Some of the most famous open problems in number theory

Michel Waldschmidt

Sorbonne Université
Institut de Mathématiques de Jussieu - Paris Rive Gauche http://www.imj-prg.fr/~michel.waldschmidt

Abstract

Problems in number theory are sometimes easy to state and often very hard to solve. We survey some of them.

Extended abstract

We start with prime numbers. The twin prime conjecture and the Goldbach conjecture are among the main challenges.

The largest known prime numbers are Mersenne numbers.
Are there infinitely many Mersenne (resp. Fermat) prime numbers?
Mersenne prime numbers are also related with perfect numbers, a problem considered by Euclid and still unsolved.

One the most famous open problems in mathematics is Riemann's hypothesis, which is now more than 150 years old.

Extended abstract (continued)

Diophantine equations conceal plenty of mysteries. Fermat's Last Theorem has been proved by A. Wiles, but many more questions are waiting for an answer. We discuss a conjecture due to S.S. Pillai, as well as the $a b c$-Conjecture of Oesterlé-Masser.

Kontsevich and Zagier introduced the notion of periods and suggested a far reaching statement which would solve a large number of open problems of irrationality and transcendence.

Finally we discuss open problems (initiated by E. Borel in 1905 and then in 1950) on the decimal (or binary) expansion of algebraic numbers. Almost nothing is known on this topic.

Hilbert's 8th Problem

August 8, 1900

David Hilbert (1862-1943)

Second International Congress of Mathematicians in Paris.

Twin primes,

Goldbach's Conjecture,

Riemann Hypothesis

The seven Millennium Problems

The Clay Mathematics Institute (CMI) Cambridge, Massachusetts http://www.claymath.org

7 million US\$ prize fund for the solution to these problems, with 1 million US\$ allocated to each of them.

Paris, May 24, 2000:
Timothy Gowers, John Tate and Michael Atiyah.

- Birch and Swinnerton-Dyer Conjecture
- Hodge Conjecture
- Navier-Stokes Equations
- P vs NP
- Poincaré Conjecture
- Riemann Hypothesis
- Yang-Mills Theory

Numbers

Numbers $=$ real or complex numbers \mathbb{R}, \mathbb{C}.

Natural integers: $\mathbb{N}=\{0,1,2, \ldots\}$.

Rational integers: $\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$.

Prime numbers

Numbers with exactly two divisors.
There are 25 prime numbers less than 100:

$$
2,3,5,7,11,13,17,19,23,29,31,37,41
$$

$$
43,47,53,59,61,67,71,73,79,83,89,97
$$

The On-Line Encyclopedia of Integer Sequences
http://oeis.org/A000040

Neil J. A. Sloane

Composite numbers

Numbers with more than two divisors:
$4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,26,27, \ldots$
http://oeis.org/A002808
The composite numbers: numbers n of the form $x \cdot y$ for $x>1$ and $y>1$.
There are 73 composite numbers less than 100 .

Euclid of Alexandria

(about 325 BC - about 265 BC)

Given any finite collection p_{1}, \ldots, p_{n} of primes, there is one prime which is not in this collection.

Euclid numbers primorial primes, factorial primes

Set $p_{n}^{\#}=2 \cdot 3 \cdot 5 \cdots p_{n}$.
Euclid numbers are the numbers of the form $p_{n}^{\#}+1$.
$p_{n}^{\#}+1$ is prime for $n=0,1,2,3,4,5,11, \ldots$ (sequence A014545 in the OEIS).
The largest known prime Euclid number is $p_{33237}^{\#}+1$ with 169966 digits.
Kummer numbers are the numbers of the form $p_{n}^{\#}-1$. $p_{n}^{\#}-1$ is prime for $n=2,3,5,6,13,24, \ldots$ (sequence A057704 in the OEIS).
Primorial primes are prime numbers of the form $p_{n}^{\#} \pm 1$. The largest known is $p_{3267113}^{\#}-1$ with 1418398 digits.
Factorial primes are prime numbers of the form $n!+1$. The largest known is $422429!+1$ with 2193027 digits (February 2022).

Largest explicitly known prime numbers

January 2019: $2^{82589933}-1 \quad$ decimal digits $24,862,048$
January 2018: $2^{77232917}-1$ decimal digits 23249425
January 2016: $2^{74207281}-1 \quad$ decimal digits 22338618
February 2013: $2^{57885161}-1$ decimal digits 17425170
August 2008: $2^{43112609}-1 \quad$ decimal digits 12978189
June 2009: $2^{42643801}-1 \quad$ decimal digits 12837064
September 2008: $2^{37156667}-1 \quad$ decimal digits 11185272

Large prime numbers

One knows (as of February 2023)

- 8 prime numbers with 10^{8} decimal digits
- 1821 prime numbers with more than 10^{7} decimal digits
- 3211 prime numbers with more than 10^{6} decimal digits

List of the 5000 largest explicitly known prime numbers:
http://primes.utm.edu/largest.html

Mersenne primes

If a number of the form
$a^{k}-1$ is prime, then $a=2$ and k is prime.

A prime number of the form $2^{p}-1$ is called a Mersenne prime.

Marin Mersenne 1588-1648
http://www.mersenne.org/

Mersenne prime numbers

The smallest Mersenne primes are

$$
3=2^{2}-1, \quad 7=2^{3}-1 \quad 31=2^{5}-1, \quad 127=2^{7}-1
$$

51 Mersenne primes are known, among them 9 of the 12 largest explicitly known primes.

The ninth currently known largest explicit prime is $10223 \cdot 2^{31172165}+1$, it has 9383761 decimal digits.

