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Abstract

In a series of recent joint papers with Claude Levesque, we
produce new families of Diophantine equations for which
e↵ective methods can be applied to solve them. We present a
survey of this work.
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Diophantus of Alexandria
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Thue’s Theorem (1908)
Let F 2 Z[X ,Y ] be a homogeneous irreducible form of degree
d � 3:

F (X ,Y ) = a

0

X

d + a

1

X

d�1

Y + · · ·+ ad�1

XY

d�1 + adY
d .

Axel Thue
(1863 – 1922)

Let k 2 Z, k 6= 0. Then there
are only finitely many integer
solutions (x , y) 2 Z⇥ Z to
the Diophantine equation

F (x , y) = k .
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Liouville’s inequality

Liouville’s inequality. Let ↵
be an algebraic number of

degree d � 2. There exists

c(↵) > 0 such that, for any

p/q 2 Q with q > 0,
����↵� p

q

���� >
c(↵)

q

d
·

Joseph Liouville, 1844
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On Thue’s equations and approximation
When f 2 Z[X ] is a polynomial of degree d , we let
F (X ,Y ) = Y

d
f (X/Y ) denote the associated homogeneous

binary form of degree d .
Assume f is irreducible. Then the following two assertions are
equivalent:
(i) For any integer k 6= 0, the set of (x , y) 2 Z2 verifying

F (x , y) = k

is finite.
(ii) For any real number c > 0 and for any root ↵ 2 C of f ,
the set of rational numbers p/q verifying

����↵� p

q

���� 
c

q

d

is finite.
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Improvements of Liouville’s inequality

In the lower bound
����↵� p

q

���� >
c(↵)

q

d

for a real algebraic number ↵ of degree d � 2, the exponent d
of q in the denominator is best possible for d = 2, not for
d � 3.

In 1909, A. Thue succeeded to prove that it can be replaced
by  with any  > (d/2) + 1.
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Thue’s inequality

Let ↵ be an algebraic number of degree d � 3 and let

 > (d/2) + 1. Then there exists c(↵,) > 0 such that, for

any p/q 2 Q with q > 0,
����↵� p

q

���� >
c(↵,)

q


·
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Thue inequation

Thue’s result

For any integer k 6= 0, the set of (x , y) 2 Z2

verifying

F (x , y) = k

is finite.

can also be phrased by stating that for any positive integer k ,
the set of (x , y) 2 Z2 verifying

0 < |F (x , y)|  k

is finite.
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Thue equation

For any number field K , for any non–zero element k in K and
for any elements ↵

1

, . . . ,↵n in K with Card{↵
1

, . . . ,↵n} � 3,
the Thue equation

(X � ↵
1

Y ) · · · (X � ↵nY ) = k

has but a finite number of solutions (x , y) 2 Z⇥ Z.
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Improvements of Liouville’s inequality

In the lower bound
����↵� p

q

���� >
c(↵)

q

d

for ↵ real algebraic number of degree d � 3, the exponent d
of q in the denominator of the right hand side was replaced by

• any  > (d/2) + 1 by A. Thue (1909),

• 2
p
d by C.L. Siegel in 1921,

•
p
2d by F.J. Dyson and A.O. Gel’fond in 1947,

• any  > 2 by K.F. Roth in 1955.
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Thue–Siegel–Roth Theorem

Axel Thue
(1863 – 1922)

Carl Ludwig Siegel
(1896 – 1981)

Klaus Friedrich
Roth (1925 –
2015)

For any real algebraic number ↵, for any ✏ > 0, the set of

p/q 2 Q with |↵� p/q| < q

�2�✏
is finite.

12 / 60



Schmidt’s Subspace Theorem (1970)

For m � 2 let L

0

, . . . , Lm�1

be

m independent linear forms in

m variables with algebraic

coe�cients. Let ✏ > 0. Then
the set

{x = (x
0

, . . . , xm�1

) 2 Zm ;

|L
0

(x) · · · Lm�1

(x)|  |x|�✏}

is contained in the union of

finitely many proper

subspaces of Qm
.

W.M. Schmidt
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Subspace Theorem

W.M. Schmidt H.P. Schlickewei
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Consequences of the Subspace Theorem

Work of P. Vojta, S. Lang, J-H. Evertse, K. Győry,
P. Corvaja, U. Zannier, Y. Bilu, P. Autissier, A. Levin . . .
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Gel’fond–Baker method

The Thue–Siegel–Roth Theorem is not e↵ective: upper
bounds for the number of solutions can be derived, but not
upper bounds for the solutions.

