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Abstract Transcendental numbers form a fascinating subject: so little is known about the nature of
analytic constants that more research is needed in this area. Even when one is interested only in numbers
like = ande™ which are related with the classical exponential function, it turns out that elliptic functions
are required (so far — this should not last for ever!) to prove transcendence results and get a better
understanding of the situation.

First we briefly recall some of the basic transcendence results related with the exponential function
(sectionl). Next, in sectior2, we survey the main properties of elliptic functions that are involved in
transcendence theory.

We survey transcendence theory of values of elliptic functions in segtitimear independence in
sectiond, and algebraic independence in sectioithis splitting is somewhat artificial but convenient.
Moreover, we restrict ourselves to elliptic functions, even when many results are only special cases of
statements valid for abelian functions. A number of related topics are not considered here (e.g. heights,
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1 Exponential Function and Transcendence

We start with a very brief list of some of the main transcendence results concerning numbers related
with the exponential function. References are, for instari&), B6,196,115181,12,222,80].
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Next, we point out some properties of the exponential function, the elliptic analog of which we shall
consider later{ 2.1).

1.1 Short survey on the transcendence of numbers related with the exponential function
1.1.1 Hermite, Lindemann and Weierstraf3

The first transcendence result for a number related with the exponential function is Hermite’s Theorem
on the transcendence ef

Theorem 1 (Hermite, 1873)The numbet is transcendental.

This means that for any non-zero polynomfak Z[X], the numbetP(e) is not zero. We denote by
Q the set of algebraic numbers. Hence Hermite's Theorem can be weitter). A complex number
is calledtranscendentaif it is transcendental ove®, or overQ, which is the same. Also we shall say
that complex numberg,, ..., 6, arealgebraically independerif they are algebraically independent
over@Q, which is the same as ov@r for any non-zero polynomiaP in n variables (and coefficients in
Z,Q or Q), the numbeP(dy, . .., 6,,) is not zero.

The second result in chronological order is Lindemann’s Theorem on the transcendence of

Theorem 2 (Lindemann, 1882)The numberr is transcendental.
The next result contains the transcendence of both nunatserdr:

Theorem 3 (Hermite-Lindemann, 1882)For « € @X, any non-zero logarithrivog o of « is transcen-
dental.

We denote by the Q-vector space of logarithms of algebraic numbers:
L= {loga; o E@X} ={teC;é E@X} =exp 1(@).
Hence Theorem meansC N Q = {0}. An alternate form is:

Theorem 4 (Hermite-Lindemann, 1882)For any 3 € @X, the numbee” is transcendental.

The first result of algebraic independence for the values of the exponential function goes back to
the end of XIXth century.

Theorem 5 (Lindemann-Weierstral3, 1885)Let 3, . .., 8, beQ-linearly independent algebraic num-
bers. Then the numbee§: , . .., e’ are algebraically independent.

Again, there is an alternate form of Theorémt amounts to a statement of linear independence.

Theorem 6 (Lindemann-Weierstral3, 1885)Let 4, ..., v,, be distinct algebraic numbers. Then the
numbers™ ..., ¥ are linearly independent ovép.

It is not difficult to check that Theorerfi is equivalent to Theorerd with the conclusion that
eP, ... P are algebraically independent ov@r since it is equivalent to saying thaf!, ..., e~
are algebraically independent ov@; one does not lose anything if one changes the conclusion of
Theoren6 by stating that the numbees:, ..., e" are linearly independent ovér.



1.1.2 Hilbert’s seventh problem, Gel'fond and Schneider

The solution of Hilbert’s seventh problem on the transcendenee’ afias obtained by Gel'fond and
Schneider in 1934 (se&®, 194).

Theorem 7 (Gel'fond-Schneider, 1934)For « and 8 algebraic numbers witlx # 0 and§ ¢ Q and
for any choice ofog a # 0, the numbern” = exp(3log «) is transcendental.

This means that the two algebraically independent functidmsde’* cannot take algebraic values
at the pointdog o (A.O. Gel'fond) and also that the two algebraically independent functioasd
o® = e*1°2 @ cannot take algebraic values at the points- n3 with (m,n) € Z? (Th. Schneider).
Examples (quoted by D. Hilbert in 1900) of numbers whose transcendence follows from Theo-
rem7 are2V?2 ande™ (recalle’™ = —1). The transcendence of had already been proved in 1929 by
A.O. Gel'fond.
Here is an equivalent statement to Gel'fond-Schneider Thedrem

Theorem 8 (Gel'fond-Schneider, 1934)Let log a1, log as be two non-zero logarithms of algebraic
numbers. Assume that the quotiéliol; o1 ) /(log i2) is irrational. Then this quotient is transcendental.

1.1.3 Linear independence of logarithms of algebraic numbers

The generalization of Theoregto more than two logarithms, conjectured by A.O. Gel'forad][
was proved by A. Baker in 1966. His results include not only Gel'fond-Scheider’s The®leimalso
Hermite-Lindemann’s Theoref

Theorem 9 (Baker, 1966)Letlogay,...,log o, be Q-linearly independent logarithms of algebraic
numbers. Then the numberdog aq, . . ., log «, are linearly independent over the fie{tl

1.1.4 The Six Exponentials Theorem and the Four Exponentials Conjecture

The next result, which does not follow from any of the previously mentioned results, was proved inde-
pendently in the 1940’s by C.L. Siegel (unpublished) and in the 1960’s by S. Lang and K. Ramachandra
(see [115180,227; see also Problem 1 inLpq for the Four Exponentials Conjecture). As suggested

by K. Ramachandra (se&{1] Chap. 111§ 1 Th. 2), TheoreniOalso follows from Schneider’s criterion
proved in 1949195.

Theorem 10 (Six Exponentials Theorem)Let z1, ..., z4 be Q-linearly independent complex num-
bers and letyy, ..., y, beQ-linearly independent complex numbers. Assdihe ¢ + d. Then at least
one of the/d numbers

el (1<i<d, 1<j<¥)
is transcendental.

Notice that the conditiodd > ¢ + d can be written{ > 2 andd > 3) or (¢ > 3 andd > 2); it
suffices to consider the caé¢ = 6 (hence the name of the result). Therefore, Theat8mran be stated
in an equivalent form:

Theorem 11 (Six Exponentials Theorem - logarithmic form) Let
log a1 log as log ag
M =
log 31 log B2 log B3
be a2 by 3 matrix whose entries are logarithms of algebraic numbers. Assume that the three columns

are linearly independent ovép and the two rows are also linearly independent a@eihen the matrix
M has rank2.



It is expected that the conditia®¥ > d + ¢ in Theorem10 is too restrictive and that the same
conclusion holds in casé= ¢ = 2. We state this conjecture in the logarithmic form:

Conjecture 12(Four Exponentials conjecture - logarithmic formégt

log a1 log aro
M =
log 1 log 3

be a2 by 2 matrix whose entries are logarithms of algebraic numbers. Assume that the two columns
are linearly independent ov€r and that the two rows are also linearly independent @uefhen the
matrix M has rank.

1.1.5 Algebraic independence

In 1948 and 1949, A.O. Gel'fond extended his solution of Hilbert's seventh problem to a result of
algebraic independencéd]. One of his theorems is that the two numbere and2 V4 are algebraically
independent. His general statements can be seen as extensions of Theorena result of algebraic
independence (in spite of the fact that the Six Exponentials Theafewas stated and proved only
several years later). In his original work, Gel'fond needed a stronger assumption, namely a measure of
linear independence of thg's as well as of they;’s. This assumption was removed in the early 1970’s

by R. Tijdeman 204 (further references, especially to papers by A.A. Smelev and W.D. Brownawell,
are given in P19; see also 3,224,225 168 .

Theorem 13 Let x4, ..., x4 be Q-linearly independent complex numbers andyet. .., y, be Q-
linearly independent complex numbers.
1.1fd¢ > 2(d + ¢), then at least two of thé/ numbers
etV (1<i<d, 1<j<0)
are algebraically independent.
2. Ifd¢ > d + 2¢, then at least two of thél + d numbers
x;, eTiYi (1<i<d, 1<j<Y)
are algebraically independent.
3. Ifd¢ > d + ¢, then at least two of thél + d 4+ ¢ numbers
zi, yj, €W (1<i<d, 1<j<0)
are algebraically independent.
4.1fd = ¢ = 2 and if the two numbers™ ¥t ande*1¥2 are algebraic, then at least two of tisenumbers
1, T2, Y1, Y2, eryla e*2y2
are algebraically independent.