Are there infinitely many Mersenne primes?

Mersenne prime numbers

In 1536, Hudalricus Regius noticed that $2^{11}-1=2047$ is not a prime number: $2047=23 \cdot 89$.

In the preface of Cogitata Physica-Mathematica (1644), Mersenne claimed that the numbers $2^{n}-1$ are prime for

$$
n=2,3,5,7,13,17,19,31,67,127 \quad \text { and } 257
$$

and that they are composite for all other values of $n<257$.
The correct list is

$$
2,3,5,7,13,17,19,31,61,89,107 \text { and } 127
$$

http://oeis.org/A000043

Perfect numbers

A number is called perfect if it is equal to the sum of its divisors, excluding itself.
For instance 6 is the sum $1+2+3$, and the divisors of 6 are $1,2,3$ and 6.
In the same way, the divisors of 28 are $1,2,4,7,14$ and 28.
The sum $1+2+4+7+14$ is 28 , hence 28 is perfect.
Notice that $6=2 \cdot 3$ and 3 is a Mersenne prime $2^{2}-1$.
Also $28=4 \cdot 7$ and 7 is a Mersenne prime $2^{3}-1$.
Other perfect numbers:

$$
496=16 \cdot 31 \quad \text { with } \quad 16=2^{4}, \quad 31=2^{5}-1
$$

$$
8128=64 \cdot 127 \quad \text { and } \quad 64=2^{6}, \quad 127=2^{7}-1, \ldots
$$

Perfect numbers

Euclid, Elements, Book IX: numbers of the form $2^{p-1} \cdot\left(2^{p}-1\right)$ with $2^{p}-1$ a (Mersenne) prime (hence p is prime) are perfect.

Euler (1747): all even perfect numbers are of this form.

Sequence of perfect numbers:

$$
6,28,496,8128,33550336, \ldots
$$

http://oeis.org/A000396

Are there infinitely many even perfect numbers?

Do there exist odd perfect numbers?

Fermat numbers

Fermat numbers are the numbers $F_{n}=2^{2^{n}}+1$.

Pierre de Fermat
(1601-1665)

Fermat primes

$F_{0}=3, F_{1}=5, F_{2}=17, F_{3}=257, F_{4}=65537$ are prime http://oeis.org/A000215

They are related with the construction of regular polygons with ruler and compass.

Fermat suggested in 1650 that all F_{n} are prime

Euler: $F_{5}=2^{32}+1$ is divisible by 641

$$
4294967297=641 \cdot 6700417
$$

Fermat primes

$F_{5}=2^{32}+1$ is divisible by 641

$$
641=5^{4}+2^{4}=5 \cdot 2^{7}+1
$$

$$
\begin{aligned}
& 5^{4} \equiv-2^{4}(\bmod 641) \\
& 5 \cdot 2^{7} \equiv-1(\bmod 641) \\
& 5^{4} 2^{28} \equiv 1(\bmod 641) \\
& 2^{32} \equiv-1(\bmod 641)
\end{aligned}
$$

Are there infinitely many Fermat primes? Only five are known.

Twin primes

Conjecture: there are infinitely many primes p such that $p+2$ is prime.

Examples: 3, 5, $\quad 5,7, \quad 11,13, \quad 17,19, \ldots$
More generally: is every even integer (infinitely often) the difference of two primes? of two consecutive primes?

Largest known example of twin primes (found in Sept. 2016) with 388342 decimal digits:

$$
2996863034895 \cdot 2^{1290000} \pm 1
$$

http://primes.utm.edu/

Conjecture (Hardy and Littlewood, 1915)

Twin primes

The number of primes $p \leq x$ such that $p+2$ is prime is

$$
\sim C \frac{x}{(\log x)^{2}}
$$

where

$$
C=\prod_{p \geq 3} \frac{p(p-2)}{(p-1)^{2}} \sim 0.66016 \ldots
$$

Circle method

Srinivasa Ramanujan
(1887-1920)

G.H. Hardy
(1877-1947)

J.E. Littlewood
(1885-1977)

Hardy, ICM Stockholm, 1916
Hardy and Ramanujan (1918): partitions
Hardy and Littlewood (1920-1928):
Some problems in Partitio Numerorum

Small gaps between primes

In 2013, Yitang Zhang proved that infinitely many gaps between prime numbers do not exceed $70 \cdot 10^{6}$.

http://en.wikipedia.org/wiki/Prime_gap
Polymath8a, July 2013: 4680
James Maynard, November 2013: 576
Polymath8b, December 2014: 246
EMS Newsletter December 2014 issue 94 p. 13-23.

No large gaps between primes

Bertrand's Postulate. There is always a prime between n and $2 n$.
Chebychev (1851):

$$
0.8 \frac{x}{\log x} \leq \pi(x) \leq 1.2 \frac{x}{\log x}
$$

Legendre question (1808)

Question: Is there always a prime between n^{2} and $(n+1)^{2}$?

