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1. Introduction. Let d ≥ 3 be an integer. We denote by Bin(d,Z) the
set of binary forms F = F (X,Y ) with integer coefficients, of degree d and
with discriminant different from zero. For

(1.1) γ =

(
a1 a2

a3 a4

)
∈ GL(2,Q),

and F ∈ Bin(d,Z), F ◦γ is the binary form with rational coefficients defined
by

(F ◦ γ)(X1, X2) = F (a1X1 + a2X2, a3X1 + a4X2).

Two elements F1 and F2 in Bin(d,Z) are said to be isomorphic if there is a
γ ∈ GL(2,Q) such that

F1 ◦ γ = F2.

To estimate the number of values simultaneously taken by F1 and F2, we
introduce the counting function, for N an integer ≥ 1,

N (F1, F2;N) := ♯(F1(Z2) ∩ F2(Z2) ∩ [−N,+N ])(1.2)

= ♯{m : |m| ≤ N, there exists (x1, x2, x3, x4) ∈ Z4

such that m = F1(x1, x2) = F2(x3, x4)}.
Our first result gives an upper bound for this function when the two forms
are not isomorphic.
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Theorem 1.1. For every d ≥ 3, there is a constant ϑd < 2/d such that,
for every ε > 0, for every pair (F1, F2) of non-isomorphic forms in Bin(d,Z),
as N → ∞, one has the bound

(1.3) N (F1, F2;N) = OF1,F2,ε(N
ϑd+ε).

This theorem calls for the following comments:

Remark 1.2. The point of this theorem is that the constant ϑd defined
in (2.1) satisfies ϑd < 2/d (see (2.3)). In fact, it is known that for any
F ∈ Bin(d,Z), there exists CF > 0 such that, for N tending to infinity, one
has

N (F, F ;N) = (CF + oF (1))N
2/d

(see Theorem A in §1.1, due to Stewart and Xiao [SX, Theorem 1.1]).

Remark 1.3. The explicit value of ϑd given in (2.1) leads to the inequal-
ity ϑd > 1/d for all d ≥ 3 (see (2.3)). It also shows that ϑd is asymptotic to
1/d as d → ∞. This value is asymptotically optimal as shown by the forms

F1(X,Y ) = Xd + Y d and F2(X,Y ) = Xd + 2Y d.

These two forms are not isomorphic. From the equalities F1(n, 0) = F2(n, 0)
= nd, we deduce the lower bound

N (F1, F2;N) ≥ N1/d(N ≥ 1).

Remark 1.4. According to [FW, Corollaire 3.3], if the two forms F1, F2

are positive definite and not both divisible by a linear form with rational
coefficients, then the exponent ϑd in the conclusion of Theorem 1.1 can be
replaced by ηd with ηd < ϑd (see the definition of ηd and ϑd in §2.1).

Remark 1.5. We will show in §2.4 that ϑd can be replaced by ηd as in
the previous remark when the binary form F1(X,Y )F2(X,Y ) has no real
root.

Remark 1.6. Theorem 1.1 is no more valid for d = 2. This is well known:
see for instance [FLW, Prop. 6.1, (6.3)], where, choosing F1(X,Y ) = X2+Y 2

and F2(X,Y ) = X2 + XY + Y 2, one has, for B tending to infinity, the
asymptotic formula

N (F1, F2;B) = (β0 + o(1))B(logB)−3/4

for some constant β0 > 0.

Remark 1.7. Theorem 1.1 immediately generalizes to binary forms with
rational coefficients: it suffices to multiply by a common denominator.

Remark 1.8. The following proposition shows that if F1 and F2 are
isomorphic, equality (1.3) never holds.
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Proposition 1.9. Let d ≥ 3 and let F1 and F2 be isomorphic binary
forms in Bin(d,Z). Then there is a positive constant CF1,F2, such that, for
N tending to infinity, we have

N (F1, F2;N) ≥ (CF1,F2 − oF1,F2(1))N
2/d.

Proof. Let γ as in (1.1) be such that F1 = F2◦γ. Let D ≥ 1 be an integer
such that (Da1, Da2, Da3, Da4) belongs to Z4. By homogeneity, we deduce
that the two forms

G1(X1, X2) := F1(DX1, DX2),

G2(X1, X2) := F2(Da1X1 +Da2X2, Da3X1 +Da4X2)

are equal. So we have the equality of their images

G1(Z2) = G2(Z2).

We also have the obvious inclusions

G1(Z2) ⊂ F1(Z2) and G2(Z2) ⊂ F2(Z2),

which leads to

(1.4) G1(Z2) ⊂ F1(Z2) ∩ F2(Z2).

A new application of the result of Stewart and Xiao (see Theorem A below)
gives, for some constant CG1 > 0, the equality

(1.5) N (G1, G1;N) = (CG1 + oG1(1))N
2/d

as N tends to infinity. Gathering (1.4) and (1.5) we obtain the inequality
claimed in Proposition 1.9.

Theorem 1.1 is an important tool for our generalization of our previous
study in [FW], where we produced an asymptotic formula for the number
of values m, with |m| ≤ B, taken by some cyclotomic form Φn of degree
φ(n) greater than a fixed d ≥ 3. Recall that φ is the Euler function and
that to the nth cyclotomic polynomial ϕn(X), of degree φ(n), is attached
the cyclotomic form Φn(X,Y ) := Y φ(n) · ϕn(X/Y ).

Our purpose is to study the following general problem:

Let F be an infinite subset of
⋃

d≥3Bin(d,Z), satisfying natural properties.
Let A be a fixed non-negative integer. As B tends to infinity, estimate the
counting function

(1.6)
R≥d(F , B,A) := ♯ {m : 0 ≤ |m| ≤ B, and there areF ∈ F with degF ≥ d

and (x, y) ∈ Z2 with max {|x|, |y|} ≥ A such that F (x, y) = m}.
The introduction of the parameter A may seem artificial. It is designed

to prevent the following phenomenon encountered for instance in the case of
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the family of cyclotomic forms Φn, where, for every prime p, we have

(1.7) Φp(1, 1) = p

(recall that Φp(X,Y ) = (Xp − Y p)
/
(X − Y )). We wish to avoid counting

these values, since the set of primes, by its cardinality, completely hides the
set of other values Φn(x, y) when max {|x|, |y|} ≥ 2 and φ(n) ≥ d.

Let F be a set of binary forms. We denote by Fd the subset of forms in
F of degree d. We will study the set of values taken by forms belonging to
some (A,A1, d0, d1, κ)-regular families F , which we define as follows.

Definition 1.10. Let A, A1, d0, d1 be integers and let κ be a real number
such that

(1.8) A ≥ 1, A1 ≥ 1, d1 ≥ d0 ≥ 0, 0 < κ < A.

Let F be a set of binary forms. We say that F is (A,A1, d0, d1, κ)-regular if
it satisfies the following conditions:

(i) The set F is infinite.
(ii) We have the inclusion

F ⊂
⋃
d≥3

Bin(d,Z).

(iii) For all d ≥ 3, one has ♯Fd ≤ dA1 ,
(iv) Two forms in F are isomorphic if and only if they are equal.
(v) For any d ≥ max {d1, d0 + 1}, the following holds:

F ∈ Fd,

(x, y) ∈ Z2 and F (x, y) ̸= 0,

max {|x|, |y|} ≥ A

 =⇒ max {|x|, |y|} ≤ κ |F (x, y)|
1

d−d0 .

The upper bound on the right-hand side of (v) is trivial for max {|x|, |y|}
≤ κ; this is why we require A > κ.

The family of cyclotomic forms

Φ := {Φn : φ(n) ≥ 4, n ̸≡ 2 (mod 4)}
satisfies assumptions (i)–(iv), but is not (1, A1, d0, d1, κ)-regular for any value
of A1, d0, d1 and κ, since (1.7) shows that (v) is not satisfied. However, Φ is
(2, 2, 0, 4, 2/

√
3)-regular: this is a consequence of [FW, Théorème 4.10] and

of the classical inequality n/(log log n) < φ(n) < n.

1.1. Some facts on a single form. Before stating our main result con-
cerning R≥d(F , B,A) defined in (1.6), we recall some fundamental objects
attached to a binary form F ∈ Bin(d,Z) when d ≥ 3:

• The fundamental domain of F is

D(F ) := {(x, y) ∈ R2 : |F (x, y)| ≤ 1}.
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• The area of the fundamental domain of F is the real number

(1.9) AF :=
� �

D(F )

dx dy.

We always have 0 < AF < ∞.
• The group of automorphisms of F is

Aut(F,Q)

:=

{(
a1 a2

a3 a4

)
∈ GL(2,Q) : F (X,Y ) = F (a1X + a2Y, a3X + a4Y )

}
.

This is a finite subgroup of GL(2,Q).
We now recall the important result of Stewart and Xiao [SX, Theorems

1.1 and 1.2], already mentioned above:

Theorem A. For every d ≥ 3, there is a constant κd < 2/d such that,
for all F ∈ Bin(d,Z) and all ε > 0, the equality

N (F, F ;B) = AF ·WF ·B2/d +OF,ε(B
κd+ε)

holds uniformly for B → ∞, where WF = W (Aut(F,Q)) depends only on
the group Aut(F,Q).

For G a finite subgroup of GL(2,Q) which is the group of automorphisms
of an element of Bin(d,Z), the constant W (G) is a rational number which is
defined in [SX, Theorem 1.2]. This definition is subtle since it depends on the
denominators of the entries of the matrices belonging to G. However, for the
families F that we will meet in this paper, we will only need the equalities

(1.10)

W ({Id}) = 1, W ({Id, −Id}) = 1/2, W

({(
±1 0

0 ±1

)})
= 1/4.

Finally, the exponent κd in Theorem A is defined by

(1.11) κd =


12
19 if d = 3,

3
(d−2)

√
d+3

if 4 ≤ d ≤ 8,

1
d−1 if d ≥ 9.

Actually, the value of this exponent is improved when F (X,Y ) does not have
a linear factor over R[X,Y ]; see [SX, (1.11)].

1.2. An asymptotic formula for R≥d(F , B,A). Our central result is
the following. The exponent ϑd is defined in (2.1).

Theorem 1.11. Let (A,A1, d0, d1, κ) satisfy conditions (1.8). Let F be a
(A,A1, d0, d1, κ)-regular family of binary forms. Then for every d≥max {3, d1}
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and every positive ε, one has

R≥d(F , B,A) =
( ∑

F∈Fd

AFWF

)
·B2/d +OF ,A,d,ε(B

ϑd+ε) +OF ,A,d(B
2/d†)

uniformly for B → ∞. The integer d† is defined by

d† := inf {d′ : d′ > d such that Fd′ ̸= ∅}.
Recall that Fd is not empty for infinitely many values of d since the set

F is infinite.
Assumption (v) in Definition 1.10 of a regular family cannot be omitted,

even in the case of totally imaginary forms (homogeneous versions of poly-
nomials without real roots), as shown by the sequence of positive definite
forms (X − Y )2(X − 2Y )2 · · · (X − dY )2 + dY 2d, the value of which at the
points (x, y) = (n, 1), 1 ≤ n ≤ d, is d.

The following is a direct application of (1.10):

Corollary 1.12. Suppose that F satisfies the hypothesis of Theorem
1.11 and that, for every d ≥ 3, Fd satisfies one of the following three condi-
tions:

(C1) for all F ∈ Fd, we have Aut(F,Q) = {Id},
(C2) for all F ∈ Fd, we have Aut(F,Q) = {±Id} (cyclic group of order 2),
(C3) for all F ∈ Fd, we have Aut(F,Q) =

{(±1 0
0 ±1

)}
(Klein group of

order 4).

Then

(1.12)
R≥d(F , B,A) = Cd ·

( ∑
F∈Fd

AF

)
·B2/d+OF ,A,d,ε(B

ϑd+ε)+OF ,A,d(B
2/d†),

where the coefficient Cd is 1, 1/2 or 1/4 according as condition (C1), (C2),
or (C3) is satisfied by Fd.

1.3. Some applications. We now give a list of regular families F in
order to illustrate our results.

The first example of course is given by the sequence of cyclotomic binary
forms [FLW]. We do not repeat it.

Our second example is given by a family of binomials axd + byd where
d is even while a, b have the same sign: these restrictions allow us to check
easily assumption (v) in Definition 1.10 of a regular family. Since the proof
is easy, we give it right away.

The other three examples below will require more work; for them we
restrict ourselves to families F satisfying the conditions of Corollary 1.12 in
order to apply (1.12).

There are a lot of variations on these constructions.
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1.3.1. Binomial forms. For each even integer d ≥ 4, let Ed be a finite
subset of Z>0 × Z>0. Assume Ed is not empty for infinitely many d and has
at most dA1 elements for some A1 > 0 and all d. Let Bd denote the family of
binary forms aXd + bY d with (a, b) ∈ Ed and let B =

⋃
d≥4 Bd. We assume

that for (a, b) ̸= (a′, b′) in Ed, at least one of a/a′, b/b′ is not a dth power of
a rational number, and also at least one of a/b′, b/a′ is not a dth power of a
rational number.

Theorem 1.13. The family B is (2, A1, 0, 4, 1)-regular.
Further, for every d ≥ 4 and every ε > 0 we have

R≥d(B, B, 2) =
( ∑

F∈Bd

AFWF

)
B2/d +OB,d,ε(B

max {ϑd+ε,2/d†})

uniformly for B → ∞. The integer d† is defined by

d† := inf {d′ : d′ > d, Bd′ ̸= ∅}.
We will check hypothesis (iv) of Definition 1.10 by means of the following

auxiliary result.

