(a_{d} \neq 0\right)$.

Linear recurrence sequences: examples

- Constant sequence : $u_{n}=u_{0}$.

Linear recurrence sequence of order $1: u_{n+1}=u_{n}$. Characteristic polynomial : $f(X)=X-1$. Generating series :

$$
\sum_{n \geq 0} u_{0} X^{n}=\frac{u_{0}}{1-X}
$$

- Geometric progression : $u_{n}=u_{0} \gamma^{n}$.

Linear recurrence sequence of order $1: u_{n}=\gamma u_{n-1}$ Characteristic polynomial $f(X)=X-\gamma$. Generating series

Linear recurrence sequences: examples

- Constant sequence : $u_{n}=u_{0}$.

Linear recurrence sequence of order $1: u_{n+1}=u_{n}$.
Characteristic polynomial : $f(X)=X-1$.
Generating series :

$$
\sum_{n \geq 0} u_{0} X^{n}=\frac{u_{0}}{1-X}
$$

- Geometric progression : $u_{n}=u_{0} \gamma^{n}$.

Linear recurrence sequence of order 1: $u_{n}=\gamma u_{n-1}$.
Characteristic polynomial $f(X)=X-\gamma$.
Generating series :

$$
\sum_{n \geq 0} u_{0} \gamma^{n} X^{n}=\frac{u_{0}}{1-\gamma X}
$$

Linear recurrence sequences: examples

- $u_{n}=n$. This is a linear recurrence sequence of order 2 :

$$
n+2=2(n+1)-n
$$

Characteristic polynomial

$$
f(X)=X^{2}-2 X+1=(X-1)^{2}
$$

Generating series

$$
\sum_{n \geq 0} n X^{n}=\frac{1}{1-2 X+X^{2}}
$$

Power of matrices :

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right)^{n}=\left(\begin{array}{cc}
-n+1 & n \\
-n & n+1
\end{array}\right)
$$

Linear recurrence sequences: examples

- $u_{n}=p(n)$, where p is a polynomial of degree d. This is a linear recurrence sequence of order $d+1$.

Proof. The sequences
are \mathbb{K}-linearly independent in $\mathbb{K}^{\mathbb{N}}$ for $k=d-1$ and linearly dependent for $k=d$.

A basis of the space of polynomials of degree d is given by the $d+1$ polynomials

Linear recurrence sequences: examples

- $u_{n}=p(n)$, where p is a polynomial of degree d. This is a linear recurrence sequence of order $d+1$.

Proof. The sequences

$$
(p(n))_{n \geq 0}, \quad(p(n+1))_{n \geq 0}, \quad \cdots, \quad(p(n+k))_{n \geq 0}
$$

are \mathbb{K}-linearly independent in $\mathbb{K}^{\mathbb{N}}$ for $k=d-1$ and linearly dependent for $k=d$.

A basis of the space of polynomials of degree d is given by the $d+1$ polynomials

Linear recurrence sequences: examples

- $u_{n}=p(n)$, where p is a polynomial of degree d. This is a linear recurrence sequence of order $d+1$.

Proof. The sequences

$$
(p(n))_{n \geq 0}, \quad(p(n+1))_{n \geq 0}, \quad \cdots, \quad(p(n+k))_{n \geq 0}
$$

are \mathbb{K}-linearly independent in $\mathbb{K}^{\mathbb{N}}$ for $k=d-1$ and linearly dependent for $k=d$.

A basis of the space of polynomials of degree d is given by the $d+1$ polynomials

$$
p(X), p(X+1), \ldots, p(X+d) .
$$

Question : which is the characteristic polynomial?

Linear sequences which are ultimately recurrent

The sequence

$$
(1,0,0, \ldots)
$$

is not a linear recurrence sequence.

The condition

$$
u_{n+1}=u_{n}
$$

is satisfied only for $n \geq 1$.

The relation
with $d=2, a_{d}=0$ does not fulfil the requirement $a_{d} \neq 0$.

Linear sequences which are ultimately recurrent

The sequence

$$
(1,0,0, \ldots)
$$

is not a linear recurrence sequence.

The condition

$$
u_{n+1}=u_{n}
$$

is satisfied only for $n \geq 1$.

The relation
with $d=2, a_{d}=0$ does not fulfil the requirement $a_{d} \neq 0$.

Linear sequences which are ultimately recurrent

The sequence

$$
(1,0,0, \ldots)
$$

is not a linear recurrence sequence.

The condition

$$
u_{n+1}=u_{n}
$$

is satisfied only for $n \geq 1$.

The relation

$$
u_{n+2}=u_{n+1}+0 u_{n}
$$

with $d=2, a_{d}=0$ does not fulfil the requirement $a_{d} \neq 0$.

Order of a linear recurrence sequence

If $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ satisfies the linear recurrence, the characteristic polynomial of which is f, then, for any monic polynomial $g \in \mathbb{K}[X]$ with $g(0) \neq 0$, this sequence \mathbf{u} also satisfies the linear recurrence, the characteristic polynomial of which is $f g$. Example : for $g(X)=X-\gamma$ with $\gamma \neq 0$, from
(\star

$$
u_{n+d}-a_{1} u_{n+d-1}-\cdots-a_{d} u_{n}=0
$$

we deduce

$$
\begin{aligned}
& u_{n+d+1}-a_{1} u_{n+d}-\cdots-a_{d} u_{n+1} \\
& \quad-\gamma\left(u_{n+d}-a_{1} u_{n+d-1}-\cdots-a_{d} u_{n}\right)=0
\end{aligned}
$$

The order of a linear recurrence sequence is the smallest d such that (\star) holds for all $n \geq 0$.

Order of a linear recurrence sequence

If $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ satisfies the linear recurrence, the characteristic polynomial of which is f, then, for any monic polynomial $g \in \mathbb{K}[X]$ with $g(0) \neq 0$, this sequence \mathbf{u} also satisfies the linear recurrence, the characteristic polynomial of which is $f g$. Example : for $g(X)=X-\gamma$ with $\gamma \neq 0$, from
(\star

$$
u_{n+d}-a_{1} u_{n+d-1}-\cdots-a_{d} u_{n}=0
$$

we deduce

$$
\begin{aligned}
& u_{n+d+1}-a_{1} u_{n+d}-\cdots-a_{d} u_{n+1} \\
& \quad-\gamma\left(u_{n+d}-a_{1} u_{n+d-1}-\cdots-a_{d} u_{n}\right)=0
\end{aligned}
$$

The order of a linear recurrence sequence is the smallest d such that (\star) holds for all $n \geq 0$.