From the last part of TheoreB, takingz; = y; = 4w andzy = y» = 1, one deduces that at least
one of the two following statements is true:
(i) The number™ is transcendental.
(i) The two numbers andr are algebraically independent.

One expects that both statements are true.

If it were possible to prove that, under the assumptions of Theadfz@at least two of th& numbers

Z1, T2, Y1, Y2, exlyla exlyza exzyla ety

are algebraically independent, one would deduce the algebraic independence of the two ntanbers
e™ (takex; = 1,9 =1, y; = 7, yo = im; See Corollaryi8 below).
For results concerninigrge transcendence degresees 5.3 below.



1.2 The exponential function

The exponential function
exp: C — C*

z — €F
satisfies both a differential equation and an addition formula:

d

e = ez7 621+22 — e¥le?2,

dz

It is a homomorphism of the additive gro@pof complex numbers onto the multiplicative groGp of
non-zero complex numbers, with kernel

ker exp = 2i7Z,

hence it yields an isomorphism between the quotient additive gtgtapnZ and the multiplicative
groupCx.

The groupC* is the group of complex points of the multiplicative groGp,; z — e* is the ex-
ponential function of the multiplicative grou@,,,. We shall replace this algebraic group by an elliptic
curve. We could replace it also by other commutative algebraic groups. As a first example, the expo-
nential function of the additive grou@,, is

C—C

zZ =z

More general examples are commutative linear algebraic groups; over an algebraically closed field,
these are nothing else than products of several copies of the additive and multiplicative group. Further
examples of algebraic groups are abelian varieties. In full generality, algebraic groups are extensions of
abelian varieties by commutative linear algebraic groups. See, for instanég;12,149.

2 Elliptic curves and elliptic functions

Among many references for this section are the books by S. Lang, [K. Chandrasekharari [] and
J. Silverman £01,207]. See also the book by M. Hindry and J. Silvermaa][

2.1 Basic concepts

An elliptic curve may be defined as

— y? = C(z) for a squarefree cubic polynomi@l(z),

a connected compact Lie group of dimension

a complex toru€/2 where(2 is a lattice inC,

a Riemann surface of genus

a non-singular cubic if?2 (C),

an algebraic group of dimensidnwith underlying projective algebraic variety.

We shall use the Weierstraf3 form
E = {(t cxiy) syt = 42 — gont? — ggt3} C Ps.

Here g, andgs; are complex numbers, with the only assumptign# 27¢2, which means that the
discriminant of the polynomiad X3 — g, X — g3 does not vanish.



An analytic parametrization of the complex poirHi§C) of E is given by means ofVeierstraf3
elliptic functiongp, which satisfies the differential equation

0 =40 — gop — g3. 1)

It has a double pole at the origin with principal paft? and also satisfies an addition formula

)

i (p’(m) - @’(22)>2

o(z1 + 22) = —p(21) — p(22) + ~ o(z1) — p(z2)

The exponential map of the Lie grod(C) is

expp : C — E(C)
2z (1:p(2) : 0/ (2)).

The kernel of this map is kattice in C (that is a discrete ranksubgroup),
2 =kerexpy ={w € C; p(z+w) = p(2)} = Zw; + Zw,.
Henceexp, induces an isomorphism between the quotient additive géyup and E(C) with the law

given by @). The elements of? are theperiods of p. A pair (w1, w2) of fundamental periods is given
by

/°° dx
Ww; = 2 ’
e VA4x3 — gow — g3
where

423 — gox — g3 = 4(x —e1)(z — e2)(x — e3).

Indeed, sincgy’ is periodic and odd, it vanishes @t /2, w2/2 and(w; + w2)/2, hence the values of
p at these points are the three distinct complex numbgrs, andes (recall that the discriminant of
4x3 — gox — g3 IS NOLO).
Conversely, given a lattic, there is a unique Weierstral elliptic functipp whose period lattice
is (2 (see§ 2.5). We denote its invariants in the differential equati@hlfy g-(2) andgs(£2).
We shall be interested mainly (but not only) with elliptic curves which are defined over the field of
algebraic numbers: they have a Weierstrald equation with algebraitg;. However we shall also use
the Weierstral? elliptic function associated with the latti¢e where\ € C* may be transcendental;
the relations are

pan(A2) = A?p0(2), 92(A2) = A" 1g2(92), 93(A2) = A"%g3(92). ()
The latticef? = Z + Zr, wherer is a complex number with positive imaginary part, satisfies
92(Z + Z7) = 60Go(7) and g3(Z + Z7) = 140G3(7),

whereGy(7) are the Eisenstein series (see, for instance, p. 240/61,[[197] Chap. VII, § 2.3 and

(63
Gr(r) = > (m +n1)~ %, (4)

(m,n)€Z2\{(0,0)}



2.2 Morphisms between elliptic curves. The modular invariant

If £2 and(?’ are two lattices irC and if f : C/2 — C/{’ is an analytic homomorphism, then the map
C — C/2 — €/ factors through a homothe&y — C given by some\ € C such that\2 C 2"

c 2. ¢

! !
C/2 —— /2

If f+#£0,then\ € C* andf is surjective.

Conversely, if there exists € C such that2 C 2/, thenfy(z + 2) = Az + (2’ defines an analytic
surjective homomorphisnf, : C/2 — C/(2’. In this case\(? is a subgroup of finite index ifY’, hence
the kernel off, is finite and there exists € C* with 82" C 2: the two elliptic curve£ /2 andC/ ('
areisogeneous

If 2 and2* are two latticesp andp* the associated Weierstral elliptic functions gndgs the
invariants ofyp, the following statements are equivalent:
(i) There is & x 2 matrix with rational coefficients which maps a basigfo a basis of2*.
(i) There exists\ € Q* such that\2 c 02*.
(ii) There exists\ € Z \ {0} such that\f2 C £2*.
(iv) The two functionsp andp* are algebraically dependent over the fi€lf2, g3).
(v) The two functiongo andp* are algebraically dependent ovér

The mapf, is an isomorphism if and only X2 = (2’.

The number

1728g3
T

is themodular invariantof the elliptic curveFE. Two elliptic curves ovefC are isomorphic if and only
if they have the same modular invariant.
Setr = wy/wi, ¢ = 2™ and.J(e*"7) = j(7). Then (see137 § 4.12, [L97] Chap. VII)

oo

o0 m 3
J(q)=q* (1 +240 ) m31 f ) [[a-qgH==

m
m=1 q n=1

1
= — + 744 + 196884 q + 21493760 ¢* + - - -
q

2.3 Endomorphisms of an elliptic curve; complex multiplications

Let {2 be a lattice inC. The set of analytic endomorphisms@f (2 is the subring
End(C/2) = {fr; A € C with \2 C 2}

of C. We also call it the ring of endomorphisms of the associated elliptic curve, or of the corresponding
Weierstral¥> function and we identify it with the subring

{xeC ;2 cn}

of C. Thefield of endomorphismss the quotient fieldind(C/2) ®z Q of this ring.

If A € C satisfiesA\?2 C 2, then )\ is either a rational integer or else an algebraic integer in an
imaginary quadratic field. For such)a p,(\z) is a rational function ofp;(z); the degree of the
numerator is\? if A € Z and N()\) otherwise (hereN is the norm of the imaginary quadratic field);
the degree of the denominatori$ — 1 if A € Z andN()\) — 1 otherwise.

Let F be the elliptic curve attached to the Weierstgaunction. The ring of endomorphisms
End(FE) of E is eitherZ or else an order in an imaginary quadratic fieldThe latter case arises if



and only if the quotient = w,/w; of a pair of fundamental periods is a quadratic number; in this case
the field of endomorphisms @& is k = Q(7) and the curveZ hascomplex multiplicationsThis means

also that the two functiong(z) andp(7z) are algebraically dependent. In this case, the va{ué of

the modular invarianj is an algebraic integer whose degree is the class number of the quadratic field

k=Q(7).
Remark 14From Theoreny one deduces the transcendence of the number
€™V163 — 262 537 412 640 768 743.999 999 999 999 2.. . ..