Lemma 1.14. Let d ≥ 4 be even and let a, b, a′, b′ be positive integers.
Then the binary forms aXd + bY d and a′Xd + b′Y d are isomorphic if and
only if either a/a′, b/b′ are both dth powers of rational numbers, or a/b′, b/a′
are both dth powers of rational numbers.

Proof. If a/a′ = ud and b/b′ = vd, then the forms aXd+bY d = a′(uX)d+
b′(vY )d and a′Xd + b′Y d are isomorphic. Also, if a/b′ = ud and b/a′ =
vd, then the forms aXd + bY d = a′(vY )d + b′(uX)d and a′Xd + b′Y d are
isomorphic. It remains to prove the converse.

Assume aXd + bY d and a′Xd + b′Y d are isomorphic. Let γ =
(
a1 a2
a3 a4

)
∈

GL(2,Q) satisfy

a(a1X + a2Y )d + b(a3X + a4Y )d = a′Xd + b′Y d.

We have
aad1 + bad3 = a′, aad2 + bad4 = b′

and, for i = 1, . . . , d− 1,

aai1a
d−i
2 + bai3a

d−i
4 = 0.

Assume a2 = 0. From

a(a1X)d + b(a3X + a4Y )d = a′Xd + b′Y d

we deduce bad4 = b′, a4 ̸= 0, hence a3 = 0, and therefore aad1 = a′.
Assume a1 = 0. From

a(a2Y )d + b(a3X + a4Y )d = a′Xd + b′Y d

we deduce bad3 = a′, a3 ̸= 0, hence a4 = 0, and therefore aad2 = b′.
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Finally, let us check that the case a1a2 ̸= 0 is not possible. Write

aa1a
d−1
2 + ba3a

d−1
4 = 0, aa21a

d−2
2 + ba23a

d−2
4 = 0.

We deduce a3a4 ̸= 0,

a1
a3

= − b

a

(
a4
a2

)d−1

,

(
a1
a3

)2

= − b

a

(
a4
a2

)d−2

,

hence (
a4
a2

)d

= −a

b
,

which is impossible for a, b positive and d even.

Proof of Theorem 1.13. Conditions (i)–(iii) in Definition 1.10 are satisfied
by hypothesis.

For (a, b) ̸= (a′, b′) in Ed, the binary forms aXd + bY d and a′Xd + b′Y d

are not isomorphic, as shown by Lemma 1.14. Finally, for (a, b) ∈ Ed and
(x, y) ∈ Z2, we have

axd + byd ≥ (max {|x|, |y|})d.

This completes the proof of the condition (v) in Definition 1.10.
The second assertion of Theorem 1.13 then follows from Theorem 1.11.

Our assumptions do not allow any upper bound for R≥d(B, B, 1) better
than B: the set of all a, b and a + b for (a, b) in

⋃
d′≥dEd′ may contain all

positive integers.
Explicit values for WF and AF for F ∈ Fd are given in [SX, Corollary 1.3].

The values of WF and AF are computed without the assumptions of a, b
having the same sign and d being even, but none of these two hypotheses can
be omitted from our theorem, as shown by the two sequences Xd−(dd−d)Y d

(d even) and Xd + (dd − d)Y d (d odd).

1.3.2. Products of positive quadratic forms. Let (µn)n≥1 be an increasing
sequence of positive squarefree integers; assume that there exists λ > 0 such
that

(1.13) µn ≤ λn for all n ≥ 1.

If we choose µn = qn where (qn)n≥1 is the full sequence

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, . . .

of positive squarefree integers, written in ascending order, then, as is well
known (see [HW, Theorem 333] and https://oeis.org/A005117), we have

♯{qn ≤ x} =
∑
n≤x

µ(n)2 =
6

π2
x+O(

√
x),

https://oeis.org/A005117
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which implies that

qn ∼ π2

6
n (n → ∞).

Since µ230 ≥ q230 = 381, we have λ ≥ 381
230 · As a matter of fact, we have

(1.14) sup
n≥1

qn
n

=
381

230
·

Hence, in the special case µn = qn (n ≥ 1), λ = 381/230 is an admissible
value.

For d ≥ 2 and 1 ≤ ν ≤ d+1, we denote by Q+
d,ν the binary form of degree

2d defined by the formula

(1.15) Q+
d,ν(X,Y ) :=

∏
1≤n≤d+1

n ̸=ν

(X2 + µnY
2).

The associated family is

Q+ := {Q+
d,ν : d ≥ 2, 1 ≤ ν ≤ d+ 1}

with Q+
d = ∅ for d odd and Q+

2d = {Q+
d,ν : 1 ≤ ν ≤ d+ 1} for d ≥ 2. With λ

defined in (1.13), we have

Theorem 1.15. The family Q+ is (2, 1, 0, 4, 1)-regular.
Furthermore, for every d ≥ 2, Q+

2d satisfies condition (C3) of Corol-
lary 1.12.

Finally, for every d ≥ 2 and every ε > 0 we have

(1.16) R≥2d(Q+, B, 0) =
1

4

( ∑
F∈Q+

2d

AF

)
B1/d +Oλ,d,ε(B

max {ϑ2d+ε,1/(d+1)})

uniformly for B → ∞, and

(1.17)
π√
λ
·
√
d <

( ∑
F∈Q+

2d

AF

)
< π

√
e (
√
d+ 1).

See (2.5) for a simplification of the exponent in the error term of (1.16).

Remark 1.16 (Thanks to Jean-Baptiste Fouvry). Consider the quartic
forms

Q+
2,3(X,Y ) = (X2+Y 2)(X2+2Y 2), Q+

2,1(U, V ) = (U2+2V 2)(U2+3V 2).

One checks

Q+
2,3(X,Y )−Q+

2,1(U, Y ) = (−U2 +X2 − Y 2)(U2 +X2 + 4Y 2).

The Pythagorean triples (y, u, x) which are the solutions of the equation
y2 + u2 = x2 produce solutions (m,x, y, u) to the equations

m = Q+
2,3(x, y) = Q+

2,1(u, y).
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It follows that the exponent ϑ4 = 0.448 in Theorem 1.1 cannot be replaced
with an exponent < 0.25.

1.3.3. Products of indefinite quadratic forms. With the above notations,
including the definition of λ in (1.13), we assume µ1 ≥ 2 and we consider,
for d ≥ 2 and 1 ≤ ν ≤ d+ 1, the binary form of degree 2d defined by

Q−
d,ν(X,Y ) :=

∏
1≤n≤d+1

n̸=ν

(X2 − µnY
2).

The associated family is

Q− := {Q−
d,ν : d ≥ 2, 1 ≤ ν ≤ d+ 1}

with Q−
d = ∅ for d odd and Q−

2d = {Q−
d,ν : 1 ≤ ν ≤ d+ 1} for d ≥ 2.

From (1.14) one deduces

sup
n≥1

qn+1

n
= 2,

hence λ ≥ 2. In the special case µn = qn+1 (n ≥ 1), an admissible value for λ
is λ = 2.

Theorem 1.17. For A > 2eλ, the family Q− is (A, 1, 2, 2, 2eλ)-regular
and satisfies condition (C3) of Corollary 1.12.

Furthermore, for d ≥ 2, we have

R≥2d(Q−, B, 0) =
1

4

( ∑
F∈Q−

2d

AF

)
B1/d +Oλ,A,d,ε(B

max {ϑ2d+ε,1/(d+1)}),

uniformly for B → ∞.
Finally,

(1.18)
π√
λ
·
√
d ≤

∑
F∈Q−

2d

AF ≤ 22λ
√
d,

where the lower bound is valid for all d ≥ 2 and the upper bound for d
sufficiently large.

1.3.4. Products of linear factors. We reserve the letter p for prime num-
bers and we consider, for 5 ≤ d ≤ p, the binary form Ld,p ∈ Bin(d,Z) defined
by

Ld,p(X,Y ) := (X − pY ) ·
∏

0≤n≤d−2

(X − nY ).

The associated family is

L := {Ld,p : d ≥ 5, d ≤ p < 2d}.
We have the following result:
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Theorem 1.18. The family L is (10, 1, 1, 5, 9)-regular.
Furthermore, for d ≥ 5, Ld satisfies condition (C1) of Corollary 1.12

for d odd and condition (C2) for d even.
Finally, for every d ≥ 5 and every ε > 0, one has

(1.19) R≥d(L, B, 0) =
1

(2, d)

( ∑
d≤p<2d

ALd,p

)
B2/d +Od,ε(B

max {ϑd,2/(d+1)}),

uniformly for B → ∞, and
e2 − o(1)

log d
≤

∑
d≤p<2d

ALd,p
≤ 5e2 + 2e + o(1)

log d

uniformly for d → ∞.

The numerical values are e2 = 7.389 . . . and 5e2 + 2e = 42.381 . . . .
See (2.6) for a simplification of the exponent in the error term of (1.19).

Remark 1.19. We now give some hints on the construction of the fam-
ily L. More generally, consider the binary form of degree d defined by

Ln,d(X,Y ) :=
∏

1≤i≤d

(X − niY ),

where n := {n1 < · · · < nd} is a set of d integers. Fix d ≥ 5; then for almost
all n (in the sense of Zariski topology), the group of automorphisms of Ln,d

is trivial, which means equal to {Id} or {±Id}, according to the parity of d.
Similarly, for fixed d ≥ 5, for almost all (m,n) the binary forms Lm,d and
Ln,d are not isomorphic. For statements of that type, see [FK] for instance.
The strategy of choosing n1 = 0 and nd = p, where p is a large prime, ensures
that the group of automorphisms is trivial and that the binary forms that
we meet are not isomorphic. These statements are proved by appealing to
the classical properties of the cross-ratio (see §6.1 and §6.2).

Finally, we choose for n1,. . . ,nd−1 the first d − 1 integers. This enables
us to estimate the area ALd,p

(see §6.6) via Stirling’s formula

(1.20) NNe−N
√
2πN < N ! < NNe−N

√
2πN e1/(12N),

which is valid for all N ≥ 1. In particular, as N → ∞, we have

logN − 1 <
1

N
log(N !) < logN − 1 + o(1).

It would be interesting to further investigate the explicit construction of
other regular families of forms which are products of Z-linear forms.

Remark 1.20. A natural way to generalize the construction of the fami-
lies B, Q− and Q+ is to consider sets of forms which are products of binomials
of the shape

Ba,n(X,Y ) = Xa + nY a.
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The key point is to choose the integers n and the exponents a ≥ 2 in such
a way that we are able to control the homographies in PGL(2,Q) which
exchange the set of zeroes of the products of Ba,n.

2. Proof of Theorem 1.1

2.1. Beginning of the proof. The starting point is [FW, Théorème 3.1].
To state this result we use the following notations:

If F1 and F2 belong to Bin(d,Z) and if B ≥ 1, we put

M(F1, F2;B)

= ♯{(x1, x2, x3, x4) ∈ Z4 : max |xi| ≤ B, F1(x1, x2) = F2(x3, x4)},
M∗(F1, F2;B)

= ♯{(x1, x2, x3, x4) ∈ Z4 : max |xi| ≤ B, F1(x1, x2) = F2(x3, x4) ̸= 0}.

For d ≥ 3, we introduce

ηd =


2
9 + 73

108
√
3

for d = 3,
1
2d + 9

4d
√
d

for 4 ≤ d ≤ 20,
1
d for d ≥ 21

and

(2.1) ϑd =
dηd

dηd + d− 2

and

(2.2) η′d,F1,F2
=


ηd if the binary form F1(X,Y )F2(X,Y )

has no zero in P1(R),
ϑd otherwise.

Here are the first approximate values for ηd, ϑd and κd (recall (1.11)):

d ηd ϑd κd

3 0.612 0.647 0.631
4 0.406 0.448 0.428
5 0.301 0.334 0.309
6 0.236 0.261 0.234
7 0.192 0.211 0.184
8 0.161 0.177 0.150

For d ≥ 3 and for F1 and F2 belonging to Bin(d,Z), one has the inequalities

(2.3) 1/d ≤ ηd ≤ η′d,F1,F2
≤ ϑd < 2/d,

and in particular, for d ≥ 21, we have ηd = 1/d and ϑd = 1/(d− 1).
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Furthermore, by comparison with κd defined in (1.11), we check that

(2.4)

{
κd < ϑd if 3 ≤ d ≤ 20,

κd = ϑd if d ≥ 21.

Finally, by a direct computation we have the inequalities

(2.5)

{
ϑ2d > 1/(d+ 1) if d = 2, 3,

ϑ2d < 1/(d+ 1) if d ≥ 4,

and

(2.6)

{
ϑd > 2/(d+ 1) if d = 4, 5,

ϑd < 2/(d+ 1) if d ≥ 6.

We now recall (see [FW, Théorème 3.1])

Proposition 2.1. Let d ≥ 3 and let F1 and F2 be non-isomorphic forms
in Bin(d,Z), not both divisible by a linear form with rational coefficients.
Then for all ε > 0 and all B ≥ 1 one has

M(F1, F2;B) = OF1,F2,ε(B
dηd+ε).