Generating series of a linear recurrence sequence

Let $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ be a linear recurrence sequence
$(\star) \quad u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n} \quad$ for $\quad n \geq 0$
with characteristic polynomial

$$
f(X)=X^{d}-a_{1} X^{d-1}-\cdots-a_{d}
$$

Denote by f^{-}the reciprocal polynomial of f :

$$
f^{-}(X)=X^{d} f\left(X^{-1}\right)=1-a_{1} X-\cdots-a_{d} X^{d}
$$

Then

$$
\sum_{n=0}^{\infty} u_{n} X^{n}=\frac{r(X)}{f^{-}(X)}
$$

where r is a polynomial of degree less than d determined by the initial values of \mathbf{u}.

Generating series of a linear recurrence sequence

Assume

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n} \quad \text { for } \quad n \geq 0
$$

Then

$$
\sum_{n=0}^{\infty} u_{n} X^{n}=\frac{r(X)}{f^{-}(X)}
$$

Proof. Comparing the coefficients of X^{n} for $n \geq d$ shows that
is a polynomial of degree less than d.

Generating series of a linear recurrence sequence

Assume

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n} \quad \text { for } \quad n \geq 0
$$

Then

$$
\sum_{n=0}^{\infty} u_{n} X^{n}=\frac{r(X)}{f^{-}(X)}
$$

Proof. Comparing the coefficients of X^{n} for $n \geq d$ shows that

$$
f^{-}(X) \sum_{n=0}^{\infty} u_{n} X^{n}
$$

is a polynomial of degree less than d.

Taylor coefficients of rational functions

Conversely, the sequence of coefficients in the Taylor expansion of any rational fraction $a(X) / b(X)$ with $\operatorname{deg} a<\operatorname{deg} b$ and $b(0) \neq 0$ satisfies the recurrence relation with characteristic polynomial $f \in K[X]$ given by $f(X)=b^{-}(X)$.

Therefore a sequence $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ satisfies the recurrence
relation (\star) with characteristic polynomial $f \in K[X]$ if and only if

where r is a polynomial of degree less than d determined by the initial values of \mathbf{u}.

Taylor coefficients of rational functions

Conversely, the sequence of coefficients in the Taylor expansion of any rational fraction $a(X) / b(X)$ with $\operatorname{deg} a<\operatorname{deg} b$ and $b(0) \neq 0$ satisfies the recurrence relation with characteristic polynomial $f \in K[X]$ given by $f(X)=b^{-}(X)$.

Therefore a sequence $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ satisfies the recurrence relation (\star) with characteristic polynomial $f \in K[X]$ if and only if

$$
\sum_{n=0}^{\infty} u_{n} X^{n}=\frac{r(X)}{f^{-}(X)}
$$

where r is a polynomial of degree less than d determined by the initial values of \mathbf{u}.

Linear differential equations

Given a sequence $\left(u_{n}\right)_{n \geq 0}$ of numbers, its exponential generating power series is

$$
\psi(z)=\sum_{n \geq 0} u_{n} \frac{z^{n}}{n!}
$$

For $k \geq 0$, the k-the derivative $\psi^{(k)}$ of ψ satisfies

Hence the sequence satisfies the linear recurrence relation
\square
if and only if ψ is a solution of the homogeneous linear
differential equation

Linear differential equations

Given a sequence $\left(u_{n}\right)_{n \geq 0}$ of numbers, its exponential generating power series is

$$
\psi(z)=\sum_{n \geq 0} u_{n} \frac{z^{n}}{n!}
$$

For $k \geq 0$, the k-the derivative $\psi^{(k)}$ of ψ satisfies

$$
\psi^{(k)}(z)=\sum_{n \geq 0} u_{n+k} \frac{z^{n}}{n!}
$$

Hence the sequence satisfies the linear recurrence relation
\square
if and only if ψ is a solution of the homogeneous linear differential equation

Linear differential equations

Given a sequence $\left(u_{n}\right)_{n \geq 0}$ of numbers, its exponential generating power series is

$$
\psi(z)=\sum_{n \geq 0} u_{n} \frac{z^{n}}{n!}
$$

For $k \geq 0$, the k-the derivative $\psi^{(k)}$ of ψ satisfies

$$
\psi^{(k)}(z)=\sum_{n \geq 0} u_{n+k} \frac{z^{n}}{n!}
$$

Hence the sequence satisfies the linear recurrence relation ($) \quad u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}$ for $n \geq 0$
if and only if ψ is a solution of the homogeneous linear differential equation

$$
y^{(d)}=a_{1} y^{(d-1)}+\cdots+a_{d-1} y^{\prime}+a_{d} y
$$

Matrix notation for a linear recurrence sequence

The linear recurrence sequence
$(\star) \quad u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n} \quad$ for $\quad n \geq 0$
can be written

$$
\left(\begin{array}{c}
u_{n+1} \\
u_{n+2} \\
\vdots \\
u_{n+d}
\end{array}\right)=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
a_{d} & a_{d-1} & a_{d-2} & \cdots & a_{1}
\end{array}\right)\left(\begin{array}{c}
u_{n} \\
u_{n+1} \\
\vdots \\
u_{n+d-1}
\end{array}\right)
$$

Matrix notation for a linear recurrence sequence

$$
U_{n+1}=A U_{n}
$$

with

$$
U_{n}=\left(\begin{array}{c}
u_{n} \\
u_{n+1} \\
\vdots \\
u_{n+d-1}
\end{array}\right), \quad A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
a_{d} & a_{d-1} & a_{d-2} & \cdots & a_{1}
\end{array}\right)
$$

The determinant of $I_{d} X-A$ (the characteristic polynomial of A) is nothing but
the characteristic polynomial of the linear recurrence sequence. By induction