If we set
1+iv/163 pimr
T = 72 ] q = e =
then the class number of the imaginary quadratic figld) is 1, we havej(r) = —(640 320)3 and

V163

_e_Tr

< 10712,

1
() — = — 744
(1) .

Let p be a Weierstral? elliptic function with field of endomorphigmblencek = Q if the associated
elliptic curve has no complex multiplication, while in the other case an imaginary quadratic field,
namelyk = Q(7), wherer is the quotient of two linearly independent periodgoLet uy, ..., uy be
non-zero complex numbers. Then the functips, z), . . ., p(uy2) are algebraically independent (over
C or overQ(g2, g3), this is equivalent) if and only if the numbets, . . ., u, are linearly independent
overk. This generalizes the fact thatz) andp(7z) are algebraically dependent if and only if the ellip-
tic curve has complex multiplications. Much more general and deeper results of algebraic independence
of functions (exponential and elliptic functions, zeta functions. . .) was proved by W.D. Brownawell and
K.K. Kubota [35].

If pis a Weierstral3 elliptic function with algebraic invariapgsandgs, if E is the associated elliptic
curve and ift denotes its field of endomorphisms, then the set

Ly=02U{ueC\2; p(u) € Q}

is ak-vector subspace d@: this is the set oélliptic logarithms of algebraic points oA. It plays a role
with respect taZ similar to the role ofL for the multiplicative grougs.,,.

Let k = Q(v/—d) be an imaginary quadratic field with class numhé#) = h. There areh non-
isomorphic elliptic curveds, ..., Ep, with ring of endomorphisms the ring of integerstofThe num-
bersj(E;) are conjugate algebraic integers of degieeach of them generates the Hilbert class field
H of k (maximal unramified abelian extension /of The Galois group ofi/k is isomorphic to the
ideal class group of the ring of integersiof

Since the group of roots of units of an imaginary quadratic fielg-s$, +1} except forQ(:) and
Q(0), wherep = ¢%7/3 it follows that there are exactly two elliptic curves o@(up to isomorphism)
having an automorphism group bigger thanl, +1}. They correspond to Weierstral3 elliptic functions
o for which there exists a complex numbers £1 with \2p(\2) = p(2).

The first one hagz = 0 andj = 1728. A pair of fundamental periods of the elliptic curve

Yt = 4o — dat?.
is given by (see, for instance, Appendice 1 53(])
1 I(1/4)2

*  dx .
The latticeZ]i] hasgs = 4w, thus
. r(/4)°
4 _
(m4+ni)™" = 56 3.5 72

(m,n)€Z2\{(0,0)}



The second one hags = 0 andj = 0. A pair of fundamental periods of the elliptic curve

Yt = da® — 4t3,

r(/3)°

1

/OC dx
w1l = —_— =
! 1 Vad -1 3

The latticeZ|o] hasgs = 4w$, thus

and wy = ows. (6)

S (ntngo- LU

98,6
(m,m) €22\ {(0,0)} m

These two examples involve special values of Euler's Gamma function

> dt - -1
I'(z)= / et 5= e 7yt H (1 + %) e/, @)
0 n=1

while Euler’s Beta function is

_ I'(a)I'(b) _ /1 a—1/7 _ .\b—1
B(a,b) = Tatd) J, 2471 —x)" da.
More generally, the formula of Chowla and Selberg (196%] [see also §1,112,111,92,223 for

related results) expresses periods of elliptic curves with complex multiplications as products of Gamma
values:if k is an imaginary quadratic field an@® an order ink, if E is an elliptic curve with complex
multiplications by, then the corresponding lattic® determines a vector spade ®; Q which is
invariant under the action of and thus has the forra - w for somew € C* defined up to elements in

k*. In particular, if O is the ring of integerZ,, of k, then

w=ayT H I(a/d)ve@)/4h
(o

whereq is a non-zero algebraic numbey, is the number of roots of unity i & is the class number of
k, e is the Dirichlet character modulo the discriminadof .

2.4 Standard relations among Gamma values

Euler's Gamma function satisfies the following relations:
(Translation)

I'(z+1) = 2I'(2);

(Reflection)
i
PP -2) = sin(nz)’

(Multiplication) For any positive integet,

n—1 k‘

H r (z + ) = (2m) (D 2= (2 P (),

n
k=0

D. Rohrlich conjectured that any multiplicative relation among Gamma values is a consequence of
these standard relations, while (see, for instanc&]]) S. Lang was more optimistic.
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Conjecture 15(D. Rohrlich) Any multiplicative relation

w02 H I'(a)™ cQ
acQ

with b andm, in Z is a consequence of the standard relations.

Conjecture 16(S. Lang)Any algebraic dependence relation among the numf@rs /21" (a) with
a € Qisin the ideal generated by the standard relations.

2.5 Quasi-periods of elliptic curves and elliptic integrals of the second kind

Let 2 = Zw, + Zws be a lattice inC. TheWeierstrald canonical producattached to this lattice is the
entire functiono, defined by

oq(z) =z H (1—g)ef+2zu2~

we\{0}

It has a simple zero at any point of.
Hence the Weierstrald sigma function plays, for the latficéhe role of the function

L (- 2)e = —oercar

n
n>0

for the set of non-negative integeis= {0, 1,2, ...} (see the infinite product} for Euler's Gamma
function), and also the role of the function

7 sin(rz) = 2 H (1 _ 2) e?/mn

ne€Z\{0}

for the setZ of rational integers.

The Weierstral3 sigma functienassociated with a lattice i@ is an entire function obrder 2:

1
lim sup Toor -loglog sup |o(z)| = 2;
ogr

r—00 |z|=r

the product?p is also an entire function of order(this can be checked by using infinite products, but
it is easier to use the quasi-periodicityafsee formulag) below).
The logarithmic derivative of the sigma functionWeierstraf? zeta functioh = ¢’ /o whose Lau-

rent expansion at the origin is
— 1 E 2k—1
C(Z) - > + Sk< )

E>2
where, fork € Z, k > 2,
sp=sx(02) = Z w2 = w{Qka(T)

wen
wH#0

(recall @)).
The derivative of is p. From
" = 69" — (92/2)
one deduces that,(£2) is a homogenous polynomial i@[g2, g3] of weight 2k for the graduation of
Qlg2, g3] determined by assigning 18 the degree and tog; the degres.
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As a side remark, we notice that for anye C \ 2 we have

Q(g2,93) € Q(p(u), ¢’ (u), " (u)).

Since its derivative is periodic, the functignis quasi-periodic for eachw € (2 there is a complex
numbery = n(w) such that

((z+w) =((2) +.

These numbers are thequasi-periodsof the elliptic curve. If(w;, ws) is a pair of fundamental periods
and if we set); = n(w;) andn, = n(w-), then, for(a, b) € 72,

n(awy + bws) = any + bna.

Coming back to the sigma function, one deduces that
o(z+w;) = —0o(2) exp(ni (z + (wi/Z))) (i=1,2). (8)
The zeta function also satisfies an addition formula:

o) 4 oy L )= 6)
Gtz =G0+ + g ) — ot

The Legendre relation relating the periods and the quasi-periods
wom — w1 = £2im

can be obtained by integratirggz) along the boundary of a fundamental parallelogram.
In the case of complex multiplication,ifis the quotient of a pair of fundamental periodgpthen
the function((7z) is algebraic over the fiel@ (g2, g3, 2, p(2), ().

ExamplesFor the curvey?t = 4x® — 4xt? the quasi-periods attached to the above mentioned pair of
fundamental period<$} are

7r (2m)3/2

m= w01 = W’ M2 = =¥ 9)

it follows that the fieldsQ (w1, w2, 71, 72) and@(w, F(1/4)) have the same algebraic closure oer
hence the same transcendence degree. For the gtirve4z? — 4¢3 with periods 6) they are

o 9T o

(10)

In this case the field®(w1, w2, 71, 12) andQ (7, I'(1/3)) have the same algebraic closure o@gehence
the same transcendence degree.
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2.6 Elliptic integrals

Let
E={(t:x:y) € Pyy’t = 4% — gout® — g5t®}

be an elliptic curve. The field of rational (meromorphic) functions€amverC is C(€) = C(p, ¢’) =
C(z,y) wherex andy are related by the cubic equatigh = 422 — gox — g3. Under the isomorphism
C/2 — £(C)given by(1 : p : ¢'), the differential formdz is mapped taixz/y. The holomorphic
differential forms orC/ (2 are Adz with A € C.

