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Abstract

Schanuel’s conjecture asserts that for linearly independent
complex numbers x1, ..., xn, there are at least n algebraically
independent numbers among the 2n numbers

x1, . . . , xn, exp(x1), . . . , exp(xn).

This simple statement has many remarkable consequences ; we
will explain some of them. We will also present the state of the
art on this topic.

Note : We write exp z for ez.
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Linear independence over Q
Given complex numbers, we may ask whether they are linearly
independent over Q.

For instance given a number x, the linear independence of 1, x
over Q is equivalent to the irrationality of x.

As an example, the numbers

log 2, log 3, log 5, . . . log p, . . .

are linearly independent over Q : for bi ∈ Z,

b1 log p1 + · · ·+ bn log pn = 0 =⇒ b1 = · · · = bn = 0.

pb11 · · · pbnn = 1 =⇒ b1 = · · · = bn = 0.
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Linear independence over Q
The set of algebraic numbers is a subfield of C (sums and
products of algebraic numbers are algebraic).

Given complex numbers, we may ask whether they are linearly
independent over the field Q of algebraic numbers.

For instance, given a number x, the linear independence of
1, x over Q is equivalent to the transcendence of x.

It has been proved by A. Baker in 1968 that the numbers

1, log 2, log 3, log 5, . . . log p, . . .

are linearly independent over Q : for βi ∈ Q,

β0 + β1 log p1 + · · ·+ βn log pn = 0 =⇒ β0 = · · · = βn = 0.

4 / 87



Algebraic independence

Given complex numbers x1, . . . , xn, we may ask whether they
are algebraically independent over Q : this means that there is
no nonzero polynomial P ∈ Q[X1, . . . , Xn] such that
P (x1, . . . , xn) = 0.

This is equivalent to saying that x1, . . . , xn are algebraically
independent over Q : if a nonzero polynomial
Q ∈ Q[X1, . . . , Xn] satisfies Q(x1, . . . , xn) = 0, then by
taking for P the product of the “conjugates” of Q over Q one
gets a nonzero polynomial P ∈ Q[X1, . . . , Xn] such that
P (x1, . . . , xn) = 0.

For n = 1, x1 is algebraically independent over Q if and only if
x1 is transcendental over Q.
If x1, . . . , xn are algebraically independent, each of these
numbers xi is transcendental.
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Transcendence degree

The transcendence degree tr deg (K2/K1) of a field extension
K1 ⊂ K2 is the maximal number of elements in K2 which are
algebraically independent over K1. The transcendence degree
tr degK of a field K of characteristic zero is the
transcendence degree of K over Q.

Given complex numbers t1, . . . , tm, the maximal number of
algebraically independent elements in the set {t1, . . . , tm} is
the same as the transcendence degree of the field
Q(t1, . . . , tm) (over Q).

The transcendence degree of the field Q(t1, . . . , tm) is m if
and only if t1, . . . , tm are algebraically independent.

For m = 1, the transcendence degree of the field Q(x) is 0 if
x is algebraic, 1 if x is transcendental.

6 / 87



Addtivity of the transcendence degree

For K1 ⊂ K2 ⊂ K3, we have

tr deg (K3/K1) = tr deg (K3/K2) + tr deg (K2/K1).

Also K2 is an algebraic extension of K1 if and only if
tr deg (K2/K1) = 0.
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Lindemann–Weierstraß Theorem (1885)

Let β1, . . . , βn be algebraic numbers which are linearly
independent over Q. Then the numbers eβ1 , . . . , eβn are
algebraically independent over Q.

Ferdinand von Lindemann
(1852 – 1939)

Karl Weierstrass
(1815 - 1897)
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A.O. Gel’fond CRAS 1934
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Statement by Gel’fond (1934)

Let P (x1, x2, . . . , xn, y1, . . . , ym) be a polynomial with
rational integer coefficients and α1, α2, . . . , αn, β1, β2, . . . , βm
algebraic numbers, βi 6= 0, 1.
The equality

P (eα1 , eα2 , . . . , eαn , ln β1, ln β2, . . . , ln βm) = 0

is impossible ; the numbers α1, α2, . . . , αn, as well as the
numbers ln β1, ln β2, . . . , ln βm are linearly independent in the
rational numbers field.
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Statement by Gel’fond (1934)

