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1 Introduction to the results of F. Brown on
Zagier’s Conjecture

1.1 Zeta values: main Diophantine conjecture

Riemann zeta function

ζ(s) =
�

n≥1

1

ns

has been considered before Riemann by Euler for integer values of the variable
s, both positive and negative ones. Among the many results he proved are

ζ(2) =
π2

6
and

ζ(2n)

ζ(2)n
∈ Q

for any integer n ≥ 1.
A quite ambitious goal is to determine the algebraic relations among the

numbers
π, ζ(3), ζ(5), . . . , ζ(2n+ 1), . . .

The expected answer is disappointingly simple: it is widely believed that there
are no relations, which means that these numbers should be algebraically inde-
pendent:

Conjecture 1. For any n ≥ 0 and any nonzero polynomial P ∈ Z[T0, . . . , Tn],

P
�
π, ζ(3), ζ(5), . . . , ζ(2n+ 1)

�
�= 0.

If true, this property would mean that there is no interesting algebraic structure.
There are very few results on the arithmetic nature of these numbers, even

less on their independence: it is known that π is a transcendental numbers,
hence so are all ζ(2n), n ≥ 1. It is also known that ζ(3) is irrational (Apéry,
1978), and that infinitely many ζ(2n+1) are irrational (further sharper results
have been achieved by T. Rivoal and others – see [4] But so far it has not been
disproved that all these numbers lie in the ring Q[π2] (see the Open Problem
2).
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1.2 Multizeta values: Zagier’s conjecture

The situation changes drastically if we enlarge our set so as to include the so-
called Multiple Zeta Values (MZV, also called Polyzeta values, Euler-Zagier
numbers or multiple harmonic series):

ζ(s1, . . . , sk) =
�

n1>n2>···>nk≥1

1

ns1
1 · · ·nsk

k

which are defined for k, s1, . . . , sk positive integers with s1 ≥ 2. There are
plenty of relations between them, providing a rich algebraic structure.

We shall call k the length of the tuple s = (s1, . . . , sk) and |s| := s1+ · · ·+sk|
the weight of this tuple. There are 2p−2 tuples s of weight p with (s1 ≥ 2 and
sj ≥ 1 for 2 ≤ j ≤ k. The length k and the weight p are related by k + 1 ≤ p.

One easily gets quadratic relations between MZV when one multiplies two
such series: it is easy to express the product as a linear combination of MZV.
We shall study this phenomenon in detail, but we just give one easy example.
Splitting the set of (n,m) with n ≥ 1 and m ≥ 1 into three disjoint subsets with
respectively n > m, m > n and n = m, we deduce, for s ≥ 2 and s� ≥ 2,

�

n≥1

n−s
�

m≥1

m−s� =
�

n>m≥1

n−sm−s� +
�

m>n≥1

m−s�n−s +
�

n≥1

n−s−s� ,

which is the so–called Nielsen Reflexion Formula:

ζ(s)ζ(s�) = ζ(s, s�) + ζ(s�, s) + ζ(s+ s�)

for s ≥ 2 and s� ≥ 2. For instance,

ζ(2)2 = 2ζ(2, 2) + ζ(4).

Such expressions of the product of two zeta values as a linear combination of zeta
values, arising from the product of two series, will be called “stuffle relations”.

They show that the Q–vector space spanned by the multiple zeta values is
in fact an algebra: a product of linear combinations of numbers of the form ζ(s)
is again a linear combination of such numbers. Again, we stress that it has not
been disproved that this algebra is Q[π2]. One should keep in mind that the
following problem is still open when one is looking at the result on the formal
symbols representing the MZV: many results on these symbols are known, but
almost nothing is known on the kernel of the corresponding specialization which
maps a symbol onto the corresponding real number.

We denote by Z the Q–vector space spanned by the numbers ζ(s), for p ≥ 2
we denote by Zp the Q-subspace of Z spanned by the numbers ζ(s) with |s| = p,
for k ≥ 1 we denote by FkZ the Q-subspace of Z spanned by the numbers
ζ(s) with s of length ≤ k and finally for p ≥ k + 1 ≥ 2 we denote by FkZp

the Q-subspace of Z spanned by the numbers ζ(s) with |s| of weight p and
length ≤ k. The inclusion FkZp ⊂ FkZ ∩ Zp is plain, that there is equality is
only a conjecture. It is also conjectured but not proved that the weight defines
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a graduation on Z. It is a fact that the subspaces FkZ define an increasing
filtration of the algebra Z (see §5.4), but this filtration may be trivial: for
instance, it could happen that

F
k
Zp = Zp = Z = Q[π2]

for all k ≥ 1 and p ≥ 2. For p ≥ 2 the space F1Zp has dimension 1, it is spanned
by ζ(p). From Rivoal’s result we know that Zp �= Q for infinitely many odd p.

Open Problem 2. Is–it true that Z �= Q[π2]?