Adrien-Marie Legendre 1752-1834

Louis Legendre 1755-1797

This caricature by J-L Boilly is the only known portrait of Adrien-Marie Legendre.
Louis Legendre was an active participant in the French Revolution.
https://mathshistory.st-andrews.ac.uk/Biographies/Legendre/ Peter Duren. Changing Faces: The Mistaken Portrait of Legendre. www.ams.org/notices/200911/rtx091101440p.pdf

Leonhard Euler (1707-1783)


```
For \(s>1\),
\[
\zeta(s)=\prod_{p}\left(1-p^{-s}\right)^{-1}=\sum_{n \geq 1} \frac{1}{n^{s}} .
\]
```

For $s=1$:

$$
\sum_{p} \frac{1}{p}=+\infty
$$

Johann Carl Friedrich Gauss (1777-1855)

Let p_{n} be the n-th prime.

Gauss introduces

$$
\pi(x)=\sum_{p \leq x} 1
$$

He observes numerically

$$
\pi(t+\mathrm{d} t)-\pi(t) \sim \frac{\mathrm{d} t}{\log t}
$$

Define the density $\mathrm{d} \pi$ by

$$
\pi(x)=\int_{0}^{x} \mathrm{~d} \pi(t)
$$

Problem: estimate from above

$$
E(x)=\left|\pi(x)-\int_{0}^{x} \frac{\mathrm{~d} t}{\log t}\right| .
$$

Plot

Riemann 1859

Critical strip, critical line

$$
\begin{aligned}
& \zeta(s)=0 \\
& \text { with } 0<\Re e(s)<1 \\
& \text { implies } \\
& \Re e(s)=1 / 2 .
\end{aligned}
$$

Riemann Hypothesis

Certainly one would wish for a stricter proof here; I have meanwhile temporarily put aside the search for this after some fleeting futile attempts, as it appears unnecessary for the next objective of my investigation.

Über die Anzahl der Primzahlen unter einer gegebenen Grösse.
(Monatsberichte der Berliner Akademie, November 1859)
Bernhard Riemann's Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass', herausgegeben under Mitwirkung von Richard Dedekind, von Heinrich Weber. (Leipzig: B. G. Teubner 1892). 145-153.
http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Zeta/

Small Zeros of Zeta

Infinitely many zeroes on the critical line: Hardy 1914

First 10^{13} zeroes:
Gourdon - Demichel

Riemann Hypothesis

Riemann Hypothesis is equivalent to :

$$
E(x) \leq C x^{1 / 2} \log x
$$

for the remainder

$$
E(x)=\left|\pi(x)-\int_{0}^{x} \frac{\mathrm{~d} t}{\log t}\right|
$$

Let $\operatorname{Even}(N)$ (resp. $\operatorname{Odd}(N))$ denote the number of positive integers $\leq N$ with an even (resp. odd) number of prime factors, counting multiplicities. Riemann Hypothesis is also equivalent to

$$
|\operatorname{Even}(N)-\operatorname{Odd}(N)| \leq C N^{1 / 2}
$$

Prime Number Theorem: $\pi(x) \simeq x / \log x$

Jacques Hadamard
(1865-1963)

Charles de la Vallée Poussin
(1866-1962)

1896: $\quad \zeta(1+i t) \neq 0$ for $t \in \mathbb{R} \backslash\{0\}$.

Prime Number Theorem: $p_{n} \simeq n \log n$

Elementary proof of the Prime Number Theorem (1949)

Goldbach's Conjecture

Christian Goldbach (1690-1764)

Leonhard Euler
(1707-1783)

Letter of Goldbach to Euler, 1742: any integer ≥ 6 is sum of 3 primes.

Euler: Equivalent to :

Any even integer greater than 2 can be expressed as the sum of two primes.

Proof:
$2 n=p+p^{\prime}+2 \Longleftrightarrow 2 n+1=p+p^{\prime}+3$.

Sums of two primes

$$
\begin{array}{cc}
4=2+2 & 6=3+3 \\
8=5+3 & 10=7+3 \\
12=7+5 & 14=11+3 \\
16=13+3 & 18=13+5 \\
20=17+3 & 22=19+3 \\
24=19+5 & 26=23+3
\end{array}
$$

Circle method

Hardy and Littlewood

Ivan Matveevich Vinogradov (1891-1983)

Every sufficiently large odd integer is the sum of at most three primes.

Sums of primes

Theorem - I.M. Vinogradov (1937)
Every sufficiently large odd integer is a sum of three primes.
Theorem - Chen Jing-Run (1966)
Every sufficiently large even integer is a sum of a prime and an integer that is either a prime or a product of two primes.

Ivan Matveevich Vinogradov (1891-1983)

Sums of primes

- 27 is neither prime nor a sum of two primes
- Weak (or ternary) Goldbach Conjecture: every odd integer ≥ 7 is the sum of three odd primes.
- Terence Tao, February 4, 2012, arXiv:1201.6656:
Every odd number greater than 1 is the sum of at most five primes.

Ternary Goldbach Problem

Theorem - Harald Helfgott (2013).
Every odd number greater than 5 can be expressed as the sum of three primes.
Every odd number greater than 7 can be expressed as the sum of three odd primes.

Earlier results due to Hardy and Littlewood (1923), Vinogradov (1937), Deshouillers et al. (1997), and more recently Ramaré, Kaniecki, Tao ...