The differential formd¢ = ¢’/¢ is mapped to-zdz/y. The differential forms of second kind on
E(C) areadz + bd¢ + dy, wherea andb are complex numbers and € C(zx,y) is a meromorphic
function on€.

Assume that the elliptic curn@is defined ovef: the invariants, andgs are algebraic. We shall be
interested with differential forms which are defined o@erThose of second kind arelz + bd¢ + dy,
wherea andb are algebraic numbers ande Q(z, y).

An elliptic integral (239 Chap. 22§ 7 and p01] Chap. VI,§ 1) is an integral

/R(x, y)dz

whereR is a rational function of andy, whiley? is a polynomial inz of degrees or 4 without multiple
roots. One may transform this integral as follows: one reduces it to an integtaj ¢f P(z) whereP
is a polynomial of3rd or 4th degree; in cas® has degred one replaces it with a degréeolynomial
by sending one root to infinity; finally one reduces it to a Weierstral3 equation by means of a birational
transformation. The value of the integral is not modified.

For transcendence purposes, if the initial differential form is defined@y#ren all these transfor-
mations involve only algebraic numbers.

3 Transcendence results of numbers related with elliptic functions

3.1 Elliptic analog of Lindemann’s Theorem on the transcendeneeaofd of Hermite-Lindemann
Theorem on the transcendencd@f a.

The first transcendence result on periods of elliptic functions was proved by C.L. Siegeh§ early
as 1932.

Theorem 17 (Siegel, 1932)Let o be a Weierstral® elliptic function with period latti¢gy; + Zw,.
Assume that the invariantg and gs of p are algebraic. Then at least one of the two numbe@rsy, is
transcendental.

One main feature of Siegel's proof is that he used Dirichlet's box principle (the so-called Thue-
Siegel Lemma which is included in his 1929 paper) to construct an auxiliary function. This idea turned
out to be of fundamental importance for the solution of Hilbert’s seventh problem by Gel'fond and
Schneider two years later.

In the case of complex multiplication, it follows from Theorémthatany non-zero period af is
transcendental.

From formulae %) and @) it follows as a consequence of Siegel’'s 1932 resiit] that both num-
bersI"(1/4)*/m andI’(1/3)3/m are transcendental.

Other consequences of Siegel’s result concern the transcendence of the length of an arc of an ellipse
[20G,194:

a?x?
T e
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for algebraic: andb, as well as the transcendence of an arc of the lemnigecatey?)? = 2a2(2? —y?)
with a algebraic.

A further example of application of Siegel's Theorefi(] is the transcendence of values of hy-
pergeometric series related with elliptic integrals

! dx
=) = 4 V-2 - 222

=5 oFy (172, 1/25 1] 2%),

where; F; denotes Gauss hypergeometric series

n

o Fy (a, b;c ’ z) = Z (@) (B)n 2

(O)n n!

n=0

with (a), =a(a+1)---(a+n—1).

Further results on this topic were obtained by Th. Schneitle?][in 1934 and in a joint work
by K. Mahler and J. Popkeni[9 in 1935 using Siegel's method. These results were superseded by
Th. Schneider’s fundamental memoird[j in 1936 where he proved a number of definitive results on
the subject, including:

Theorem 18 (Schneider, 1936 Assume that the invariants and gs of p are algebraic. Then for any
non-zero periodv of p, the numbers; andn(w) are transcendental.

It follows from Theorem18 that any non-zero period of an elliptic integral of the first or second
kind is transcendental:

Corollary 19 Let& be an elliptic curve ove®, p; andp, two algebraic points 08 (Q), w a differential
form of first or second kind oé which is defined ove®, holomorphic atp; andp, and which is not
the differential of a rational function. Let be a path or€ fromp, to p». In casep; = p, one assumes
that~y is not homologous t6. Then the number

[

Examples:Using Corollaryl9 and formulae §) and (L0), one deduces that the numbers

ra/4)*/=* and I1(1/3)*/=*

is transcendental.

are transcendental.
The main results of Schneider’'s 1936 papeid are as follows (see alsé $q):

Theorem 20 (Schneider, 1936)

1. Letp be a Weierstral3 elliptic function with algebraic invariamts g3. Let3 be a non-zero algebraic
number. Therd is not a pole ofp and () is transcendental.

More generally, ifa andb are two algebraic numbers witfu, b) # (0,0), then for anyu € C\ (2 at
least one of the two numbeggu), au + b (u) is transcendental.

2. Let p and p* be two algebraically independent elliptic functions with algebraic invariantsys,
g5, g5. If t € Cis not a pole ofp or of p*, then at least one of the two numbes&) and p*(¢) is
transcendental.

3. Let o be a Weierstraf? elliptic function with algebraic invariants gs. Then for anyt € C\ 2, at
least one of the two numbegst), e! is transcendental.
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It follows from Theorem20.2 that the quotient of an elliptic integral of the first kind (between
algebraic points) by a non-zero period is either in the field of endomorphisms (hence a rational number,
or a quadratic number in the field of complex multiplications), or a transcendental number.

Here is another important consequence of Theatér.

Corollary 21 (Schneider, 1936) etr € H be a complex number in the upper half plade:(7) > 0
such thatj(7) is algebraic. Then is algebraic if and only if- is imaginary quadratic.

In this connection we quote Schneider’s second problem %][ which is still open (see Wak-
abayashi’s paperg15216217):

Open problem: Prove Corollary21 without using elliptic functions.

Sketch of proof of Corollarg1 as a consequence of part 2 of Theorgin
Assume that bothr € H andj(7) are algebraic. There exists an elliptic function with algebraic
invariantsg., g3 and periodsv;, w, such that

1728¢3
= and jir)= 2120
w1 95 — 2793

Setp*(z) = 72p(r2). Thenp* is a WeierstraB function with algebraic invariagts g;. Foru =
w1 /2 the two numbersp(u) and p*(u) are algebraic. Hence the two functiopéz) and p*(z) are
algebraically dependent. It follows that the corresponding elliptic curve has non-trivial endomorphisms,
thereforer is quadratic. O

A quantitative refinement of Schneider’'s Theorem on the transcenderite) @fiven by A. Faisant
and G. Philibert in 198411] became useful 10 years later in connection with Nesterenko’s result (see
§5). See also{7].

We will not review the results related with abelian integrals, but only quote the first result on this
topic, which involves the Jacobian of a Fermat curve: in 1941 Schnei@é¢} proved thatfor « andb
in Q with a, b anda + b not inZ, the number

L(a)I(b)

Bla.b) = Tato

is transcendental We notice that in his 1932 paper{d, C.L. Siegel had already announced patrtial
results on the values of the Euler Gamma function (see aigh [

Schneider’s above mentioned results deal with elliptic (and abelian) integrals of the first or second
kind. His method can be extended to deal with elliptic (and abelian) integrals of the third kind (this is
Schneider’s third problem inLpq).

As pointed out by J-P. Serre in 197897[, it follows from the quasi-periodicity of WeierstralR sigma
function @) that the function

_ U(Z + U) —z¢(u)
Bl = ot
satisfies
F,(z4w;) = Fu(z)e’““*wiq“).

Theorem 22 Letu; anduy be two non-zero complex numbers. Assumedhals, o(u1), p(us2), 5 are
algebraic andZu, N 2 = {0}. Then the number

o(uy + ug) e(ﬁfg(ul))uQ
o(u1)o(uz)

is transcendental.
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From the next corollary, one can deduce that non-zero periods of elliptic integrals of the third kind
are transcendental (se&]]).

Corollary 23 For any non-zero period and for anyu € C \ £2 the numbeg~¢()—mu+6« is transcen-
dental.

