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Abstract

Many di↵erent topics from mathematics are related with
transcendental number theory, including Diophantine
Approximation, Dynamical Systems, Algebraic Theory of
Numbers, Geometry, Diophantine Geometry, Geometry of
Numbers, Complex Analysis (one or several variables),
Commutative Algebra, Arithmetic Complexity of
Polynomials, Topology, Logic : model theory.

We select some of them to illustrate the Unity of
Mathematics, namely
Geometry, Complex Analysis, Projective geometry,
Commutative Algebra, Topology, Arithmetic Complexity of
Polynomials.



Five points in the plane lie on a conic

Equation of a conic :

a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2 = 0.

Six coe�cients, five linear homogeneous equations in the six
variables : there is a non trivial solution.

https://home.adelphi.edu/~stemkoski/EulerCramer/article06.html

Five Points Determine a Conic Section,

Wolfram interactive demonstration
http://demonstrations.wolfram.com/FivePointsDetermineAConicSection/

https://home.adelphi.edu/~stemkoski/EulerCramer/article06.html
http://demonstrations.wolfram.com/FivePointsDetermineAConicSection/


Nine points lie on a cubic

Equation of a cubic :

a0+a1x+a2y+a3x
2+a4xy+a5y

2+a6x
3+a7x

2
y+a8xy

2+a9y
3 = 0.

Ten coe�cients, nine linear
homogeneous equations in the
ten variables : there is a non
trivial solution.
(May not be unique : two
cubics intersect in 9 points).



Three points lie on a cubic with multiplicity � 2

Multiplicity � 2 :

f(x, y) =
@

@x
f(x, y) =

@

@y
f(x, y) = 0.

For the existence of a cubic polynomial having multiplicity � 2
at three given points in the plane, we get nine linear
homogeneous equations in the ten variables ; hence there is a
non trivial solution.

Explicit solution : Three lines repeated twice !
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Three points on a cubic with multiplicity 2

S = {(0, 0), (0, 1), (1, 0)}
xy(x+ y � 1) = 0

f(x, y) = xy(x+ y � 1) = x
2
y + xy

2 � xy,

@

@x
f(x, y) = y(2x+ y � 1),

@

@y
f(x, y) = x(x+ 2y � 1).



Four points on a quartic with multiplicity 2

Four points in the plane lie on
a quartic with multiplicity 2.

{(0, 0), (0, 1), (1, 0), (1, 1)}
xy(x� 1)(y � 1) = 0

f(x, y) = xy(x� 1)(y � 1),

@

@x
f(x, y) = y(y � 1)(2x� 1),

@

@y
f(x, y) = x(x� 1)(2y � 1).



Singularities of hypersurfaces

Zeroes of a polynomial : hypersurface.

Zero of a polynomial with multiplicity : singularity of the
hypersurface.

Let n and t be two positive integers and S a finite subset of
Cn. Denote by !t(S) the least degree of a nonzero polynomial
in n variables vanishing on S with multiplicity at least t.
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One variable

In case n = 1, given a finite subset S of C and a positive
integer t, the unique monic polynomial in C[z] of least degree
vanishing at each point of S with multiplicity � t is

Y

s2S

(z � s)t.

It has degree t|S| ; hence, when n = 1,

!t(S) = t|S|.
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Cartesian products

More generally, for a Cartesian product S = S1 ⇥ · · ·⇥ Sn in
Cn,

!t(S) = t min
1in

|Si|.

Proof by induction.
Fix (s1, . . . , sn�1) 2 S1 ⇥ · · ·⇥ Sn�1,
consider f(s1, . . . , sn�1, X) 2 C[X]. ⇤
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n = 2
Consider a finite subset S of C2. If S is contained in a line,
then !t(S) = t for all t ; hence in this case !t(S) does not
depend on |S|.

The simplest example of a set which is not contained in a line
is given by three points like

S = {(0, 0), (0, 1), (1, 0)}.

The polynomial z1z2 vanishes on S, it has degree 2, hence
!1(S) = 2.
There is no polynomial of degree 2 having a zero at each point
of S with multiplicity 2, but there is one of degree 3, namely

z1z2(z1 + z2 � 1).
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S ⇢ C2 with |S| = 3

S = {(0, 0), (0, 1), (1, 0)}

P 1(z1, z2) = z1z2

P 2(z1, z2) = z1z2(z1+ z2�1)

!1(S) = 2, !2(S) = 3.