Lejeune Dirichlet (1805-1859)

Prime numbers in arithmetic progressions.

$$
a, a+q, a+2 q, a+3 q, \ldots
$$

1837:

For $\operatorname{gcd}(a, q)=1$,

$$
\sum_{p \equiv a} \frac{1}{(\bmod q)}=+\infty
$$

Arithmetic progressions: van der Waerden

Theorem - B.L. van der Waerden (1927).
If the integers are coloured using finitely many colours, then one of the colour classes must contain arbitrarily long arithmetic progressions.

Arithmetic progressions: Erdős and Turán

Conjecture - P. Erdős and P. Turán (1936).
Any set of positive integers for which the sum of the reciprocals diverges should contain arbitrarily long arithmetic progressions.

Arithmetic progressions: E. Szemerédi

Theorem - E. Szemerédi (1975).
Any subset of the set of integers of positive density contains arbitrarily long arithmetic progressions.

Primes in arithmetic progression

Theorem - B. Green and T. Tao (2004).
The set of prime numbers contains arbitrarily long arithmetic progressions.

Further open problems on prime numbers

Euler: are there infinitely many primes of the form $x^{2}+1$? also a problem of Hardy - Littlewood and of Landau. Conjecture of Bunyakovsky: prime values of one polynomial. Schinzel hypothesis H : simultaneous prime values of several polynomial.
Bateman - Horn conjecture: quantitative refinement (includes the density of twin primes).

Viktor Bunyakovsky

$$
(1804-1889)
$$

Andrzej Schinzel
(1937-2021)

Diophantine Problems

Diophantus of Alexandria (250 ± 50)

Fermat's Last Theorem $x^{n}+y^{n}=z^{n}$

Pierre de Fermat 1601-1665

Andrew Wiles 1953 -

Solution in June 1993 completed in 1994

S.Sivasankaranarayana Pillai (1901-1950)

Collected works of S. S. Pillai, ed. R. Balasubramanian and R. Thangadurai, 2010.
http://www.geocities.com/thangadurai_kr/PILLAI.html

Square, cubes. . .

- A perfect power is an integer of the form a^{b} where $a \geq 1$ and $b>1$ are positive integers.
- Squares:
$1,4,9,16,25,36,49,64,81,100,121,144,169,196, \ldots$
- Cubes:
$1,8,27,64,125,216,343,512,729,1000,1331, \ldots$
- Fifth powers:
$1,32,243,1024,3125,7776,16807,32768, \ldots$

Perfect powers

$1,4,8,9,16,25,27,32,36,49,64,81,100,121,125$,
$128,144,169,196,216,225,243,256,289,324,343$,
$361,400,441,484,512,529,576,625,676,729,784, \ldots$

Neil J. A. Sloane's encyclopaedia http://oeis.org/A001597

Consecutive elements in the sequence of perfect

 powers- Difference 1: $(8,9)$
- Difference 2: $(25,27), \ldots$
- Difference 3: $(1,4),(125,128), \ldots$
- Difference 4: $(4,8),(32,36),(121,125), \ldots$
- Difference 5: $(4,9),(27,32), \ldots$

Two conjectures

Subbayya Sivasankaranarayana Pillai

Eugène Charles Catalan (1814-1894)
(1901-1950)

- Catalan's Conjecture: In the sequence of perfect powers, 8,9 is the only example of consecutive integers.
- Pillai's Conjecture: In the sequence of perfect powers, the difference between two consecutive terms tends to infinity.

Pillai's Conjecture:

- Pillai's Conjecture: In the sequence of perfect powers, the difference between two consecutive terms tends to infinity.
- Alternatively: Let k be a positive integer. The equation

$$
x^{p}-y^{q}=k
$$

where the unknowns x, y, p and q take integer values, all ≥ 2, has only finitely many solutions (x, y, p, q).

Pillai's conjecture

Pillai, S. S. - On the equation $2^{x}-3^{y}=2^{X}+3^{Y}$, Bull.
Calcutta Math. Soc. 37, (1945). 15-20.
I take this opportunity to put in print a conjecture which I gave during the conference of the Indian Mathematical Society held at Aligarh.
Arrange all the powers of integers like squares, cubes etc. in increasing order as follows:
$1,4,8,9,16,25,27,32,36,49,64,81,100,121,125,128, \ldots$
Let a_{n} be the n-th member of this series so that $a_{1}=1$, $a_{2}=4, a_{3}=8, a_{4}=9$, etc. Then
Conjecture:

$$
\liminf \left(a_{n}-a_{n-1}\right)=\infty
$$

Results

P. Mihăilescu, 2002.

Catalan was right: the equation $x^{p}-y^{q}=1$ where the unknowns x, y, p and q take integer values, all ≥ 2, has only one solution $(x, y, p, q)=(3,2,2,3)$.

Previous partial results: J.W.S. Cassels, R. Tijdeman, M. Mignotte,...

Higher values of k

There is no value of $k>1$ for which one knows that Pillai's equation $x^{p}-y^{q}=k$ has only finitely many solutions.

Pillai's conjecture as a consequence of the $a b c$ conjecture:

$$
\left|x^{p}-y^{q}\right| \geq c(\epsilon) \max \left\{x^{p}, y^{q}\right\}^{\kappa-\epsilon}
$$

with

$$
\kappa=1-\frac{1}{p}-\frac{1}{q}
$$

The $a b c$ Conjecture

- For a positive integer n, we denote by

$$
R(n)=\prod_{p \mid n} p
$$

the radical or the square free part of n.