Baker and Fel’dman developed an e↵ective method introduced
by A.O. Gel’fond, involving lower bounds for linear

combinations of logarithms of algebraic numbers with

algebraic coe�cients.
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Lower bound for linear combinations of logarithms

A lower bound for a nonvanishing di↵erence

↵b
1

1

· · ·↵bn
n � 1

is essentially the same as a lower bound for a nonvanishing
number of the form

b

1

log↵
1

+ · · ·+ bn log↵n,

since e

z � 1 ⇠ z for z ! 0.
The first nontrivial lower bounds were obtained by
A.O. Gel’fond. His estimates were e↵ective only for n = 2: for
n � 3, he needed to use estimates related to the
Thue–Siegel–Roth Theorem.
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Explicit version of Gel’fond’s estimates

A. Schinzel (1968) computed
explicitly the constants
introduced by A.O. Gel’fond.
in his lower bound for

��↵b
1

1

↵b
2

2

� 1
�� .

He deduced explicit Diophantine results using the approach
introduced by A.O. Gel’fond.
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Alan Baker

In 1968, A. Baker succeeded
to extend to any n � 2 the
transcendence method used
by A.O. Gel’fond for n = 2.
As a consequence, e↵ective
upper bounds for the solutions
of Thue’s equations have
been derived.
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Thue’s equation and Siegel’s unit equation
The main idea behind the Gel’fond–Baker approach for solving
Thue’s equation is to exploit Siegel’s unit equation.
Assume ↵

1

,↵
2

,↵
3

are algebraic integers and x , y rational
integers such that

(x � ↵
1

y)(x � ↵
2

y)(x � ↵
3

y) = 1.

Then the three numbers

u

1

= x � ↵
1

y , u

2

= x � ↵
2

y , u

3

= x � ↵
3

y ,

are units. Eliminating x and y , one deduces Siegel’s unit
equation

u

1

(↵
2

� ↵
3

) + u

2

(↵
3

� ↵
1

) + u

3

(↵
1

� ↵
2

) = 0.
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Siegel’s unit equation

Write Siegel’s unit equation

u

1

(↵
2

� ↵
3

) + u

2

(↵
3

� ↵
1

) + u

3

(↵
1

� ↵
2

) = 0

in the form

u

1

(↵
2

� ↵
3

)

u

2

(↵
1

� ↵
3

)
� 1 =

u

3

(↵
1

� ↵
2

)

u

2

(↵
1

� ↵
3

)
·

The quotient
u

1

(↵
2

� ↵
3

)

u

2

(↵
1

� ↵
3

)

is the quantity
↵b

1

1

· · ·↵bn
n

in Gel’fond–Baker Diophantine inequality.
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Work on Baker’s method:

A. Baker (1968), N.I. Feldman (1971), V.G. Sprindz̆uck and
H.M. Stark (1973), K. Győry and Z.Z. Papp (1983),
E. Bombieri (1993), Y. Bugeaud and K. Győry (1996),
Y. Bugeaud (1998). . .

Solving Thue equations:
A. Pethő and R. Schulenberg (1987), B. de Weger (1987),
N. Tzanakis and B. de Weger (1989), Y. Bilu and G. Hanrot
(1996), (1999). . .

Solving Thue–Mahler equations:
J.H. Coates (1969), S.V. Kotov and V.G. Sprindz̆uk (1973),
A. Bérczes–Yu Kunrui– K. Györy (2006). . .
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Diophantine equations

A.O. Gel’fond, A. Baker, V. Sprindz̆uk, K. Győry, M. Mignotte,
R. Tijdeman,

M. Bennett, P. Voutier, Y. Bugeaud, T.N. Shorey, S. Laishram. . .
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N. Saradha, T.N. Shorey, R. Tijdeman

Survey by T.N. Shorey
Diophantine approximations, Diophantine equations,

transcendence and applications.
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Families of Thue equations
The first families of Thue equations having only trivial
solutions were introduced by A. Thue himself.

(a + 1)X n � aY

n = 1.