All know linear relations that express a multizeta ζ(s) as a linear combi-
nation of such numbers are homogeneous for the weight. The next conjecture
(which is still open) is that any linear relations among these numbers splits into
homogeneous linear relations.

Conjecture 3. The Q–subspaces Zp of R are in direct sum:

�

p≥2

Zp ⊂ R.

This is equivalent to saying that the weight defines a graduation (see §5.1) on
the algebra Z. A very special case of Conjecture 3 which is open is Z2∩Z3 = {0},
which means that the number ζ(3)/π2 should be irrational.

For p ≥ 1 we denote by dp the dimension of Zp with d1 = 0; we also set
d0 = 1. It is clear that d1 = 0 and that dp ≥ 1 because ζ(p) is not zero for
p ≥ 2. For p ≥ 1 and k ≥ 1, we denote by dp,k the dimension of FkZp/F

k−1Zp

with dp,1 = 1 for p ≥ 1. We also set d0,0 = 1 and d0,k = 0 for k ≥ 1, dp,0 = 0
for p ≥ 1. We have for all p ≥ 0

dp =
�

k≥0

dp,k (4)

and dp,k = 0 for k ≥ p ≥ 1.
We have d2 = 1, since Z2 is spanned by ζ(2). The relation ζ(2, 1) = ζ(3),

which is again due to Euler, shows that d3 = 1. Also the relations, essentially
going back to Euler,

ζ(3, 1) =
1

4
ζ(4), ζ(2, 2) =

3

4
ζ(4), ζ(2, 1, 1) = ζ(4) =

2

5
ζ(2)2

show that d4 = 1. These are the only values of dp which are known. It is not
yet proved that there exists a p ≥ 5 with dp ≥ 2. The upper bound ζ(5) ≤ 2
follows from the fact that there are 6 independent linear relations among the 8
numbers

ζ(5), ζ(4, 1), ζ(3, 2), ζ(3, 1, 1), ζ(2, 3), ζ(2, 2, 1), ζ(2, 1, 2), ζ(2, 1, 1, 1),

and Z5 is the Q-vector subspace of R spanned by ζ(2, 3) and ζ(3, 2):

ζ(5) = 4ζ(3, 2) + 6ζ(2, 3) = ζ(2, 1, 1, 1),
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ζ(4, 1) = −
1

5
ζ(3, 2) +

1

5
ζ(2, 3) = ζ(3, 1, 1),

ζ(2, 2, 1) = ζ(3, 2)

ζ(2, 1, 2) = ζ(2, 3).

The dimension of Z5 is 2 if ζ(2, 3)/ζ(3, 2) is irrational (which is conjectured, but
not yet proved), and 1 otherwise.

Similarly the Q–space Z6 has dimension ≤ 2, as it is spanned by ζ(2, 2, 2)
and ζ(3, 3):

ζ(6) =
16

3
ζ(2, 2, 2) = ζ(2, 1, 1, 1, 1),

ζ(5, 1) =
4

3
ζ(2, 2, 2)− ζ(3, 3) = ζ(3, 1, 1, 1),

ζ(4, 2) = −
16

9
ζ(2, 2, 2) + 2ζ(3, 3) = ζ(2, 2, 1, 1),

ζ(4, 1, 1) =
7

3
ζ(2, 2, 2)− 2ζ(3, 3),

ζ(3, 2, 1) = −
59

9
ζ(2, 2, 2) + 6ζ(3, 3),

ζ(2, 4) =
59

9
ζ(2, 2, 2)− 2ζ(3, 3) = ζ(2, 1, 2, 1),

ζ(2, 3, 1) =
34

9
ζ(2, 2, 2)− 3ζ(3, 3) = ζ(3, 1, 2),

ζ(2, 1, 2, 1) = ζ(3, 3).

Here is Zagier’s conjecture on the dimension dp of the Q-vector space Zp.

Conjecture 5. For p ≥ 3 we have

dp = dp−2 + dp−3.

Since d0 = 1, d1 = 0 and d2 = 1, this conjecture can be written

�

p≥0

dpX
p =

1

1−X2 −X3
·

It has been proved independently by Goncharov and Terasoma that the
numbers defined by the recurrence relation of Zagier’s Conjecture 5 with initial
values d0 = 1, d1 = 0 provide upper bounds for the actual dimension dp. This
shows that there are plenty of linear relations among the numbers ζ(s). For
each p from 2 to 11, we display the number of tuples s of length p which is
2p−2, the number dp given by Zagier’s Conjecture 5 and the difference which is
(a lower bound for) the number of linear relations among these numbers.
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p 2 3 4 5 6 7 8 9 10 11

2p−2 1 2 4 8 16 32 64 128 256 512

dp 1 1 1 2 2 3 4 5 7 9

2p−2 − dp 0 1 3 6 14 29 60 123 249 503

Since dp grows like a constant multiple of rp where r = 1.324 717 957 244 7 . . .
is the real root of x3 − x− 1, the difference is asymptotic to 2p−2.