- Conjecture (abc Conjecture). For each $\varepsilon>0$ there exists $\kappa(\varepsilon)$ such that, if a, b and c in $\mathbb{Z}_{>0}$ are relatively prime and satisfy $a+b=c$, then

$$
c<\kappa(\varepsilon) R(a b c)^{1+\varepsilon} .
$$

Poster with Razvan Barbulescu - Archives HAL

The $a b c$ conjecture and some of its consequences

https://hal.archives-ouvertes.fr/hal-01626155

The abc Conjecture of ©sterlé and Masser

The $a b c$ Conjecture resulted from a discussion between J. Esterlé and D. W. Masser around 1980.
M.W. On the $a b c$ conjecture and some of its consequences. Mathematics in 21st Century, 6th World Conference, Lahore, March 2013,
(P. Cartier, A.D.R. Choudary, M. Waldschmidt Editors),

Springer Proceedings in Mathematics and Statistics 98 (2015), 211-230.

Shinichi Mochizuki

INTER-UNIVERSAL TEICHMÜLLER THEORY IV:
LOG-VOLUME COMPUTATIONS AND SET-THEORETIC FOUNDATIONS by
Shinichi Mochizuki

Inter-universal Geometer

E-mail:
motizuki@kurims. kyoto-u. ac. jp

Shinichi Mochizuki

Professor
Research Institute
for Mathematical Sciences
Kyoto University
Kyoto 606-8502, JAPAN

\square

Cunatis Now

Beal Equation $x^{p}+y^{q}=z^{r}$

Assume

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1
$$

and x, y, z are relatively prime
Only 10 solutions (up to obvious symmetries) are known

$$
1+2^{3}=3^{2}, \quad 2^{5}+7^{2}=3^{4}, \quad 7^{3}+13^{2}=2^{9}, \quad 2^{7}+17^{3}=71^{2},
$$

$$
3^{5}+11^{4}=122^{2}, \quad 17^{7}+76271^{3}=21063928^{2}
$$

$$
1414^{3}+2213459^{2}=65^{7}, \quad 9262^{3}+15312283^{2}=113^{7}
$$

$$
43^{8}+96222^{3}=30042907^{2}, \quad 33^{8}+1549034^{2}=15613^{3} .
$$

Beal Conjecture and prize problem

"Fermat-Catalan" Conjecture (H. Darmon and A. Granville) : the set of solutions (x, y, z, p, q, r) to $x^{p}+y^{q}=z^{r}$ with $\operatorname{gcd}(x, y, z)=1$ and $(1 / p)+(1 / q)+(1 / r)<1$ is finite.

Consequence of the $a b c$ Conjecture. Hint:

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1 \quad \text { implies } \quad \frac{1}{p}+\frac{1}{q}+\frac{1}{r} \leq \frac{41}{42}
$$

Conjecture of R. Tijdeman, D. Zagier and A. Beal : there is no solution to $x^{p}+y^{q}=z^{r}$ where $\operatorname{gcd}(x, y, z)=1$ and each of p, q and r is ≥ 3.

Beal conjecture and prize problem

For a proof or a
counterexample published in a refereed journal, A. Beal initially offered a prize of US \$ 5,000 in 1997, raising it to \$ 50,000 over ten years, but has since raised it to US \$ 1,000,000.

R. D. Mauldin, A generalization of Fermat's last theorem: the Beal conjecture and prize problem, Notices Amer. Math. Soc., 44 (1997), pp. 1436-1437.
http://www.ams.org/profession/prizes-awards/ams-supported/beal-prize

Waring's Problem

In 1770, a few months before J.L. Lagrange solved a conjecture of Bachet and Fermat by proving that every positive integer is the sum of at most four squares of integers, E. Waring wrote:

Edward Waring (1736-1798)
"Every integer is a cube or the sum of two, three, ... nine cubes; every integer is also the square of a square, or the sum of up to nineteen such; and so forth. Similar laws may be affirmed for the correspondingly defined numbers of quantities of any like degree."

Theorem. (D. Hilbert, 1909)

For each positive integer k, there exists an integer $g(k)$ such that every positive integer is a sum of at most $g(k) k$-th powers.

Waring's function $g(k)$

- Waring's function g is defined as follows: For any integer $k \geq 2, g(k)$ is the least positive integer s such that any positive integer N can be written $x_{1}^{k}+\cdots+x_{s}^{k}$.
- Conjecture (The ideal Waring's Theorem): For each integer $k \geq 2$,

$$
g(k)=2^{k}+\left[(3 / 2)^{k}\right]-2
$$

- This is true for $3 \leq k \leq 471600000$, and (K. Mahler) also for all sufficiently large k.

Evaluations of $g(k)$ for $k=2,3,4, \ldots$

$$
\begin{array}{lcc}
\mathrm{g}(2)=4 & \text { Lagrange } & 1770 \\
\mathrm{~g}(3)=9 & \text { Kempner } & 1912 \\
\mathrm{~g}(4)=19 & \text { Balusubramanian, Dress, Deshouillers } & 1986 \\
\mathrm{~g}(5)=37 & \text { Chen Jingrun } & 1964 \\
\mathrm{~g}(6)=73 & \text { Pillai } & 1940 \\
\mathrm{~g}(7)=143 & \text { Dickson } & 1936
\end{array}
$$

$n=x_{1}^{4}+\cdots+x_{g}^{4}: g(4)=19$

Any positive integer is the sum of at most 19 biquadrates R. Balasubramanian, J-M. Deshouillers,
F. Dress
(1986).

$$
79=4 \times 2^{4}+15 \times 1^{5} .
$$

Waring's Problem and the $a b c$ Conjecture

S. David: the ideal Waring

Theorem
$g(k)=2^{k}+\left[(3 / 2)^{k}\right]-2$
follows from an explicit solution of the $a b c$
Conjecture.