As shown by [FW, Remarque 3.2], the above bound may not hold if one
of the binary forms is divisible by a linear form over Q. One eliminates this
hypothesis by studying the counting function M∗ rather than M. In other
words, one has the following variant for Proposition 2.1:

Proposition 2.2. Let d ≥ 3 and let F1 and F2 be non-isomorphic forms
in Bin(d,Z). Then for every ε > 0 and all B ≥ 1 one has the bound

M∗(F1, F2;B) = OF1,F2,ε(B
dηd+ε).

Proof. We refer to the original proof of [FW, Théorème 3.1]. The hypoth-
esis that F1 or F2 has no Q-linear factor is only used in [FW, (22)] (which is
equation (3.8) in the arXiv version). This case no longer has to be considered
when one studies M∗ instead of M.

2.2. Lemmas in diophantine approximation. First we prove the
following

Lemma 2.3. Let f ∈ Z[t] be a polynomial of degree d ≥ 1 and with
discriminant different from zero. Let ξ1, . . . , ξd be the complex roots of f .
Then there are real constants c1 > 0 and c2 such that

(i) for every t ∈ C, one has min1≤j≤d |t− ξj | ≤ c2|f(t)|,
(ii) for every t ∈ R, the condition |f(t)| < c1 implies the existence of a real

root ξi such that |t− ξi| ≤ c2|f(t)|.

Proof. This statement is trivial when d = 1. We now suppose d ≥ 2.
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We further suppose that a0 (the leading coefficient of f) is ≥ 1 and we
factor f into

f(t) = a0

d∏
j=1

(t− ξj).

Let δ := min1≤i<j≤d |ξi − ξj |. Since the discriminant of f is different from
zero, we have δ > 0. Let i be an index such that |t− ξi| = min1≤j≤d |t− ξj |.
The triangular inequality gives, for j ̸= i, the lower bound

|t− ξj | ≥
|t− ξj |+ |t− ξi|

2
≥ 1

2
|ξj − ξi| ≥

δ

2
·

We write the sequence of inequalities

|f(t)| ≥
∏

1≤j≤d

|t− ξj | ≥ |t− ξi|
(
δ

2

)d−1

,

which leads to point (i) with c2 = (2/δ)d−1.

For item (ii), we now suppose that t is real. We decompose the proof into
three cases.

If all the ξj are real, there is nothing to prove as a consequence of (i).
We choose c1 = 1 for instance.

If no ξj is real, we set
c1 := inf

x∈R
|f(x)|,

which is > 0.
If f has at least one real root and at least one non-real root, we put

c1 =
1

c2
min {|Im(ξi)| : 1 ≤ i ≤ d, ξi ̸∈ R}.

Applying item (i), we notice that for t ∈ R the inequality |f(t)| < c1 implies
the existence of a root ξj such that

|t− ξj | < c1c2 = min {|Im(ξi − t)| : 1 ≤ i ≤ d, ξi ̸∈ R}.

If ξj were not real, we would deduce that |t − ξj | < |Im(t − ξj)|, which is
impossible. Hence ξj is real.

The following lemma provides an upper bound for the tail of the series
defining the Riemann ζ-function.

Lemma 2.4. For all real δ > 1 and all positive integer B, one has∑
n≥B

1

nδ
≤ ζ(δ)B1−δ.
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Proof. By dividing the interval of summation into intervals with length B
and by using the inequality Bq + r ≥ Bq, we write∑

n≥B

1

nδ
=

∑
q≥1

B−1∑
r=0

1

(Bq + r)δ
≤ B1−δ

∑
q≥1

1

qδ
= ζ(δ)B1−δ.

The next lemma was inspired by [Ho, pp. 34–36].

Lemma 2.5. Let ξ, κ, s, Q1 and Q2 be real numbers such that s > 2,
κ > 0, Q2 > Q1 ≥ 1. Then the number of rational numbers p

q such that∣∣∣ξ − p

q

∣∣∣ ≤ κ

qs
and Q1 ≤ q ≤ Q2

is bounded by
2s+1κ

(2s−2 − 1)Qs−2
1

+

⌈
log Q2

Q1

log 2

⌉
.

Proof. First we consider the case when Q2 ≤ 2Q1 and we prove the result
with the coefficient 2s+1

2s−2−1
replaced by 8. Two distinct rational numbers p

q ,
p′

q′

such that Q1 ≤ q, q′ ≤ Q2 satisfy the inequalities∣∣∣∣pq − p′

q′

∣∣∣∣ ≥ 1

qq′
≥ 1

Q2
2

≥ 1

4Q2
1

·

If they also satisfy ∣∣∣∣ξ − p

q

∣∣∣∣ ≤ κ

qs
and

∣∣∣∣ξ − p′

q′

∣∣∣∣ ≤ κ

q′s
,

then they belong to the interval[
ξ − κ

Qs
1

, ξ +
κ

Qs
1

]
,

the length of which is 2κ/Qs
1. So the number of such p

q is less than

4Q2
1

2κ

Qs
1

+ 1 =
8κ

Qs−2
1

+ 1.

In the case where Q2 > 2Q1, we cover the interval [Q1, Q2] by ℓ intervals
[2hQ1, 2

h+1Q1], 0 ≤ h ≤ ℓ − 1, with 2ℓ−1Q1 < Q2 ≤ 2ℓQ1; thus ℓ satisfies
the inequalities

log Q2

Q1

log 2
≤ ℓ < 1 +

log Q2

Q1

log 2
·

As we have seen, in the interval [2hQ1, 2
h+1Q1], the number of rational num-

bers p
q satisfying our assumption is bounded by

8κ

2h(s−2)Qs−2
1

+ 1.
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The total number of fractions p
q satisfying our assumption is less than

ℓ−1∑
h=0

(
8κ

2h(s−2)Qs−2
1

+ 1

)
=

8κ

Qs−2
1

ℓ−1∑
h=0

1

2h(s−2)
+ ℓ

<
8κ

Qs−2
1

· 2s−2

2s−2 − 1
+

⌈
log Q2

Q1

log 2

⌉
.

2.3. On the set of values taken by a binary form when one of
the variables is large. As a consequence of the three lemmas proved in
§2.2 we will deduce

Proposition 2.6. Let d ≥ 3 and let F ∈ Bin(d,Z). Then there are
constants c3 and c4, effectively computable and depending on F only, such
that, for all ∆ > c3 and all A > 0, one has

♯{(x, y) ∈ Z2 : 0 < |F (x, y)| ≤ A, |y| ≥ A1/d∆} ≤ c4(A
2/d∆2−d +A1/(d−1)).

The proof of this proposition will use the following effective refinement
of Liouville’s inequality, due to N. I. Fel’dman [F]:

Lemma 2.7. Let ξ be an algebraic number of degree d ≥ 3. There are
effectively computable positive constants c5 = c5(ξ) and c6 = c6(ξ) such that,
for every fraction p/q ∈ Q with q ≥ 1, one has∣∣∣∣ξ − p

q

∣∣∣∣ ≥ c5
qd−c6

·

A completely explicit version of this inequality can be found in [GP, (13),
p. 248].

We deduce from this lemma the following one.

Lemma 2.8. Let P (X) ∈ Z[X] be a polynomial of degree d ≥ 3. There
are effectively computable positive constants c′5 = c′5(P ) and c′6 = c′6(P ) such
that, for every root ξ of P , and every rational number p/q such that q ≥ 1
and p/q ̸= ξ, we have

(2.7)
∣∣∣∣ξ − p

q

∣∣∣∣ ≥ c′5
qd−c′6

·

We stress that there is no assumption on whether the polynomial P is
irreducible or not, nor on whether the root ξ is real or not.

Proof of Lemma 2.8. Let δ be the degree of ξ. We split the argument
according to the value of δ and to the nature of ξ.

If ξ is not real, inequality (2.7) is trivial since |ξ− p/q| ≥ |Im ξ| for every
rational number p/q.

We now suppose that ξ is a real number.
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If δ = 1, we put ξ = a/b with a and b integers and b ≥ 1. We have
|a/b−p/q| = |aq−bp|/(bq) ≥ 1/(bq), since ξ is different from p/q. We obtain
(2.7) with the choices c′5 = 1/b and c′6 = 1 since d ≥ 3.

If δ = 2, the real number ξ is quadratic. Liouville’s inequality for quadratic
real numbers is optimal: there exists α = α(ξ) > 0 such that∣∣∣∣ξ − p

q

∣∣∣∣ ≥ α

q2
·

By the hypothesis d ≥ 3, we deduce (2.7) with the choice c′5 = α and
c′6 = 1/2.

If δ ≥ 3, we apply Lemma 2.7 in the form∣∣∣∣ξ − p

q

∣∣∣∣ ≥ c5
qδ−c6

·

Since δ ≤ d, we obtain (2.7) with the choice c′5 = c5 and c′6 = c6.
To complete the proof, we choose for c′5 = c′5(P ) and for c′6 = c′6(P ) the

least values c′5 and c′6 corresponding to the various ξ that we met above

Proof of Proposition 2.6. Let f(t) = F (t, 1), so F (x, y) = ydf(x/y). Let
d′ be the degree of f . Since the discriminant of F is different from zero, we
have

d′ = d or d− 1.

If f has no real root, then, for sufficiently large ∆ (more precisely, for ∆ >
(inft∈R |f(t)|)−1/d), the set

{(x, y) ∈ Z2 : 0 < |F (x, y)| ≤ A, |y| ≥ A1/d∆}

is empty.
Let r ≥ 1 be the number of real roots of f , denoted by ξ1, . . . , ξr. By

hypothesis these roots are simple. Let (x, y) ∈ Z2 with y ̸= 0. The condition
0 < |F (x, y)| ≤ A implies

0 <

∣∣∣∣f(x

y

)∣∣∣∣ ≤ A

|y|d
·

We suppose |y| ≥ A1/d∆ and ∆ > c
−1/d
1 , and we apply Lemma 2.3(ii). We

deduce the existence of some i ∈ {1, . . . , r} such that

(2.8) 0 <

∣∣∣∣xy − ξi

∣∣∣∣ ≤ c2A

|y|d
,

which is equivalent to

(2.9) 0 < |x− yξi| ≤
c2A

|y|d−1
·
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When the integer y is fixed, the number of integers x satisfying (2.9) is equal
to

2c2A

|y|d−1
+O(1).

We fix Y0 = A1/(d−1) and we sum over i = 1, . . . , r. We apply Lemma 2.4
with B = A1/d∆ and δ = d − 1 to deduce that the number of (x, y) with
0 < |F (x, y)| ≤ A and A1/d∆ ≤ |y| ≤ Y0 is bounded by

(2.10) O
(
A2/d∆2−d

)
+O(Y0).

To complete the proof, we use Lemma 2.8, which implies the lower bound

(2.11)
∣∣∣∣ξi − p

q

∣∣∣∣ ≥ c′5
qd

′−c′6
≥ c′5

qd−c′6
·

Combining (2.8) with (2.11), we deduce the upper bound |y| ≤ Y1 with
Y1 =

(
c2
c′5
A
)1/c′6 . It remains to compute the number of solutions of (2.8)

satisfying Y0 < |y| ≤ Y1. We use Lemma 2.5, with s = d, κ = c2A, Q1 = Y0,
Q2 = Y1 to see that this number is bounded by

O(A/Y d−2
0 ) +O(log Y1) = O(A1/(d−1)).

By adding (2.10) we obtain the upper bound announced in Proposition 2.6.

2.4. End of the proof of Theorem 1.1. We split the argument into
two different cases.

Assume first the binary form F1(X,Y )F2(X,Y ) has no zero in P1(R).
This holds true if and only if the polynomial

F1(t, 1)F1(1, t)F2(t, 1)F2(1, t)

has no real root. By homogeneity, there is a constant c7 > 0 such that for
all (x1, x2, x3, x4) ∈ R4, one has

|F1(x1, x2)| ≥ c7max {|x1|d, |x2|d} and |F2(x3, x4)| ≥ c7max {|x3|d, |x4|d}.
This leads to the existence of a constant c8 such that the inequalities

|F1(x1, x2)| ≤ N and |F2(x3, x4)| ≤ N

imply max(|x1|, |x2|, |x3|, |x4|) ≤ B with B := (c8N)1/d. We apply Proposi-
tion 2.2 in the form

N (F1, F2;N) ≤ 1 +M∗(F1, F2;B) = OF1,F2(B
dηd+ε) = OF1,F2(N

ηd+ε).

By inequality (2.3), the proof of Theorem 1.1 is complete in that case, in-
cluding the refinement stated in Remark 1.5.

Assume now that F1(X,Y )F2(X,Y ) has at least one zero in P1(R).
This is equivalent to the assumption that F1(t, 1)F1(1, t)F2(t, 1)F2(1, t) has
at least one real root. The constant η′d,F1,F2

is now defined by the second



Number of integers represented by families of binary forms (I) 19

formula of (2.2), that is, η′d,F1,F2
= ϑd. Let

τ :=
2
d − ηd

dηd + d− 2
,

so we have
2

d
− (d− 2)τ = ηd(1 + dτ) = η′d,F1,F2

.

Let ∆ := N τ . To bound from above the number N (F1, F2;N) of m ∈ Z,
|m| ≤ N, such that there is at least one (x1, x2, x3, x4) ∈ Z4 satisfying

(2.12) F1(x1, x2) = F2(x3, x4) = m,

we first consider those m such that at least one of (x1, x2, x3, x4) associated
to m by (2.12) satisfies

max {|x1|, |x2|, |x3|, |x4|} < N1/d∆.