This theorem includes as special cases, the theorems of
Hermite and Lindemann, the complete solution of Hilbert’s
problem, the transcendence of numbers eω1eω2 (where ω1 and
ω2 are algebraic numbers), the theorem on the relative
transcendence of the numbers e and π.
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Second statement by A.O. Gel’fond

The numbers

eω1eω2e
...
ωn−1e

ωn

and α
α
α3
...αm

2
1 ,

where ω1 6= 0, ω2, . . . , ωn and α1 6= 0, 1, α2 6= 0, 1, α3 6= 0,
. . . , αm are algebraic numbers, are transcendental numbers,
and among numbers of this form there is no nontrivial
algebraic relations with rational integer coefficients.

The proof of this result and a few other results on
transcendental numbers will be given in another journal.

Remark by Mathilde Herblot : the condition on α2 should be that it is

irrational.
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Schanuel’s Conjecture

If x1, . . . , xn are Q–linearly independent complex numbers,
then n at least of the 2n numbers x1, . . . , xn, ex1 , . . . , exn are
algebraically independent.

Equivalently :
If x1, . . . , xnare Q-linearly independent complex numbers, then

tr degQ
(
x1, . . . , xn, ex1 , . . . , exn

)
≥ n.
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Origin of Schanuel’s Conjecture

Course given by Serge Lang
(1927–2005) at Columbia in
the 60’s

S. Lang – Introduction to transcendental numbers,
Addison-Wesley 1966.
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Formal analogs

W.D. Brownawell
(was a student of Schanuel)

J. Ax’s Theorem (1968) :
Version of Schanuel’s
Conjecture for power series
over C
(and R. Coleman for power
series over Q)

Work by W.D. Brownawell
and K. Kubota on the elliptic
analog of Ax’s Theorem.
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Dale Brownawell and Stephen Schanuel
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Methods from logic

Ehud Hrushovski Boris Zilber Jonathan Kirby

“predimension” function (E. Hrushovski)

B. Zilber : “pseudoexponentiation”

Also : A. Macintyre, D.E. Marker, G. Terzo, A.J. Wilkie,
D. Bertrand. . .
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Daniel Bertrand

Daniel Bertrand,

Schanuel’s conjecture for
non-isoconstant elliptic curves
over function fields.

Model theory with applications to algebra and analysis. Vol. 1,
41–62, London Math. Soc. Lecture Note Ser., 349, Cambridge
Univ. Press, Cambridge, 2008.
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Lindemann–Weierstraß Theorem (1885)
According to the Lindemann–Weierstraß Theorem, Schanuel’s
Conjecture is true for algebraic x1, . . . , xn : in this case the
transcendence degree of the field Q

(
x1, . . . , xn, ex1 , . . . , exn

)
is n.

Ferdinand von Lindemann
(1852 – 1939)

Karl Weierstrass
(1815 - 1897)
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Transcendence degree ≤ n

If we select ex1 , . . . , exs to be algebraic (this means that the
xi’s are logarithms of algebraic numbers) xs+1, . . . , xn also to
be algebraic, then the transcendence degree of the field

Q(x1, . . . , xn, e
x1 , . . . , exn)

is the same as the transcendence degree of the field

Q(x1, . . . , xs, e
xs+1 , . . . , exn),

hence is ≤ n. The conjecture (A.O. Gel’fond) is that it is n.
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Baire and Lebesgue
René Baire Henri Léon Lebesgue
1874 – 1932 1875 – 1941

The set of tuples (x1, . . . , xn) in Cn such that the 2n numbers
x1, . . . , xn, ex1 , . . . , exn are algebraically independent
• is a Gδ set (countable intersection of dense open sets) in
Baire’s classification (a generic set for dynamical systems)
• and has full Lebesgue measure.

True for any transcendental function in place of the exponential

function.
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Mathematical genealogy

René Baire (1899)
|

Arnaud Denjoy (1909)
|

Charles Pisot (1938)
|

Yvette Amice (1965)
|

Jean Fresnel (1967)
|

Michel Waldschmidt (1972)

http://genealogy.math.ndsu.nodak.edu
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Joint work with Senthil Kumar and Thangadurai

Given two integers m and n with 1 ≤ m ≤ n, there exist
uncountably many tuples (x1, . . . , xn) in Rn such that
x1, . . . , xn and ex1 , . . . , exn are all Liouville numbers and the
transcendence degree of the field

Q(x1, . . . , xn, ex1 , . . . , exn)

is n+m.
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m = 0?