With

P 2m�1 = z
m
1 z

m
2 (z1 + z2 � 1)m�1

, P 2m = z
m
1 z

m
2 (z1 + z2 � 1)m,

we deduce

!2m�1(S) = 3m� 1, !2m(S) = 3m.
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Linear homogeneous equations : n = 2, t = 1

A polynomial in 2 variables of degree D has

(D + 1)(D + 2)

2

coe�cients. Hence for S ⇢ C2 with 2|S| < (D + 1)(D + 2),
we have !1(S)  D.

For |S| = 1, 2 we have !1(S) = 1 (two points on a line),
for |S| = 3, 4, 5 we have !1(S)  2 (five points on a conic),
for |S| = 6, 7, 8, 9 we have !1(S)  3 (nine points on a cubic).

For S ⇢ C2,
!1(S)  2|S|1/2.
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Linear homogeneous equations : t = 1
A polynomial in n variables of degree D has

✓
D + n

n

◆

coe�cients. Hence for S ⇢ Cn, if

|S| <
✓
D + n

n

◆
,

then
!1(S)  D.

In particular, for S ⇢ Cn,

!1(S)  n|S|1/n.
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Linear homogeneous equations

The number of n–tuples (⌧1, . . . , ⌧n) of non negative integers
with ⌧1 + · · ·+ ⌧n < t is

✓
t+ n� 1

n

◆
.

Hence the conditions
✓

@

@z1

◆⌧1

· · ·
✓

@

@zn

◆⌧n

P (s) = 0

for s 2 S and ⌧1 + · · ·+ ⌧n < t amount to
�
t+n�1

n

�
|S| linear

conditions in the
�
D+n
n

�
coe�cients of P .
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Upper bound for !t(S)

Given a finite subset S of Cn and a positive integer t, if D is a
positive integer such that

|S|
✓
t+ n� 1

n

◆
<

✓
D + n

n

◆
,

then
!t(S)  D.

Consequence :

!t(S)  (t+ n� 1)|S|1/n.



Upper bound for !t(S)
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Subadditivity of !t(S)

!t1+t2(S)  !t1(S) + !t2(S).

Proof : if P 1 has degree !t1(S) and vanishes on S with
multiplicity � t1, if P 2 has degree !t2(S) and vanishes on S

with multiplicity � t2, then the product P 1P 2 has degree
!t1(S) + !t2(S) and vanishes on S with multiplicity � t1 + t2.

Therefore !t(S)  t!1(S), and consequently
lim supt!1 !t(S)/t exists and is  !t(S)/t for all t � 1.
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An asymptotic invariant
Theorem. The sequence

✓
1

t
!t(S)

◆

t�1

has a limit ⌦(S) as t ! 1, and

1

n
!1(S)� 2  ⌦(S)  !1(S).

Further, for all t � 1 we have

⌦(S)  !t(S)

t
·

Remark : ⌦(S)  |S|1/n by the above upper bound

!t(S)  (t+ n� 1)|S|1/n.
M.W. Propriétés arithmétiques de fonctions de plusieurs variables
(II). Sém. P. Lelong (Analyse), 16è année, 1975/76 ; Lecture Notes

in Math., 578 (1977), 274–292.
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L
2 – estimates of Hörmander – Bombieri

Lars Hörmander
1931 – 2012

Enrico Bombieri

Existence theorems for the @ operator.
Let ' be a plurisubharmonic function in Cn and z0 2 Cn be
such that e�' is integrable near z0. Then there exists a
nonzero entire function F such that

Z

Cn
|F (z)|2e�'(z)(1 + |z|2)�3nd�(z) < 1.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hormander.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hormander.html


Improvement of L2 estimate by Henri Skoda
Let ' be a plurisubharmonic function in Cn and z0 2 Cn be
such that e�' is integrable near z0. For any ✏ > 0 there exists
a nonzero entire function F such thatZ

Cn
|F (z)|2e�'(z)(1 + |z|2)�n�✏d�(z) < 1.

Corollary :
1

n
!1(S)  ⌦(S)  !1(S).

H. Skoda. Estimations L2 pour
l’opérateur @ et applications
arithmétiques. Springer Lecture

Notes in Math., 578 (1977),

314–323.

https://en.wikipedia.org/wiki/Henri_Skoda

https://en.wikipedia.org/wiki/Henri_Skoda
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Comparing !t1(S) and !t2(S)

Idea: Let P be a polynomial of degree !t1(S) vanishing on S

with multiplicity � t1. If the function P
t2/t1 were an entire

function, it would be a polynomial of degree t2
t1
!t1(S)

vanishing on S with multiplicity � t2, which would yield
!t2(S)  t2

t1
!t1(S).