Further results on elliptic integrals are due to M. Laurent]. See also his papers4,125 126,

Ya. M. Kholyavka wrote several papers devoted to the approximation of transcendental numbers
related with elliptic functions110,109,108 107106105103 104,

Quantitative estimates (measures of transcendence) related with the results of this section were de-
rived by N.I. Fel'dman [3,74,75,76,77]. See also the papers by S. Lang.{], N.D. Nagaev {559,
N. Hirata P7], E. Reyssat[84,185187,18d, M. Laurent[L23, R. Tubbs p0d], G. Diaz [61], N. Saradha
[197], P. Grinspan §0].

3.2 Elliptic analogs of the Six Exponentials Theorem

Elliptic analogs of the Six Exponentials Theoreifi were considered by S. Lang 19 and K. Ra-
machandral8(] in the 1960’s.

Let dy, d2 be non-negative integers anda positive integer, lety, ..., z4, be complex numbers
which are linearly independent ov€, let y, ..., v, be complex numbers which are linearly inde-
pendent overQ and letu,,...,uq, be non-zero complex numbers. We consider Weierstral3 elliptic
functionsp:, . . ., pq4, and we denote by, the field generated ovép by their invariantsy, ;, andgs
(1 < k < dy). We assume that thé functionsp; (u12), ..., pa, (u4,2) are algebraically independent.
We denote byK; the field generated ovek, by the numbersxp(z;y;), (1 < ¢ < dy, 1 < j < m)
together with the numbegs;, (ury;), (1 < k < dz, 1 < j < m). Next, define

K2 = Kl(yl,.‘.,ym), K3 = Kl((El,...,l‘dl, ul,...,udQ),
and letK, be the compositum ok, and K3:
K4 = Kl(yla"'aymn L1y Ldys u17"'7ud2)'

The Theorems of Hermite-Lindemann (Theor8mGel'fond-Schneider (Theoref), the Six Expo-
nentials TheoremO and their elliptic analogs due to Schneider, Lang and Ramachandra can be stated
as follows.

Any one of the four assumptions below will imply +d> > 0, the case wher&, (resp.d:) vanishes
means that one considers only elliptic (resp. exponential) functions.

Theorem 24

1.Assuméd; + d2)m > m + d; + 2ds. Then the field<; has transcendence degreel overQ.

2. Assume eithetl; > 1 andm > 2, 0rd, > 1 andm > 3. ThenK, has transcendence degreel
overQ.

3. Assumel; + d» > 2. ThenK3 has transcendence degreel overQ.

4. Assumel; + dy > 1. ThenK, has transcendence degreel overQ.

Parts 3 and 4 of Theore¥ are consequences of the Schneider-Lang criterigi][ which deals
with meromorphic functions satisfying differential equations, while parts 1 and 2 follow from a criterion
which involves no differential equations. Such criteria were given by Schneidéerod], Lang [115
and Ramachandra §(] (see also?17 and [219)).

TheorenR4also includes Theore@D apart from the casle 0 in part 1 of that statement. However
there are extensions of Theoreé which include results on Weierstral3 zeta function (and also on
Weierstrald sigma function in connection with elliptic integrals of the third kind). Se&a 22,124,

) 1 el

Hereis a corollary of part 1 of Theorepd.
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Corollary 25 Let E be an elliptic curve with algebraic invariantg, g3. AssumeZ has complex mul-
tiplications. Let
Uy U2 Uz
M =

U1 V2 U3

be a2 x 3 matrix whose entries are elliptic logarithms of algebraic numbers,i,; @ndv; (i = 1,2, 3)
are in Lx. Assume that the three columns are linearly independentioné(E) and the two rows are
also linearly independent ové&nd(E). Then the matrix}/ has rank2.

In the case where the curve has no complex multiplication, a similar statement hoRis<for
matrices. Also in the non-CM case, one deduces from Thed@#mhat such3 x 4 matrices(u,;)
(wherep(u;,) are algebraic numbers) have rank.

Lower bounds better tha? for the rank of matrices of larger sizes are known, but we will not
discuss this question here. We just mention the fact that higher dimensional considerations are relevant
to a problem discussed by B. Mazur on the density of rational points on varigfids [

4 Linear independence of numbers related with elliptic functions

From Schneider's Theore0D part 1, one deduces the linear independence over the field of algebraic
numbers of the three numbersw andr, whenw is a non-zero period of a Weierstraf elliptic function
(with algebraic invariantg, andgs) andn = n(w) is the associated quasi-period of the corresponding
Weierstraf3 zeta function. However, the Gel'fond-Schneider method in one variable alone does not yield
strong results of linear independence. Baker's method is better suited for this purpose.

4.1 Linear independence of periods and quasi-periods

Baker’s method of proof for his Theore@on linear independence of logarithms of algebraic numbers
was used as early as 1969 and 1970 by A. Baker him&&|®] when he proved the transcendence of
linear combinations with algebraic coefficients of the numharsw,, n; andn, associated with an
elliptic curve having algebraic invariants and gs. His method is effective: it provides quantitative
Diophantine estimates {].

In 1971 J. Coateso[)] proved the transcendence of linear combinations with algebraic coefficients
of wy, we, M, 12 and2ix. Moreover, he proved ip,51,52,53 that in the non-CM case, the three
numbersy;, wo and2im areQ-linearly independent. Further results are due including usual logarithms
of algebraic numbers are due to T. Harase in 1974 and 1278&1].

The final result on the question of linear dependence of periods and quasi-periods for a single elliptic
function was given by D.W. Masser in 197533 134.

Theorem 26 (Masser, 1975)Let o be a Weierstral3 elliptic function with algebraic invariants and
g3, denote by the corresponding Weierstral3 zeta functionuletws, be a basis of the period lattice of
p and letny, no be the associated quasi-periods¢fThen the six numbers wy, wo, 71, 72 and 2iw
span aQ-vector space of dimensia@nin the non-CM casel in the CM case:

dim@{l,wl,wg,nl,ng, 2ir} =2+ 2dim@{w1,w2}.

The fact that the dimension4sn the CM case means that there are two independent linear relations
among thesé numbers. One of them is, = 7w; with 7 € Q. The second one (se&d]; see also
[35]) can be written
C%rny — ACH1 + ywy =0

whereA + BX + CX? is the minimal polynomial of overZ and~ is an element i@ (g2, g3, 7).
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In [134], D.W. Masser also produces quantitative estimates (measures of linear independence). In
1976, R. Franklin and D.W. Masset7, 141] produced an extension involving a logarithm of an alge-
braic number.

Further results can be found in papers by P. Bundschth §. Lang [L19 (see also his surveys
[116,117), D.W. Masser [44,147, M. Anderson [] and in the joint papers] by M. Anderson and
D.W. Masser.

4.2 Elliptic analog of Baker's Theorem

The elliptic analog of Baker's Theore#ron linear independence of logarithms was proved by D.W. Masser
in 1974 [133,134] in the CM case.

His proof also yields quantitative estimates (measures of linear independence of elliptic logarithms
of algebraic points on an elliptic curve). Such estimates have a number of applications: this was shown
by A.O. Gel'fond for usual logarithms of algebraic numbegs§][and further consequences of such
lower bounds in the case of elliptic curves for solving Diophantine equations (integer points on elliptic
curves) were derived by S. Langi{(.

Lower bounds for linear combinations of elliptic logarithms in the CM case were obtained by several
mathematicians including J. CoategJ)], D.W. Masser 35139 14(], J. Coates and S. Lang4],

M. Anderson {]. The work of Yu Kunrui P41] yields similar estimates, but his method is not that of
Baker-Masser: instead of using a generalization of Gel'fond’s solution to Hilbert's seventh problem, Yu
Kunrui uses a generalization in several variables of Schneider’s solution to the same problem. Again,
this method is restricted to the CM case.

The question of linear independence of elliptic logarithms in the non-CM case was settled only
in 1980 by D. Bertrand and D.W. Masseir9[30]. They found a new proof of Baker’s Theore®n
using functions of several variables and they succeeded to extend this argument to the situation of
elliptic functions, either with or without complex multiplication. The criterion they use is the one that
Schneider established in 19499[] for his proof of the transcendence of Beta values. This criterion
(revisited by S. Lang in1[19]) deals with Cartesian products. From the several variables point of view,
this is a rather degenerate situation; much deeper results are available, including Bombieri’s solution in
1970 of Nagata’'s Conjecture [5 227, which involves HirmanderZ2-estimates for analytic functions
of several variables. However Bombieri's Theorem does not seem to yield new transcendence results,
so far.

