Valeurs spéciales de polylogarithmes multiples -- cours de M. WALDSCHMIDT

Examen du vendredi 14 juin 2002, 9h-12h (*)

Traiter, au choix, une partie des questions suivantes pendant l'écrit du vendredi 14 juin. Le reste pourra être préparé ensuite pour être rendu le jeudi 20 juin.

On désigne par $X=\{x_0,x_1\}$ l'alphabet à deux éléments, par X^* le monoïde libre sur X (d'élément neutre le mot vide noté e) et par $\mathfrak{H}=K< X>$ l'algèbre associative libre sur X (avec la loi de concaténation), le corps de base K étant un sous corps de \mathbb{R} . Un élément p de \mathfrak{H} s'écrit $p=\sum_{u\in X^*}(p|u)u$ et le support $\{u\in X^*\ ;\ (p|u)\neq 0\}$ de p est fini.

Pour s entier ≥ 1 on pose $y_s = x_0^{s-1}x_1$. On note encore

Y l'alphabet $\{y_1,\ldots,y_s,\ldots\}$,

 Y^* le monoïde libre sur Y que l'on identifie au sous-monoïde $\{e\} \cup X^*x_1$ de X^* formé des mots qui ne terminent pas par x_0 ,

K < Y > l'algèbre associative libre sur Y que l'on identifie à

 $\mathfrak{H}^1 = Ke + \mathfrak{H}x_1$ la sous-algèbre de \mathfrak{H} engendrée par Y^*

et

 $\mathfrak{H}^0=Ke+x_0\mathfrak{H}x_1$ la sous-algèbre de \mathfrak{H}^1 engendrée par $\{y_2,\ldots,y_s,\ldots\}$ et formée des polynômes «convergents» (c'est l'algèbre libre sur les mots «convergents» qui commencent par x_0 et terminent par x_1).

On rappelle les définitions, pour $\underline{s} = (s_1, \dots, s_k)$ et |z| < 1,

$$\operatorname{Li}_{\underline{s}}(z) = \sum_{n_1 > n_2 \dots > n_k > 1} \frac{z^{n_1}}{n_1^{s_1} \cdots n_k^{s_k}},$$

puis

$$\widehat{\mathsf{Li}}_u(z) = \mathsf{Li}_{\underline{s}}(z) \quad \mathsf{pour} \quad u = y_{\underline{s}} = y_{s_1} \cdots y_{s_k} \in Y^*$$

avec $\widehat{Li}_e(z) = 1$, ensuite

$$\widehat{\mathsf{Li}}_p(z) = \sum_{u \in Y^*} (p|u) \widehat{\mathsf{Li}}_u(z) \quad \mathsf{pour} \quad p = \sum_{u \in Y^*} (p|u) u \in \mathfrak{H}^1$$

et enfin

$$\widehat{\zeta}(p) = \widehat{\mathsf{Li}}_p(1)$$
 pour $p \in \mathfrak{H}^0$.

La loi de mélange sur $\mathfrak H$ relative à l'alphabet X est notée $\mathfrak m$, tandis que la notation \star est utilisée pour la loi harmonique sur $\mathfrak H$ (mélange avec retenues sur l'alphabet Y).

^(*) Quelques modifications ont été apportées au sujet initial (septembre 2002).

Problème I

Soient A un alphabet fini. On rappelle la notation

$$w^* = e + w + w^2 + \dots + w^n + \dots = \sum_{i=0}^{\infty} w^i \in K << A>>$$

quand w est un polynôme de $K < A > {\rm sans}$ terme constant.

- 1) Soient a, b, c trois lettres de A.
 - a) Quel est l'automate associé à am(bc)*?
 - b) En déduire

$$am(bc)^* = (bc)^*(a + bac)(bc)^*.$$

c) Retrouver cette relation par un calcul direct de

$$\sum_{n>0} a \mathbf{m} (bc)^n.$$

d) En déduire

$$am(ba)^* = (2(ba)^* - e)a(ba)^*.$$

2) Pour $n \ge 1$ calculer $y_1 m y_2^n$ et $y_1 \star y_2^n$. En déduire

$$y_1 \coprod y_2^n - y_1 \star y_2^n = \sum_{i=1}^n y_2^i y_1 y_2^{n-i} - \sum_{h=0}^{n-1} y_2^h y_3 y_2^{n-h-1}.$$

Quelle relation linéaire entre des valeurs multizêta $\zeta(\underline{s})$ en déduisez-vous?

Problème II

On désigne par \mathcal{E} le \mathbb{R} -espace vectoriel des fonctions réelles $f:]-1,+1[\to\mathbb{R}$ ayant un développement en série de Taylor à l'origine

$$f(x) = \sum_{n \ge 0} a_n x^n \in \mathbb{R}[[x]]$$

de rayon de convergence \geq 1, telles qu'il existe $\alpha\in\mathbb{R}$, $\alpha>0$ et $P_f\in\mathbb{R}[T]$ vérifiant

$$n^{\alpha}|na_n - P_f(\log n)| \to 0$$
 quand $n \to \infty$.