Baker's explicit $a b c$ conjecture

Alan Baker

Shanta Laishram

Waring's function $G(k)$

- Waring's function G is defined as follows: For any integer $k \geq 2, G(k)$ is the least positive integer such that any sufficiently large positive integer N can be written $x_{1}{ }^{k}+\cdots+x_{s}{ }^{k}$.
- $G(k) \leq g(k)$.
- $G(k)$ is known only in two cases: $G(2)=4$ and $G(4)=16$
$G(2)=4$

Joseph-Louis Lagrange (1736-1813)

Solution of a conjecture of Bachet and Fermat in 1770:

Every positive integer is the sum of at most four squares of integers.

No integer congruent to -1 modulo 8 can be a sum of three squares of integers.
$G(k)$
Kempner (1912) $G(4) \geq 16$
$16^{m} \cdot 31$ needs at least 16 biquadrates
Hardy Littlewood (1920) $G(4) \leq 21$
circle method, singular series
Davenport, Heilbronn, Esterman (1936) $G(4) \leq 17$
Davenport (1939) $G(4)=16$
Yu. V. Linnik (1943) $g(3)=9, G(3) \leq 7$
Other estimates for $G(k), k \geq 5$: Davenport, K. Sambasiva Rao, V. Narasimhamurti, K. Thanigasalam, R.C. Vaughan,...

Real numbers: rational, irrational

Rational numbers:

a / b with a and b rational integers, $b>0$.

Irreducible representation:
p / q with p and q in $\mathbb{Z}, q>0$ and $\operatorname{gcd}(p, q)=1$.

Irrational number: a real number which is not rational.

Complex numbers: algebraic, transcendental

Algebraic number: a complex number which is a root of a non-zero polynomial with rational coefficients.

Examples:
rational numbers: a / b, root of $b X-a$.
$\sqrt{2}$, root of $X^{2}-2$.
i, root of $X^{2}+1$.
$e^{2 \pi \mathrm{i} / n}$, root of $X^{n}-1$.
The sum and the product of algebraic numbers are algebraic numbers. The set $\overline{\mathbb{Q}}$ of complex algebraic numbers is a field, the algebraic closure of \mathbb{Q} in \mathbb{C}.

A transcendental number is a complex number which is not algebraic.

Inverse Galois Problem

A number field is a finite extension of \mathbb{Q}.

Is any finite group G the Galois group over \mathbb{Q} of a number field ?

Evariste Galois
(1811-1832)

Equivalently:
The absolute Galois group of the field \mathbb{Q} is the group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ of automorphisms of the field $\overline{\mathbb{Q}}$ of algebraic numbers. The previous question amounts to deciding whether any finite group G is a quotient of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.

Periods: Maxime Kontsevich and Don Zagier

> Periods, Mathematics unlimited—2001 and beyond, Springer 2001, 771-808.

A period is a complex number whose real and imaginary parts are values of absolutely convergent integrals of rational functions with rational coefficients, over domains in \mathbb{R}^{n} given by polynomial inequalities with rational coefficients.

The number π

Period of a function:

$$
f(z+\omega)=f(z)
$$

Basic example:

$$
e^{z+2 \pi \mathrm{i}}=e^{z}
$$

Connection with an integral:

$$
2 \pi \mathrm{i}=\int_{|z|=1} \frac{\mathrm{~d} z}{z}
$$

The number π is a period:

$$
\pi=\iint_{x^{2}+y^{2} \leq 1} \mathrm{~d} x \mathrm{~d} y=\int_{-\infty}^{\infty} \frac{\mathrm{d} x}{1-x^{2}}
$$

Further examples of periods

$$
\sqrt{2}=\int_{2 x^{2} \leq 1} \mathrm{~d} x
$$

and all algebraic numbers.

$$
\log 2=\int_{1<x<2} \frac{\mathrm{~d} x}{x}
$$

and all logarithms of algebraic numbers.
M. Kontsevich

$$
\frac{\pi^{2}}{6}=\zeta(2)=\sum_{n \geq 1} \frac{1}{n^{2}}=\int_{1>t_{1}>t_{2}>0} \frac{\mathrm{~d} t_{1}}{t_{1}} \cdot \frac{\mathrm{~d} t_{2}}{1-t_{2}}
$$

A product of periods is a period (subalgebra of \mathbb{C}), but $1 / \pi$ is expected not to be a period.

Relations among periods

1 Additivity
(in the integrand and in the domain of integration)

$$
\begin{gathered}
\int_{a}^{b}(f(x)+g(x)) \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x+\int_{a}^{b} g(x) \mathrm{d} x, \\
\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{c} f(x) \mathrm{d} x+\int_{c}^{b} f(x) \mathrm{d} x .
\end{gathered}
$$

(2) Change of variables:
if $y=f(x)$ is an invertible change of variables, then

$$
\int_{f(a)}^{f(b)} F(y) \mathrm{d} y=\int_{a}^{b} F(f(x)) f^{\prime}(x) \mathrm{d} x
$$

Relations among periods (continued)

3 Newton-Leibniz-Stokes Formula

$$
\int_{a}^{b} f^{\prime}(x) \mathrm{d} x=f(b)-f(a)
$$

Conjecture of Kontsevich and Zagier

> A widely-held belief, based on a judicious combination of experience, analogy, and wishful thinking, is the following

Conjecture (Kontsevich-Zagier). If a period has two integral representations, then one can pass from one formula to another by using only rules 1, , 2, 3 in which all functions and domains of integration are algebraic with algebraic coefficients.