1 ≤ m ≤ n :

tr degQ(x1, . . . , xn, ex1 , . . . , exn) = n+m.

We do not know whether there are Liouville numbers x such
that ex is also a Liouville number and the two numbers x and
ex are algebraically dependent.
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Schanuel’s Conjecture for n = 1
For n = 1, Schanuel’s Conjecture is the Hermite–Lindemann
Theorem :

If x is a non–zero complex numbers, then one at
least of the two numbers x, ex is transcendental.

Equivalently, if x is a non–zero algebraic number, then ex is a
transcendental number.
Another equivalent statement is that if α is a non–zero
algebraic number and logα any non–zero logarithm of α, then
logα is a transcendental number.
Consequence : transcendence of numbers like

e, π, log 2, e
√
2.

Proof: take for x respectively

1, iπ, log 2,
√

2.
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Schanuel’s Conjecture for n = 2

For n = 2, Schanuel’s Conjecture is not yet known :

? If x1, x2 are Q–linearly independent complex
numbers, then among the 4 numbers x1, x2, ex1 , ex2 ,
at least two are algebraically independent.

A few consequences (open problems) :
With x1 = 1, x2 = iπ : algebraic independence of e and π.
With x1 = 1, x2 = e : algebraic independence of e and ee.
With x1 = log 2, x2 = (log 2)2 : algebraic independence of
log 2 and 2log 2.
With x1 = log 2, x2 = log 3 : algebraic independence of log 2
and log 3.
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Baker’s linear independence Theorem

Let λ1, . . . , λn be Q–linearly independent logarithms of
algebraic numbers. Then the numbers 1, λ1, . . . , λn are linearly
independent over the field Q of algebraic numbers.

Schanuel’s Conjecture deals with algebraic independence (over
Q or Q), Baker’s Theorem deals with linear independence.
Baker’s Theorem is a special case of Schanuel’s Conjecture.
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Serre’s reformulation of Baker’s Theorem

Denote by L the set of complex numbers λ for which eλ is
algebraic (set of logarithms of algebraic numbers). Hence L is
a Q-vector subspace of C.

J-P. Serre
(Bourbaki seminar) :
the injection of L into C
extends to a Q–linear map
ι : Q + L ⊗Q Q→ C, and
Baker’s Theorem means that
ι is an injective map.
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Algebraic independence

Towards Schanuel’s Conjecture :

Ch. Hermite, F. Lindemann, C.L. Siegel, A.O. Gel’fond,
Th. Schneider, A. Baker, S. Lang, W.D. Brownawell,
D.W. Masser, D. Bertrand, G.V. Chudnovsky, P. Philippon,
G. Wüstholz, Yu.V. Nesterenko, D. Roy. . .
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Algebraic independence : A.O. Gel’fond 1948

The two numbers 2
3√2 and

2
3√4 are algebraically

independent.

More generally, if α is an algebraic number, α 6= 0, α 6= 1 and
if β is an algebraic number of degree d ≥ 3, then two at least
of the numbers

αβ, αβ
2

, . . . , αβ
d−1

are algebraically independent.
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Algebraic independence

G.V. Chudnovsky (1978)

The numbers π and
Γ(1/4) = 3.625 609 908 2 . . .
are algebraically independent.

Also π and Γ(1/3) = 2.678 938 534 7 . . . are algebraically
independent.
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On the number eπ

Yu.V.Nesterenko (1996)
Algebraic independence of
Γ(1/4), π and eπ.
Also : Algebraic
independence of
Γ(1/3), π and eπ

√
3.

Corollary : The numbers π = 3.141 592 653 5 . . . and
eπ = 23.140 692 632 7 . . . are algebraically independent.

The proof uses modular functions.
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On the number eπ

Open problem : eπ is not a Liouville number :∣∣∣∣eπ − p

q

∣∣∣∣ > 1

qκ
·

Algebraic independence of π and eπ : Nesterenko

Chudnosvki : algebraic independence of π and Γ(1/4)

Nesterenko : Algebraic independence of π, Γ(1/4) and eπ

Open problem : algebraic independence of π and e.