P
t2/t1 is usually not an entire function but ' = t2

t1
logP is a

plurisubharmonic function. By the L
2–estimates of Hörmander

– Bombieri – Skoda, e' is well approximated by a nonzero
entire function. This function is a polynomial vanishing on S

with multiplicity � t2, of degree  t2+n�1
t1

!t1(S).

Hence

!t2(S) 
t2 + n� 1

t1
!t1(S).
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– Bombieri – Skoda, e' is well approximated by a nonzero
entire function. This function is a polynomial vanishing on S

with multiplicity � t2, of degree  t2+n�1
t1

!t1(S).

Hence

!t2(S) 
t2 + n� 1

t1
!t1(S).



Comparing !t1(S) and !t2(S)

Idea: Let P be a polynomial of degree !t1(S) vanishing on S

with multiplicity � t1. If the function P
t2/t1 were an entire

function, it would be a polynomial of degree t2
t1
!t1(S)

vanishing on S with multiplicity � t2, which would yield
!t2(S)  t2

t1
!t1(S).

P
t2/t1 is usually not an entire function but ' = t2

t1
logP is a

plurisubharmonic function. By the L
2–estimates of Hörmander
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The asymptotic invariant ⌦(S)

From

!t2(S) 
t2 + n� 1

t1
!t1(S),

one deduces :

Theorem. For all t � 1,

!t(S)

t+ n� 1
 ⌦(S)  !t(S)

t
·

M.W. Nombres transcendants et groupes algébriques. Astérisque,
69–70 . Société Mathématique de France, Paris, 1979.



|S| = 1 or 2 in C2

|S| = 1 : S = {(0, 0)}, P t(X, Y ) = X
t,

!t(S) = t, ⌦(S) = 1.

|S| = 2 : S = {(0, 0), (1, 0)}, P t(X, Y ) = Y
t,

!t(S) = t, ⌦(S) = 1.
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Generic subset in Cn

Given two positive integers n and N , a subset S of Cn with N

elements is generic if, for any t � 1,

!t(S) � !t(S
0)

for all subsets S 0 of Cn with N elements.

Almost all subsets of Cn (for Lebesgue’s measure) are generic.

The points (sij)1in, 1jN in CnN associated to the
coordinates (sij)1in, 1  j  N , of the points sj of the
non–generic sets, belong to the union of countably many
hypersurfaces of CnN .
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Generic S with |S| = 3 in C2

Given a set S of 3 points in C2, not on a straight line, we have

!t(S) =

8
>>><

>>>:

3t+ 1

2
for t odd,

3t

2
for t even,

hence

⌦(S) = lim
t!1

!t(S)

t
=

3

2
·

Since !1(S) = 2 and n = 2, this is an example with

!1(S)

n
< ⌦(S) < !1(S).



Generic S ⇢ C2 with |S| = 4
For a generic S in C2 with |S| = 4, we have !t(S) = 2t, hence
⌦(S) = !1(S) = 2.

Easy for a Cartesian product S1 ⇥ S2 with |S1| = |S2| = 2,
also true for a generic S with |S| = 4.

More generally, when S is a Cartesian product S1 ⇥ S2 with
|S1| = |S2| = m, we have !t(S) = mt and
⌦(S) = m =

p
|S|. The inequality ⌦(S) �

p
|S| for a generic

S with |S| a square follows (Chudnovsky).
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Generic S ⇢ C2 with |S| = 5

Five points in C2 lie on a conic.

For a generic S with |S| = 5 we have !t(S) = 2t and
⌦(S) = !1(S) = 2.

https://www.geogebra.org/

https://www.geogebra.org/


Generic S ⇢ C2 with |S| = 6 (Nagata)

!1(S) = 3, ⌦(S) = 12/5.

Given 6 generic points
s1, . . . , s6 in C2, consider 6
conics C1, . . . , C6 where Si

passes through the 5 points sj
for j 6= i. This produces a
polynomial of degree 12 with
multiplicity � 5 at each si.
Hence !5(S)  12.

For S generic with 6 points,
!5t(S) = 12t, ⌦(S) = 12/5.



Generic S ⇢ C2 with |S| = 7 (Nagata)

Given 7 points in C2, there is a cubic passing through these 7
points with a double point at one of them.

Number of coe�cients of a cubic polynomial : 10.

Number of conditions : 6 for the simple zeros, 3 for the double
zero.

We get 7 cubic polynomials, their product has degree
7⇥ 3 = 21 and has the 7 assigned zeroes with multiplicities 8.

For S generic with 7 points, !8t(S) = 21t, ⌦(S) = 21/8.

!1(S) = 3, ⌦(S) =
21

8
·
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Generic S ⇢ C2 with |S| = 8 (Nagata)

Given 8 points in C2, there is a sextic with a double point at 7
of them and a triple point at 1 of them.