Conjecture of Kontsevich and Zagier (continued)

In other words, we do not expect any miraculous coincidence of two integrals of algebraic functions which will not be possible to prove using three simple rules.
This conjecture, which is similar in spirit to the Hodge conjecture, is one of the central conjectures about algebraic independence and transcendental numbers, and is related to many of the results and ideas of modern arithmetic algebraic geometry and the theory of motives.

Conjectures by S. Schanuel, A. Grothendieck

 and Y. André

- Schanuel: if x_{1}, \ldots, x_{n} are \mathbb{Q}-linearly independent complex numbers, then at least n of the $2 n$ numbers x_{1}, \ldots, x_{n}, $e^{x_{1}}, \ldots, e^{x_{n}}$ are algebraically independent.
- Periods conjecture by Grothendieck: Dimension of the Mumford-Tate group of a smooth projective variety.
- Y. André: generalization to motives.

S. Ramanujan, C.L. Siegel, S. Lang,

K. Ramachandra

Ramanujan: Highly composite numbers.
Alaoglu and Erdős (1944), Siegel,
Schneider, Lang, Ramachandra

Four exponentials conjecture

Let t be a positive real number. Assume 2^{t} and 3^{t} are both integers. Prove that t is an integer.

Equivalently:
If n is a positive integer such that

$$
n^{(\log 3) / \log 2}
$$

is an integer, then n is a power of 2 :

$$
2^{k(\log 3) / \log 2}=3^{k}
$$

First decimals of $\sqrt{2}$

1.41421356237309504880168872420969807856967187537694807317667973 799073247846210703885038753432764157273501384623091229702492483 605585073721264412149709993583141322266592750559275579995050115 278206057147010955997160597027453459686201472851741864088919860 955232923048430871432145083976260362799525140798968725339654633 180882964062061525835239505474575028775996172983557522033753185 701135437460340849884716038689997069900481503054402779031645424 782306849293691862158057846311159666871301301561856898723723528 850926486124949771542183342042856860601468247207714358548741556 570696776537202264854470158588016207584749226572260020855844665 214583988939443709265918003113882464681570826301005948587040031 864803421948972782906410450726368813137398552561173220402450912 277002269411275736272804957381089675040183698683684507257993647 290607629969413804756548237289971803268024744206292691248590521 810044598421505911202494413417285314781058036033710773091828693 $1471017111168391658172688941975871658215212822951848847 \ldots$

First binary digits of $\sqrt{2}$

1.011010100000100111100110011001111111001110111100110010010000 10001011001011111011000100110110011011101010100101010111110100 11111000111010110111101100000101110101000100100111011101010000 10011001110110100010111101011001000010110000011001100111001100 10001010101001010111111001000001100000100001110101011100010100 01011000011101010001011000111111110011011111101110010000011110 11011001110010000111101110100101010000101111001000011100111000 11110110100101001111000000001001000011100110110001111011111101 00010011101101000110100100010000000101110100001110100001010101 11100011111010011100101001100000101100111000110000000010001101 11100001100110111101111001010101100011011110010010001000101101 00010000100010110001010010001100000101010111100011100100010111 10111110001001110001100111100011011010101101010001010001110001 01110110111111010011101110011001011001010100110001101000011001 10001111100111100100001001101111101010010111100010010000011111 00000110110111001011000001011101110101010100100101000001000100 110010000010000001100101001001010100000010011100101001010 ...

Computation of decimals of $\sqrt{2}$

1542 decimals computed by hand by Horace Uhler in 1951
14000 decimals computed in 1967
1000000 decimals in 1971
$137 \cdot 10^{9}$ decimals computed by Yasumasa Kanada and Daisuke Takahashi in 1997 with Hitachi SR2201 in 7 hours and 31 minutes.

- Motivation: computation of π.

March 21, 2022: 10^{14} decimals of π computed by Emma Haruka Iwao (Google).

Émile Borel (1871-1956)

- Les probabilités dénombrables et leurs applications arithmétiques, Palermo Rend. 27, 247-271 (1909). Jahrbuch Database
- Sur les chiffres décimaux de $\sqrt{2}$ et divers problèmes de probabilités en chaînes,
C. R. Acad. Sci., Paris 230, 591-593 (1950).

Zbl 0035.08302

Émile Borel : 1950

Let $g \geq 2$ be an integer and x a real irrational algebraic number. The expansion in base g of x should satisfy some of the laws which are valid for almost all real numbers (with respect to Lebesgue's measure).

Conjecture of Émile Borel

Conjecture (É. Borel). Let x be an irrational algebraic real number, $g \geq 3$ a positive integer and a an integer in the range $0 \leq a \leq g-1$. Then the digit a occurs at least once in the g-ary expansion of x.
Corollary. Each given sequence of digits should occur infinitely often in the g-ary expansion of any real irrational algebraic number.
(consider powers of g).