Proposition 2.2 with B = N1/d+τ shows that the number of those m is
bounded by

(2.13) OF1,F2,ε(B
dηd+ε) = OF1,F2,ε(N

ηd(1+dτ)+ε) = OF1,F2,ε(N
η′d,F1,F2

+ε
).

Next, we estimate the number of those m such that all the 4-tuples
(x1, x2, x3, x4) associated to m by (2.12) satisfy

max {|x1|, |x2|, |x3|, |x4|} ≥ N1/d∆.

For simplicity, we study the case where |x1| ≥ N1/d∆, since the other cases
are similar. We only consider the values taken by the binary form F1 and
we apply Proposition 2.6. With the choices F = F1 and A = N , using
ϑd ≥ 1/(d−1), we deduce that the number of the relevant m’s is bounded by

OF1,F2(N
2/d∆2−d +N1/(d−1)) = OF1,F2(N

η′d,F1,F2 ).

By (2.13), this completes the proof of Theorem 1.1.

3. Proof of Theorem 1.11. By similarity with (1.6), we put

R=d(F , B,A) := ♯{m : 0 ≤ |m| ≤ B, and there are F ∈ Fd, (x, y) ∈ Z2,

such that max {|x|, |y|} ≥ A and m = F (x, y)}.
The lower bound for R≥d(F , B,A) is obtained as follows:

R≥d(F , B,A) ≥ R=d(F , B,A)

≥
∑
F∈Fd

N (F, F ;B)−
∑ ∑
F,F ′∈Fd
F ̸=F ′

N (F, F ′;B)− (2A+ 1)2dA1 ,

where the counting function N is defined by (1.2). Condition (iii) in Defini-
tion 1.10 of a regular family implies ♯Fd = Od(1); thanks to condition (iv)
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and to the inequality κd ≤ ϑd (see (2.4)), Theorems 1.1 and A give

(3.1) R≥d(F , B,A) ≥
( ∑

F∈Fd

AFWF

)
·B2/d −OF ,A,ε(B

ϑd+ε).

For the upper bound, we recall that the parameters d0, κ and A1 appear
in Definition 1.10. We start from the inequality

R≥d(F , B,A) ≤
∑
F∈Fd

N (F, F ;B) +

d†+d0∑
n=d†

∑
F∈Fn

N (F, F ;B)(3.2)

+ ♯
( ⋃
n>d†+d0

⋃
F∈Fn

(F (ZA) ∩ [−B,B])
)

with
ZA = Z2 \ ([−A,A]× [−A,A]).

Applying Theorem A one more time, we have

(3.3)
∑
F∈Fd

N (F, F ;B) =
( ∑

F∈Fd

AFWF

)
·B2/d +OF ,d,ε(B

κd+ε),

and

(3.4) N (F, F ;B) = OF (B
2/d†) if degF ≥ d†.

Hence the second term on the right-hand side of (3.2) is bounded as follows:
d†+d0∑
n=d†

∑
F∈Fn

N (F, F ;B) = OF ,d(B
2/d†).

To deal with the third term on the right-hand side of (3.2), we interchange
the summations to write

(3.5) ♯
( ⋃
n>d†+d0

⋃
F∈Fn

(F (ZA) ∩ [−B,B])
)

≤ ♯{(n, F, x, y) : n > d† + d0, F ∈ Fn, (x, y) ∈ ZA, |F (x, y)| ≤ B}.
Condition (v) in Definition 1.10 of the (A,A1, d0, d1, κ)-regularity of F pro-
duces a bound for n, by the sequence of inequalities

(3.6) κ < A ≤ max {|x|, |y|} ≤ κ|F (x, y)|
1

n−d0 ≤ κB
1

n−d0 ≤ κB
1

d†+1 ,

which implies

n ≤ d0 +
logB

log(A/κ)
·

Furthermore, inequalities (3.6) imply

max {|x|, |y|} ≤ κB1/(d†+1).
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Combining the above inequalities, we deduce that the number of quadruples
(n, F, x, y) on the right-hand side of (3.5) is bounded from above by

(3.7)
(
d0 +

logB

log(A/κ)

)A1

(1 + 2κB1/(d†+1))2 = oF (B
2/d†).

Gathering (3.2), (3.3), (3.4) and (3.7), we finally obtain the upper bound

(3.8)
R≥d(F , B,A) ≤

( ∑
F∈Fd

AFWF

)
·B2/d +OF ,A,d,ε(B

κd+ε) +OF ,d(B
2/d†).

Comparing (3.1) and (3.8) and recalling (2.4), we complete the proof of
Theorem 1.11.

4. Proof of Theorem 1.15

4.1. The family Q+ is (2, 1, 0, 4, 1)-regular. Our first purpose is to
prove the following

Proposition 4.1. The family Q+ is (2, 1, 0, 4, 1)-regular.

Proof. Several times, we will use the following property satisfied by two
positive distinct squarefree numbers:

(4.1) n ̸= n′ =⇒ Q(i
√
µn) ̸= Q(i

√
µn′).

We now check each of the items of Definition 1.10 of a regular family.
Items (i) and (ii) are trivial.
The family Q+ contains no element with odd degree d. By contrast, if this

degree d ≥ 4 is even, the family contains d/2 + 1 binary forms of degree d.
Thus item (iii) is verified with A1 = 1.

For item (iv) we proceed as follows. Suppose that there are two distinct
isomorphic forms F and F ′ in Q+. Necessarily they have the same degree
2d. So there exist 1 ≤ ν < ν ′ ≤ d+ 1 and a matrix γ ∈ GL(2,Q), written as
in (1.1), such that

Q+
d,ν = Q+

d,ν′ ◦ γ.
Let γ̃ be the homography attached to γ. This homography,

(4.2) γ̃ : P1(C) ∋ z 7→ a1z + a2
a3z + a4

,

induces a bijection between the set of zeroes Z(Q+
d,ν) (in P1(C)) of Q+

d,ν and
the set of zeroes Z(Q+

d,ν′). So, γ̃(i√µν′) is a zero of Q+
d,ν′ , hence is one of

±i
√
µn with n ̸= ν ′, which contradicts (4.1).

For item (v), the definition (1.15) implies that Q+
d,ν(x, y) = 0 if and only

if (x, y) = (0, 0). Furthermore, by positivity, we have the lower bound

|Q+
d,ν(x, y)| ≥ (max {|x|2, |y|2})d = (max {|x|, |y|})degQ

+
d,ν .
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The above inequality implies

max {|x|, |y|} ≤ |Q+
d,ν(x, y)|

1/degQ+
d,ν ,

which means (v) is satisfied for A = 2, d0 = 0, d1 = 4 and κ = 1.

4.2. Triviality of the group Aut(Q+
d,ν ,Q). We now prove

Proposition 4.2. For every d ≥ 2 and 1 ≤ ν ≤ d+ 1, one has

Aut(Q+
d,ν ,Q) =

{(
±1 0

0 ±1

)}
(Klein group of order 4).

Proof. The four elements(
1 0

0 1

)
,

(
−1 0

0 −1

)
,

(
−1 0

0 1

)
,

(
1 0

0 −1

)
in GL(2,Q) clearly belong to Aut(Q+

d,ν ,Q). Conversely, let γ =
(
a1 a2
a3 a4

)
∈

GL(2,Q) and let Q+
d,ν be such that

(4.3) Q+
d,ν ◦ γ = Q+

d,ν .

The set of zeroes Z(Q+
d,ν) is stable by the homography γ̃ attached to γ.

Appealing to (4.1), we deduce
γ̃(i

√
µn) = εni

√
µn (1 ≤ n ≤ d+ 1, n ̸= ν),

where εn = ±1. We now prove that the value of εn is independent of n.
Indeed, suppose that there exist m and n such that εm = 1 and εn = −1.
Returning to the explicit expression of γ̃ (see (4.2)), we obtain

a1i
√
µm + a2 = i

√
µm (a3i

√
µm + a4),

a1i
√
µn + a2 = −i

√
µn (a3i

√
µn + a4).

Since a1, a2, a3 and a4 are rational numbers, we deduce the four equalities
a2 = −a3 µm, a2 = a3 µn, a1 = a4, a1 = −a4.

They imply (a1, a2, a3, a4) = (0, 0, 0, 0), which is forbidden. So γ̃(z) = εz for
some fixed ε ∈ {±1}. This means that for some τ ∈ Q, we have

γ =

(
ετ 0

0 τ

)
.

By the identification in (4.3), we find that τ = ±1.

4.3. Estimating the number of images by Q+ of (x, y) with
max{|x|, |y|} ≥ 2. For the family Q+, one has (2d)† = 2d + 2. Combin-
ing Corollary 1.12, Propositions 4.1 and 4.2 and equality (1.10), we obtain
the following
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Proposition 4.3. For every d ≥ 2, one has

R≥2d(Q+, B, 2) =
1

4

( ∑
F∈Q+

2d

AF

)
·B1/d +Oλ,d,ε(B

ϑ2d+ε) +Oλ,d(B
1/(d+1)).

4.4. Estimating the number of images by Q+ of (x, y) with
max {|x|, |y|} < 2. The difference

(4.4) R≥2d(Q+, B, 0)−R≥2d(Q+, B, 2)

is bounded from above by the cardinality of the set

(4.5) {m : 0 ≤ m ≤ B, m = Q+
d′,ν(±1,±1), d′ ≥ d, 1 ≤ ν ≤ d′ + 1}

∪ {m : 0 ≤ m ≤ B, m = Q+
d′,ν(0,±1), d′ ≥ d, 1 ≤ ν ≤ d′ + 1} ∪ {0, 1}.

For every d′ and 1 ≤ ν ≤ d′ + 1, one has

Q+
d′,ν(±1,±1) ≥

∏
1≤n≤d′

(1 + n2) ≥ (d′ !)2.

This implies that the inequality Q+
d′,ν(±1,±1) ≤ B can only hold if d′ =

O(logB). So the cardinality of the first set in (4.5) is bounded by O(log2B).
The same bound also applies to the second set. Combining Proposition 4.3
with (4.4) we obtain

Proposition 4.4. For every d ≥ 2 and every ε > 0, one has

R≥2d(Q+, B, 0) =
1

4

( ∑
F∈Q+

2d

AF

)
·B1/d +Oλ,d,ε(B

ϑ2d+ε) +Oλ,d(B
1/(d+1)).

4.5. Some results on AF for F ∈ Q+. By the definition (1.9), the
fundamental domain attached to Q+

d,ν is

(4.6) D(Q+
d,ν) :=

{
(x, y) ∈ R2 :

∏
1≤n≤d+1

n̸=ν

(x2 + µny
2) ≤ 1

}
.

Our purpose is to estimate the sum

Coef(Q+, 2d) :=
∑

F∈Q+
2d

AF

as d → ∞. We use integration techniques to express this sum of fundamental
areas as follows.

Lemma 4.5. For any d ≥ 2 and 1 ≤ ν ≤ d+ 1, one has

AQ+
d,ν

=

∞�

−∞

(u2 + µν)
1/d

Gd(u)1/d
du,



24 É. Fouvry and M. Waldschmidt

where

Gd(u) :=
d+1∏
n=1

(u2 + µn).

Hence

Coef(Q+, 2d) =

∞�

−∞

∑
1≤n≤d+1(u

2 + µn)
1/d

Gd(u)1/d
du.

Proof. By (4.6) and by the change of variables x = uv, y = v we have

AQ+
d,ν

=
� �

D(Q+
d,ν)

dx dy =
� �

v2d
∏

1≤n≤d+1, n̸=ν(u
2+µn)≤1

|v|dudv

=

∞�

−∞

du∏
1≤n≤d+1, n ̸=ν(u

2 + µn)1/d
·

Compare with [B, p. 122]. Summing over all the Q+
d,ν ∈ Q+

2d, we obtain the
second formula of Lemma 4.5.

We first give a lower bound of Coef(Q+, 2d). We have

Coef(Q+, 2d) ≥ (d+ 1)

∞�

−∞

(u2 + µ1)
1/d

Gd(u)1/d
du(4.7)

≥ (d+ 1)

∞�

−∞

du∏
2≤n≤d+1(u

2 + µn)1/d

≥ (d+ 1)

∞�

−∞

du

u2 + µd+1
≥ π · d+ 1

√
µd+1

·

From our assumption µd+1 ≤ λ(d+1) we deduce from (4.7) the lower bound

(4.8) Coef(Q+, 2d) >
π√
λ

√
d.

For the upper bound, we write

Coef(Q+, 2d) ≤ (d+ 1)

∞�

−∞

(u2 + µd+1)
1/d

Gd(u)1/d
du

≤ (d+ 1)

∞�

−∞

du∏
1≤n≤d(u

2 + µn)1/d
·
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Using Hölder’s inequality we deduce

Coef(Q+, 2d) ≤ (d+ 1)
d∏

n=1

( ∞�

−∞

du

u2 + µn

)1/d

≤ π(d+ 1)

d∏
n=1

µ−1/(2d)
n ≤ π

d+ 1

D

with D := (d !)1/(2d). Using the Stirling formula (1.20), we deduce

Coef(Q+, 2d) ≤ π
√
e (
√
d+ 1).

Combining with (4.8) we complete the proof of (1.17). Recalling Propositions
4.2 and 4.4, we conclude that the proof of Theorem 1.15 is now complete.