Number of coe�cients of a sextic polynomial :
(6 + 1)(6 + 2)/2 = 28.

Number of conditions : 3⇥ 7 = 21 for the double zeros, 6 for
the triple zero.

This gives a polynomial of degree 8⇥ 6 = 48 with the 8
assigned zeroes of multiplicities 2⇥ 7 + 3 = 17.

For S generic with 8 points, !17t(S) = 48t, ⌦(S) = 47/17.
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n = 2, |S| = 8, t = 2, !t = 5, ⌦ = 5/2

Not generic



n = 2, |S| = 8, t = 3, !t = 8, ⌦ = 8/3

Not generic



n = 2, |S| = 10, t = 6, !t = 17, ⌦ = 17/6
Three sides : multiplicity 3.
Three concurrent lines : multiplicity 2.



|S|  9 in C2

Nagata : generic S in C2 with |S|  9 have
!t(S)

t

p
|S|.

|S| = 1 2 3 4 5 6 7 8 9

!1(S) = 1 1 2 2 2 3 3 3 3

t = 1 1 2 1 1 5 8 17 1

!t(S) = 1 1 3 2 2 12 21 48 3

!t(S)

t
= 1 1

3

2
2 2

12

5

21

8

48

17
3

p
|S| = 1

p
2

p
3 2

p
5

p
6

p
7

p
8 3



Complete intersections of hyperplanes

Let H1, . . . , HN be N hyperplanes in general position in Cn

with N � n and S the set of
�
N
n

�
intersection points of any n

of them. Then,

!nt(S) = Nt for t � 1 and ⌦(S) =
N

n
·

n = 2, N = 5, |S| = 10.



Hilbert’s 14th problem

David Hilbert
1862 – 1943

Let k be a field and K a
subfield of k(X1, . . . , Xn)
containing k. Is the k–algebra

K \ k[X1, . . . , Xn]

finitely generated ?

Oscar Zariski (1954) : true for n = 1 and n = 2.
Counterexample by Masayoshi Nagata in 1959.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hilbert.html

http://www.clarku.edu/~djoyce/hilbert/

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hilbert.html
http://www.clarku.edu/~djoyce/hilbert/


Hilbert’s 14th problem : restricted case

Masayoshi Nagata
1927 – 2008

Original 14th problem :
Let G be a subgroup of the
full linear group of the
polynomial ring in
indeterminate X1, . . . , Xn

over a field k, and let o be the
set of elements of
k[X1, . . . , Xn] which are
invariant under G. Is o finitely
generated ?

M. Nagata. On the 14-th Problem of Hilbert. Amer. J. Math 81
(1959), 766–772.

http://www.jstor.org/stable/2372927

http://www.jstor.org/stable/2372927


Fundamental Lemma of Nagata

Given 16 independent generic points of the projective plane
over a prime field and a positive integer t, there is no curve of
degree 4t which goes through each pi with multiplicity at least
t.

In other words for |S| = 16 generic in C2, we have !t(S) > 4t.

M. Nagata. On the fourteenth problem of Hilbert. Proc. Internat.

Congress Math. 1958, Cambridge University Press, pp. 459–462.

http://www.mathunion.org/ICM/ICM1958/Main/icm1958.0459.0462.ocr.pdf

http://www.mathunion.org/ICM/ICM1958/Main/icm1958.0459.0462.ocr.pdf
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Nagata’ contribution

Masayoshi Nagata
1927 – 2008

Proposition. Let p1, . . . , pr
be independent generic points
of the projective plane over
the prime field. Let C be a
curve of degree d passing
through the pi’s with
multiplicities � mi. Then

m1 + · · ·+mr < d
p
r

for r = s
2, s � 4.

It is not known if r > 9, is su�cient to ensure the inequality of
the Proposition.
M. Nagata. Lectures on the fourteenth problem of Hilbert. Tata

Institute of Fundamental Research Lectures on Mathematics 31,
(1965), Bombay.

http://www.math.tifr.res.in/~publ/ln/tifr31.pdf

http://www.math.tifr.res.in/~publ/ln/tifr31.pdf


Reformulation of Nagata’s Conjecture

By considering
P

� C� where � runs over the cyclic
permutations of {1, . . . , r}, it is su�cient to consider the case
m1 = · · · = mr.

Conjecture. Let S be a finite generic subset of the projective
plane over the prime field with |S| � 10. Then

!t(S) > t

p
|S|.