But so far these deeper results do not give further transcendence results in our context.

Theorem 27 (D.W. Masser 1974 for the CM case, D. Bertrand and D.W. Masser 1980 for the
non-CM case)Let p be a Weierstral3 elliptic function with algebraic invariangs, g; and field of
endomorphisms. Letu,, ..., u, bek-linearly independent complex numbers. Assumel fori < n,
that eitheru; € £ or elsep(u;) € Q. Then the numbers, u1, ..., u, are linearly independent over
the fieldQ.

This means thafor an elliptic curveE which is defined ove®, if u1, ..., u, are elements irCz
which are linearly independent over the field of endomorphisnis, dfien the numbers, uq, ..., u,
are linearly independent ovép.

The method of Bertrand-Masser yields only weak Diophantine estimates (measures of linear inde-
pendence of logarithms).

4.3 Further results of linear independence

Theorem26 deals only with periods and quasi-periods associated with one lattice, Th@Grdeals
only with elliptic logarithms of algebraic points on one elliptic curve. A far reaching generalization
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of both results was achieved by G.0tholz in 1987 138 239 24(] when he succeeded in extend-

ing Baker's Theorem to abelian varieties and integrals, and, more generally, to commutative algebraic
groups. If we restrict his general result to products of a commutative linear group, of copies of elliptic
curves as well as of extensions of elliptic curves by the additive or the multiplicative group, the resulting
statement settles the questions of linear independence of logarithms of algebraic numbers, of elliptic
logarithms of algebraic points, including periods, quasi-periods, elliptic integrals of the first, second or
third kind. This is a main step towards an answer to the questions of M. Kontsevich and D. Zagier on
periods [L19.

Wisstholz's method can be extended to yield measures of linear independence of logarithms of
algebraic points on an algebraic group. The first effective such lower bounds were given in. 1989 [

]. As a special case, they provide the first measures of linear independence for elliptic logarithms
which is also valid in the non-CM case. More generally, they give effective lower bounds for any non-
vanishing linear combination of logarithms of algebraic points on algebraic groups (including usual
logarithms, elliptic logarithms, elliptic integrals of any kind).

Refinements were obtained by N. Hirata Kohag,p7,98,99,10(], S. David [57], N. Hirata Kohno
and S. David 9], M. Ably [2,3] and E. Gaudron §4,83,85] who uses not only Hirata’s reduction
argument, but also the work of J-B. Bost!] (slope inequalities) involving Arakelov's Theory. For
instance, thanks to the recent work of David and Hirata-Kohno on the one hand, of Gaudron on the other,
one knows that the above mentioned non-vanishing linear combinations of logarithms of algebraic
points are not Liouville numbers.

In the p-adic case there is a paper of GérRond and F. Urfels1[8J dealing with two elliptic
logarithms.

Further applications to elliptic curves of the Baker-Massérstiiolz method were derived by D.W.
Masser and G.\l¥stholz [153 154].

A survey on questions related with the isogeny Theorem Gs][ Other surveys dealing with the
guestions osmall points Bogomolov Conjecture and the Ar@Oort Conjecture are&sf,58]. We do
not cover these aspects of the theory in the present paper. Other related topics which would deserve
more attention are the theory of height and theta functions as well as ultrametric questions.

Extensions of the above mentioned results to abelian varieties were considered by D.W. Masser
[135136137,138 139,140,143 145146147, S. Lang [L1], J. Coates and S. Lang4], D. Bertrand
and Y.Z. Flicker 7], Y.Z. Flicker [81], D. Bertrand P4,25]. For instance, J. Wolfart and G. ¥fgtholz
[234] have shown that the only linear dependence relations with algebraic coefficients between the
valuesB(a, b) of the Euler Beta function at points, b) € Q? are those which follow from the Deligne-
Koblitz-Ogus relations (see further referencesif]).

5 Algebraic independence of numbers related with elliptic functions
5.1 Small transcendence degree

We keep the notations and assumptions of sedian

The following extension of Theore@¥ to a result of algebraic independence containing Gel'fond’s
1948 results on the exponential function (§ee1.9 is a consequence of the works of many a mathe-
matician, including A.O. Gel'fondd€], A.A. Smelev 03204, W.D. Brownawell [33], W.D. Brow-
nawell and K.K. Kubota 5], G. Wistholz P35, D.W. Masser and G. \stholz [L50] and others
(further references are given inj4,225169).

Theorem 28

1.Assuméd; + d2)m > 2(m + dy + 2dz). Then the field<; has transcendence degree2 overQ.
2. Assuméd; + do)m > m + 2(d; + 2ds2). ThenK, has transcendence degree2 overQ.

3. Assuméd; + da)m > 2m + dy + 2ds. ThenK3 has transcendence degree2 overQ.

4. Assuméd; + do)m > m + dy + 2d2. ThenK, has transcendence degree2 overQ.
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Quantitative estimates (measures of algebraic independence) exist (R. Zabpar[d E.M. Jab-
bouri [101]).
_ Further related results are due to N.I. Fel'dma#,[¢], R. Tubbs P0&209210,211,212,219,
E. Reyssat19(], M. Toyoda and T. Yasuda’D7]. See also the measure of algebraic independence
given by M. Ably in [1] and by S.O. Shestakov in 9.

A survey on results related with small transcendence degree is givefiih(gee also Chapter 13
of [ .
Again, like for Theoren?24, there are extensions of Theor@@which include results on Weierstrafd
zeta function as well as on functions of several variables, having a number of consequences related with
abelian functionsj24.

5.2 Algebraic independence of periods and quasi-periods

In the 1970's G.V. Chudnovsky proved strong results of algebraic independence (small transcendence
degree) related with elliptic functions. One of his most spectacular contributions was obtained in 1976
[43] (see also46] and [49)]) :

Theorem 29 (G.V. Chudnovsky, 1976)Let o be a Weierstral elliptic function with invariangs, gs.
Let (w1, wo) be a basis of the lattice period g@f andrn; = n(w1), 72 = n(w2) the associated quasi-
periods of the associated Weierstral3 zeta function. Then at least two of the nymbersw, ws, 11, 70
are algebraically independent.

A more precise result{[] Chap. 7, Th. 3.1) is that, for any non-zero periodat least two of the
four numbersy,, gs, w/m, n/w (with n = n(w)) are algebraically independent.

In the case wherg, andgs are algebraic one deduces from Theor&drthat two among the four
numbersvy, we, 11, 12 are algebraically independent; this statement is also a consequence of the next
result 16,48] (see also$24):

Theorem 30 (G.V. Chudnovsky, 1981)Assume thay, and g3 are algebraic. Letv be a non-zero
period ofp, setn = n(w) and letu be a complex number which is not a period such thandw are
Q-linearly independentu ¢ Quw U £2. Assumey(u) € Q. Then the two numbers

_n n
Cw = Tu, 1
are algebraically independent.
From Theoren?9 or Theoren30 one deduces:

Corollary 31 Letw be a non-zero period gf andn = n(w). If go and g5 are algebraic, then the two
numbersr/w andn/w are algebraically independent.

The following consequence of CorollaBi shows that in the CM case, Chudnovsky’s results are
sharp:

Corollary 32 Assume thag, and g5 are algebraic and the elliptic curve has complex multiplications.
Letw be a non-zero period gf. Then the two numbetsandr are algebraically independent.

As a consequence of formula®) @nd @), one deduces:

Corollary 33 The numbersr and I'(1/4) are algebraically independent. Also the nhumberand
I'(1/3) are algebraically independent.

In connexion with these result let us quote a conjecture of S. Lang from 197 [



20

Conjecture 34If j() is algebraic withj’(7) # 0, thenj’(7) is transcendental.

Since )
i’ = 18ﬂ~ 92 ;
Jr) =185, 2 (7).
Conjecture34 amounts to the transcendence.df/w. Hence Corollary32 implies that Conjectur&4
is true at least in the CM case (se€]):

Corollary 35 If 7 € H is quadratic andj’ (1) # 0, thenw andj’(r) are algebraically independent.

A guantitative refinement (measure of algebraic independence) of CordRatye to G. Philibert
[17( turns out to be useful in connexion with Nesterenkao’s work in 1996 (further references on this
topic are given in{29).