Expected : e, π and eπ are algebraic independent.
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Easy consequence of Schanuel’s Conjecture

A consequence of Schanuel’s Conjecture is that the following
numbers are algebraically independent :

e + π, eπ, πe, eπ
2

, ee, ee
2

, . . . , ee
e

, . . . , ππ, ππ
2

, . . . ππ
π

. . .

log π, log(log 2), π log 2, (log 2)(log 3), 2log 2, (log 2)log 3 . . .

Exercise : prove this statement using Schanuel’s Conjecture
several times.
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Conjecture of algebraic independence of logarithms

of algebraic numbers

The most important special case of Schanuel’s Conjecture is :

Conjecture. Let λ1, . . . , λn be Q-linearly independent
complex numbers. Assume that the numbers eλ1 , . . . , eλn are
algebraic. Then the numbers λ1, . . . , λn are algebraically
independent over Q.

Not yet known that the transcendence degree is ≥ 2.
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Reformulation by D. Roy
Instead of taking logarithms of algebraic numbers and looking
for the algebraic independence relations, D. Roy fixes a
polynomial and looks at the points, with coordinates
logarithms of algebraic numbers, on the corresponding
hypersurface.

Denote by L the set of complex numbers λ for which eλ is
algebraic (logarithms of algebraic numbers). It is a Q–vector
subspace of C.

The Conjecture on (homogeneous) algebraic independence of
logarithms of algebraic numbers is equivalent to :

Conjecture (Roy). For any algebraic subvariety V of Cn

defined over the field Q of algebraic numbers, the set V ∩ Ln
is the union of the sets E ∩ Ln, where E ranges over the set
of vector subspaces of Cn which are contained in V .
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Points with coordinates logarithms of algebraic

numbers

Damien Roy : Grassmanian varieties.

Stéphane Fischler : orbit of an affine algebraic group G over Q
related to a linear representation of G on a vector space with a
Q–structure.
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Quadratic relations among logarithms of algebraic

numbers

One does not know yet how to prove that there is no
nontrivial quadratic relations among logarithms of algebraic
numbers, like

(logα1)(logα2) = log β.

Example: Assume eπ
2

= β is algebraic. Then

(−iπ)(iπ) = log β.

• Open problem : is the number eπ
2

transcendental ?
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eπ
2
, e and π (1972)

W.D. Brownawell
(was a student of Schanuel)

One at least of the two
following statements is true :
• the number eπ

2
is

transcendental
• the two numbers e and π
are algebraically independent.

Schanuel’s Conjecture implies that both statements are true !
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Homogeneous quadratic relations among

logarithms of algebraic numbers

Any homogeneous quadratic relation among logarithms of
algebraic numbers

(logα1)(logα4) = (logα2)(logα3)

should be trivial.

Example of a trivial relation : (log 2)(log 9) = (log 4)(log 3).

The Four Exponentials Conjecture can be stated as : any
quadratic relation (logα1)(logα4) = (logα2)(logα3) among
logarithms of algebraic numbers is trivial : either logα1/ logα2

is rational, or logα1/ logα3 is rational.
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S. Ramanujan,

C.L. Siegel, S. Lang, K. Ramachandra

Ramanujan : Highly composite numbers.

Alaoglu and Erdős (1944), Siegel.
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Four exponentials conjecture (special case)
Let t be a positive real number. Assume 2t and 3t are both
integers. Prove that t is an integer.

Set n = 2t. Then t = (log n)/(log 2) and

3t = et log 3 = e(logn)(log 3)/(log 2) = n(log 3)/(log 2).

Equivalently :
If n is a positive integer such that

n(log 3)/(log 2)

is an integer, then n is a power of 2 :

2k(log 3)/(log 2) = 3k.
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Damien Roy

Strategy suggested by D. Roy
in 1999, Journées
Arithmétiques, Roma :
Conjecture equivalent to
Schanuel’s Conjecture.
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Roy’s approach to Schanuel’s Conjecture (1999)
Let D denote the derivation

