
Mathematics Faculty of TIFR, Mumbai October, 22, 2007

Mathematics Colloquium lecture

Density of rational points on Abelian varieties

Michel Waldschmidt

Abstract
In a recent paper on the rank of elliptic curves in cubic extension, H. Kisilevsky

asks under which conditions the set of multiples of a rational point on an elliptic
curve defined over the rational number field is dense in the space of complex
points. The answer is easy in the CM case, while in the non-CM case a com-
plete answer relies on a conjecture from transcendental number theory. This
topic is closely related to a question raised by B. Mazur in 1994 which suggests
the following conjecture: Let A be a simple Abelian variety defined over a real
number field K. Denote by A(R) the Lie group of its real points and by A(R)0

the connected component of the origin. Then the group ZP generated by any
point P of infinite order in A(K) ∩A(R)0 is dense in A(R)0.

Transcendence methods yield weaker statements like the following: Let A be
a simple Abelian variety of dimension d defined over a number field K embedded
in R. Let Γ be a subgroup of A(K) ∩ A(R)0 of rank ≥ d2 − d + 1. Then Γ is
dense in A(R)0.

Some results can also be obtained on the density in A(C) of subgroups
of A(K), when K is any number field embedded into the field C of complex
numbers.

Related questions have been considered by Dipendra Prasad in 2004, by
Gopal Prasad and Andrei Rapinchuk in 2005.

A complete answer to such questions would follow from a special case of
Schanuel’s conjecture: it would suffice to prove that linearly independent log-
arithms of algebraic numbers are algebraically independent. We shall explain
the state of the art on this question.
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[14] M. Waldschmidt – “Densité des points rationnels sur un groupe
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