According to Zagier’s Conjecture 5, a basis for Zp should be given as follows:
p = 2, d2 = 1, ζ(2);
p = 3, d3 = 1, ζ(3);
p = 4, d4 = 1, ζ(2, 2);
p = 5, d5 = 2, ζ(2, 3), ζ(3, 2);
p = 6, d6 = 2, ζ(2, 2, 2), ζ(3, 3);
p = 7, d7 = 3, ζ(2, 2, 3), ζ(2, 3, 2), ζ(3, 2, 2);
p = 8, d8 = 4, ζ(2, 2, 2, 3), ζ(2, 3, 3), ζ(3, 2, 3), ζ(3, 3, 2);
p = 9, d8 = 5, ζ(2, 2, 2, 3), ζ(2, 2, 3, 2), ζ(2, 3, 2, 2), ζ(3, 2, 2, 2)ζ(3, 3, 3).

For these small values of p, the dimension dp,k of FkZp/F
k−1Zp is conjec-

turally given by the number of elements in the box (p, k) of the next figure,
where conjectural generators of FkZp/F

k−1Zp should be given by the classes of
the following MZV:

k
p

2 3 4 5 6 7 8 9

1 ζ(2) ζ(3) ζ(4) ζ(5) ζ(6) ζ(7) ζ(8) ζ(9)

2 ζ(4, 1) ζ(5, 1)
ζ(6, 1)

ζ(5, 2)

ζ(7, 1)

ζ(6, 2)

ζ(8, 1)
ζ(7, 2)
ζ(6, 3)

3 ζ(6, 1, 1) ζ(6, 2, 1)

dp 1 1 1 2 2 3 4 5

The displayed elements should all be linearly independent over Q. The
numerical computations have been performed online thanks to the computer
program EZface [1].

1.3 Known results

A conjecture by M. Hoffman is that a basis of Zp over Q is given by the numbers
ζ(s1, . . . , sk), s1 + · · · + sk = p, where each si is either 2 or 3: the dimension
agrees with Conjecture 5.
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As a side product of his main recent results, F. Brown [5, 6] obtains:

Theorem 6. The numbers ζ(s1, . . . , sk) with k ≥ 1 and sj ∈ {2, 3} span the
Q–space Z of multizeta.

One of the auxiliary result which was need by Brown is a formula which he
conjectured and which has been established by D. Zagier (see §2).

1.4 Occurrences of powers of π2 in the set of generators

The space F1Z2n is spanned by π2n over Q. We now show that the numbers
π2n occur in the set of generators ζ(s) with sj ∈ {2, 3} by taking all sj equal to
2.

For s ≥ 2 and n ≥ 1, we use the notation {s}a for a string with n elements
all equal to s, that is {s}n = (s1, . . . , sn) with s1 = · · · = sn = s.

Proposition 7. For s ≥ 2,

�

n≥0

ζ
�
{s}n

�
xn =

�

j≥1

�
1 +

x

js

�
= exp




�

k≥1

(−1)k−1xkζ(sk)

k



 .

The proof will involve the infinite product

Fs(x) =
�

j≥1

�
1 +

x

js

�
.

Proof. Expanding Fs(x) as a series:

Fs(x) = 1 + x
�

j≥1

1

js
+ x2

�

j1>j2≥1

1

(j1j2)s
+ · · ·

= 1 + xζ(s) + x2ζ(s, s) + · · ·

yields the first equality in Proposition 7. For the second one, consider the
logarithmic derivative of Fs(x):

F �
s(x)

Fs(x)
=

�

j≥1

1

js + x
=

�

j≥1

1

js

�

k≥1

(−1)k−1 xk−1

js(k−1)

=
�

k≥1

(−1)k−1xk−1
�

j≥1

1

jsk
=

�

k≥1

(−1)k−1xk−1ζ(sk).

Since Fs(0) = ζ
�
{s}0

�
= 1, Proposition 7 follows by integration.

Lemma 8. We have

F2(−z2) =
sin(πz)

πz
·
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Proof. Lemma 8 follows from the product expansion of the sine function

sin z = z
∞�

n=1

�
1−

z2

n2π2

�
.

From Proposition 7 and Lemma 8 we deduce:

Corollary 9. For any n ≥ 0,

ζ
�
{2}n

�
=

π2n

(2n+ 1)!
·

Proof. From the Taylor expansion of the sine function

sin z =
�

k≥0

(−1)k
z2k+1

(2k + 1)!

and from Lemma 8 we infer

F2(−z2) =
sin(πz)

πz
=

�

k≥0

(−1)k
π2kz2k

(2k + 1)!
·

Corollary 9 now follows from Proposition 7.

This text can be downloaded on the internet at URL

http://www.math.jussieu.fr/∼miw/articles/pdf/MZV2011IMSc1.pdf
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