D =
∂

∂X0

+X1
∂

∂X1

over the ring C[X0, X1]. The height of a polynomial
P ∈ C[X0, X1] is defined as the maximum of the absolute
values of its coefficients.
Let k be a positive integer, y1, . . . , yk complex numbers which
are linearly independent over Q, α1, . . . , αk non-zero complex
numbers and s0, s1, t0, t1, u positive real numbers satisfying

max{1, t0, 2t1} < min{s0, 2s1}

and

max{s0, s1 + t1} < u <
1

2
(1 + t0 + t1).
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Roy’s Conjecture

Assume that, for any sufficiently large positive integer N ,
there exists a non-zero polynomial PN ∈ Z[X0, X1] with
partial degree ≤ N t0 in X0, partial degree ≤ N t1 in X1 and
height ≤ eN which satisfies∣∣∣∣∣(DkPN

)( k∑
j=1

mjyj,
k∏
j=1

αj
mj
)∣∣∣∣∣ ≤ exp(−Nu)

for any non-negative integers k, m1, . . . ,mk with k ≤ N s0 and
max{m1, . . . ,mk} ≤ N s1 . Then

tr degQ(y1, . . . , yk, α1, . . . , αk) ≥ k.
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Equivalence between Schanuel and Roy

Let (y, α) ∈ C× C×, and let s0, s1, t0, t1, u be positive real
numbers satisfying the inequalities of Roy’s Conjecture. Then
the following conditions are equivalent :
(a) The number αe−y is a root of unity.

(b) For any sufficiently large positive integer N , there exists a
nonzero polynomial QN ∈ Z[X0, X1] with partial degree
≤ N t0 in X0, partial degree ≤ N t1 in X1 and height
H(QN) ≤ eN such that∣∣(∂kQN)(my, αm)

∣∣ ≤ exp(−Nu)

for any k,m ∈ N with k ≤ N s0 and m ≤ N s1 .
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Further progress by D. Roy

Ga, Gm, Ga ×Gm.

Small value estimates for the additive group. Int. J. Number
Theory 6 (2010), 919–956.

Small value estimates for the multiplicative group. Acta Arith.
135 (2008), 357–393.

A small value estimate for Ga ×Gm. Mathematika 59 (2013),
333–363.
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Further developments
Roy’s Conjecture deals with polynomials vanishing on some
subsets of C× C× with multiplicity along the space associated
with the derivation ∂/∂X + Y ∂/∂Y .
D. Roy conjecture depends on parameters s0, s1, t0, t1, u in a
certain range. D. Roy proved that if his conjecture is true for
one choice of values of these parameters in the given range,
then Schanuel’s Conjecture is true, and that conversely, if
Schanuel’s Conjecture is true, then his conjecture is true for all
choices of parameters in the same range.

Nguyen Ngoc Ai Van
extended the range of these
parameters.
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Ubiquity of Schanuel’s Conjecture

Other contexts : p–adic numbers, Leopoldt’s Conjecture on
the p–adic rank of the units of an algebraic number field.
Non-vanishing of Regulators.
Non–degenerescence of heights.
Conjecture of B. Mazur on rational points.
Diophantine approximation on tori.

Dipendra Prasad Gopal Prasad
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Consequences of Schanuel’s Conjecture

Ram Murty Kumar Murty N. Saradha

Purusottam Rath, Ram Murty, Sanoli Gun
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Ram and Kumar Murty (2009)

Ram Murty Kumar Murty

Transcendental values of class group L–functions.
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The Rohrlich–Lang Conjecture

The Rohrlich–Lang Conjecture implies that for any q > 1, the
transcendence degree of the field generated by numbers

π, Γ(a/q) 1 ≤ a ≤ q, (a, q) = 1

is 1 + ϕ(q)/2.
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Variant of the Rohrlich–Lang Conjecture

Conjecture of S. Gun, R. Murty, P. Rath (2009) : for any
q > 1, the numbers

log Γ(a/q) 1 ≤ a ≤ q, (a, q) = 1

are linearly independent over the field Q of algebraic numbers.

A consequence is that for any q > 1, there is at most one
primitive odd character χ modulo q for which

L′(1, χ) = 0.
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Peter Bundschuh (1979)
.

For p/q ∈ Q with
0 < |p/q| < 1, the sum of the
series

∞∑
n=2

ζ(n)(p/q)n

is a transcendental number.