Matrix notation for a linear recurrence sequence

$$
U_{n+1}=A U_{n}
$$

with

$$
U_{n}=\left(\begin{array}{c}
u_{n} \\
u_{n+1} \\
\vdots \\
u_{n+d-1}
\end{array}\right), \quad A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
a_{d} & a_{d-1} & a_{d-2} & \cdots & a_{1}
\end{array}\right)
$$

The determinant of $I_{d} X-A$ (the characteristic polynomial of $A)$ is nothing but

$$
f(X)=X^{d}-a_{1} X^{d-1}-\cdots-a_{d}
$$

the characteristic polynomial of the linear recurrence sequence.
By induction

Matrix notation for a linear recurrence sequence

$$
U_{n+1}=A U_{n}
$$

with

$$
U_{n}=\left(\begin{array}{c}
u_{n} \\
u_{n+1} \\
\vdots \\
u_{n+d-1}
\end{array}\right), \quad A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
a_{d} & a_{d-1} & a_{d-2} & \cdots & a_{1}
\end{array}\right)
$$

The determinant of $I_{d} X-A$ (the characteristic polynomial of A) is nothing but

$$
f(X)=X^{d}-a_{1} X^{d-1}-\cdots-a_{d}
$$

the characteristic polynomial of the linear recurrence sequence.
By induction

$$
U_{n}=A^{n} U_{0}
$$

Powers of matrices

Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq d} \in \mathrm{GL}_{d \times d}(\mathbb{K})$ be a $d \times d$ matrix with coefficients in \mathbb{K} and nonzero determinant. For $n \geq 0$, define

$$
A^{n}=\left(a_{i j}^{(n)}\right)_{1 \leq i, j \leq d}
$$

Then each of the d^{2} sequences $\left(a_{i j}^{(n)}\right)_{n>0^{\prime}}(1 \leq i, j \leq d)$ is a linear recurrence sequence. The roots of the characteristic polynomial of these linear recurrences are the eigenvalues of A.

In particular the sequence $\left(\operatorname{Tr}\left(A^{n}\right)\right)_{n>0}$ satisfies the linear recurrence, the characteristic polynomial of which is the characteristic polynomial of the matrix A.

Powers of matrices

Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq d} \in \mathrm{GL}_{d \times d}(\mathbb{K})$ be a $d \times d$ matrix with coefficients in \mathbb{K} and nonzero determinant. For $n \geq 0$, define

$$
A^{n}=\left(a_{i j}^{(n)}\right)_{1 \leq i, j \leq d}
$$

Then each of the d^{2} sequences $\left(a_{i j}^{(n)}\right)_{n>0},(1 \leq i, j \leq d)$ is a linear recurrence sequence. The roots of the characteristic polynomial of these linear recurrences are the eigenvalues of A.

In particular the sequence $\left(\operatorname{Tr}\left(A^{n}\right)\right)_{n>0}$ satisfies the linear recurrence, the characteristic polynomial of which is the characteristic polynomial of the matrix A.

Powers of matrices

Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq d} \in \mathrm{GL}_{d \times d}(\mathbb{K})$ be a $d \times d$ matrix with coefficients in \mathbb{K} and nonzero determinant. For $n \geq 0$, define

$$
A^{n}=\left(a_{i j}^{(n)}\right)_{1 \leq i, j \leq d}
$$

Then each of the d^{2} sequences $\left(a_{i j}^{(n)}\right)_{n \geq 0},(1 \leq i, j \leq d)$ is a linear recurrence sequence. The roots of the characteristic polynomial of these linear recurrences are the eigenvalues of A.

In particular the sequence $\left(\operatorname{Tr}\left(A^{n}\right)\right)_{n \geq 0}$ satisfies the linear recurrence, the characteristic polynomial of which is the characteristic polynomial of the matrix A.

Conversely :

Given a linear recurrence sequence $\mathbf{u} \in \mathbb{K}^{\mathbb{N}}$, there exist an integer $d \geq 1$ and a matrix $A \in \mathrm{GL}_{d}(\mathbb{K})$ such that, for each $n \geq 0$,

$$
u_{n}=a_{11}^{(n)}
$$

The characteristic polynomial of A is the characteristic polynomial of the linear recurrence sequence.

Recurrence sequences, Mathematical Surveys and Monographs (AMS, 2003), volume 104.

Conversely :

Given a linear recurrence sequence $\mathbf{u} \in \mathbb{K}^{\mathbb{N}}$, there exist an integer $d \geq 1$ and a matrix $A \in \mathrm{GL}_{d}(\mathbb{K})$ such that, for each $n \geq 0$,

$$
u_{n}=a_{11}^{(n)}
$$

The characteristic polynomial of A is the characteristic polynomial of the linear recurrence sequence.

Everest G., van der Poorten A., Shparlinski I., Ward T. Recurrence sequences, Mathematical Surveys and Monographs (AMS, 2003), volume 104.

Linear recurrence sequences : simple roots

A basis of $E_{\underline{a}}$ over \mathbb{K} is obtained by attributing to the initial values u_{0}, \ldots, u_{d-1} the values given by the canonical basis of \mathbb{K}^{d}.
Given γ in \mathbb{K}^{\times}, a necessary and sufficient condition for a sequence $\left(\gamma^{n}\right)_{n \geq 0}$ to satisfy (\star) is that γ is a root of the characteristic polynomial

If this polynomial has d distinct roots $\gamma_{1}, \ldots, \gamma_{d}$ in \mathbb{K},
then a basis of $E_{\underline{a}}$ over \mathbb{K} is given by the d sequences $\left(\gamma_{i}{ }^{n}\right)_{n \geq 0}, i=1, \ldots, d$.