- An irrational number with a regular expansion in some base g should be transcendental.

The state of the art

There is no explicitly known example of a triple (g, a, x), where $g \geq 3$ is an integer, a a digit in $\{0, \ldots, g-1\}$ and x an algebraic irrational number, for which one can claim that the digit a occurs infinitely often in the g-ary expansion of x.

A stronger conjecture, also due to Borel, is that algebraic irrational real numbers are normal: each sequence of n digits in basis g should occur with the frequency $1 / g^{n}$, for all g and all n.

Complexity of the expansion in basis g of a real irrational algebraic number

Theorem (B. Adamczewski, Y. Bugeaud 2005; conjecture of A. Cobham 1968).

If the sequence of digits of a real number x is produced by a finite automaton, then x is either rational or else transcendental.

Open problems (irrationality)

- Is the number

$$
\mathrm{e}+\pi=5.859874482048838473822930854632 \ldots
$$

irrational?

- Is the number

$$
\mathrm{e} \pi=8.539734222673567065463550869546 \ldots
$$

irrational?

- Is the number

$$
\log \pi=1.144729885849400174143427351353 \ldots
$$

irrational?

Catalan's constant

Is Catalan's constant
$\sum_{n \geq 1} \frac{(-1)^{n}}{(2 n+1)^{2}}$
$=0.9159655941772190150 \ldots$
an irrational number?

Special values of the Riemann zeta function

Leonhard Euler
(1707-1783)
Introductio in analysin infinitorum (1748)

For any even integer value of $s \geq 2$, the number

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}
$$

is a rational multiple of π^{s}.
Examples: $\zeta(2)=\pi^{2} / 6, \zeta(4)=\pi^{4} / 90, \zeta(6)=\pi^{6} / 945$, $\zeta(8)=\pi^{8} / 9450 \cdots$

Coefficients: Bernoulli numbers.

Riemann zeta function

The number
$\zeta(3)=\sum_{n \geq 1} \frac{1}{n^{3}}=1,202056903159594285399738161511 \ldots$
is irrational (Apéry 1978).

Recall that $\zeta(s) / \pi^{s}$ is rational for any even value of $s \geq 2$.

Open question: Is the number $\zeta(3) / \pi^{3}$ irrational?

Riemann zeta function

Is the number
$\zeta(5)=\sum_{n \geq 1} \frac{1}{n^{5}}=1.036927755143369926331365486457 \ldots$ irrational?
T. Rivoal (2000): infinitely many $\zeta(2 n+1)$ are irrational.
F. Brown (2014): Irrationality proofs for zeta values, moduli spaces and dinner parties arXiv:1412.6508 Moscow Journal of Combinatorics and Number Theory, 6 2-3 (2016), 102-165.

Euler-Mascheroni constant

Euler's Constant is
Lorenzo Mascheroni
(1750-1800)

$$
\begin{aligned}
\gamma & =\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\log n\right) \\
& =0.577215664901532860606512090082 \ldots
\end{aligned}
$$

Is it a rational number?

$$
\begin{aligned}
\gamma & =\sum_{k=1}^{\infty}\left(\frac{1}{k}-\log \left(1+\frac{1}{k}\right)\right)=\int_{1}^{\infty}\left(\frac{1}{[x]}-\frac{1}{x}\right) \mathrm{d} x \\
& =-\int_{0}^{1} \int_{0}^{1} \frac{(1-x) \mathrm{d} x \mathrm{~d} y}{(1-x y) \log (x y)}
\end{aligned}
$$

Artin's Conjecture

- Artin's Conjecture (1927): given an integer a which is not a square nor -1 , there are infinitely many p such that a is a primitive root modulo p.
(+ Conjectural asymptotic estimate for the density).
(1967), C.Hooley : conditional proof for the conjecture, assuming the Generalized Riemann hypothesis.
(1984), R. Gupta and M. Ram Murty: Artin's conjecture is true for infinitely many a
(1986) R. Heath-Brown : there are at most two exceptional prime numbers a for which Artin's conjecture fails.
For instance one out of 3,5 , and 7 is a primitive root modulo p for infinitely many p.
There is not a single value of a for which the Artin conjecture is known to hold.

Other open problems

- Theory of partitions.
- Lehmer's problem: Let $\theta \neq 0$ be an algebraic integer of degree d, and $M(\theta)=\prod_{i=1}^{d} \max \left(1,\left|\theta_{i}\right|\right)$, where $\theta=\theta_{1}$ and $\theta_{2}, \cdots, \theta_{d}$ are the conjugates of θ. Is there a constant $c>1$ such that $M(\theta)<c$ implies that θ is a root of unity?
$c<1.176280 \ldots$ (Lehmer 1933).
- Markoff conjecture.
- Leopoldt's conjecture.
- The Birch and Swinnerton-Dyer Conjecture
- Langlands program

Collatz equation (Syracuse Problem)

Iterate

$$
n \longmapsto \begin{cases}n / 2 & \text { if } n \text { is even }, \\ 3 n+1 & \text { if } n \text { is odd } .\end{cases}
$$

Is $(4,2,1)$ the only cycle?

Some of the most famous open problems in number theory

Michel Waldschmidt

Sorbonne Université
Institut de Mathématiques de Jussieu - Paris Rive Gauche http://www.imj-prg.fr/~michel.waldschmidt