For p/q ∈ Q \ Z,
Γ′

Γ

(
p

q

)
+ γ

is transcendental.
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Peter Bundschuh (1979)
(P. Bundschuh) : As a consequence of Nesterenko’s Theorem,
the number

∞∑
n=0

1

n2 + 1
=

1

2
+
π

2
· eπ + e−π

eπ − e−π
= 2.076 674 047 4 . . .

is transcendental, while
∞∑
n=0

1

n2 − 1
=

3

4

(telescoping series).
Hence the number

∞∑
n=2

1

ns − 1

is transcendental over Q for s = 4. The transcendence of this
number for even integers s ≥ 4 would follow as a consequence
of Schanuel’s Conjecture.
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∑
n≥1A(n)/B(n)

Arithmetic nature of ∑
n≥1

A(n)

B(n)

where
A/B ∈ Q(X).

In case B has distinct zeroes, by decomposing A/B in simple
fractions one gets linear combinations of logarithms of
algebraic numbers (Baker’s method).
The example A(X)/B(X) = 1/X3 shows that the general
case is hard :

ζ(3) =
∑
n≥1

1

n3
·
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S.D. Adhikari, N. Saradha, T.N. Shorey and

R. Tijdeman (2001),
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Open problems

Nothing is known on the arithmetic nature of Catalan’s
constant

G =
∑
n≥1

(−1)n

(2n+ 1)2
= 0.915 965 594 177 219 015 054 603 5 . . .

nor of the value

Γ(1/5) = 4.590 843 711 998 803 053 204 758 275 929 152 0 . . .

of Euler’s Gamma function, nor of the value

ζ(5) = 1.036 927 755 143 369 926 331 365 486 457 034 1 . . .

of Riemann’s zeta function.
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Catalan’s Constant

Catalan’s constant is

G =
∑
n≥1

(−1)n

(2n+ 1)2

= 0.915 965 594 177 219 015 0 . . .

Is it an irrational number ?

Eugène Catalan
(1814 - 1894)
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Catalan’s constant, Dirichlet and Kronecker
Catalan’s constant is the value at s = 2 of the Dirichlet
L–function L(s, χ−4) associated with the Kronecker character

χ−4(n) =
(n

4

)
=


0 if n is even,

1 if n ≡ 1 (mod 4) ,

−1 if n ≡ −1 (mod 4) .

Johann Peter Gustav Lejeune Dirichlet Leopold Kronecker
1805 – 1859 1823 – 1891
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Catalan’s constant, Dedekind and Riemann
The Dirichlet L–function L(s, χ−4) associated with the
Kronecker character χ−4 is the quotient of the Dedekind zeta
function of Q(i) and the Riemann zeta function :

ζQ(i)(s) = L(s, χ−4)ζ(s) G = L(2, χ−4).

Julius Wilhelm Richard
Dedekind
1831 – 1916

Georg Friedrich Bernhard
Riemann
1826 – 1866
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S. Gun, R. Murty, P. Rath

Assuming Schanuel’s Conjecture, one at least of the two next
statements is true :
(i) The two numbers π and G are algebraically independent.
(ii) The number Γ2(1/4)/Γ2(3/4) is transcendental.
The multiple Gamma function of Barnes is defined by Γ0(z) = 1/z,
Γ1(z) = Γ(z),

Γn+1(z + 1) =
Γn+1(z)

Γn(z)
,

with Γn(1) = 1.
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Sum of values of a rational function
Work by S.D. Adhikari, N. Saradha, T.N. Shorey and
R. Tijdeman (2001),
Let P and Q be non-zero polynomials having rational
coefficients and degQ ≥ 2 + degP . Consider∑

n≥0Q(n)6=0

P (n)

Q(n)
·

Robert Tijdeman Sukumar Das Adhikari N. Saradha
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Telescoping series

Examples

∞∑
n=1

1

n(n+ 1)
= 1,

∞∑
n=0

1

n2 − 1
=

3

4
,

∞∑
n=0

(
1

4n+ 1
− 3

4n+ 2
+

1

4n+ 3
+

1

4n+ 4

)
= 0

∞∑
n=0

(
1

5n+ 2
− 3

5n+ 7
+

1

5n− 3

)
=

5

6
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Transcendental values

∞∑
n=0

1

(2n+ 1)(2n+ 2)
= log 2,

∞∑
n=1

1

n2
=
π2

6
,

∞∑
n=0

1

(n+ 1)(2n+ 1)(4n+ 1)
=
π

3

are transcendental.
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Transcendental values

∞∑
n=0

1

(6n+ 1)(6n+ 2)(6n+ 3)(6n+ 4)(6n+ 5)(6n+ 6)

=
1

4320
(192 log 2− 81 log 3− 7π

√
3)

∞∑
n=0

1

n2 + 1
=

1

2
+
π

2
· eπ + e−π

eπ − e−π
= 2.076 674 047 4 . . .