Linear recurrence sequences: simple roots

A basis of $E_{\underline{a}}$ over \mathbb{K} is obtained by attributing to the initial values u_{0}, \ldots, u_{d-1} the values given by the canonical basis of \mathbb{K}^{d}.
Given γ in \mathbb{K}^{\times}, a necessary and sufficient condition for a sequence $\left(\gamma^{n}\right)_{n \geq 0}$ to satisfy (\star) is that γ is a root of the characteristic polynomial

$$
f(X)=X^{d}-a_{1} X^{d-1}-\cdots-a_{d}
$$

If this polynomial has d distinct roots $\gamma_{1}, \ldots, \gamma_{d}$ in \mathbb{K},
then a basis of $E_{\underline{a}}$ over \mathbb{K} is given by the d sequences

Linear recurrence sequences: simple roots

A basis of $E_{\underline{a}}$ over \mathbb{K} is obtained by attributing to the initial values u_{0}, \ldots, u_{d-1} the values given by the canonical basis of \mathbb{K}^{d}.
Given γ in \mathbb{K}^{\times}, a necessary and sufficient condition for a sequence $\left(\gamma^{n}\right)_{n \geq 0}$ to satisfy (\star) is that γ is a root of the characteristic polynomial

$$
f(X)=X^{d}-a_{1} X^{d-1}-\cdots-a_{d}
$$

If this polynomial has d distinct roots $\gamma_{1}, \ldots, \gamma_{d}$ in \mathbb{K},

$$
f(X)=\left(X-\gamma_{1}\right) \cdots\left(X-\gamma_{d}\right), \quad \gamma_{i} \neq \gamma_{j}
$$

then a basis of $E_{\underline{a}}$ over \mathbb{K} is given by the d sequences
$\left(\gamma_{i}^{n}\right)_{n \geq 0}, i=1, \ldots, d$.

Linear recurrence sequences: double roots

The characteristic polynomial of the linear recurrence $u_{n}=2 \gamma u_{n-1}-\gamma^{2} u_{n-2}$ is $X^{2}-2 \gamma X+\gamma^{2}=(X-\gamma)^{2}$ with a double root γ.

The sequence $\left(n \gamma^{n}\right)_{n \geq 0}$ satisfies

A basis of $E_{\underline{a}}$ for $a_{1}=2 \gamma, a_{2}=-\gamma^{2}$ is given by the two sequences $\left(\gamma^{n}\right)_{n \geq 0},\left(n \gamma^{n}\right)_{n \geq 0}$.

Given $\gamma \in \mathbb{K}^{\times}$, a necessary and sufficient condition for the sequence $n \gamma^{n}$ to satisfy the linear recurrence relation (\star) is that γ is a root of multiplicity ≥ 2 of $f(X)$.

Linear recurrence sequences: double roots

The characteristic polynomial of the linear recurrence $u_{n}=2 \gamma u_{n-1}-\gamma^{2} u_{n-2}$ is $X^{2}-2 \gamma X+\gamma^{2}=(X-\gamma)^{2}$ with a double root γ.

The sequence $\left(n \gamma^{n}\right)_{n \geq 0}$ satisfies

$$
n \gamma^{n}=2 \gamma(n-1) n \gamma^{n-1}-\gamma^{2}(n-2) \gamma^{n-2}
$$

A basis of $E_{\underline{a}}$ for $a_{1}=2 \gamma, a_{2}=-\gamma^{2}$ is given by the two sequences $\left(\gamma^{n}\right)_{n \geq 0},\left(n \gamma^{n}\right)_{n \geq 0}$.

Given $\gamma \in \mathbb{K}^{\times}$, a necessary and sufficient condition for the sequence $n \gamma^{n}$ to satisfy the linear recurrence relation (\star) is that γ is a root of multiplicity ≥ 2 of $f(X)$.

Linear recurrence sequences: double roots

The characteristic polynomial of the linear recurrence $u_{n}=2 \gamma u_{n-1}-\gamma^{2} u_{n-2}$ is $X^{2}-2 \gamma X+\gamma^{2}=(X-\gamma)^{2}$ with a double root γ.

The sequence $\left(n \gamma^{n}\right)_{n \geq 0}$ satisfies

$$
n \gamma^{n}=2 \gamma(n-1) n \gamma^{n-1}-\gamma^{2}(n-2) \gamma^{n-2}
$$

A basis of $E_{\underline{a}}$ for $a_{1}=2 \gamma, a_{2}=-\gamma^{2}$ is given by the two sequences $\left(\gamma^{n}\right)_{n \geq 0},\left(n \gamma^{n}\right)_{n \geq 0}$.

Given $\gamma \in \mathbb{K}^{\times}$, a necessary and sufficient condition for the sequence $n \gamma^{n}$ to satisfy the linear recurrence relation (\star) is that γ is a root of multiplicity ≥ 2 of $f(X)$.

Linear recurrence sequences : double roots

The characteristic polynomial of the linear recurrence $u_{n}=2 \gamma u_{n-1}-\gamma^{2} u_{n-2}$ is $X^{2}-2 \gamma X+\gamma^{2}=(X-\gamma)^{2}$ with a double root γ.

The sequence $\left(n \gamma^{n}\right)_{n \geq 0}$ satisfies

$$
n \gamma^{n}=2 \gamma(n-1) n \gamma^{n-1}-\gamma^{2}(n-2) \gamma^{n-2}
$$

A basis of $E_{\underline{a}}$ for $a_{1}=2 \gamma, a_{2}=-\gamma^{2}$ is given by the two sequences $\left(\gamma^{n}\right)_{n \geq 0},\left(n \gamma^{n}\right)_{n \geq 0}$.

Given $\gamma \in \mathbb{K}^{\times}$, a necessary and sufficient condition for the sequence $n \gamma^{n}$ to satisfy the linear recurrence relation (\star) is that γ is a root of multiplicity ≥ 2 of $f(X)$.

Linear recurrence sequences: multiple roots

In general, when the characteristic polynomial splits as

$$
X^{d}-a_{1} X^{d-1}-\cdots-a_{d}=\prod_{i=1}^{\ell}\left(X-\gamma_{i}\right)^{t_{i}}
$$

a basis of $E_{\underline{a}}$ is given by the d sequences

$$
\left(n^{k} \gamma_{i}^{n}\right)_{n \geq 0}, \quad 0 \leq k \leq t_{i}-1, \quad 1 \leq i \leq \ell
$$

Polynomial combinations of powers

The sum and the product of any two linear recurrence sequences are linear recurrence sequences.

The set $\cup_{\underline{a}} E_{\underline{a}}$ of all linear recurrence sequences with coefficients in \mathbb{K} is a sub- \mathbb{K}-algebra of $\mathbb{K}^{\mathbb{N}}$.