5. Proof of Theorem 1.17. Recall that for d ≥ 2 and 1 ≤ ν ≤ d+ 1,
Q−

d,ν denotes the following binary form of degree 2d:

Q−
d,ν(X,Y ) =

∏
1≤n≤d+1

n ̸=ν

(X2 − µnY
2),

and Q− denotes the family

Q− = {Q−
d,ν : d ≥ 2, 1 ≤ ν ≤ d+ 1}.

5.1. The family Q− is (A, 1, 2, 2, 2eλ)-regular. Our goal in this sub-
section is to prove the following

Proposition 5.1. For A>2eλ, the family Q− is (A, 1, 2, 2, 2eλ)-regular.

The proofs of items (i)–(iv) in Definition 1.10 of a regular family are the
same as for Proposition 4.1: one only replaces (4.1) with the remark that for
positive squarefree numbers n, n′ we have

n ̸= n′ =⇒ Q(
√
µn) ̸= Q(

√
µn′).

It remains to check condition (v) in Definition 1.10. We start with an auxil-
iary lemma

Lemma 5.2. For m and d integers satisfying 1 ≤ m < d, we have(
d

m
− 1

)d−m

≥ e−e−1m;

further, for n an integer in the range 1 ≤ n ≤ d, we have
n!(d− n)!

nd
≥ e−(1+e−1)d.

The numerical value of e1+e−1 is 3.927 · · · < 79
20 ·
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Proof of Lemma 5.2. Set t = d−m, fm(t) =
(

t
m

)t, gm(t) = log fm(t) =
t log t − t logm. The derivative g′m(t) = 1 + log t − logm of gm vanishes at
t = m/e, so the minimum of fm(t) on the interval 0 < t ≤ d − 1 is reached
at t = m/e, giving the value (t/m)t = e−t = e−m/e.

The last part of Lemma 5.2 follows from the first one thanks to Stirling’s
formula (1.20):

n!(d− n)!

nd
≥ nn

en
· (d− n)d−n

ed−n
· 1

nd
=

(d− n)d−n

nd−ned
≥ e−de−e−1n ≥ e−(1+e−1)d.

The last inequality of Lemma 5.2 implies

(5.1) (n!(d− n)!)1/d ≥ e−1−e−1
max {n, d− n} ≥ d

2e1+e−1 ≥ d

2e2
·

End of the proof of Proposition 5.1. Let d ≥ 2, 1 ≤ ν ≤ d + 1, (x, y) ∈
Z2 \ {(0, 0)}. Set Q = Q−

d,ν(x, y). Our goal it to prove

(5.2) |Q| > (2eλ)−2d+2(max {|x|, |y|})2d−2.

We consider three cases depending on the sign of the factors x2 − µny
2.

If x2 < µ1y
2, all factors are negative. For 2 ≤ n ≤ d+ 1 we have

|x2 − µny
2| = µny

2 − x2 > (µn − µ1)y
2.

When ν ≥ 2, we use the lower bound µ1y
2 − x2 ≥ 1 and obtain

|Q| > (µ2 − µ1) · · · (µd+1 − µ1)(µν − µ1)
−1y2d−2 ≥ (d− 1)!y2d−2.

For ν = 1 the stronger lower bound |Q| > (d − 1)!y2d holds. Hence for
1 ≤ ν ≤ d+ 1 we have

|Q| > (d− 1)!

µd−1
1

x2d−2 ≥ (d− 1)!

λd−1
x2d−2.

The desired estimate (5.2) follows.
If x2 > µd+1y

2, all factors are positive and max {|x|, |y|} = |x|. For
m = 1, . . . , d we have

x2 − µmy2 > (µd+1 − µm)
x2

µd+1
,

while for m = d+ 1 we have x2 − µd+1y
2 ≥ 1. Hence for 1 ≤ ν ≤ d we have

|Q| = Q

> (µd+1 − µ1)(µd+1 − µ2) · · · (µd+1 − µd)(µd+1 − µν)
−1x

2d−2

µd−1
d+1

≥ d!x2d−2

µd−1
d+1

·

The lower bound |Q| > d!x2d−2/µd−1
d+1 is also true when ν = d + 1 since in

this case we have

|Q| = Q > (µd+1 − µ1)(µd+1 − µ2) · · · (µd+1 − µd)
x2d

µd
d+1

≥ d!x2d

µd
d+1
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and x2 > µd+1y
2 ≥ µd+1. Since d! > dde−d (see (1.20)) and µd+1 ≤ λ(d+1),

we have
d!

µd−1
d+1

>
d

e
(
1 + 1

d

)d−1
(λe)d−1

>
1

(2eλ)2d−2
·

This implies (5.2).
Finally, assume that there is an n in the interval 1 ≤ n ≤ d such that

x2 − µn+1y
2 < 0 < x2 − µny

2.

Hence y ̸= 0 and max {|x|, |y|} = |x|. We have

|Q| = (x2 − µ1y
2)(x2 − µ2y

2) · · · (x2 − µny
2)(5.3)

× (µn+1y
2 − x2) · · · (µd+1y

2 − x2)|x2 − µνy
2|−1

with

(5.4) (x2 − µ1y
2)(x2 − µ2y

2) · · · (x2 − µn−1y
2)

> (µn − µ1)(µn − µ2) · · · (µn − µn−1)y
2n−2 ≥ (n− 1)!y2n−2

and

(5.5) (µn+2y
2 − x2) · · · (µd+1y

2 − x2)

> (µn+2 − µn+1) · · · (µd+1 − µn+1)y
2d−2n ≥ (d− n)!y2d−2n.

For 1 ≤ ν ≤ n− 1, we use the lower bound

(5.6) (x2−µ1y
2)(x2−µ2y

2) · · · (x2−µn−1y
2)(x2−µνy

2)−1 > (n−2)!y2n−4,

while for n+ 2 ≤ ν ≤ d+ 1, we use the lower bound

(5.7) (µn+2y
2 − x2) · · · (µd+1y

2 − x2)(µνy
2 − x2)−1 > (d− n− 1)!y2d−2n−2.

It remains to estimate the product (x2−µny
2)(µn+1y

2−x2) of the two terms
in the middle of (5.3). We consider two cases.

Assume first |y| ≥ 2. If ν ∈ {n, n+ 1}, we use the trivial lower bound

(5.8) (x2 − µny
2)(µn+1y

2 − x2)|x2 − µνy
2|−1 ≥ 1,

while if ν ≤ n− 1 or ν ≥ n+ 2 we use the lower bound

(x2 − µny
2)(µn+1y

2 − x2) ≥ (x2 − µny
2) + (µn+1y

2 − x2)− 1(5.9)

= (µn+1 − µn)y
2 − 1 ≥ y2 − 1 ≥ 3

4
y2.

For ν ∈ {n, n+ 1}, from (5.3), (5.4), (5.5), (5.8) we deduce

|Q| ≥ (n− 1)!(d− n)!y2d−2.

For 1 ≤ ν ≤ n− 1, from (5.3), (5.5), (5.6), (5.9) we deduce

|Q| ≥ 3

4
(n− 2)!(d− n)!y2d−2.
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For n+ 2 ≤ ν ≤ d+ 1, from (5.3), (5.4), (5.7), (5.9) we deduce

|Q| ≥ 3

4
(n− 1)!(d− n− 1)!y2d−2.

In all three cases, that is, for all 1 ≤ ν ≤ d+ 1, we have, thanks to Lemma
5.2,

|Q| ≥ 3n!(d− n)!

4n(d− 1)
y2d−2 ≥ 3nd−1

4(d− 1)e(1+e−1)d
y2d−2.

From x2 < µn+1y
2 ≤ λ(n+ 1)y2 ≤ 2λny2 we deduce

|Q| > 3

4(d− 1)e(1+e−1)d(2λ)d−1
x2d−2.

Finally, since λ ≥ 2, we have

(5.10)
3

4(d− 1)e(1+e−1)d
>

1

(2e2λ)d−1

for d ≥ 2, and (5.2) follows.
Assume now that y2 = 1. Hence µn < x2 < µn+1, because of the trivial

lower bound
(x2 − µn)(µn+1 − x2) ≥ 1,

and a combination of the above lower bounds (5.3)–(5.7) yields

|Q| ≥


(n− 1)!(d− n)! if ν ∈ {n, n+ 1},
(n− 2)!(d− n)! if 1 ≤ ν ≤ n− 1,

(n− 1)!(d− n− 1)! if n+ 2 ≤ ν ≤ d+ 1.

For 1 ≤ ν ≤ d+ 1, we obtain, thanks to Lemma 5.2,

|Q| ≥ n!(d− n)!

n(d− 1)
≥ nd−1

(d− 1)e(1+e−1)d
·

If x2 ≤ 2λ, using n ≥ 1, we deduce

|Q| ≥ nd−1

(d− 1)e(1+e−1)d

(
x2

2λ

)d−1

,

while if x2 ≥ 2λ we have, by (1.13), the inequalities n > x2

λ − 1 ≥ x2

2λ , hence
again

|Q| ≥ x2d−2

(d− 1)e(1+e−1)d(2λ)d−1
·

From (5.10) we deduce the estimate (5.2) also when |y| = 1.
This completes the proof of Proposition 5.1.

5.2. Triviality of the group Aut(Q−
d,ν ,Q). The following result is the

analog of Proposition 4.2. The proof is the same, since µ1 ≥ 2 and the roots
of Q−

d,ν are all irrational numbers.
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Proposition 5.3. For every d ≥ 2 and 1 ≤ ν ≤ d+ 1, one has

Aut(Q−
d,ν ,Q) =

{(
±1 0

0 ±1

)}
(Klein group of order 4).

5.3. Estimating the number of images by Q− of (x, y) with
max {|x|, |y|} ≥ A. From Corollary 1.12, equalities (1.10) and Propositions
5.1 and 5.3, we deduce

Proposition 5.4. For every A > 2eλ, every d ≥ 2 and every ε > 0, one
has

R≥2d(Q−, B,A) =
1

4

( ∑
F∈Q−

2d

AF

)
·B1/d+Oλ,A,d,ε(B

ϑ2d+ε)+Oλ,A,d(B
1/(d+1)).

5.4. Estimating the number of images by Q− of (x, y) with
max {|x|, |y|} < A. The difference

R≥2d(Q−, B, 0)−R≥2d(Q−, B,A)

is at most the cardinality of the set{
m : 0 ̸= |m| ≤ B, m = Q−

d′,ν(x, y), d
′ ≥ d,

1 ≤ ν ≤ d′ + 1, max {|x|, |y|} ≤ A
}
.

Given d′, the number of such m in this set is bounded by (d′ + 1)(2A+ 1)2.
Hence we only need to bound from above the value of d′ when |m| ≥ 2.

We first consider the integers of the form Q−
d′,ν(x, 0). As Q−

d′,ν(±1, 0) = 1,
we may assume |x| ≥ 2. From

Q−
d′,ν(x, 0) = x2d

′ ≤ B

we deduce that d′ is bounded by O(logB).
Next let m = Q−

d′,ν(x, y) with d′ ≥ d, 1 ≤ ν ≤ d′ + 1, max {|x|, |y|} ≤ A,
|y| ≥ 1 and 0 < |m| ≤ B. Without loss of generality we may assume d′ > 2A2.
We split the product ∏

1≤n≤d′+2
n̸=ν

|x2 − µny
2|,

the value of which is |m|, as P1P2 where

P1 =
∏

1≤n≤2A2

n̸=ν

|x2 − µny
2|, P2 =

∏
2A2<n≤d′+2

n̸=ν

|x2 − µny
2|.
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The product P1 is ≥ 1. For 2A2 < n ≤ d′ + 2, since µn > n, |x| ≤ A and
|y| ≥ 1, we have µny

2 − x2 ≥ A2, hence

(A2)d
′−2A2 ≤ P2 ≤ P1P2 = |m| ≤ B,

which yields

d′ ≤ 2A2 +
logB

2 logA
= OA(logB).

Hence
R≥2d(Q−, B, 0)−R≥2d(Q−, B,A) = OA((logB)2).

Thanks to Proposition 5.4, this completes the proof of the estimate for
R≥2d(Q−, B, 0) in Theorem 1.17.

5.5. Some results on AF for F ∈ Q−. By the definition (1.9), the
fundamental domain attached to Q−

d,ν is

D(Q−
d,ν) :=

{
(x, y) ∈ R2 :

∏
1≤n≤d+1

n̸=ν

|x2 − µny
2| ≤ 1

}
.

Our purpose is to estimate the sum

Coef(Q−, 2d) :=
∑

F∈Q−
2d

AF

as d → ∞ by proving (1.18).
Repeating the proof of Lemma 4.5, we obtain

Lemma 5.5. For any d ≥ 2 and 1 ≤ ν ≤ d+ 1, one has

AQ−
d,ν

=

∞�

−∞

|u2 − µν |1/d∏
1≤n≤d+1 |u2 − µn|1/d

du.

Hence

Coef(Q−, 2d) =

∞�

−∞

∑
1≤n≤d+1 |u2 − µn|1/d∏d+1

n=1 |u2 − µn|1/d
du.

Since |u2 − µn| ≤ u2 + µn, the lower bound on Coef(Q−, 2d) is a con-
sequence of the lower bound on Coef(Q+, 2d). More precisely, we have, by
Lemma 5.5,

AQ−
d,ν

=

∞�

−∞

du∏
1≤n≤d+1

n̸=ν
|u2 − µn|1/d

≥
∞�

−∞

du∏
1≤n≤d+1

n̸=ν
(u2 + µn)1/d

,
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hence

Coef(Q−, 2d) ≥ (d+ 1)

∞�

−∞

du∏
2≤n≤d+1(u

2 + µn)1/d

≥ (d+ 1)

∞�

−∞

du

u2 + µd+1
= π · d+ 1

√
µd+1

·

This proves the lower bound

(5.11) Coef(Q−, 2d) >
π√
λ

√
d.