Nagata :
• True for |S| a square.
• False for |S|  9.
• Unknown otherwise (|S| � 10 not a square).
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Schwarz Lemma in one variable

Hermann Amandus Schwarz
1843 – 1921

Let f be an analytic function
in a disc |z|  R of C, with
at least M zeroes (counting
multiplicities) in a disc |z|  r

with r < R. Then

|f |r 
✓
3r

R

◆M

|f |R.

We use the notation

|f |r = sup
|z|=r

|f(z)|.

When R > 3r, this improves the maximum modulus bound

|f |r  |f |R.
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Schwarz.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Schwarz.html


Schwarz Lemma in one variable : proof
Let a1, . . . , aM be zeroes of f in the disc |z|  r, counted
with multiplicities. The function

g(z) = f(z)
MY

j=1

(z � aj)
�1

is analytic in the disc |z|  R. Using the maximum modulus
principle, from r  R we deduce |g|r  |g|R. Now we have

|f |r  (2r)M |g|r and |g|R  (R� r)�M |f |R.

Finally, assuming (wlog) R > 3r,

2r

R� r
 3r

R
·

⇤
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Schwarz lemma in several variables

Let S be a finite set of Cn and t a positive integer. There
exists a real number r such that for R > r, if f is an analytic
function in the ball |z|  R of Cn which vanishes with
multiplicity at least t at each point of S, then

|f |r 
✓
e
n
r

R

◆!t(S)

|f |R.

This is a refined asymptotic version due to Jean-Charles
Moreau.

The exponent !t(S) cannot be improved : take for f a
non–zero polynomial of degree !t(S), r > 0 fixed and
R ! 1.



Works in 1980 – 1990

Gregory Chudnovsky Hélène Esnault Eckardt Viehweg

1948 – 2010

J-P. Demailly Abdelhak Azhari André Hirschowitz

Methods of projective geometry, commutative algebra,
complex analysis (Poisson–Jensen formula).



Works in 2001 – 2002

Lawrence Ein Robert Lazarsfeld Karen E. Smith

Ein, Lazarfeld and Smith use multiplier ideals.

Melvin Hochster Craig Huneke

Hochster and Huneke use Frobenius powers and tight closure.



Works in 2010 –

Cristiano Bocci Brian Harbourne Marcin Dumnici

Thomas Bauer SzembergThomasz Giuliana Fatabbi



Mathematisches Forschungsinstitut Oberwolfach

October 2010 : Linear series on algebraic varieties.
February 2015 : Ideals of Linear Subspaces, Their Symbolic
Powers and Waring Problem.

Cristiano Bocci, Susan Cooper, Elena Guardo, Brian
Harbourne, Mike Janssen, Uwe Nagel, Alexandra Seceleanu,
Adam Van Tuyl, Thanh Vu.
The Waldschmidt constant for squarefree monomial ideals.
J. Algebraic Combinatorics (2016) 44 875–904.



Connection with transcendental number theory

Transcendence in several variables :

Theodor Schneider
1911 – 1988

Let a, b be rational numbers,
not integers. Then the
number

B(a, b) =
�(a)�(b)

�(a+ b)

is transcendental.

The proof uses abelian functions and Schwarz Lemma for
Cartesian products.



Schneider–Lang Theorem
One variable, or several variables for Cartesian products :

Theodor Schneider
1911 – 1988

Serge Lang
1927 – 2005

Several variables, algebraic
hypersurfaces (Nagata’s
conjecture) :

Enrico Bombieri



Gel’fond–Schneider Theorem (special case)

Corollary of the Schneider – Lang Theorem :

log 2

log 3
is transcendental.

A.O. Gel’fond
1906 – 1968

Th. Schneider
1911 – 1988



Topology
Let x be a real number. The subgroup

Z+ Zx = {a+ bx | (a, b) 2 Z2}

of R is dense if and only if x is irrational.

Pafnouty Tchebychev
1821-1894

https://en.wikipedia.org/wiki/Pafnuty_Chebyshev

https://www.britannica.com/biography/Pafnuty-Lvovich-Chebyshev

http://www-history.mcs.st-andrews.ac.uk/Biographies/Chebyshev.html

https://en.wikipedia.org/wiki/Pafnuty_Chebyshev
https://www.britannica.com/biography/Pafnuty-Lvovich-Chebyshev
http://www-history.mcs.st-andrews.ac.uk/Biographies/Chebyshev.html


Multiplicative version
Given two positive real numbers ↵1 and ↵2, the subgroup

{↵a1
1 ↵

a2
2 | (a1, a2) 2 Z2}

of the multiplicative group R⇥
+ is dense if and only if ↵ and �

are multiplicatively independent : for (a1, a2) 2 Z2,

↵
a1
1 ↵

a2
2 = 1 () (a1, a2) = (0, 0).