Given polynomials p_{1}, \ldots, p_{ℓ} in $\mathbb{K}[X]$ and elements in \mathbb{K}^{\times}, the sequence

is a linear recurrence sequence.

Conversely, any linear recurrence sequence is of this form.

Polynomial combinations of powers

The sum and the product of any two linear recurrence sequences are linear recurrence sequences.

The set $\cup_{\underline{a}} E_{\underline{a}}$ of all linear recurrence sequences with coefficients in \mathbb{K} is a sub- \mathbb{K}-algebra of $\mathbb{K}^{\mathbb{N}}$.

Given polynomials p_{1}, \ldots, p_{ℓ} in $\mathbb{K}[X]$ and elements in \mathbb{K}^{\times}, the sequence

is a linear recurrence sequence.

Conversely, any linear recurrence sequence is of this form.

Polynomial combinations of powers

The sum and the product of any two linear recurrence sequences are linear recurrence sequences.

The set $\cup_{\underline{a}} E_{\underline{a}}$ of all linear recurrence sequences with coefficients in \mathbb{K} is a sub- \mathbb{K}-algebra of $\mathbb{K}^{\mathbb{N}}$.

Given polynomials p_{1}, \ldots, p_{ℓ} in $\mathbb{K}[X]$ and elements $\gamma_{1}, \ldots, \gamma_{\ell}$ in \mathbb{K}^{\times}, the sequence

$$
\left(p_{1}(n) \gamma_{1}^{n}+\cdots+p_{\ell}(n) \gamma_{\ell}^{n}\right)_{n \geq 0}
$$

is a linear recurrence sequence.

Conversely, any linear recurrence sequence is of this form.

Polynomial combinations of powers

The sum and the product of any two linear recurrence sequences are linear recurrence sequences.

The set $\cup_{\underline{a}} E_{\underline{a}}$ of all linear recurrence sequences with coefficients in \mathbb{K} is a sub- \mathbb{K}-algebra of $\mathbb{K}^{\mathbb{N}}$.

Given polynomials p_{1}, \ldots, p_{ℓ} in $\mathbb{K}[X]$ and elements $\gamma_{1}, \ldots, \gamma_{\ell}$ in \mathbb{K}^{\times}, the sequence

$$
\left(p_{1}(n) \gamma_{1}^{n}+\cdots+p_{\ell}(n) \gamma_{\ell}^{n}\right)_{n \geq 0}
$$

is a linear recurrence sequence.

Conversely, any linear recurrence sequence is of this form.

Consequence

- When p is a polynomial of degree $<d$, the characteristic polynomial of the sequence $u_{n}=p(n)$ divides $(X-1)^{d}$.

Proof.
Set

$$
A=\left(\begin{array}{cccccc}
1 & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 1 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 1 \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right)=I_{d}+N
$$

where I_{d} is the $d \times d$ identity matrix and N is nilpotent : $N^{d}=0$.

Consequence

The characteristic polynomial of A is $(X-1)^{d}$. Hence for $1 \leq i, j \leq d$, the sequence u_{n} of the coefficient $a_{i j}^{(n)}$ of A^{n} satisfies the linear recurrence relation
(\star)

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}
$$

that is
$u_{n+d}=d u_{n+d-1}-\binom{d}{2} u_{n+d-2}+\cdots+(-1)^{d-2} d u_{n+1}+(-1)^{d-1} u_{n}$.
The characteristic polynomial of this recurrence relation is $(X-1)^{d}$.

Characteristic polynomial of the recurrence

 sequence $p(n)$.Since, for $1 \leq i, j \leq d$ and $n \geq 0$, we have

$$
a_{i j}^{(n)}=\binom{n}{j-i}
$$

(where we agree that $\binom{n}{k}=0$ for $k<0$ and for $k>n$, while $\binom{d}{0}=\binom{d}{d}=1$), we deduce that each of the d polynomials

$$
1, \quad \frac{X(X+1) \cdots(X+k-1)}{k!} \quad k=1,2, \ldots, d-1
$$

namely

$$
1, X, \frac{X(X+1)}{2}, \ldots, \frac{X(X+1) \cdots(X+d-2)}{(d-1)!}
$$

satisfies the recurrence (\star). These d polynomials constitute a basis of the space of polynomials of degree $<d_{0}$

Sum of polynomial combinations of powers

If \mathbf{u}_{1} and \mathbf{u}_{2} are two linear recurrence sequences of characteristic polynomials f_{1} and f_{2} respectively, then $\mathbf{u}_{1}+\mathbf{u}_{2}$ satisfies the linear recurrence, the characteristic polynomial of which is

$$
\frac{f_{1} f_{2}}{\operatorname{gcd}\left(f_{1}, f_{2}\right)}
$$

Product of polynomial combinations of powers

If the characteristic polynomials of the two linear recurrence sequences \mathbf{u}_{1} and \mathbf{u}_{2} are respectively

$$
f_{1}(T)=\prod_{j=1}^{\ell}\left(T-\gamma_{j}\right)^{t_{j}} \quad \text { and } \quad f_{2}(T)=\prod_{k=1}^{\ell^{\prime}}\left(T-\gamma_{k}^{\prime}\right)^{t_{k}^{\prime}},
$$

then $\mathbf{u}_{1} \mathbf{u}_{2}$ satisfies the linear recurrence, the characteristic polynomial of which is

$$
\prod_{j=1}^{\ell} \prod_{k=1}^{\ell^{\prime}}\left(T-\gamma_{j} \gamma_{k}^{\prime}\right)^{t_{j}+t_{k}^{\prime}-1}
$$

Linear recurrence sequences and

Brahmagupta-Pell-Fermat Equation

Let d be a positive integer, not a square. The solutions $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ of the Brahmagupta-Pell-Fermat Equation

$$
x^{2}-d y^{2}= \pm 1
$$

form a sequence $\left(x_{n}, y_{n}\right)_{n \in \mathbb{Z}}$ defined by

$$
x_{n}+\sqrt{d} y_{n}=\left(x_{1}+\sqrt{d} y_{1}\right)^{n} .
$$

From
we deduce that $\left(x_{n}\right)_{n \geq 0}$ is a linear recurrence sequence. Same
for y_{n}, and also for $n \leq 0$.