For the upper bound, we use Lemma 5.5 once more. By the change of
variable u2 = v we have

AQ−
d,ν

= 2

∞�

0

du∏
1≤n≤d+1

n̸=ν
|u2 − µn|1/d

=

∞�

0

dv
√
v
∏

1≤n≤d+1
n̸=ν

|v − µn|1/d
·

We split the integral as the sum of d+ 3 terms

AQ−
d,ν

=

d+2∑
j=0

Aj

with

A0 =

µ1�

0

dv
√
v
∏

1≤n≤d+1
n̸=ν

(µn − v)1/d
,

Aj =

µj+1�

µj

dv
√
v
∏

1≤n≤j
n̸=ν

(v − µn)1/d
∏

j+1≤n≤d+1
n ̸=ν

(µn − v)1/d
(1≤j≤d+1),

Ad+2 =

∞�

µd+2

dv
√
v
∏

1≤n≤d+1
n ̸=ν

(v − µn)1/d
·

Upper bound for A0. For ν = 1, we use the lower bound∏
2≤n≤d+1

(µn − µ1) ≥ d! ≥ dd

ed
,

which follows from Stirling’s estimate (1.20), and one deduces

A0 ≤
1∏

2≤n≤d+1(µn − µ1)1/d

µ1�

0

dv√
v
≤

2e
√
µ1

d
≤ 2e

√
λ

d
·

Similarly, for 2 ≤ ν ≤ d+ 1 we have

A0 ≤
1∏

2≤n≤d+1, n ̸=ν(µn − µ1)1/d

µ1�

0

dv
√
v(µ1 − v)1/d
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and ∏
2≤n≤d+1

n̸=ν

(µn − µ1) ≥ (d− 1)! =
d!

d
,

hence ∏
2≤n≤d+1

n̸=ν

(µn − µ1)
1/d ≥ d

e
√
2
·

From the upper bounds (recall λ ≥ 2 and 2 ≤ µ1 ≤ λ)

µ1�

0

dv
√
v (µ1 − v)1/d

≤
µ1�

0

dv√
v
+

µ1�

0

dv

(µ1 − v)1/d

= 2
√
µ1 +

d

d− 1
µ
1−(1/d)
1 < (2 +

√
2)λ,

we deduce

A0 <
5eλ

d
·

Upper bound for Aj, 1 ≤ j ≤ d+ 1. If ν ̸∈ {j, j + 1}, we have

Aj ≤
1

√
µ
j

∏
1≤n≤j−1, n ̸=ν(µj − µn)1/d

∏
j+2≤n≤d+1, n ̸=ν(µn − µj+1)1/d

×
µj+1�

µj

dv

(v − µj)1/d(µj+1 − v)1/d
·

We use (5.1): for 1 ≤ j ≤ d we have

∏
1≤n≤j−1

n ̸=ν

(µj − µn)
∏

j+2≤n≤d+1
n̸=ν

(µn − µj+1) ≥

{
(j−1)!(d−j)!

j−ν for 1 ≤ ν ≤ j−1
(j−1)!(d−j)!

ν−j−1 for j+1 ≤ ν ≤ d+1

≥ j!(d− j)!

d2
≥ 1

d2

(
d

2e1+e−1

)d

,

while for j = d+ 1 this lower bound becomes

∏
1≤n≤d
n̸=ν

(µd+1 − µn) ≥
d!

d+ 1− ν
≥ 1

d2

(
d

2e1+e−1

)d

.
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Next we use the following estimate:
µj+1�

µj

dv

(v − µj)1/d(µj+1 − v)1/d

≤ 21/d

(µj+1 − µj)1/d

( (µj+µj+1)/2�

µj

dv

(v − µj)1/d
+

µj+1�

(µj+µj+1)/2

dv

(µj+1 − v)1/d

)
.

We have
(µj+µj+1)/2�

µj

dv

(v − µj)1/d

=

µj+1�

(µj+µj+1)/2

dv

(µj+1 − v)1/d
=

d

d− 1

(
µj+1 − µj

2

)1−(1/d)

.

Hence
µj+1�

µj

dv

(v − µj)1/d(µj+1 − v)1/d
≤ d

d− 1
22/d(µj+1 − µj)

1−(2/d).

For ν ̸∈ {j, j + 1}, we deduce that

Aj ≤ (4d2)1/d2e1+e−1 (µj+1 − µj)
1−(2/d)

(d− 1)
√
µj

·

If ν = j, we have

Aj ≤
1

√
µ
j

∏
1≤n≤j−1(µj − µn)1/d

∏
j+2≤n≤d+1(µn − µj+1)1/d

×
µj+1�

µj

dv

(µj+1 − v)1/d

and we use the formula
µj+1�

µj

dv

(µj+1 − v)1/d
=

d

d− 1
(µj+1 − µj)

1−(1/d).

If ν = j + 1, we have

Aj ≤
1

√
µ
j

∏
1≤n≤j−1(µj − µn)1/d

∏
j+2≤n≤d+1(µn − µj+1)1/d

×
µj+1�

µj

dv

(v − µj)1/d
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and we use the formula
µj+1�

µj

dv

(v − µj)1/d
=

d

d− 1
(µj+1 − µj)

1−(1/d).

We deduce that for 1 ≤ j ≤ d+ 1 and 1 ≤ ν ≤ d+ 1, we have

(5.12) Aj ≤ (2e1+e−1
+ o(1))

µj+1 − µj

d
√
µj

·

For j ≥ 1, we also have

µj ≥ j + 1 ≥ 1

λ
µj+1,

and we deduce that
d+1∑
j=1

µj+1 − µj√
µj

≤
√
λ

d+1∑
j=1

µj+1 − µj√
µj+1

·

Using the inequality
d+1∑
j=1

µj+1 − µj√
µj+1

≤
d+1∑
j=1

µj+1�

µj

dt√
t
=

µd+2�

µ1

dt√
t
≤ 2

√
µd+2 ≤ 2

√
λ(d+ 2),

we deduce from (5.12) that
d+1∑
j=1

Aj ≤
(
(2e1+e−1

+ oλ(1))/d
)
·
√
λ ·

(
2
√
λ(d+ 2)

)
≤ (4e1+e−1

+ oλ(1))
λ√
d
·

Upper bound for Ad+2. For v ≥ µd+2 and 1 ≤ n ≤ d+ 1, we have

v − µn ≥ v

(
1− µn

µd+2

)
,

hence

Ad+2 ≤
1∏

1≤n≤d+1, n ̸=ν(1− µn/µd+2)1/d

∞�

µd+2

dv

v3/2

with
∞�

µd+2

dv

v3/2
=

2
√
µd+2

≤ 2√
d+ 2

and (using Stirling’s estimate (1.20) once more)∏
1≤n≤d+1

n̸=ν

(
1− µn

µd+2

)1/d

≥ d!1/d

µd+2
≥ d!1/d

λ(d+ 2)
≥ 1

λe

(
1 +

2

d

)−1

.

We deduce
Ad+2 ≤ (2e + o(1))

λ√
d
·
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Combining the estimates, we obtain

AQ−
d,ν

=
d+2∑
j=0

Aj ≤ (4e1+e−1
+ 2e + oλ(1))

λ√
d
·

Summing over all the Q−
d,ν ∈ Q−

2d we conclude

Coef(Q−, 2d) ≤ (4e1+e−1
+ 2e + oλ(1))λ

√
d.

Combining this with (5.11) and with the upper bound 4e1+e−1
+2e < 22, we

complete the proof of (1.18), hence of Theorem 1.17.

6. Proof of Theorem 1.18. We now use the notations of §1.3.4. Our
first purpose is to check that the family L satisfies the conditions of Definition
1.10 of a regular family. Items (i), (ii) are obvious. Item (iii) is trivially
satisfied with A1 = 1. Items (iv) and (v) are more subtle.

6.1. Isomorphisms between two elements in L. We will prove the
following more general statement which implies that item (iv) is satisfied
by L.

Proposition 6.1. Let d ≥ 4 be an integer, {ai : 1 ≤ i ≤ d − 1} and
{bj : 1 ≤ j ≤ d− 2} two sets of integers and p a prime number such that

0 < a1 < · · · < ad−1 < p,(6.1)
0 < b1 < · · · < bd−2 < p.(6.2)

Then the binary forms

(6.3) X

d−1∏
i=1

(X − aiY ) and (X − pY )X

d−2∏
j=1

(X − bjY )

are not isomorphic.

Proof. The proof is based on classical properties of the cross-ratio of
points on P1(C) = C ∪ {∞}. Recall that if (x1, x2, x3, x4) is a quadruple of
distinct complex numbers, the associated cross-ratio is the complex number
[x1, x2, x3, x4] defined by

[x1, x2, x3, x4] :=
x3 − x1
x3 − x2

/ x4 − x1
x4 − x2

.

This definition is naturally extended to P1(C) when exactly one of the ele-
ments x1, x2, x3, x4 is equal to ∞. The cross-ratio is invariant by any homo-
graphy of P1(C). In other words, for any homography h, for any quadruple
(x1, x2, x3, x4) of distinct points of P1(C), one has

(6.4) [x1, x2, x3, x4] = [h(x1), h(x2), h(x3), h(x4)].
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Let a be a non-zero integer. The canonical decomposition of |a| into prime
factors

|a| =
∏
p

pvp(a)

defines, for each prime number p, the p-adic valuation vp(a) ∈ Z of a. Let
t = a/b ̸= 0 be a rational number, written in its irreducible form. The p-adic
valuation of t is the non-negative integer

vp(t) :=

{
vp(a) if p ∤ b,
−vp(b) if p ∤ a.

We now begin the proof of Proposition 6.1 proper. We argue by con-
tradiction. Let F1(X,Y ) and F2(X,Y ) be the two binary forms introduced
in (6.3). Suppose that there is γ ∈ GL(2,Q), written as in (1.1), such that

F1 = F2 ◦ γ.

Then the homography h associated with γ has the shape

z 7→ h(z) =
az + b

cz + d
·

This homography induces a bijective map between the sets of the polyno-
mials f1(X) := F1(X, 1) and f2(X) := F2(X, 1). These sets are Z(f1) :=
{0, a1, . . . , ad−1} and Z(f2) = {0, b1, . . . , bd−2, p}, treated as subsets of
P1(C). Consider, for j = 1, 2, the subsets of Q \ {0} defined by

(6.5) Bir(fj) := {[x1, x2, x3, x4] : xi ∈ Z(fj), xi distinct}.

Equality (6.4) implies that

Bir(f1) = Bir(f2),

and also
{vp(y) : y ∈ Bir(f1)} = {vp(z) : z ∈ Bir(f2)}.

As a consequence of (6.1), we have {vp(y) : y ∈ Bir(f1)} = {0}. However, we
also have 1 ∈ {vp(z) : z ∈ Bir(f2)} by considering the cross-ratio [0, b1, p, b2]
and (6.2). So we reach a contradiction: the element γ does not exist and the
binary forms F1 and F2 are not isomorphic.

6.2. Triviality of the group Aut(Ld,p,Q). In order to determine the
value of the coefficient W appearing in Theorem A, we prove the following.

Proposition 6.2. Let d ≥ 5 be an integer. For every prime p ≥ d, the
automorphism group of the binary form Ld,p is {Id} if d is odd, and {±Id}
if d is even. In particular, the set Ld satisfies condition (C1) or (C2) of
Corollary 1.12, according to the parity of d.
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6.2.1. Two preliminary results. The proof of the following lemma is
based on the analytic properties of the homography on each of its intervals
of definition.

Lemma 6.3. Let h be a homography belonging to PGL(2,R), M > 0 be
a real number, t ≥ 1 be an integer, x1, . . . , xt be t real numbers satisfying
0 < x1 < · · · < xt < M , and y1, . . . , yt be t real numbers satisfying 0 < y1 <
· · · < yt < M . Assume{

h({xi : 1 ≤ i ≤ t}) = {yj : 1 ≤ j ≤ t},
h(0) = 0 and h(M) = M.

Then, for every 1 ≤ i ≤ t, one has h(xi) = yi.

Proof. We split the proof into several cases depending on the nature of
the homography h.

If h(∞) = ∞, the restriction of h to the real affine line has the shape
h(x) = ax+ b, where a ̸= 0 and b are real numbers. The conditions h(0) = 0
and h(M) = M imply a = 1 and b = 0. Hence the result follows since h is
the identity.

If h(∞) ̸= ∞, then h has a unique expansion as

(6.6) h(x) = a+
b

x− c
,

where a, b and c are real numbers such that c ̸∈ {0, x1, . . . , xt,M} and b ̸= 0.
We now consider the respective values of b and c.

• If b > 0, the function x 7→ h(x) is decreasing on the two intervals (−∞, c)
and (c,+∞). We consider the value of c.

◦ If c < xt (< M), we have h(xt) > h(M) = M, since h is decreasing.
This contradicts the hypothesis h(xt) < M .

◦ If c > xt (> 0), we have 0 = h(0) > h(xt). This contradicts the hy-
pothesis h(xt) > 0. We conclude that h is not of the form (6.6) with
b > 0.

• If b < 0, the function x 7→ h(x) is increasing on both (−∞, c) and (c,+∞).
We now consider the value of c.