A transcendence measure 6(1/4) was obtained by P. Philippon]5176 and S. Bruiltet B7]:

Theorem 36 For P € Z[X, Y] with degreed and heightH,
log |P(, I'(1/4)| > —10%% ((log H + dlog(d + 1)) d* (log(d + 1))°.
Corollary 37 The numbef”(1/4) is not a Liouville number:

p 1
’F(1/4) - (]‘ > q10330 :

Further related references are papers by ChudnovsRy ID. Bertrand L8] and E. Reyssatl[36,

] (see also the Bourbaki lecturé4(] and the book of E.B. Burger and R. Tubb&J]). Among
Chudnovsky’s other contributions are results dealing witfunctions (see4d]; see also Y. Ande’s
work [6, 7]).

We conclude this section by the following open problem, which simultaneously generalizes Theo-
rems29 and30 of G.V. Chudnovsky.

Conjecture 38Let p be a Weierstral? elliptic function with invariants, gs, letw be a non-zero period
of p, setn = n(w) and letu € C\ {Qw U £2}. Then at least two of the five numbers
n n
92, g3, @(U)v <(u) wua w
are algebraically independent.

Chudnovsky’s method was extended by K.G. Vasil'a¥4] and P. Grinspand(], who proved that
at least two of the three numbersI"(1/5) andI'(2/5) are algebraically independent. Their proof in-
volves the Jacobian of the Fermat cu¥é+ Y = Z°, which contains an abelian variety of dimension
2 as a factor. See also Pellarin’s pap&ei .

5.3 Large transcendence degree

Another important (and earlier) contribution of G.V. Chudnovsky goes back to 1974 when he worked
on extending Gel'fond’s method in order to prove results on large transcendence degree (see references

in [48,2200).

Chudnovsky proved that three of the numbers

NP (11)
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are algebraically independentdfis a non-zero algebraic numbésg « a non-zero logarithm of and
£ an algebraic number of degrde> 7. The same year, with a much more difficult proof, he made the
first substantial progress towards a proof that there exist at#eglgiebraically independent numbers
in the set 1), provided thatd > 2™ — 1. This was a remarkable achievement since no such result
providing a lower bound for the transcendence degree was known. Later, thanks to the work of several
mathematicians, including P. Philippon (sé&& ]] for his trick involving the introduction of redundant
variables) and Yu. V. Nesterenka6,157,15d, the proof was completed and the exponential lower
bound ford was reduced to a polynomial bound, until G. Di&Z][obtained the best known results so
far: the transcendence degree is at I¢@ast- 1)/2].

During a short time, thanks to the work of Philippon, the elliptic results dealing with large transcen-
dence degree where stronger than the exponential ones?(3¢@J561).

Further results of algebraic independence related to elliptic functions are givendr P0, 44,46,

].
In 1980, G.V. Chudnovsky4[] proved the Lindemann-Weierstrafld Theorgifor n = 2 andn = 3
(small transcendence degree) by means of a clever variation of Gel'fond’s method. This method was

extended to large transcendence degree by P. Philipponl[/3 174 and G. Wistholz P36,237,
who also succeeded in 1982 to prove the elliptic analog of Lindemann Weierstra3 Theorem on the
algebraic independence &f, ... e* in the CM case:

Theorem 39 Let p be a Weierstral? elliptic function with algebraic invariants g; and complex mul-
tiplications. Letay,...,a,, be algebraic numbers which are linearly independent over the field of
endomorphisms af . Then the numbers(ay), .. ., p(a,,) are algebraically independent.

The same conclusion should also hold in the non-CM case — so far only the algebraic independence
of at leastu/2 of these numbers is known.

Further results on large transcendence degree are due to D.W. Masser atidtGolV[ 51,157
W.D. Brownawell 34], W.D. Brownawell and R. Tubbs3f], M. Takeuchi P09 (for surveys on this
topic, see 124,225 169; see also[67] Chap. 14).

5.4 Modular functions and Ramanujan functions

Ramanujan]87 introduced the following functions

= nq" > niqn
) =1-24)_ — (@) =1-504) .
n:lliq nzllfq

They are special cases of Fourier expansions of Eisenstein series. Recall the Bernoulli nBmbers
defined by:

oo

2k

o = k+1
§+Z Bk 2k)!
k=1

By =1/6, By=1/30, Bs=1/42.
For k > 1 the Eisenstein series of weighis ([197] Chap. VII, § 4.2; compare with4))

[e%S) _
i 4k n2k 1Zn

Bkn:l 1—2m .

Eor(z) = 14 (—1)

The connection with Ramanujan’s notation is

P() = Ba(2), Q) = Eu(2). R(2) = Eq(2).



22

The discriminantA and the modular invariant are related with these functions by
A=12"3(Q° - R?) = H 1—-¢M)* and J=Q%A.

Let ¢ be a complex numbed, < |¢| < 1. There exists in the upper half plang{ such thaty = €27,

Select any twelfth root ofA(¢) and setv = 27 A(q)'/'2. The invariantsy, andgs of the Weierstrafg

function attached to the lattiq€Z + Z7)w satisfygs — 27¢3 = 1 and (see[21], Chap. 4,52, Prop. 4
and Chap. 183)

AP@)=3%~nﬂ7 Q@)==Z<%)4m, fﬂ@==%;(%)6%.

According to formulaeX) and @), here are a few special values (see, for instanc&]].

Forr =i,q =e %",

—27 _§ 2T\ __ & 4 —2mT\ __ —27 _i ﬂ 12
P ==, Qe )_3(77) . R ?)=0 and Ae )_26(7T) . (12
with (1/4)?
I'(1/4
= = 2.6220575542 . ..
“i V8T

Forr =p,qg= —e V3,
e 2v/3 o o 27 rwy\© o 27 fwi\12
P(—e ™) = 22, Qe ™) =0, R(—e ™) = T (2) 7, Ale ™) = - (2)
s T 56
(13)
with
ra/s)?

913, — 2.428650648. ..

w1 =

5.5 Mahler-Manin problem od(q)

After Schneider's Theorem (CorollaBl) on the transcendence of the values of the modular function
j(7), the first results on Eisenstein series §c$.6) go back to D. Bertrand’s 1977 papéerd]. See also

his papers17,18,20,22,23] and his work with M. Laurent on values of theta function&&][ Another
related reference is Chudnovsky'’s lecture at the Helsinki ICM in 12%B [

The first transcendence proof using modular forms is due to a team frdftiedine (K. Bare-
Sirieix, G. Diaz, F. Gramain and G. Philibert ) — hence the nickntveereme stphanoidor the next
result, from [L5] (see also§7,88] and Chap. 2 of67]), which answers a conjecture of K. Mahlér0,

] in the complex case and of Yu. V. Manin3Z in the p-adic case as well as in the complex case
(see also Conjecturé3 below). We state the result only in the complex case — the pdggsplves
both cases.

Theorem 40 (K. Barr &, G. Diaz, F. Gramain, G. Philibert, 1996)Letq € C,0 < |g| < 1. If g is
algebraic, thenJ(q) is transcendental.

The solution of Manin’s problem in thg-adic case has several consequences. It is a tool both for
R. Greenberg in his study of zeroespédic L functions, and for H. Hida, J. Tilouine ari€l Urban in
their solution of the main Conjecture for the Selmer group of the symmetric square of an elliptic curve
with multiplicative reduction ap (references are given in2d).

The proof of TheoremO involves upper bounds for the growth of the coefficients of the modu-
lar function J(q). Such estimates were produced first by K. Mahigi]]. A refined estimate, due to
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N. Brisebarre and G. Philibers], for the coefficientg (m) (which are non-negative rational integers)

in
oo
— E Ck; ”UL

=0

cx(m) < etVhm,

As pointed out by D. Bertrand’[j], the upper bound
‘6N7k(m)‘ S CNm12N

(0 <k < N,N >1,m > 1, with an absolute constaat) for the coefficients in the Taylor development
at the origin ofA2N Jk:

A 2NJ Z CNk

is sufficient for the proof of TheoremO and is an easy consequence of a Theorem of Hecke together
with the fact thatA? and A2J are parabolic modular forms of weight.