∞∑
n=0

(−1)n

n2 + 1
=

2π

eπ − e−π
= 0.272 029 054 982 . . .
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Leonardo Pisano (Fibonacci)

The Fibonacci sequence
(F n)n≥0 :

0, 1, 1, 2, 3, 5, 8, 13, 21,

34, 55, 89, 144, 233 . . .

is defined by

F 0 = 0, F 1 = 1,

F n = F n−1 +F n−2 (n ≥ 2).

Leonardo Pisano (Fibonacci)
(1170–1250)
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Encyclopedia of integer sequences (again)
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,
317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, . . .

The Fibonacci sequence is available
online
The On-Line Encyclopedia
of Integer Sequences

Neil J. A. Sloane

http://oeis.org/A000045
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Series involving Fibonacci numbers

The number
∞∑
n=1

1

F nF n+2

= 1

is rational, while

∞∑
n=0

1

F 2n
=

7−
√

5

2
,

∞∑
n=1

(−1)n

F nF n+1

=
1−
√

5

2

and
∞∑
n=1

1

F 2n−1 + 1
=

√
5

2

are irrational algebraic numbers.
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Series involving Fibonacci numbers

The numbers

∞∑
n=1

1

F 2
n

,
∞∑
n=1

1

F 4
n

,
∞∑
n=1

1

F 6
n

,

∞∑
n=1

1

F 2n−1
,

∞∑
n=1

(−1)n

F 2
n

,
∞∑
n=1

n

F 2n

,

∞∑
n=1

1

F 2n−1 + F 2n+1

,
∞∑
n=1

1

F 2n+1

are all transcendental
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Series involving Fibonacci numbers

Each of the numbers

∞∑
n=1

1

F n

,
∞∑
n=1

1

F n + F n+2

∑
n≥1

1

F 1F 2 · · ·F n

is irrational, but it is not known whether they are algebraic or
transcendental.

The first challenge here is to formulate a conjectural statement
which would give a satisfactory description of the situation.
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The Fibonacci zeta function

For <e(s) > 0,

ζF (s) =
∑
n≥1

1

F s
n

ζF (2), ζF (4), ζF (6) are
algebraically independent.

Iekata Shiokawa, Carsten
Elsner and Shun Shimomura
(2006) Iekata Shiokawa
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Periods : Maxime Kontsevich and Don Zagier

Periods,
Mathematics
unlimited—2001
and beyond,
Springer 2001,
771–808.

A period is a complex number whose real and imaginary parts
are values of absolutely convergent integrals of rational
functions with rational coefficients, over domains in Rn given
by polynomial inequalities with rational coefficients.
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The number π

Basic example of a period :

ez+2iπ = ez

2iπ =

∫
|z|=1

dz

z

π =

∫ ∫
x2+y2≤1

dxdy =

∫ ∞
−∞

dx

1− x2

=

∫ 1

−1

dx√
1− x2

= 2

∫ 1

−1

√
1− x2dx.
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Further examples of periods

√
2 =

∫
2x2≤1

dx

and all algebraic numbers.

log 2 =

∫
1<x<2

dx

x

and all logarithms of algebraic numbers.

π =

∫
x2+y2≤1

dxdy,

A product of periods is a period (subalgebra of C), but 1/π is
expected not to be a period.
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Numbers which are not periods

Problem (Kontsevich–Zagier) : To produce an explicit example
of a number which is not a period.

Several levels :

1 analog of Cantor : the set of periods is countable.
Hence there are real and complex numbers which are not
periods (“most” of them).
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Numbers which are not periods
2 analog of Liouville

Find a property which should be satisfied by all periods, and
construct a number which does not satisfies that property.

Masahiko Yoshinaga, Periods and elementary real numbers
arXiv:0805.0349

Compares the periods with hierarchy of real numbers induced
from computational complexities.
In particular, he proves that periods can be effectively
approximated by elementary rational Cauchy sequences.