◦ If c ̸∈ [0,M ], the function x 7→ h(x) is increasing on (0,M), so h(xi) = yi
for 1 ≤ i ≤ t.

◦ If 0 < c < M , the hyperbola {(x, h(x)) ∈ R2 : x ∈ R, x ̸= c} has
two asymptotes: one with abscissa c and the other one with ordinate a.
Elementary considerations lead to

h(0) > a > h(M).

This contradicts the hypothesis h(0) = 0 and h(M) = M . In conclusion,
h is not of the form (6.6) with b < 0 and 0 < c < M .
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We will require the following variant of Lemma 6.3.

Lemma 6.4. Let h be a homography belonging to PGL(2,R), M > 0 be
a real number, t ≥ 1 be an integer, x1, . . . , xt be t real numbers satisfying
0 < x1 < · · · < xt < M , and y1, . . . , yt be t real numbers satisfying 0 < y1 <
· · · < yt < M . Assume{

h({xi : 1 ≤ i ≤ t}) = {yj : 1 ≤ j ≤ t},
h(0) = M and h(M) = 0.

Then for every 1 ≤ i ≤ t, one has h(xi) = yt+1−i.

Proof. Introduce the homography g = s ◦ h, where s is the symmetry
s(x) = M −x. Then g meets the hypotheses of Lemma 6.3 provided that we
replace the points yi (1 ≤ i ≤ t) by the points y′i := M − yt+1−i. We deduce
that for all i one has g(xi) = y′i, which gives h(xi) = yt+1−i.

6.2.2. Proof of Proposition 6.2. Consider the polynomial

f(X) = Ld,p(X, 1)

and its set of zeroes Z(f) = {0, 1, . . . , d − 2, p}. In order to prove that the
group of automorphisms of Ld,p is trivial, it suffices to prove that the unique
homography h ∈ PGL(2,Q) such that

(6.7) h(Z(f)) = Z(f),

is the identity as long as p ≥ d.
As in the proof of Proposition 6.1, we will play with the p-adic valuation

of the elements in Bir(f), defined in (6.5). We first notice that for x and y
two distinct integers in {1, . . . , d− 2}, the elements

α := [0, x, p, y], [p, x, 0, y], [x, 0, y, p], [x, p, y, 0]

belong to Bir(f) and satisfy vp(α) = 1. These are the only such elements
in Bir(f). In particular, if four distinct elements x, y, z, t in Z(f) satisfy
vp([x, y, z, t]) = 1, then {0, p} ⊂ {x, y, z, t}.

By (6.4), we have

vp([h(x), h(0), h(y), h(p)]) = 1,

where x and y are integers as above. Since d ≥ 5, there exists an integer x in
{1, . . . , d−2} such that h(x) ̸∈ {0, p}. We claim that there is another integer
y ̸= x in {1, . . . , d − 2} with the same property, namely such that h(y) ̸∈
{0, p}. This is plain for d ≥ 6; for d = 5, the only case where this would not
be true is when {1, 2, 3} = {x, y, z} with {h(y), h(z)} = {0, p}, but this case
is not possible since it would not be compatible with our requirement that

{0, p} ⊂ {h(x), h(0), h(y), h(p)}.
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This proves our claim that there are two distinct integers x and y in the set
{1, . . . , d− 2} such that {h(x), h(y)} ∩ {0, p} = ∅. Therefore

{h(0), h(p)} = {0, p}.
We consider two cases.

Assume first
h(0) = 0 and h(p) = p.

Since h induces by restriction a bijective map of Z(f) onto itself, we may
apply Lemma 6.3. We deduce that h(t) = t for 0 ≤ t ≤ d− 2 and h(p) = p.
Since a homography is determined by its restriction to a set with three
elements, we deduce that h = Id.

If in turn

(6.8) h(0) = p and h(p) = 0,

we apply Lemma 6.4 to deduce that h(i) = d− 1− i for 1 ≤ i ≤ d− 2. The
unique homography h satisfying this property is the symmetry defined by
h : z 7→ d − 1 − z. But such a formula is not compatible with the fact that
h(0) = p. So there is no homography h satisfying (6.7) and (6.8).

We conclude that the set of h satisfying (6.7) is reduced to the identity.
The proof of Proposition 6.2 is complete.

6.3. The family L is regular (continued). We now investigate con-
dition (v) of Definition 1.10. We will prove

Proposition 6.5. For every d ≥ 5, every p with p ≥ d − 1, and all
(x, y) ∈ Z2 such that Ld,p(x, y) ̸= 0. the following inequality holds:

(6.9) max {|x|, |y|} ≤ 9|Ld,p(x, y)|
1

d−1 .

Inequality (6.9) is equivalent to the lower bound

(6.10) |Ld,p(x, y)| ≥ ( 1
9 max {|x|, |y|})d−1,

under the hypotheses of Proposition 6.5. We will rather work with (6.10).
The proof of (6.10) depends on the relative sizes of |x| and |y|. However,

if we suppose that xy ≤ 0 and Ld,p(x, y) ̸= 0, it is straightforward that

|Ld,p(x, y)| ≥ (max {|x|, |y|})d−1.

Hence we may assume that x and y are not zero and have the same sign.
Further, since |Ld,p(−x,−y)| = |Ld,p(x, y)|, we will assume that both x and y
are positive.

The basic equality is the following:

(6.11) |Ld,p(x, y)| = x · |x− y| · |x− 2y| · · · |x− (d− 2)y| · |x− py|.
We split the argument according to the relative sizes of x and y.
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6.3.1. Assume 1 ≤ x ≤ y. Let x and y be positive integers such that
Ld,p(x, y) ̸= 0 with y ≥ x. Hence y ≥ x+ 1. From (6.11) we deduce

|Ld,p(x, y)| = x · (y − x) · (2y − x) · · · ((d− 2)y − x) · (py − x)

> x · (y − x) · y · (2y) · · · ((d− 3)y) · ((p− 1)y)

= x · (y − x) · (d− 3) ! · (p− 1) yd−2.

If y ≥ 2x, we have x(y − x) ≥ y − x ≥ y/2, while for x < y ≤ 2x we have
x(y − x) ≥ x ≥ y/2. Hence

|Ld,p(x, y)| > 1
2(d− 3)!(p− 1)(max {|x|, |y|})d−1.

So we have proved

Proposition 6.6. For every d ≥ 3, every p ≥ d − 1, and all integers x
and y such that Ld,p(x, y) ̸= 0 and |x| ≤ |y|, one has

|Ld,p(x, y)| ≥ (max {|x|, |y|})d−1.

6.3.2. Assume (d− 2)y ≤ x. Let x and y be positive integers such that
Ld,p(x, y) ̸= 0 with x ≥ (d − 2)y, hence x ≥ (d − 2)y + 1. From (6.11) we
deduce

|Ld,p(x, y)| = x · (x− y) · (x− 2y) · · · (x− (d− 2)y) · |x− py|.
If y = 1, then since x ≥ d− 1, we have

x− n = x

(
1− n

x

)
≥ x

(
1− n

d− 1

)
= x

(
d− n− 1

d− 1

)
for 0 ≤ n ≤ d − 2; using the trivial lower bound |x − p| ≥ 1 together with
Stirling’s formula (1.20), we deduce

|Ld,p(x, 1)| ≥ x · (x− 1) · (x− 2) · · · (x− (d− 2)) ≥ (d− 1)!

(d− 1)d−1
xd−1 ≥ xd−1

ed−1
·

We assume now y ≥ 2. As a consequence of y ≤ x/(d− 2), we have

x · (x− y) · (x− 2y) · · · (x− (d− 3)y) ≥ (d− 2)!

(d− 2)d−2
xd−2.

If x > py, then

x− (d− 2)y ≥ x

(
1− d− 2

p

)
≥ x

(
1− d− 2

d− 1

)
=

x

d− 1

and the trivial lower bound x− py ≥ 1 suffices to deduce

Ld,p(x, y) ≥
(d− 2)!

(d− 1)(d− 2)d−2
xd−1.

If py > x, then from x− (d− 2)y ≥ 1 and py − x ≥ 1 we deduce

(x− (d− 2)y) · (py − x) ≥ (x− (d− 2)y) + (py − x)− 1 ≥ y(p− d+ 2)− 1.
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If p = d− 1, then we use the assumption y ≥ 2, which yields

y(p− d+ 2)− 1 = y − 1 ≥ y

2
>

x

2p
=

x

2(d− 1)
,

while for p ≥ d we use the lower bounds

y(p− d+ 2)− 1 ≥ y(p− d+ 1) ≥ py

(
1− d− 1

p

)
> x

(
1− d− 1

d

)
=

x

d
·

Therefore, for (d− 2)y ≤ x and y ≥ 2, we have

|Ld,p(x, y)| ≥
(d− 2)!

2(d− 1)(d− 2)d−2
xd−1 ≥ xd−1

2ded−2
·

We deduce

Proposition 6.7. For d ≥ 3, p prime ≥ d− 1 and (x, y) ∈ Z2 such that
|x| ≥ (d− 2)|y| and Ld,p(x, y) ̸= 0, we have

|Ld,p(x, y)| ≥
1

ded
(max {|x|, |y|})d−1.

6.3.3. Assume (n− 1)y ≤ x ≤ ny for some n with 2 ≤ n ≤ d− 2. From
(6.11) we deduce

|Ld,p(x, y)| = x · (x−y) · · · (x− (n−1)y) · (ny−x) · · · ((d−2)y−x) · (py−x).

We have
x · (x− y) · · · (x− (n− 2)y) ≥ (n− 1)!yn−1

and
((n+ 1)y − x) · · · ((d− 2)y − x) · (py − x) ≥ (d− n− 2)!(p− n)yd−n−1

≥ (d− n− 1)!yd−n−1.

For the product of the two terms in the middle, if y = 1, then we use the
trivial lower bound (x− (n− 1)y)(ny − x) ≥ 1, which yields

|Ld,p(x, y)| ≥ (n− 1)!(d− n− 1)!yd−2 ≥ (n− 1)!(d− n− 1)!

nd−2
xd−2,

while for y ≥ 2 we use

(x− (n− 1)y)(ny − x) ≥ (x− (n− 1)y) + (ny − x)− 1 = y − 1 ≥ y/2,

which yields

|Ld,p(x, y)| ≥
1

2
(n− 1)!(d− n− 1)!yd−1 ≥ (n− 1)!(d− n− 1)!

2nd−1
xd−1.

We now use Lemma 5.2:
(n− 1)!(d− n− 1)!

nd−1
=

n!(d− n)!

nd(d− n)
≥ e−(1+e−1)d 1

d− n
,

from which we deduce

|Ld,p(x, y)| ≥ e−(1+e−1)d 1

2(d− n)
xd−1.
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This proves the following result:

Proposition 6.8. For d ≥ 3, 2 ≤ n ≤ d− 2, p prime ≥ d− 1 and x and
y such that (n− 1)|y| ≤ |x| ≤ n|y| and Ld,p(x, y) ̸= 0, we have

|Ld,p(x, y)| ≥
1

2(d− 2)
· max {|x|, |y|}d−1

e(1+e−1)d
·

For d ≥ 5, we have

2(d− 2) · e(1+e−1)d < 9d−1.

We may now gather Propositions 6.6–6.8 to deduce (6.10), which com-
pletes the proof of Proposition 6.5.

6.4. Estimating the number of images by L of (x, y) with
max {|x|, |y|} ≥ 10. Gathering Propositions 6.1 and 6.5, we find that the
family L is (10, 1, 1, 5, 9)-regular. Furthermore, according to the parity of d,
the set Ld satisfies condition (C1) or (C2) of Corollary 1.12, by Proposi-
tion 6.2. As a consequence of Corollary 1.12 we have the following

Proposition 6.9. For any d ≥ 5, for every ε > 0, one has

R≥d(L, B, 10) =
1

(2, d)

( ∑
d≤p<2d

ALd,p

)
B2/d +Od,ε(B

ϑd+ε) +Od(B
2/(d+1)).

6.5. Estimating the number of images by L of (x, y) with
max {|x|, |y|} < 10. The difference

(6.12) R≥d(L, B, 0)−R≥d(L, B, 10)

is bounded from above by twice the cardinality of the set

Er≥d(B)

:= {m : 0 < m = |Ld′,p(x, y)| ≤ B, d ≤ d′ ≤ p < 2d′, max{|x|, |y|} ≤ 9}.
There are 192 pairs (x, y) with max{|x|, |y|} ≤ 9. We first count the number
of m in Er≥d(B) of the form |Ld′,p(x, 0)|, that is, with y = 0. For x = ±1

and y = 0 we have m = 1; for 2 ≤ |x| ≤ 9 and y = 0, we have 2d
′ ≤ B, hence

there are at most Od(logB) such values of m.
We now count the number of m in Er≥d(B) of the form |Ld′,p(x, y)| with

|y| ≥ 1. We have |x− ny| ≥ n− |x| ≥ n− 9 ≥ 2 for n ≥ 11, hence

B ≥ m ≥
∏

11≤n≤d′−2

(n− 9) ≥ 2d
′−12,

and therefore d′ ≤ O(logB). It follows that the number of pairs (d′, p) as
above is bounded by Od(log

2B). So we have proved

♯Er≥d(B) = Od(log
2B).
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Combining this bound with (6.12) and with Proposition 6.9, we obtain equal-
ity (1.19) of Theorem 1.18.