Linear recurrence sequences and

Brahmagupta-Pell-Fermat Equation

Let d be a positive integer, not a square. The solutions $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ of the Brahmagupta-Pell-Fermat Equation

$$
x^{2}-d y^{2}= \pm 1
$$

form a sequence $\left(x_{n}, y_{n}\right)_{n \in \mathbb{Z}}$ defined by

$$
x_{n}+\sqrt{d} y_{n}=\left(x_{1}+\sqrt{d} y_{1}\right)^{n} .
$$

From

$$
2 x_{n}=\left(x_{1}+\sqrt{d} y_{1}\right)^{n}+\left(x_{1}-\sqrt{d} y_{1}\right)^{n}
$$

we deduce that $\left(x_{n}\right)_{n \geq 0}$ is a linear recurrence sequence. Same for y_{n}, and also for $n \leq 0$.

Doubly infinite linear recurrence sequences

A sequence $\left(u_{n}\right)_{n \in \mathbb{Z}}$ indexed by \mathbb{Z} is a linear recurrence sequence if it satisfies
(\star

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}
$$

for all $n \in \mathbb{Z}$.

Recall $a_{d} \neq 0$.

Such a sequence is determined by d consecutive values.

Doubly infinite linear recurrence sequences

A sequence $\left(u_{n}\right)_{n \in \mathbb{Z}}$ indexed by \mathbb{Z} is a linear recurrence sequence if it satisfies
(\star

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}
$$

for all $n \in \mathbb{Z}$.

Recall $a_{d} \neq 0$.

Such a sequence is determined by d consecutive values.

Doubly infinite linear recurrence sequences

A sequence $\left(u_{n}\right)_{n \in \mathbb{Z}}$ indexed by \mathbb{Z} is a linear recurrence sequence if it satisfies
(*)

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}
$$

for all $n \in \mathbb{Z}$.

Recall $a_{d} \neq 0$.

Such a sequence is determined by d consecutive values.

Discrete version of linear differential equations

A sequence $\mathbf{u} \in \mathbb{K}^{\mathbb{N}}$ can be viewed as a linear map $\mathbb{N} \longrightarrow \mathbb{K}$. Define the discrete derivative \mathcal{D} by

$$
\begin{array}{rlcc}
\mathcal{D} \mathbf{u}: \mathbb{N} & \longrightarrow & \mathbb{K} \\
& \longrightarrow & \longmapsto u_{n+1}-u_{n}
\end{array}
$$

A sequence $\mathbf{u} \in \mathbb{K}^{\mathbb{N}}$ is a linear recurrence sequence if and only if there exists $Q \in \mathbb{K}[T]$ with $Q(1) \neq 1$ such that

$$
Q(\mathcal{D}) \mathbf{u}=0
$$

Linear recurrence sequences are a discrete version of linear differential equations with constant coefficients.

The condition $Q(1) \neq 0$ reflects $a_{d} \neq 0$ - otherwise one gets ultimately recurrent sequences.

Conclusion

The same mathematical object occurs in a different guise :

- Linear recurrence sequences

$$
u_{n+d}=a_{1} u_{n+d-1}+\cdots+a_{d} u_{n}
$$

- Linear combinations with polynomial coefficients of powers

$$
p_{1}(n) \gamma_{1}^{n}+\cdots+p_{\ell}(n) \gamma_{\ell}^{n} .
$$

- Taylor coefficients of rational functions.
- Coefficients of power series which are solutions of homogeneous linear differential equations.
- Sequence of coefficients of powers of a matrix.

Reference

Everest, Graham; van der Poorten, Alf; Shparlinski, Igor; Ward, Tom - Recurrence sequences, Mathematical Surveys and Monographs (AMS, 2003), volume 104.

1290 references.

Graham Everest

Igor Shparlinski

Alf van der Poorten

Tom Ward

Linear recurrence sequences over finite fields

Reference: Chapter 8 : Linear recurring sequences of
Lidl, Rudolf; Niederreiter, Harald.
Finite fields. Paperback reprint of the hardback 2nd edition 1996. (English)

Encyclopedia of Mathematics and Its Applications 20.
Cambridge University Press (ISBN 978-0-521-06567-2/pbk). xiv, 755 p. (2008).

Harald Niederreiter

Linear recurring sequences

Given $a, a_{0}, \ldots, a_{k-1}$ in a finite field \mathbb{F}_{q}, consider a k-th order linear recurrence relation : for $n=0,1,2, \ldots$,
$u_{n+k}=a_{k-1} u_{n+k-1}+a_{k-2} u_{n+k-2}+\cdots+a_{1} u_{n+1}+a_{0} u_{n}+a$
Homogeneous : $a=0$.

Initial values: $u_{0}, u_{1}, \ldots, u_{k-1}$

State vector: $\mathbf{u}_{n}=\left(u_{n}, u_{n+1}, \ldots, u_{n+k-1}\right)$.

Initial state vector : $\mathbf{u}_{0}=\left(u_{0}, u_{1}, \ldots, u_{k-1}\right)$.

Linear recurring sequences

Given $a, a_{0}, \ldots, a_{k-1}$ in a finite field \mathbb{F}_{q}, consider a k-th order linear recurrence relation : for $n=0,1,2, \ldots$,
$u_{n+k}=a_{k-1} u_{n+k-1}+a_{k-2} u_{n+k-2}+\cdots+a_{1} u_{n+1}+a_{0} u_{n}+a$
Homogeneous : $a=0$.

Initial values: $u_{0}, u_{1}, \ldots, u_{k-1}$.

State vector: $\mathbf{u}_{n}=\left(u_{n}, u_{n+1}, \ldots, u_{n+k-1}\right)$.

Initial state vector: $\mathbf{u}_{0}=\left(u_{0}, u_{1}, \ldots, u_{k-1}\right)$.

Linear recurring sequences

Given $a, a_{0}, \ldots, a_{k-1}$ in a finite field \mathbb{F}_{q}, consider a k-th order linear recurrence relation : for $n=0,1,2, \ldots$,
$u_{n+k}=a_{k-1} u_{n+k-1}+a_{k-2} u_{n+k-2}+\cdots+a_{1} u_{n+1}+a_{0} u_{n}+a$
Homogeneous : $a=0$.