Proof : use exp : R ! R⇥
+. ⇤

For instance the subgroup of R⇥
+

{2a13a2 | (a1, a2) 2 Z2}

generated by 2 and 3 is dense in R⇥
+ .
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Dimension 2

Additive subgroups of R2 :
A subgroup

Z2 + Z(x, y) = {(a1 + a0x, a2 + a0y) | (a0, a1, a2) 2 Z3}

of R2 is dense if and only if 1, x, y are Q–linearly independent.

Multiplicative subgroups of (R⇥
+)

2 :
Let �1, �2, �3 be three elements in (R⇥

+)
2, say

�j = (↵j, �j) (j = 1, 2, 3).

The subgroup of (R⇥
+)

2 generated by �1, �2, �3 is

{(↵a1
1 ↵

a2
2 ↵

a3
3 , �

a1
1 �

a2
2 �

a3
3 ) | (a1, a2, a3) 2 Z3}.
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Multiplicative subgroups of (R⇥
+)

2

For instance the subgroup of (R⇥
+)

2 generated by (↵1, 1),
(1, �2), (↵3, �3). is

� = {(↵a1
1 ↵

a3
3 , �

a2
2 �

a3
3 ) | (a1, a2, a3) 2 Z3}.

When is-it dense ?

Use exp : R2 ! (R⇥
+)

2. Write

(log↵3, log �3) = x(log↵1, 0) + y(0, log �2)

with

x =
log↵3

log↵1
, y =

log �3

log �2
·

Then � is dense in (R⇥
+)

2 if and only if 1, x, y are Q–linearly
independent.
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Multiplicative subgroups of (R⇥
+)

2

Exemple : �1 = (2, 1), �2 = (1, 2), �3 = (12, 18).
The subgroup � of (R⇥

+)
2
generated by �1, �2, �3 is

� = {(2a112a3 , 2a218a3) | (a1, a2, a3) 2 Z3}.

We have

x = 2 +
log 3

log 2
, y = 1 + 2

log 3

log 2
,

with 3� 2x+ y = 0, hence � is not dense.

Exemple : �1 = (2, 1), �2 = (1, 2), �3 = (3, 5) :

� = {(2a13a3 , 2a25a3) | (a1, a2, a3) 2 Z3}.

The three numbers

1,
log 3

log 2
,

log 5

log 2

are linearly independent over Q, hence � is dense.
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Exemple : �1 = (2, 1), �2 = (1, 3), �3 = (2, 3). The subgroup
� of (R⇥

+)
2 generated by �1, �2, �3 has rank 2 (�3 = �1�2), it is

not dense.

Exemple : �1 = (2, 1), �2 = (1, 3), �3 = (3, 2). The three
numbers

1,
log 3

log 2
,

log 2

log 3

are linearly independent over Q, because (log 2)/(log 3) is not
quadratic (it is transcendental by Gel’fond–Schneider).

Exemple : �1 = (2, 1), �2 = (1, 3), �3 = (5, 2).
Is

{(2a15a3 , 3a22a3) | (a1, a2, a3) 2 Z3}

dense in (R⇥
+)

2 ?
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Geogebra
{�a1

1 �
a2
2 �

a3
3 | �N  ai  N (i = 1, 2, 3)} \ {1/2  x, y  3/2}

�1 = (2, 1), �2 = (1, 3).

�3 = (2, 3)
(Not dense)

�3 = (3, 2)
(Dense)

�3 = (5, 2)
( ?)



�1 = (2, 1), �2 = (1, 3), �3 = (5, 2)

The subgroup

{(2a15a3 , 3a22a3) | (a1, a2, a3) 2 Z3}

is dense in (R⇥
+)

2 if and only if

(log 2)(log 3), (log 3)(log 5), (log 2)2

are linearly independent over Q.



Open problems

What are the algebraic relations among logarithms of algebraic
numbers ?

Example : for (a, b, c) 2 Z3,

a(log 2)(log 3)+b(log 3)(log 5)+c(log 2)2 = 0
?() a = b = c = 0.

What is the rank of a matrix with entries logarithms of
algebraic numbers ?

Example : for (a, b, c) 2 Z3,

det

✓
log 2 log 3

�b log 5 a log 3 + c log 2

◆
= 0

?() a = b = c = 0.
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Applications to Hasse principle

Jean–Jacques Sansuc Damien Roy

Question of J-J. Sansuc, answer by D. Roy :
Given a number field k, the smallest positive integer m for
which there exists a finitely generated subgroup of rank m of
k
⇥ having a dense image in (k ⌦Q R)⇥ under the canonical

embedding is the number of archimedean places of k plus one.