He proved that the only solution in positive integers x , y is
x = y = 1 for n prime and a su�ciently large in terms of n.
For n = 3 this equation has only this solution for a � 386.
M. Bennett (2001) proved that this is true for all a and n with
n � 3 and a � 1. He used a lower bound for linear
combinations of logarithms of algebraic numbers due to
T.N. Shorey.
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E. Thomas’s family of Thue equations

E. Thomas in 1990 studied
the families of Thue equations
x

3 � (n � 1)x2y � (n + 2)xy 2 � y

3 = 1

Set

Fn(X ,Y ) = X

3 � (n � 1)X 2

Y � (n + 2)XY 2 � Y

3.

The cubic fields Q(�) generated by a root � of Fn(X , 1) are
called by D. Shanks the simplest cubic fields. The roots of the
polynomial Fn(X , 1) can be described via homographies of
degree 3.
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D. Shanks’s simplest cubic fields Q(�).

Let � be one of the three
roots of

Fn(X , 1) = X

3 � (n � 1)X 2 � (n + 2)X � 1.

Then Q(�) is a real Galois
cubic field.

Write

Fn(X ,Y ) = (X � �
0

Y )(X � �
1

Y )(X � �
2

Y )

with
�
0

> 0 > �
1

> �1 > �
2

.

Then

�
1

= � 1

�
0

+ 1
and �

2

= ��
0

+ 1

�
0

·
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Simplest fields.

When the following polynomials are irreducible for s, t 2 Z,
the fields Q(!) generated by a root ! of respectively

8
><

>:

sX

3 � tX

2 � (t + 3s)X � s,

sX

4 � tX

3 � 6sX 2 + tX + s,

sX

6 � 2tX 5 � (5t + 15s)X 4 � 20sX 3 + 5tX 2 + (2t + 6s)X + s,

are cyclic over Q of degree 3, 4 and 6 respectively.
For s = 1, they are called simplest fields by many authors.
For s � 1, I. Wakabayashi call them simplest fields.

In each of the three cases, the roots of the polynomials can be
described via homographies of PSL

2

(Z) of degree 3, 4 and 6
respectively.
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E. Thomas’s family of Thue equations

In 1990, E. Thomas proved in some e↵ective way that the set
of (n, x , y) 2 Z3 with

n � 0, max{|x |, |y |} � 2 and Fn(x , y) = ±1

is finite.

In his paper, he completely solved the equation Fn(x , y) = 1
for n � 1.365 · 107: the only solutions are (0,�1), (1, 0) and
(�1,+1).

Since Fn(�x ,�y) = �Fn(x , y), the solutions to Fn(x , y) = �1 are
given by (�x ,�y) where (x , y) are the solutions to Fn(x , y) = 1.
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Exotic solutions found by E. Thomas in 1990

F

0

(X ,Y ) = X

3 + X

2

Y � 2XY 2 � Y

3

Solutions (x , y) to F

0

(x , y) = 1:
(�9, 5), (�1, 2), (2,�1), (4,�9), (5, 4)

F

1

(X ,Y ) = X

3 � 3XY 2 � Y

3

Solutions (x , y) to F

1

(x , y) = 1:
(�3, 2), (1,�3), (2, 1)

F

3

(X ,Y ) = X

3 � 2X 2

Y � 5XY 2 � Y

3

Solutions (x , y) to F

3

(x , y) = 1:
(�7,�2), (�2, 9), (9,�7)
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M. Mignotte’s work on E. Thomas’s family

In 1993, M. Mignotte completed the work of E. Thomas by
solving the problem for each n.

For n � 4 and for n = 2, the
only solutions to Fn(x , y) = 1
are (0,�1), (1, 0) and
(�1,+1), while for the cases
n = 0, 1, 3, the only nontrivial
solutions are the ones found
by E. Thomas.
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E. Thomas’s family of Thue equations

For the same family

Fn(X ,Y ) = X

3 � (n � 1)X 2

Y � (n + 2)XY 2 � Y

3,

given k 6= 0, M. Mignotte A. Pethő and F. Lemmermeyer
(1996) studied the family of Diophantine equations
Fn(X ,Y ) = k .
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M. Mignotte A. Pethő and F. Lemmermeyer
(1996)

For n � 2, when x , y are rational integers verifying

0 < |Fn(x , y)|  k ,

then
log |y |  c(log n)(log n + log k)

with an e↵ectively computable absolute constant c .