Vérifier que le polynôme P_f est alors unique et que l'application $f \mapsto P_f$ de \mathcal{E} dans $\mathbb{R}[T]$ est \mathbb{R} -linéaire.

1) Soit $f \in \mathcal{E}$, $f(x) = \sum_{n \geq 0} a_n x^n$. Pour $n \geq 0$ on note $A_n = \sum_{i=0}^n a_i$. Montrer qu'il existe $\beta \in \mathbb{R}$, $\beta > 0$ et $Q_f \in \mathbb{R}[T]$, tels que

$$n^{\beta}|A_n - Q_f(\log n)| \to 0$$
 quand $n \to \infty$.

Vérifier que le polynôme Q_f est unique et que l'application $f\mapsto Q_f$ de $\mathcal E$ dans $\mathbb R[T]$ est $\mathbb R$ -linéaire.

Vérifier

$$\frac{d}{dT}Q_f = P_f.$$

Indication. On pourra vérifier que pour chaque entier $k \geq 1$ il existe un nombre réel $\gamma_k > 0$ tel que

$$\sum_{i=1}^{n-1} \frac{1}{i} (\log i)^k = \frac{1}{k+1} (\log n)^{k+1} + \gamma_k + O \big((\log n)^k / n \big) \qquad \mathsf{quand} \quad n \to \infty.$$

- 2) Soit $f \in \mathcal{E}$.
 - a) Montrer qu'il existe $\kappa \in \mathbb{R}$, $\kappa > 0$ et $R_f \in \mathbb{R}[T]$, tels que

$$f(x) = R_f(\log(1-x)) + O((1-x)^{\kappa})$$
 quand $x \to 1$.

- b) Vérifier que le polynôme R_f est unique et que l'application $f\mapsto R_f$ de $\mathcal E$ dans $\mathbb R[T]$ est $\mathbb R$ -linéaire.
- c) Vérifier que R_f est le polynôme constant si et seulement si $P_f = 0$.
- d) Vérifier que les applications $f\mapsto R_f$ et $f\mapsto Q_f$ de $\mathcal E$ dans $\mathbb R[T]$ ont le même noyau.
- 3) Vérifier que pour $f \in \mathcal{E}$ les propriétés suivantes sont équivalentes:
 - (i) $P_f = 0$.
 - (ii) Le polynôme Q_f est constant.
 - (iii) Le polynôme R_f est constant.
 - (iv) La série $\sum_{n\geq 0} a_n$ converge.

Quand ces propriétés sont satisfaites vérifier

$$\sum_{n\geq 0} a_n = \lim_{x\to 1} f(x) = R_f.$$

- 4) Pour $w\in\mathfrak{H}^1$ on note \mathcal{P}_w , \mathcal{Q}_w et \mathcal{R}_w les polynômes P_f , Q_f et R_f avec $f=\widehat{\mathsf{Li}}_w$.
 - a) Vérifier $\mathcal{P}_w = 0$ si et seulement si $w \in \mathfrak{H}^0$.
 - b) Vérifier, pour $w \in \mathfrak{H}^1$, $\mathcal{P}_{x_1w} = \mathcal{Q}_w$.
 - c) Quel est, pour k entier \geq 0, le degré du polynôme $\mathcal{P}_{x_1^k}$?
 - d) Pour $w \in \mathfrak{H}^0$, vérifier $\mathcal{R}_w = \widehat{\zeta}(w)$.

Problème III.

Soit $\lambda \in K$.

On définit un endomorphisme K-linéaire φ_{λ} de $\mathfrak H$ par les conditions

$$\varphi_{\lambda}(e) = e, \quad \varphi_{\lambda}(y_s) = y_s \quad (s \ge 1),$$

$$\varphi_{\lambda}(y_s y_t u) = y_s \varphi_{\lambda}(y_t u) + \lambda \varphi_{\lambda}(y_{s+t} u)$$

pour $s \ge 1$, $t \ge 1$, $u \in Y^*$ et

$$\varphi_{\lambda}(wx_0^n) = \varphi_{\lambda}(w)x_0^n$$

pour $w \in Y^*$ et n > 0.

1) Vérifier, pour $\lambda \in K$, $u \in \mathfrak{H}$, s et t entiers positifs,

$$\varphi_{\lambda} \circ \varphi_{-\lambda}(u) = u, \quad \varphi_{\lambda}(y_s \varphi_{-\lambda}(y_t u)) = y_s y_t u + \lambda y_{s+t} u.$$

En déduire que φ_{λ} est un automorphisme du K-espace vectoriel \mathfrak{H} . Montrer que l'application $\lambda \mapsto \varphi_{\lambda}$ est un homomorphisme de groupes additifs de K dans le groupe des automorphismes K-linéaires de \mathfrak{H} .