Initial values: $u_{0}, u_{1}, \ldots, u_{k-1}$.

State vector: $\mathbf{u}_{n}=\left(u_{n}, u_{n+1}, \ldots, u_{n+k-1}\right)$.

Initial state vector : $\mathbf{u}_{0}=\left(u_{0}, u_{1}\right.$

Linear recurring sequences

Given $a, a_{0}, \ldots, a_{k-1}$ in a finite field \mathbb{F}_{q}, consider a k-th order linear recurrence relation : for $n=0,1,2, \ldots$,
$u_{n+k}=a_{k-1} u_{n+k-1}+a_{k-2} u_{n+k-2}+\cdots+a_{1} u_{n+1}+a_{0} u_{n}+a$
Homogeneous : $a=0$.

Initial values: $u_{0}, u_{1}, \ldots, u_{k-1}$.

State vector: $\mathbf{u}_{n}=\left(u_{n}, u_{n+1}, \ldots, u_{n+k-1}\right)$.

Initial state vector: $\mathbf{u}_{0}=\left(u_{0}, u_{1}, \ldots, u_{k-1}\right)$.

Feedback shift register

Electronic switching circuit : adder, constant multiplier, constant adder, delay element (flip-flop)

(a) Adder

(b) Constant multiplier for multiplying by a

(c) Constant adder for adding a

(d) Delay element

$$
u_{n+k}=a_{k-1} u_{n+k-1}+a_{k-2} u_{n+k-2}+\cdots+a_{1} u_{n+1}+a_{0} u_{n}+a
$$

The least period of a linear recurrence sequence

Since \mathbb{F}_{q} is finite, any linear recurrence sequence $\left(u_{n}\right)_{n \geq 0}$ in \mathbb{F}_{q} is ultimately periodic : there exists $r>0$ and $n_{0} \geq 0$ such that $u_{n}=u_{n+r}$ for $n \geq n_{0}$. The least n_{0} for which this relation holds is the preperiod.

Any period is a multiple of the least period.

A linear recurrence sequence $\left(u_{n}\right)_{n>0}$ is periodic if there exists a period $r>0$ such that $u_{n}=u_{n+r}$ for $n \geq 0$. In this case this relation holds for the least period; the preperiod is 0 . If $a_{0} \neq 0$, then the sequence is periodic.

The least period r of a (homogeneous) linear recurrence sequence in \mathbb{F}_{q} of order k satisfies

The least period of a linear recurrence sequence

Since \mathbb{F}_{q} is finite, any linear recurrence sequence $\left(u_{n}\right)_{n \geq 0}$ in \mathbb{F}_{q} is ultimately periodic: there exists $r>0$ and $n_{0} \geq 0$ such that $u_{n}=u_{n+r}$ for $n \geq n_{0}$. The least n_{0} for which this relation holds is the preperiod.

Any period is a multiple of the least period.
A linear recurrence sequence $\left(u_{n}\right)_{n>0}$ is periodic if there exists a period $r>0$ such that $u_{n}=u_{n+r}$ for $n \geq 0$. In this case this relation holds for the least period $a_{0} \neq 0$, then the sequence is periodic.

The least period r of a (homogeneous) linear recurrence sequence in \mathbb{F}_{q} of order k satisfies r $\leq q^{k}-1$

The least period of a linear recurrence sequence

Since \mathbb{F}_{q} is finite, any linear recurrence sequence $\left(u_{n}\right)_{n \geq 0}$ in \mathbb{F}_{q} is ultimately periodic : there exists $r>0$ and $n_{0} \geq 0$ such that $u_{n}=u_{n+r}$ for $n \geq n_{0}$. The least n_{0} for which this relation holds is the preperiod.

Any period is a multiple of the least period.
A linear recurrence sequence $\left(u_{n}\right)_{n \geq 0}$ is periodic if there exists a period $r>0$ such that $u_{n}=u_{n+r}$ for $n \geq 0$. In this case this relation holds for the least period ; the preperiod is 0 . If $a_{0} \neq 0$, then the sequence is periodic.

The least period r of a (homogeneous) linear recurrence sequence in \mathbb{F}_{q} of order k satisfies

The least period of a linear recurrence sequence

Since \mathbb{F}_{q} is finite, any linear recurrence sequence $\left(u_{n}\right)_{n \geq 0}$ in \mathbb{F}_{q} is ultimately periodic : there exists $r>0$ and $n_{0} \geq 0$ such that $u_{n}=u_{n+r}$ for $n \geq n_{0}$. The least n_{0} for which this relation holds is the preperiod.

Any period is a multiple of the least period.
A linear recurrence sequence $\left(u_{n}\right)_{n \geq 0}$ is periodic if there exists a period $r>0$ such that $u_{n}=u_{n+r}$ for $n \geq 0$. In this case this relation holds for the least period ; the preperiod is 0 . If $a_{0} \neq 0$, then the sequence is periodic.

The least period r of a (homogeneous) linear recurrence sequence in \mathbb{F}_{q} of order k satisfies $r \leq q^{k}-1$.

The companion matrix

The linear recurrence sequence

$$
u_{n+k}=a_{k-1} u_{n+k-1}+\cdots+a_{0} u_{n} \quad \text { for } \quad n \geq 0
$$

can be written

$$
\mathbf{u}_{n}=\mathbf{u}_{0} A^{n}
$$

where

$$
A=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & a_{0} \\
1 & 0 & 0 & \cdots & 0 & a_{1} \\
0 & 1 & 0 & \cdots & 0 & a_{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & a_{k-1}
\end{array}\right)
$$

The least period

Assume $a_{0} \neq 0$

The least period of the linear recurrence sequence divides the order of the matrix A in the general linear group $\mathrm{GL}_{k}\left(\mathbb{F}_{q}\right)$.

The impulse response sequence is the linear recurrence sequence with the initial state $(0,0, \ldots, 0,1)$.

The least period of a linear recurrence sequence divides the least period of the corresponding impulse response sequence.

The least period

Assume $a_{0} \neq 0$

The least period of the linear recurrence sequence divides the order of the matrix A in the general linear group $\mathrm{GL}_{k}\left(\mathbb{F}_{q}\right)$.