One would like an upper bound for max{|x |, |y |} depending
only on k , not on n.
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M. Mignotte A. Pethő and F. Lemmermeyer

Besides, M. Mignotte A. Pethő and F. Lemmermeyer found all
solutions of the Thue inequality |Fn(X ,Y )|  2n + 1.

As a consequence, when k is a given positive integer, there
exists an integer n

0

depending upon k such that the inequality
|Fn(x , y)|  k with n � 0 and |y | > 3

p
k implies n  n

0

.

Note that for 0 < |t|  3

p
m, (�t, t) and (t,�t) are solutions.

Therefore, the condition |y | > 3

p
k cannot be omitted.
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E. Thomas’s family of Thue inequations

In 1996, for the family of Thue inequations

0 < |Fn(x , y)|  k ,

Chen Jian Hua has given a bound for n by using Padé’s
approximations. This bound was highly improved in 1999 by
G. Lettl, A. Pethő and P. Voutier.
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Homogeneous variant of E. Thomas family

I. Wakabayashi, using again
the approximants of Padé,
extended these results to the
families of forms, depending
upon two parameters,

sX

3 � tX

2

Y � (t + 3s)XY 2 � sY

3,

which includes the family of Thomas for s = 1 (with
t = n � 1).
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May 2010, Rio de Janeiro What were we doing on the beach of Rio?
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Question of Claude Levesque
Consider Thomas’s family of cubic Thue equations
Fn(X ,Y ) = ±1 with

Fn(X ,Y ) = X

3 � (n � 1)X 2

Y � (n + 2)XY 2 � Y

3.

Write

Fn(X ,Y ) = (X � �
0nY )(X � �

1nY )(X � �
2nY )

where �in are units in the totally real cubic field Q(�
0n).

According to E. Thomas, there are only finitely many (n, x , y)
satisfying

n � 0, max{|x |, |y |} � 2 and Fn(x , y) = ±1.

Define

Fn,2(X ,Y ) = (X � �2

0nY )(X � �2

1nY )(X � �2

2nY ).

Question: Are there only finitely many (n, x , y) satisfying

n � 0, max{|x |, |y |} � 2 and Fn,2(x , y) = ±1?
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Expanding the suggestion of Claude Levesque
Given any irreducible binary form F 2 Z[X ,Y ] and a unit ✏ in
the field Q(↵) where ↵ is a root of F (X , 1), one may consider
a family of Diophantine equations

Fa(X ,Y ) = k , (a 2 Z)

where Fa(X ,Y ) is deduced from F (X ,Y ) by twisting with ✏a:
assuming Q(↵) = Q(↵✏a), we define Fa(X , 1) as the
irreducible polynomial of ↵✏a.

F (X ,Y ) =
dY

i=1

(X � �i(↵)Y ),

Fa(X ,Y ) =
dY

i=1

(X � �i(↵✏
a)Y ).
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Non e↵ective results

With Claude Levesque, we started this program by using
Schmidt’s Subspace Theorem. We obtained general but non
e↵ective results for the twists of a given Thue equation. For
instance :

Let ↵ be an algebraic number of degree d � 3 and K be the

field Q(↵). When " is a unit of K such that ↵" has degree d ,

let f"(X ) be the irreducible polynomial of ↵" and let F"(X ,Y )
be its homogeneous version. Then for all but finitely many of

these units, the Thue equation F"(x , y) = ±1 has only the

trivial solutions x , y in Z where xy = 0.
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Non e↵ective results on families of Thue–Mahler
equations

With Claude Levesque, Familles d’équations de Thue-Mahler

n’ayant que des solutions triviales Acta Arithmetica, 155
(2012), 117-138.