2) Vérifier, pour $\underline{s} = (s_1, \dots, s_k)$,

$$\varphi_{\lambda}(y_{\underline{s}}) = \sum_{\underline{\sigma} \in \mathcal{A}(\underline{s})} \lambda^{a(\underline{\sigma})} y_{\underline{\sigma}},$$

où $\mathcal{A}(\underline{s})$ désigne l'ensemble des uplets $\underline{\sigma}=(s_1*_1s_2*_2\cdots *_{k-1}s_k)$, tandis que $(*_1,\ldots,*_{k-1})$ décrit l'ensemble des 2^{k-1} suites de symboles égaux à + ou , et que $a(\underline{\sigma})$ désigne le nombre de j entre 1 et k-1 tels que $*_j=+$.

3) Pour $\lambda \in K$, on définit

$$\widehat{\mathsf{Li}}_u^{(\lambda)} = \widehat{\mathsf{Li}}_{\varphi_\lambda(u)} \qquad (u \in \mathfrak{H}^1) \quad \text{et} \quad \widehat{\zeta}^{(\lambda)} = \widehat{\zeta} \circ \varphi_\lambda.$$

De plus, pour $\underline{s} = (s_1, \dots, s_k)$, on pose

$$\operatorname{Li}_{\underline{s}}^{(\lambda)} = \widehat{\operatorname{Li}}_{y_s}^{(\lambda)} \quad \text{et} \quad \zeta^{(\lambda)}(\underline{s}) = \widehat{\zeta}^{(\lambda)}(y_{\underline{s}}) \quad \text{si} \quad s_1 \geq 2.$$

a) Vérifier

$$\operatorname{Li}_{\underline{s}}^{(1)}(z) = \sum_{n_1 \ge n_2 \dots \ge n_k \ge 1} \frac{z^{n_1}}{n_1^{s_1} \cdots n_k^{s_k}}$$

et

$$\zeta^{(1)}(\underline{s}) = \mathsf{Li}^{(1)}_{\underline{s}}(1) = \sum_{n_1 > n_2 \ldots > n_k > 1} \frac{1}{n_1^{s_1} \cdots n_k^{s_k}} \qquad \mathsf{si} \quad s_1 \geq 2.$$

b) En déduire

$$\operatorname{Li}_{\underline{s}}^{(1)}(z) = \sum_{\underline{\sigma} \in \mathcal{A}(\underline{s})} \operatorname{Li}_{\underline{\sigma}}(z) \quad \text{et} \quad \operatorname{Li}_{\underline{s}}(z) = \sum_{\underline{\sigma} \in \mathcal{A}(\underline{s})} (-1)^{a(\underline{\sigma})} \operatorname{Li}_{\underline{\sigma}}^{(1)}(z)$$

pour tout $\underline{s} = (s_1, \dots, s_k)$ et |z| < 1, puis

$$\zeta^{(1)}(\underline{s}) = \sum_{\underline{\sigma} \in \mathcal{A}(\underline{s})} \zeta(\underline{\sigma}) \quad \text{et} \quad \zeta(\underline{s}) = \sum_{\underline{\sigma} \in \mathcal{A}(\underline{s})} (-1)^{a(\underline{\sigma})} \zeta^{(1)}(\underline{\sigma})$$

quand $s_1 \geq 2$.

4) Soit $\lambda \in K$. On définit deux lois internes \star_{λ} et m_{λ} sur \mathfrak{H}^1 par

$$u \star_{\lambda} v = \varphi_{-\lambda} (\varphi_{\lambda}(u) \star \varphi_{\lambda}(v))$$
 et $u \coprod_{\lambda} v = \varphi_{-\lambda} (\varphi_{\lambda}(u) \coprod_{\lambda} \varphi_{\lambda}(v)).$

Vérifier

$$\widehat{\mathsf{Li}}_{u_{\mathsf{III}_{\lambda}v}}^{(\lambda)}(z) = \widehat{\mathsf{Li}}_{u}^{(\lambda)}(z)\widehat{\mathsf{Li}}_{v}^{(\lambda)}(z)$$

pour u et v dans \mathfrak{H}^1 , |z| < 1 et

$$\widehat{\zeta}^{(\lambda)}(u \star_{\lambda} v) = \widehat{\zeta}^{(\lambda)}(u)\widehat{\zeta}^{(\lambda)}(v)$$

pour u et v dans \mathfrak{H}^0 .

5) Vérifier que pour tout u et v dans \mathfrak{H}^0 , les éléments

$$u \coprod_{\lambda} v - u \star_{\lambda} v$$
 et $y_1 \coprod_{\lambda} u - y_1 \star_{\lambda} u$

appartiennent au noyau de $\widehat{\zeta}^{(\lambda)}:\mathfrak{H}^0\to\mathbb{R}.$