The impulse response sequence is the linear recurrence sequence with the initial state $(0,0, \ldots, 0,1)$.

The least period of a linear recurrence sequence divides the least period of the corresponding impulse response sequence.

The least period

Assume $a_{0} \neq 0$

The least period of the linear recurrence sequence divides the order of the matrix A in the general linear group $\mathrm{GL}_{k}\left(\mathbb{F}_{q}\right)$.

The impulse response sequence is the linear recurrence sequence with the initial state $(0,0, \ldots, 0,1)$.

The least period of a linear recurrence sequence divides the least period of the corresponding impulse response sequence.

The least period

Assume $a_{0} \neq 0$

The least period of the linear recurrence sequence divides the order of the matrix A in the general linear group $\mathrm{GL}_{k}\left(\mathbb{F}_{q}\right)$.

The impulse response sequence is the linear recurrence sequence with the initial state $(0,0, \ldots, 0,1)$.

The least period of a linear recurrence sequence divides the least period of the corresponding impulse response sequence.

Further examples of linear recurrence sequences

- Fibonacci
- Lucas
- Perrin
- Padovan
- Narayana

References
Linear recurrence sequences : an introduction.
http://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/LinearRecurrenceSequencesIntroduction.pdf Linear recurrence sequences, exponential polynomials and Diophantine approximation.

[^0]
Leonardo Pisano (Fibonacci)

Fibonacci sequence $\left(F_{n}\right)_{n \geq 0}$,
$0,1,1,2,3,5,8,13,21$, $34,55,89,144,233, \ldots$
is defined by

$$
F_{0}=0, F_{1}=1
$$

Leonardo Pisano (Fibonacci)

$F_{n+2}=F_{n+1}+F_{n} \quad$ for $\quad n \geq 0$.
http://oeis.org/A000045

Lucas sequence

 http://oeis.org/000032The Lucas sequence $\left(L_{n}\right)_{n \geq 0}$ satisfies the same recurrence relation as the Fibonacci sequence, namely

$$
L_{n+2}=L_{n+1}+L_{n} \quad \text { for } \quad n \geq 0
$$

only the initial values are different:

$$
L_{0}=2, L_{1}=1
$$

The sequence of Lucas numbers starts with

A closed form involving the Golden ratio Φ is

The Lucas sequence $\left(L_{n}\right)_{n \geq 0}$ satisfies the same recurrence relation as the Fibonacci sequence, namely

$$
L_{n+2}=L_{n+1}+L_{n} \quad \text { for } \quad n \geq 0
$$

only the initial values are different:

$$
L_{0}=2, L_{1}=1
$$

The sequence of Lucas numbers starts with

$$
2,1,3,4,7,11,18,29,47,76,123,199,322, \ldots
$$

A closed form involving the Golden ratio Φ is

$$
L_{n}=\Phi^{n}+(-\Phi)^{-n}
$$

from which it follows that for $n \geq 2, L_{n}$ is the nearest integer to Φ^{n}.

Perrin sequence

The Perrin sequence (also called skiponacci sequence) is the linear recurrence sequence $\left(P_{n}\right)_{n \geq 0}$ defined by

$$
P_{n+3}=P_{n+1}+P_{n} \quad \text { for } \quad n \geq 0
$$

with the initial conditions

$$
P_{0}=3, P_{1}=0, P_{2}=2
$$

It starts with

François Olivier Raoul Perrin (1841-1910)
https://en.wikipedia.org/wiki/Perrin number

Perrin sequence

The Perrin sequence (also called skiponacci sequence) is the linear recurrence sequence $\left(P_{n}\right)_{n \geq 0}$ defined by

$$
P_{n+3}=P_{n+1}+P_{n} \quad \text { for } \quad n \geq 0
$$

with the initial conditions

$$
P_{0}=3, P_{1}=0, P_{2}=2
$$

It starts with
$3,0,2,3,2,5,5,7,10,12,17,22,29,39,51,68, \ldots$

François Olivier Raoul Perrin (1841-1910) :
https://en.wikipedia.org/wiki/Perrin_number

Narayana sequence

Narayana sequence is defined by the recurrence relation

$$
C_{n+3}=C_{n+2}+C_{n}
$$

with the initial values $C_{0}=2, C_{1}=3, C_{2}=4$.
It starts with

Real root of $x^{3}-x^{2}-1$

Narayana sequence

Narayana sequence is defined by the recurrence relation

$$
C_{n+3}=C_{n+2}+C_{n}
$$

with the initial values $C_{0}=2, C_{1}=3, C_{2}=4$.
It starts with
$2,3,4,6,9,13,19,28,41,60,88,129,189,277, \ldots$

Real root of $x^{3}-x^{2}-1$

Narayana sequence

Narayana sequence is defined by the recurrence relation

$$
C_{n+3}=C_{n+2}+C_{n}
$$

with the initial values $C_{0}=2, C_{1}=3, C_{2}=4$.
It starts with

$$
2,3,4,6,9,13,19,28,41,60,88,129,189,277, \ldots
$$

Real root of $x^{3}-x^{2}-1$
$\frac{\sqrt[3]{\frac{29+3 \sqrt{93}}{2}}+\sqrt[3]{\frac{29-3 \sqrt{93}}{2}}+1}{3}=1.465571231876768 \ldots$

Padovan sequence

The Padovan sequence $\left(p_{n}\right)_{n \geq 0}$ satisfies the same recurrence

$$
p_{n+3}=p_{n+1}+p_{n}
$$

as the Perrin sequence but has different initial values:

$$
p_{0}=1, \quad p_{1}=p_{2}=0
$$

It starts with

$$
1,0,0,1,0,1,1,1,2,2,3,4,5,7,9,12,16, \ldots
$$

Richard Padovan

http://mathworld.wolfram.com/LinearRecurrenceEquation.html

Yogyakarta, CIMPA School UGM, February 27, 2020

Linear recurrence sequences,

Michel Waldschmidt

Sorbonne University, Paris
Institut de Mathématiques de Jussieu
http://www.imj-prg.fr/~michel.waldschmidt/

[^0]: http://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/LinRecSeqDiophAppxVI.pdf