Damien Roy. Simultaneous approximation in number fields. Invent.
math. 109 (1992), 547–556.



Density of rational points on abelian varieties

Barry Mazur

Mazur’s question : given a
simple abelian variety over Q
with positive rank, is A(Q)
dense in the connected
component of 0 in A(R) ?

Partial answer : yes if the rank of A(Q) is � g
2 � g + 1 where

g is the dimension of A.

M.W. Densité des points rationnels sur un groupe algébrique.
Experimental Mathematics. 3 N

�
4 (1994), 329–352.



Schanuel’s Conjecture

Stephen Schanuel

If x1, . . . , xn are Q–linearly
independent complex
numbers, then at least n of
the 2n numbers x1, . . . , xn,
e
x1 , . . . , e

xn are algebraically
independent.

Special case where e
xi = ↵i are algebraic : Conjecture AIL



Conjecture AIL

Conjecture of algebraic independence of logarithms of
algebraic numbers :

If log↵1, . . . , log↵n are Q–linearly independent logarithms of
algebraic numbers, then they are algebraically independent.

It is not known whether there are two algebraically
independent logarithms of algebraic numbers.
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Towards Schanuel’s Conjecture

We want to investigate the numbers x1, . . . , xn, ex1 , . . . , e
xn .

We can consider the functions z, ex1z, . . . , e
xnz and their

values (with derivatives) at the points in Z.

We can also consider the functions z, ez, and their values
(with derivatives) at the points in Zx1 + · · ·+ Zxn.

These two approaches are dual (Borel transform).

In the first case, we do not have enough points. In the second
case, we do not have enough functions.
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Towards Schanuel’s Conjecture

We can get some results by considering functions
e
x1z, · · · , exdz and their values at points in Zy1 + · · ·+ Zy`.
Assume that the numbers ↵ij = e

xiyj are algebraic.
The matrix (log↵ij) 1id

1j`
is of the form (xiyj) 1id

1j`
with xi

and yj in C.
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Rank of matrices

A matrix (uij) 1id
1j`

with coe�cients in a field K has rank  1

if and only if there exists x1, . . . , xd and y1, . . . , y` in K such
that uij = xiyj (1  i  d, 1  j  `).

A matrix (uij) 1id
1j`

with coe�cients in a field K has rank  r

if and only if there exists x1, . . . ,xd and y1, . . . ,y` in Kr such
that uij = xiyj (1  i  d, 1  j  `), with the standard
scalar product in Kr :

x = (⇠1, . . . , ⇠r), y = (⌘1, . . . , ⌘r),

xy = ⇠1⌘1 + · · ·+ ⇠r⌘r.
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Matrices of logarithms of algebraic numbers

Consider a d⇥ ` matrix (log↵ij) 1id
1j`

of rank r. Write

log↵ij = xiyj with x1, . . . ,xd and y1, . . . ,y` in Cr. The d

exponential functions in r variables z = (z1, . . . , zr)

e
xiz, 1  i  d

take algebraic values at y1, . . . ,y`, hence at any point in
Zy1 + · · ·+ Zy` ⇢ Cr.

Under suitable assumptions on the x’s and y’s, one proves

`d  r(`+ d).
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Matrices of logarithms of algebraic numbers

r � `d

`+ d
.

For ` = d, the conclusion is r � d/2, which is half the
conjecture on the rank of matrices with entries logarithms of
algebraic numbers :

r � 1

2
rconj(M).

M.W. Transcendance et exponentielles en plusieurs variables.
Inventiones Mathematicae 63 (1981) N

�
1, 97–127.

M.W. Diophantine Approximation on Linear Algebraic Groups.
Grundlehren der Mathematischen Wissenschaften 326.

Springer-Verlag, Berlin-Heidelberg, 2000.
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The conjectural rank rconj(M)

Let M be a d⇥ ` matrix with coe�cients log↵ij logarithms of
algebraic numbers. Let �1, . . . ,�s be a basis of the Q–space
spanned by the log↵ij. Write

log↵ij =
sX

k=1

aijk�k 1  i  d, 1  j  `.

We denote by rconj(M) the rank of the matrix

 
sX

k=1

aijkXk

!

1id
1j`

viewed as a matrix with entries in the field C(X1, . . . , Xs).



Two conjectures

Algebraic independence of logarithms of algebraic numbers :
Conjecture AIL : Q–linearly independent logarithms of
algebraic numbers are algebraically independent.

Rank of matrices with entries logarithms of algebraic numbers :
Conjecture RM : the rank r of M is rconj(M).

Clearly, Conjecture AIL implies Conjecture RM.