One of the main tools involved in the proof of Theoréfis an estimate for the degrees and height
of J(g™) in terms of J(q) (which is assumed to be algebraic) amd> 1. There exists a symmetric
polynomial®,, € Z[X,Y], of degree

i)

in each variable, such thég( (), J(qg™) ) = 0. Again, K. Mahler [L30,131] was the first to investigate
the coefficients of the polynomldi ( ,Y): he proved that its length (sum of the absolute values of

the coefficients) satisfies
3/2

L(®,) < e
with an absolute constant In the special case = 2™ he improved his result to
L(én) < 257nn36n
and claimed (se€el3(] p. 97) that if the sharper upper bound
L(®,) < 2°m

with a positive absolute constafit > 0, were true fom = 2™, he could prove Theored0. However
in 1984 P. Cohend5] produced asymptotic estimates which show that Mahler's expectation was too
optimistic:

i log L(®,) = 9.
ntam nlogn 0g L(@n)

m— oo

In fact she proved more precise results, without the conditioa 2™, which imply, for instance,
log L(®$,,) ~ 69(n)logn for n — oo.

Further related results are given i®/] (G. Diaz and G. Philibert) for thg-function and [49
(D.W. Masser) forp-function.

The proof of [L5] can be adapted to yield quantitative estimafes ]4].

A reformulation of Theorerd0 on the transcendence dfq) is the following mixed analog of the
Four Exponentials Conjectufie:
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Corollary 41 Letlog a be alogarithm of a non-zero algebraic number. Zet, + Zw- be a lattice with
algebraic invariantsy,, g3. Then the determinant

w1 loga
wo 2T
does not vanish.

The Four Exponentials Conjecture for the product of an elliptic curve by the multiplicative group is
the following more general open problem:

Conjecture 42Let p be a Weierstral? elliptic function with algebraic invariapis gs. Let E be the
corresponding elliptic curvey; andus be two elements i z andlog 4, log a5 be two logarithms of
algebraic numbers. Assume further that the two rows of the matrix

Mo (W log o
~ \ug logas
are linearly independent ov€. Then the determinant dff does not vanish.

Another special case of Conjectutg, stronger than Corollangl, is the next question of Yu. V.
Manin [137] :

Conjecture 43(Yu.V. Manin)Let log o; andlog a2 be two non-zero logarithms of algebraic numbers
and letZw; + Zw> be a lattice with algebraic invariangs andgs. Then

wy , logag

wy " logan

In this direction let us quote some of the open problems raised by G. Bigzd.

Conjecture 44(G. Diaz)

1. For anyz € C with |z| = 1 andz # +1, the number?"= is transcendental.

2. If ¢ is an algebraic number with < |¢| < 1 such that/(q) € [0, 1728], theng € R.
3. The function/ is injective on the set of algebraic numbersvith 0 < |a < 1.

Remark (G. Diaz). Part 3 of Conjectutd implies the other two and also follows from the Four Expo-
nentials Conjecturé2. It also follows from the next Conjecture of D. Bertrand.

Conjecture 45(D. Bertrand) If a; and as are two multiplicatively independent algebraic numbers
in the domain{z € C;0 < |z| < 1}, then the two numberd(a;) and J(az) are algebraically
independent.

This Conjecturel5implies the special case of the Four Exponentials Conjedtiyrevhere two of
the algebraic numbers are roots of unity and the two others have modulus
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5.6 Nesterenko’s Theorem

In 1976 [L§], D. Bertrand pointed out that Schneider’s Theorgbimplies:
For anyq € Cwith0 < |g| < 1, at least one of the two numbeiRq), R(q) is transcendental.

Two years laterj()], he noticed that G.V. Chudnovsky’s Theor&@yields:
For anyq € C with 0 < |¢| < 1, at least two of the numbeB(q), Q(q), R(q) are algebraically
independent.

The following result of Yu.V. Nesterenkd 2,163 (see also$28 165 230,166 as well as Chap. 3
and 4 of [L67]) goes one step further:

Theorem 46 (Nesterenko, 1996For anyq € C with 0 < |g| < 1, three of the four numbekg P(q),
Q(q), R(q) are algebraically independent.

Among the tools used by Nesterenko in his proof is the following result due to K. Mahi&r(see
also Chap. 1 of 167):
The functions?, @, R are algebraically independent oveél(q).
Also he uses the fact (see again Chap. 116f]) that they satisfy a system of differential equations
for D =qd/dg:
DP Q DQ R DR Q?

12— =p— =, 32 2=p_2, 22" =—p_ =<
P P 7Q Q R R

One of the main steps in his original pro6f{] is his following zero estimate:

Theorem 47 (Nesterenko’s zero estimatelet L, and L be positive integersd € C[z, X1, X», X3] a
non-zero polynomial in four variables of degreel, in z and< L in each of the three other variables
X1, X2, X5. Then the multiplicity at the origin of the analytic functiof(z, P(z), Q(z), R(z)) is at
most2 - 10%° Lo L3.

In the special case whet#q) is algebraic, P. Philipponl[/§ produced an alternative proof for
Nesterenko’s result where this zero estimétas not used; in place of it, he uses Philibert’s measure
of algebraic independence far/7 andn/7 (see [L7(] and § 5.2 above). However Philibert's proof
requires a zero estimate for algebraic groups.

Using (12) one deduces from Theoref® (see .67 Chap. 35 1 Cor. 1.2)

Corollary 48 The three numbers, e™, I'(1/4) are algebraically independent.

while using (L3) one deduces (se&f7] Chap. 1§ 3.1 Cor. 3.2 Remark ii))

Corollary 49 The three numbers, e™V3, I'(1/3) are algebraically independent.

Consequences of Corollaf are the transcendence of the numbers
oz (1/2) = 257471 2e™ /80 (1/4) 72

and (P. Bundschulsp])

Ll e
n:0n2+1_2 2 eT—e ™
D. Duverney, K. and K. Nishioka, and I. Shiokawi#[66,68,67,69,70] as well as D. Bertrand’[f]

derived from Nesterenko’s Theore#® a number of interesting corollaries, including the following
ones.
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Corollary 50 Rogers-Ramanujan continued fraction:

RR(a) =14 ———
It ——s—

is transcendental for any algebraicwith 0 < |a| < 1.

Corollary 51 Let(F},),>o be the Fibonacci sequencgy =0, Fy =1, F,, = F,,_1 + F,,_». Then the
number

]

>,
n=1
is transcendental.

Jacobi Theta Series are defined by

02(q) = 2¢"/* Y q" D =2¢/* [T (0 = ¢*) (1 + ¢*),
n>0 n=1

03(q) = Zq”z = H(1 — M1+ ¢ )2,
neZ n=1
94(Q) = 93(—q) — Z(_l)nqn2 _ H(l - q2n)(1 _ q2n71)2.
nez n=1

Corollary 52 . Lets, j andk € {2,3,4} with ¢ # j. Letq € C satisfy0 < |¢| < 1. Then each of the
two fields

Q(q.0:(q),0;(q), Db(q)) and Q(q,0k(q), DOk(q), D*6x(q))

has transcendence degree3 overQ.

As an examplefor an algebraic numbeg € C with 0 < |¢| < 1, the number

Os(0) =D q"

neEZ

is transcendentalThe numbems(q) was explicitly considered by Liouville in his 1844 memoir (see
[167] p.30).

The proof of Yu.V. Nesterenko is effective and yields quantitative refinements (measures of alge-
braic independence)i{4,176,89).
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5.7 Further open problems

Among many open problems, we mention

— the algebraic independence of the three numberl¥(1/3), I'(1/4).

— the algebraic independence of three numbers amort1/5), I'(2/5), e™5.
— the algebraic independence of the four numlsers e™ andl’(1/4).

The main conjectures in this domain are due to S. Schanuel, A. Grothendieck, ¥ [hdnd
C. Bertolin [L€]. Chudnovsky’s proof of the algebraic independence ehd’(1/4) involves elliptic
functions, Nesterenko’s proof of the algebraic independenceafde™ requires modular functions.
One may expect that higher dimensional objects (abelian varieties, motives) may be required in order
to go further. In this respect we conclude by alluding to the remarkable progress which were achieved
recently in finite characteristic (after the works by Jing Yu, G.W. Anderson and D. Thakur, L. Denis,
W.D. Brownawell, J.F. Voloch, M. Papanikolas among others).
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