6.6. Some results on AF for F ∈ L. The area of the fundamental
domain associated to Ld,p is, by the definition (1.9), equal to

ALd,p
=

� �

D(Ld,p)

dx dy

with

D(Ld,p) := {(x, y) ∈ R2 : |x(x− y)(x− 2y) · · · (x− (d− 2)y)(x− py)| ≤ 1}.
By the change of variables u = x and v = y/x, we obtain

ALd,p
=

� �

D∗(Ld,p)

|u| du dv

with

D∗(Ld,p)

:= {(u, v) ∈ R2 : |u|d · |(1− v)(1− 2v) · · · (1− (d− 2)v)(1− pv)| ≤ 1}.
Some elementary calculations transform ALd,p

into a single integral.

Lemma 6.10. For d ≥ 5 and p ≥ d− 1, the following equalities hold:

ALd,p
=

∞�

−∞

dv

(|1− v| · |1− 2v| · · · |1− (d− 2)v| · |1− pv|)2/d

and

ALd,p
=

∞�

−∞

dt

|t| · |t− 1| · |t− 2| · · · |t− (d− 2)| · |t− p|)2/d
·

We will only work with the second expression of ALd,p
. So we introduce

the function
λd,p(t) := t(t− 1) · · · (t− (d− 2))(t− p),

which is the product of d linear factors in t. We split the interval of integra-
tion into d intervals of length 1 around the singularities 0, . . . , d − 2 and p
and three remaining intervals to write

(6.13) ALd,p
=(−1/2�

−∞
+

1/2�

−1/2

+ · · ·+
d−3/2�

d−5/2

+

p−1/2�

d−3/2

+

p+1/2�

p−1/2

+

∞�

p+1/2

) dt

|λd,p(t)|2/d
·

We will give an upper bound and a lower bound for each of these positive
integrals in order to prove
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Proposition 6.11. Uniformly for d → ∞ and d ≤ p < 2d, one has
e2 − o(1)

d
≤ ALd,p

≤ 5e2 + 2e + o(1)

d
·

The last part of Theorem 1.18 is obtained from this proposition after
a summation over d ≤ p < 2d and an application of the Prime Number
Theorem.

6.6.1. An auxiliary lemma.

Lemma 6.12. For d → ∞, we have

(1 · 3 · 5 · · · (2d− 3))1/d = (2e−1 + o(1))d.

Proof. We write

1 · 3 · 5 · · · (2d− 3) =
(2d− 3)!

2d−2(d− 2)!
=

(2d)!

(2d− 1)2dd!

and we use Stirling’s formula (1.20), which gives(
2d

e

)d √
2

(2d− 1) · e1/12d
≤ 1 · 3 · 5 · · · (2d− 3) ≤

(
2d

e

)d√2 · e1/24d

2d− 1
·

6.6.2. Study of
	−1/2
−∞ and of

	∞
p+1/2

Lemma 6.13. For d → ∞ and p ≥ d, one has

0 ≤
−1/2�

−∞

dt

|λd,p(t)|2/d
≤ e + o(1)

d
·

Proof. Using Hölder’s inequality and Lemma 6.12, we obtain
−1/2�

−∞

dt

|λd,p(t)|2/d
≤

(−1/2�

−∞

dt

|t|2

)1/d(−1/2�

−∞

dt

|t− 1|2

)1/d

× · · · ×
(−1/2�

−∞

dt

|t− (d− 2)|2

)1/d(−1/2�

−∞

dt

|t− p|2

)1/d

≤
(
2

1
· 2
3
· 2
5
· · · 2

2d− 3
· 2

2p+ 1

)1/d

≤
(

2d

1 · 3 · 5 · · · (2d− 3) · (2p+ 1)

)1/d

≤ e + o(1)

d
·

Similarly, one proves

Lemma 6.14. For d → ∞ and p ≥ d, one has

0 ≤
∞�

p+1/2

dt

|λd,p(t)|2/d
≤ e + o(1)

d
·
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Proof. For t > p+ 1/2, we have

|λd,p(t)| = λd,p(t) = t(t− 1) · · · (t− (d− 2))(t− p).

Using Hölder’s inequality and Lemma 6.12, we obtain
∞�

p+1/2

dt

|λd,p(t)|2/d
≤

( ∞�

p+1/2

dt

t2

)1/d( ∞�

p+1/2

dt

(t− 1)2

)1/d

× · · · ×
( ∞�

p+1/2

dt

(t− (d− 2))2

)1/d( ∞�

p+1/2

dt

(t− p)2

)1/d

≤
(

2

2p+ 1
· 2

2p− 1
· 2

2p− 3
· · · 2

2p− 2d+ 5
· 2
1

)1/d

≤
(

2d

1 · 3 · 5 · · · (2d− 3)

)1/d

≤ e + o(1)

d
·

6.6.3. Study of
	p−1/2
d−3/2

Lemma 6.15. For d → ∞ and d ≤ p < 2d, one has

0 ≤
p−1/2�

d−3/2

dt

|λd,p(t)|2/d
≤ e2 + o(1)

d
·

Proof. For t in the interval (d− 3/2, p− 1/2), we have p− t > 1/2,

|λd,p(t)| = t(t− 1) · · · (t− (d− 2))(p− t)

and, for 0 ≤ n ≤ d− 2,

t− n >
2d− 2n− 3

2
,

hence

|λd,p(t)| ≥
(2d− 3) · (2d− 5) · · · 3 · 1

2d

and therefore
|λd,p(t)|2/d ≥ (e−2 + o(1))d2

by Lemma 6.12. Since d ≤ p < 2d, the interval of integration has length at
most d+ 1, and so we deduce

p−1/2�

d−3/2

dt

|λd,p(t)|2/d
≤ e2 + o(1)

d
·
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6.6.4. Study of
	p+1/2
p−1/2

Lemma 6.16. For d ≥ 5 and d ≤ p < 2d, one has

0 ≤
p+1/2�

p−1/2

dt

|λd,p(t)|2/d
= O

(
1

d2

)
.

We introduce the polynomial

M(t) := t(t− 1) · · · (t− (d− 2))

of degree d− 1. It is easy to see that

min
|t−p|≤1/2

|M(t)| = |M(p− 1/2)| ≥ M(d− 3/2)

=
1

2
· 3
2
· 5
2
· · · 2d− 5

2
· 2d− 3

2
,

hence by Lemma 6.12, we have

min
|t−p|≤1/2

|M(t)|2/d ≥ (e−2 + o(1))d2.

Since
p+1/2�

p−1/2

dt

|t− p|2/d
= O(1),

we conclude
p+1/2�

p−1/2

dt

|λd,p(t)|2/d

≤
( p+1/2�

p−1/2

dt

|t− p|2/d

)
·
(

1

min|t−p|≤1/2 |M(t)|

)2/d

= O

(
1

d2

)
.

6.6.5. Study of the remaining integrals. We are now concerned, for ν =
0, 1, . . . , d− 2, with the integrals

Iν = Id,p,ν =

ν+1/2�

ν−1/2

dt

|λd,p(t)|2/d
,

for which we want to find an upper and a lower bound. We split the product
defining λd,p(t) into four pieces:

(6.14) λd,p(t) = (t− ν) · (t− p) · λ−
ν (t) · λ+

d,ν(t)

with
λ−
ν (t) :=

∏
0≤k<ν

(t− k) and λ+
d,ν(t) :=

∏
ν<k≤d−2

(t− k).
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We have

Iν ≤
( ν+1/2�

ν−1/2

dt

|t− ν|2/d

)
(6.15)

· (min |λ−
ν (t)|)−2/d · (min |λ+

d,ν(t)|)
−2/d · (min |t− p|)−2/d

and

Iν ≥
( ν+1/2�

ν−1/2

dt

|t− ν|2/d

)
(6.16)

· (max |λ−
ν (t)|)−2/d · (max |λ+

d,ν(t)|)
−2/d · (max |t− p|)−2/d,

where all the maxima and minima are taken for ν − 1/2 ≤ t ≤ ν + 1/2.
Direct computations transform (6.15) and (6.16) into

(1− o(1))(max |λ−
ν (t)|)−2/d · (max |λ+

d,ν(t)|)
−2/d

≤ Iν ≤ (1 + o(1))(min |λ−
ν (t)|)−2/d · (min |λ+

d,ν(t)|)
−2/d,

which is also

(6.17) (1− o(1))|λ−
ν (ν + 1/2)|−2/d · |λ+

d,ν(ν − 1/2)|−2/d

≤ Iν ≤ (1 + o(1))|λ−
ν (ν − 1/2)|−2/d · |λ+

d,ν(ν + 1/2)|−2/d

uniformly for d → ∞ and d ≤ p < 2d.
For 1 ≤ ν ≤ d− 2, we have the equalities

λ−
ν (ν + 1/2) =

(2ν + 1)(2ν − 1) · · · 3
2ν

=
(2ν + 1) !

22ν · ν !
=

(2ν) !

22ν · ν !
· 1

2ν + 1
,

λ−
ν (ν − 1/2) =

(2ν − 1)(2ν − 3) · · · 1
2ν

=
(2ν − 1) !

22ν−1 · (ν − 1) !
=

(2ν) !

22ν · ν !
,

and for 0 ≤ ν ≤ d− 3, we have

|λ+
d,ν(ν + 1/2)| = (2d∗ − 1)(2d∗ − 3) · · · 3 · 1

2d∗

=
(2d∗ − 1)!

22d∗−1 · (d∗ − 1)!
=

(2d∗)!

22d∗ · d∗!
,

|λ+
d,ν(ν − 1/2)| = (2d∗ + 1)(2d∗ − 1) · · · 5 · 3

2d∗

=
(2d∗ + 1)!

22d∗ · d∗!
=

(2d∗)!

22d∗ · d∗!
· (2d∗ + 1),

with the notation d∗ = d−2−ν. Furthermore, since we have empty products
in the decomposition (6.14), we see that

(6.18) λ−
0 (1/2) = λ−

0 (−1/2) = λ+
d,d−2(d− 3/2) = λ+

d,d−2(d− 5/2) = 1.
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The following lemma shows that inequalities (6.17) are sharp.

Lemma 6.17. Uniformly for 0 ≤ ν ≤ d− 2 and d → ∞, one has

1− o(1) ≤
( |λ−

ν (ν − 1/2)| · |λ+
d,ν(ν + 1/2)|

|λ−
ν (ν + 1/2)| · |λ+

d,ν(ν − 1/2)|

)−2/d

≤ 1 + o(1)

Proof. Obvious consequence of the explicit formulas given above.

For 0 ≤ ν ≤ d− 2, let

Λ = Λ(d, ν) := |λ−
ν (ν − 1/2)|−2/d · |λ+

d,ν(ν + 1/2)|−2/d.

A consequence of the explicit formulas for λ−
ν and λ+

d,ν is the equality

logΛ = −2

d
{log((2ν)!) + log((2d∗)!)− log(ν!)− log(d∗!)− 2d log 2 + o(d)}

uniformly for 1 ≤ ν ≤ d− 3 and d → ∞. Using Stirling’s formula (1.20), we
deduce

−d

2
· logΛ = ν log ν + d∗ log d∗ − d+ o(d)

= ν log ν + (d− ν) log(d− ν)− d+ o(d),

hence

(6.19) logΛ = −2

d
(ν log ν + (d− ν) log(d− ν)) + 2 + o(1)

uniformly for 1 ≤ ν ≤ d − 3 and d → ∞. By a direct study of the function
fd defined by

fd : [1, d− 1] ∋ t 7→ fd(t) = t log t+ (d− t) log(d− t),

we deduce that, for all 1 ≤ t ≤ d− 1, the function fd satisfies

fd(d/2) = d log(d/2) ≤ fd(t) ≤ fd(1) = fd(d− 1) = (d− 1) log(d− 1).

Inserting this bound into (6.19), we obtain

(6.20) −2 log d+ 2− o(1) ≤ logΛ(d, ν) ≤ −2 log d+ 2 log 2 + 2 + o(1)

uniformly for 1 ≤ ν ≤ d−3. Actually, this formula also holds for Λ(d, 0) and
Λ(d, d− 2) thanks to (6.18).

Combining (6.17), (6.20) and Lemma 6.17, we obtain

Lemma 6.18. Uniformly for d → ∞, 0 ≤ ν ≤ d− 2 and d ≤ p < 2d, one
has

e2 − o(1)

d2
≤ Id,p,ν ≤ 4e2 + o(1)

d2
·

6.6.6. End of the proof of Proposition 6.11. We split the end of the proof
into two parts.
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For the lower bound, we use positivity to write

ALd,p
≥

d−2∑
ν=0

Iν ≥ (d− 1) · e
2 − o(1)

d2
≥ e2 − o(1)

d
,

as a consequence of (6.13) and Lemma 6.18.
For the upper bound, we respectively apply Lemmas 6.13–6.16 and 6.18

to bound each of the terms in (6.13), and we obtain

ALd,p
≤ 5e2 + 2e + o(1)

d
·

The proof of Proposition 6.11 is now complete. This concludes the proof
of Theorem 1.18.
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Abstract (will appear on the journal’s web site only)
We extend our previous results on the number of integers which are values

of some cyclotomic form of degree larger than a given value, to more general
families of binary forms with integer coefficients. Our main ingredient is an
asymptotic upper bound for the cardinality of the set of values which are
common to two non-isomorphic binary forms of degree greater than 3. We
apply our results to some typical examples of families of binary forms.
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