Previous results by

J-H. Evertse, K. Győry, P. Vojta
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Twists of a given Thue equation (e↵ective results)
With Claude Levesque we obtained e↵ective partial results in
several cases:
• Our first paper (Springer Proceedings in Mathematics &
Statistics, 2013) was dealing with non totally real cubic fields.
• Our second one (Ramanujan Math. Soc. Lecture Notes,
published in 2016) was dealing with Thue equations attached to a
number field having at most one real embedding.
• In the third paper (MJCNT, 2013), for each (irreducible) binary
form attached to an algebraic number field, which is not a totally
real cubic field, we exhibited an infinite family of equations twisted
by units for which Baker’s method provides e↵ective bounds for the
solutions.
• In a fourth paper (Contemporary Mathematics, 2015), we go one
step further by considering twists by a power of a totally real unit.
• In a paper in JTNBx (2015), we solve the problem for the family
obtained by twisting Thomas’s equations related with the simplest
cyclic cubic fields.
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Back to Thomas’s family

In Thomas’s family, introduce a new parameter a 2 Z:

Fn,a(X ,Y ) = (X � �a
0nY )(X � �a

1nY )(X � �a
2nY ) 2 Z[X ,Y ].

Then we get a family of cubic Thue equations depending on
two parameters (n, a):

Fn,a(x , y) = ±1.

Question: Are there only finitely many (n, a, x , y) satisfying

Fn,a(x , y) = ±1?
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Thomas’s family with two parameters

Joint work with Claude Levesque

Main result (2014): there is an e↵ectively computable

absolute constant c > 0 such that, if (x , y , n, a) are nonzero

rational integers with max{|x |, |y |} � 2 and

Fn,a(x , y) = ±1,

then

max{|n|, |a|, |x |, |y |}  c .

For all n � 0, trivial solutions with a � 2:
(1, 0), (0, 1)
(1, 1) for a = 2
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Exotic solutions to F

n,a(x , y) = 1 with a � 2

(n, a) (x , y)

(0, 2) (�14,�9) (�3,�1) (�2,�1) (1, 5) (3, 2) (13, 4)

(0, 3) (2, 1)

(0, 5) (�3,�1) (19,�1)

(1, 2) (�7,�2) (�3,�1) (2, 1) (7, 3)

(2, 2) (�7,�1) (�2,�1)

(4, 2) (3, 2)

No further solution in the range

0  n  10, 2  a  70, �1000  x , y  1000.

Open question: are there further solutions?
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Computer search by specialists
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Further Diophantine results on the family F
n,a(x , y)

Let k � 1. There exists an absolute e↵ectively computable
constant  such that, if there exists (n, a, k , x , y) 2 Z5 with
a 6= 0 verifying

0 < |Fn,a(x , y)|  k ,

then
logmax{|x |, |y |}  µ

with

µ =

(
(log k + |a| log |n|)(log |n|)2 log log |n| for |n| � 3,

log k + |a| for n = 0,±1,±2.

For a = 1, this follows from the above mentioned result of

M. Mignotte, A. Pethő and F. Lemmermeyer.
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Further Diophantine results on the family F
n,a(x , y)

Let k � 1. There exists an absolute e↵ectively computable
constant  such that, if there exists (n, a, k , x , y) 2 Z5 with
a 6= 0 verifying

0 < |Fn,a(x , y)|  k ,

with n � 0, a � 1 and |y | � 2 3

p
k , then

a  µ0

with

µ0 =

8
<

:
(log k + log n)(log n) log log n for n � 3,

1 + log k for n = 0, 1, 2.
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Further Diophantine results on the family F
n,a(x , y)

Let k � 1. There exists an absolute e↵ectively computable
constant  such that, if there exists (n, a, k , x , y) 2 Z5 with
a 6= 0 verifying

0 < |Fn,a(x , y)|  k ,

with xy 6= 0, n � 0 and a � 1, then

a  max

⇢
1, (1 + log |x |) log log(n + 3), log |y |, log k

log(n + 2)

�
.
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Conjecture on the family F
n,a(x , y)

Assume that there exists (n, a, k , x , y) 2 Z5 with xy 6= 0 and
|a| � 2 verifying

0 < |Fn,a(x , y)|  k .

We conjecture the upper bound

max{log |n|, |a|, log |x |, log |y |}  (1 + log k).

For k > 1 we cannot give an upper bound for |n|.

Since the rank of the units of Q(�
0

) is 2, one may expect a
more general result as follows:
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Conjecture on a family F
n,s,t(x , y)

Conjecture. For s, t and n in Z, define

Fn,s,t(X ,Y ) = (X � �s
0n�

t
1nY )(X � �s

1n�
t
2nY )(X � �s

2n�
t
0nY ).