For Conjecture AIL, we do not know whether there are two
algebraically independent logarithms of algebraic numbers.

For Conjecture RM, we know half of it : r � 1
2rconj(M).
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Equivalence between the two conjectures

D. Roy : Conjecture AIL and Conjecture RM are equivalent !

Proposition (D. Roy) : any
polynomial in n variables
X1, . . . , Xn over a field K is
the determinant of a square
matrix with entries in
K+KX1 + · · ·+KXn.

Damien Roy

D. Roy. Matrices dont les coe�cients sont des formes linéaires.
Séminaire de théorie des nombres Paris 1987–88, 273–281. Prog.

Math.81, Birkhäuser, 1990.



Arithmetic Complexity, Theoretical Computer
Science

Chap. 13 : Projections of Determinant to Permanent
in
Xi Chen, Neeraj Kayal and Avi Wigderson.
Partial Derivatives in Arithmetic Complexity (and beyond)
Foundations and Trends in Theoretical Computer Science
Vol. 6 1–2, (2010), 1–138
http://www.math.ias.edu/~avi/PUBLICATIONS/ChenKaWi2011.pdf

Thanks to Anurag Pandey and Vijay M. Patankar.

http://www.math.ias.edu/~avi/PUBLICATIONS/ChenKaWi2011.pdf


Determinantal complexity of a polynomial

Given a polynomial f in n variables X1, · · · , Xn with
coe�cients in a field K of characteristic 0, the determinantal
complexity dc(f) of f is the smallest m such that there exists
a m⇥m matrix with entries a�ne forms

a0 + a1X1 + · · ·+ anXn

such that the determinant of A is f .



Geometric complexity theory

L.G.Valiant.
The complexity of computing
the permanent.
Theoretical Computer
Science,
8 2, (1979), 189 – 201.

Leslie G. Valiant

2010 Turing Award

VNP vs VP.



Permanent of a square matrix

Augustin-Louis Cauchy
1789 – 1857

( Introduced by Cauchy in
1812 : for A = (aij)1i,jn,

perm(A) =
X

�2Sn

nY

i=1

ai,�(i).

Compare with

det(A) =
X

�2Sn

✏(�)
nY

i=1

ai,�(i).



Permanent of a matrix

det

✓
a b

c d

◆
= perm

✓
a �b

c d

◆

George Pólya
1887 – 1985

George Pólya asked, in 1913 :
Given a square matrix A, is
there a way to set the signs of
the entries so that the
resulting matrix A

0 satisfies

det(A) = perm(A0)?

Negative answer : G. Szegő (1913).



Determinantal complexity of the permanent
Let permn be the permanent of the matrix (X ij)1i,jn in n

2

variables over a field of zero characteristic.
G. Szegő (1913) : dc(permn) � n+ 1.
Joachim von zur Gathen (1987) : dc(permn) �

p
8/7n.

Babai and Seress, J.Y. Cai, R. Meshulam (1989)
dc(permn) �

p
2n.

T. Mignon and N. Ressayre (2004) : dc(permn) �
n
2

2
·

Gábor Szegő
1895–1985

J. von zur Gathen Nicolas Ressayre



Proof by D. Roy of dc(f ) < 1

Here is a proof that any quadratic polynomial
f 2 K[z1, . . . , zn] is the determinant of a matrix with entries
in K+Kz1 + · · ·+Kzn.
Write f as L0 + L1z1 + · · ·+ Lnzn where each Li is a
polynomial of degree  1, which means that each Li lies in
K+Kz1 + · · ·+Kzn.
Then f is the determinant of the (n+ 2)⇥ (n+ 2) matrix

0

BBBBB@

1
z1

In+1
...
zn

�L0 · · · �Ln 0

1

CCCCCA



An auxiliary lemma

The determinant of a product AB of a d⇥ ` matrix A by a
`⇥ d matrix B is the determinant of the (d+ `)⇥ (d+ `)
matrix written as blocks

✓
I` B
�A 0

◆
.

Proof.

Multiply on the left the matrix

✓
I` B
�A 0

◆
by the matrix

✓
I` 0
A Id

◆
. This will not change the determinant, and the

product is

✓
I` B
0 AB

◆
, the determinant of which is det(AB). ⇤
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A further lemma
Let M be a matrix , the entries of which are bilinear forms

M =

 
SX

s=0

TX

t=0

mijstXsY t

!

1id
1j`

.

There exist a matrix A whose entries are linear forms in
X0, . . . , XS and a matrix B whose entries are linear forms in
Y 0, . . . , Y T such that M = AB.
Proof.

Write M = M0X0 + · · ·+MSXS with
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A further lemma
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