As an application, he exhibits a computable real number which
is not a period.
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Numbers which are not periods

3 analog of Hermite
Prove that given numbers are not periods

Candidates : 1/π, e, Euler constant.

M. Kontsevich : exponential periods

“The last chapter, which is at a more advanced level and also more

speculative than the rest of the text, is by the first author only.”

78 / 87



Relations among periods

1 Additivity
(in the integrand and in the domain of integration)∫

a

b(
f(x) + g(x)

)
dx =

∫
a

b

f(x)dx+

∫
a

b

g(x)dx,

∫
a

b

f(x)dx =

∫
a

c

f(x)dx+

∫
c

b

f(x)dx.

2 Change of variables :
if y = f(x) is an invertible change of variables, then∫ f(b)

f(a)

F (y)dy =

∫
a

b

F
(
f(x)

)
f ′(x)dx.
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Relations among periods (continued)

3 Newton–Leibniz–Stokes Formula∫
a

b

f ′(x)dx = f(b)− f(a).
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Conjecture of Kontsevich and Zagier

A widely-held belief, based on a
judicious combination
of experience, analogy,
and wishful thinking,
is the following

Conjecture (Kontsevich–Zagier). If a period has two integral
representations, then one can pass from one formula to
another by using only rules 1 , 2 , 3 in which all functions
and domains of integration are algebraic with algebraic
coefficients.
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Conjecture of Kontsevich and Zagier (continued)

In other words, we do not expect any miraculous
cöıncidence of two integrals of algebraic functions
which will not be possible to prove using three simple
rules.
This conjecture, which is similar in spirit to the
Hodge conjecture, is one of the central conjectures
about algebraic independence and transcendental
numbers, and is related to many of the results and
ideas of modern arithmetic algebraic geometry and
the theory of motives.

Advice : if you wish to prove a number is transcendental, first
prove it is a period.
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Conjectures by S. Schanuel and A. Grothendieck

• Schanuel : if x1, . . . , xn are Q–linearly independent complex
numbers, then n at least of the 2n numbers x1, . . . , xn,
ex1 , . . . , exn are algebraically independent.

• Periods conjecture by Grothendieck : Dimension of the
Mumford–Tate group of a smooth projective variety.
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Motives

Y. André : generalization of
Grothendieck’s conjecture to
motives.

Case of 1–motives :
Elliptico-Toric Conjecture of
C. Bertolin.
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Francis Brown

Irrationality proofs for zeta values, moduli spaces and dinner parties
arXiv:1412.6508 http://www.ihes.fr/~brown/IrratModuliMotivesv8.pdf

Slides : http://www.ihes.fr/~brown/IrrationalitySlidesPrintable.pdf

A simple geometric construction on the moduli spaces M0,n of
curves of genus 0 with n ordered marked points is described
which gives a common framework for many irrationality proofs
for zeta values. This construction yields Apéry’s
approximations to ζ(2) and ζ(3), and for larger n, an infinite
family of small linear forms in multiple zeta values with an
interesting algebraic structure. It also contains a generalisation
of the linear forms used by Ball and Rivoal to prove that
infinitely many odd zeta values are irrational.
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Francis Brown
For k, s1, . . . , sk positive integers with s1 ≥ 2, we set
s = (s1, . . . , sk) and

ζ(s) =
∑

n1>n2>···>nk≥1

1

n1
s1 · · ·nksk

·

The Q–vector space Z spanned by the numbers ζ(s) is also a
Q–algebra. For n ≥ 2, denote by Zn the Q-subspace of Z
spanned by the real numbers ζ(s) where s has weight
s1 + · · ·+ sk = n.

The numbers ζ(s1, . . . , sk),
s1 + · · ·+ sk = n, where each
si is 2 or 3, span Zn over Q.
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Update: March 12, 2021

April 12 - 23, 2021: Hanoi (Vietnam) (online)
CIMPA School on Functional Equations: Theory, Practice and Interaction.

Introduction to Transcendental Number Theory 8

Conjectures.
Algebraic independence

of transcendental numbers

Michel Waldschmidt

Sorbonne Université IMJ-PRG
Institut de Mathématiques de Jussieu – Paris Rive Gauche

http://www.imj-prg.fr/~michel.waldschmidt
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