There exists an e↵ectively computable positive absolute
constant  with the following property: If n, s, t, x , y , k are
integers satisfying

max{|x |, |y |} � 2, (s, t) 6= (0, 0) and 0 < |Fn,s,t(x , y)|  k ,

then

max{log |n|, |s|, |t|, log |x |, log |y |}  (1 + log k).
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Sketch of proof

We want to prove the Main result: there is an e↵ectively

computable absolute constant c > 0 such that, if (x , y , n, a)
are nonzero rational integers with max{|x |, |y |} � 2 and

Fn,a(x , y) = ±1,

then

max{|n|, |a|, |x |, |y |}  c .

We may assume a � 2 and y � 1.

We first consider the case where n is su�ciently large.
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Sketch of proof (continued)

Write �i for �in, (i = 0, 1, 2):

Fn(X ,Y )= X

3 � (n � 1)X 2

Y � (n + 2)XY 2 � Y

3

= (X � �
0

Y )(X � �
1

Y )(X � �
2

Y ).

We have
8
>>>>><

>>>>>:

n +
1

n

 �
0

 n +
2

n

,

� 1

n + 1
 �

1

 � 1

n + 2
,

�1� 1

n

 �
2

 �1� 1

n + 1
·
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Sketch of proof (continued)

Define
�i = x � �a

i y , (i = 0, 1, 2)

so that Fn,a(x , y) = ±1 becomes �
0

�
1

�
2

= ±1.

One �i , say �i
0

, has a small absolute value, namely

|�i
0

|  1

y

2�a
0

,

the two others, say �i
1

, �i
2

, have large absolute values:

min{|�i
1

|, |�i
2

|} > y |�
2

|a.
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Sketch of proof (continued)

Use �
0

,�
2

as a basis of the group of units of Q(�
0

): there
exist � = ±1 and rational integers A and B such that

8
>><

>>:

�
0,a = ��A

0

�B
2

,

�
1,a = ��A

1

�B
0

= ���A+B
0

��A
2

,

�
2,a = ��A

2

�B
1

= ���B
0

�A�B
2

.

We can prove

|A|+ |B |  

✓
log y

log �
0

+ a

◆
.
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Sketch of proof (continued)

The Siegel equation

�i
0

,a(�
a
i
1

� �a
i
2

) + �i
1

,a(�
a
i
2

� �a
i
0

) + �i
2

,a(�
a
i
0

� �a
i
1

) = 0

leads to the identity

�i
1

,a(�a
i
2

� �a
i
0

)

�i
2

,a(�a
i
1

� �a
i
0

)
� 1 = �

�i
0

,a(�a
i
1

� �a
i
2

)

�i
2

,a(�a
i
1

� �a
i
0

)

and the estimate

0 <

����
�i

1

,a(�a
i
2

� �a
i
0

)

�i
2

,a(�a
i
1

� �a
i
0

)
� 1

���� 
2

y

3�a
0

·
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End of the proof when n is large

We complete the proof when n is large by means of a lower
bound for a linear form in logarithms of algebraic numbers
(Baker’s method).

Next we need to consider the case where n is bounded. We
have results which are valid not only for the Thue equations of
the family of Thomas. The next result completes the proof of
our main theorem.
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Twists of a given cubic Thue equation
Consider a monic irreducible cubic polynomial f (X ) 2 Z[X ]
with f (0) = ±1 and write

F (X ,Y ) = Y

3

f (X/Y ) = (X � ✏
1

Y )(X � ✏
2

Y )(X � ✏
3

Y ).

For a 2 Z, a 6= 0, define

Fa(X ,Y ) = (X � ✏a
1

Y )(X � ✏a
2

Y )(X � ✏a
3

Y ).

Then there exists an e↵ectively computable constant  > 0,
depending only on f , such that, for any k � 2, any (x , y , a) in
the set

�
(x , y , a) 2 Z2 ⇥ Z | xya 6= 0, max{|x |, |y |} � 2, |Fa(x , y)|  k

 

satisfies

max
�
|x |, |y |, e |a|

 
 k

.
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A conjecture

One of our goals is to prove the following:

Conjecture. There exists a constant  > 0, depending only

on ↵, such that, for any k � 2, all solutions (x , y , ") in
Z⇥ Z⇥ Z⇥

K of the inequality

|F"(x , y)|  k , with xy 6= 0 and [Q(↵") : Q] � 3,

satisfy

max{|x |, |y |, eh(↵")}  k

.
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