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Valeurs spéciales de polylogarihmes multiples

par

M. WALDSCHMIDT

0. Introduction - Notation

A quite ambitious goal is to determine the algebraic relations among the numbers

π, ζ(3), ζ(5), . . . , ζ(2n + 1), . . .

The expected answer is disappointingly simple: it is widely believed that there are no relations,
which means that these numbers should be algebraically independent:

(?) For any n ≥ 0 and any nonzero polynomial P ∈ Z[T0, . . . , Tn],

P
(
π, ζ(3), ζ(5), . . . , ζ(2n + 1)

)
6= 0.

If true, this property would mean that there is no interesting algebraic structure. The situation
changes drastically if we enlarge our set so as to include the so-called Multiple Zeta Values
(MZV, also called Polyzeta values, Euler-Zagier numbers or multiple harmonic series):

ζ(s1, . . . , sk) =
∑

n1>n2>···>nk≥1

1

ns11 · · ·nskk

which are defined for k, s1, . . . , sk positive integers with s1 ≥ 2. There are plenty of relations
between them, providing a rich algebraic structure. The most well known ones are Euler’s
relations

(0.1) ζ(2n)/ζ(2)n ∈ Q

for any integer n ≥ 1.
Here is a “proof” of the relation ζ(2) = π2/6 due to Euler, following [A 1976].

http://www.math.jussieu.fr/∼miw/polylogs.html
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If α1, . . . , αn are the roots of the equation a0 + a1z + · · ·+ anz
n = 0, then

n∑

i=1

1

αi
= −a1

a0
·

Now

cos
√
z = 1− z

2
+
z2

24
+ · · ·

and the roots of cos
√
z = 0 are

1

4
(2n + 1)2π2 (n = 0, 1, . . .)

and “hence” ∑

n≥0

1

(2n + 1)2
=
π2

8
·

Since ∑

n≥0

1

(2n + 1)2
=
∑

n≥0

1

n2
−
∑

n≥0

1

(2n)2
=

3

4
ζ(2),

the relation ζ(2) = π2/6 follows.
It is not difficult to vindicate this proof, starting from the Hadamard product expansion

for the cosine function:

cos t =
∏

n∈Z

(
1− 2t

(2n + 1)π

)
=
∞∏

n=0

(
1− 4t2

(2n + 1)2π2

)
.

The point is that there is no extra exponential factor.
There are very few results on the independence of these numbers: it is known that π is a

transcendental numbers, hence so are all ζ(2n), n ≥ 1. It is also known that ζ(3) is irrational
(Apéry, 1978), and that infinitely many ζ(2n + 1) are irrational [Ri 2000], [BR 2001] (further
sharper more recent results have been achieved by T. Rivoal). This is all for the negative side!

Let us have a look at the positive side.
One easily gets quadratic relations between MZV when one multiplies two such series: it is

easy to express the product as a linear combination of MZV. We shall study this phenomenon
in detail, but we just give one easy example. Splitting the set of (n,m) with n ≥ 1 and m ≥ 1
into three disjoint subsets with respectively n > m, m > n and n = m, we deduce, for s ≥ 2
and s′ ≥ 2,

∑

n≥1

n−s
∑

m≥1

m−s
′

=
∑

n>m≥1

n−sm−s
′

+
∑

m>n≥1

m−s
′
n−s +

∑

n≥1

n−s−s
′
,

which is Nielsen Reflexion Formula [N 1904]

(0.2) ζ(s)ζ(s′) = ζ(s, s′) + ζ(s′, s) + ζ(s + s′)
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for s ≥ 2 and s′ ≥ 2. For instance

(0.3) ζ(2)2 = 2ζ(2, 2) + ζ(4).

Such expressions of the product of two zeta values as a linear combination of zeta values,
arising from the product of two series, will be called “stuffle relations”.

We introduce another type of algebraic relations between MZV, coming from their expres-
sions as integrals: the product of two such integrals is a linear combination of MZV.

The classical polylogarithms

Lis(z) =
∑

n≥1

zn

ns
,

are analytic in the unit disk |z| < 1. These functions Lis are also defined recursively, starting
from

Li1(z) =
∑

n≥1

zn

n
= − log(1− z),

and using the differential equations

z
d

dz
Lis(z) = Lis−1(z) (s ≥ 2),

together with the initial conditions Lis(0) = 0.
We express these functions as integrals: for s = 1 we have

Li1(z) = − log(1− z) =

∫ z

0

dt

1− t
,

where the complex integral is over any path from 0 to z inside the unit circle. Next

Li2(z) =

∫ z

0

Li1(t)
dt

t
=

∫ z

0

dt

t

∫ t

0

du

1− u
,

and by induction, for s ≥ 2, (cf. [L 1981], (7.2))

Lis(z) =

∫ z

0

Lis−1(t)
dt

t
=

∫ z

0

dt1
t1

∫ t1

0

dt2
t2
· · ·
∫ ts−2

0

dts−1

ts−1

∫ ts−1

0

dts
1− ts

·

As pointed out to me by C. Viola, one also checks this formula with the change of variables





t1 = x1, x1 = t1,
t2 = x1x2, x2 = t2/t1,

...
...

ti = x1 · · ·xi, xi = ti/ti−1,
...

...
ts = x1 · · ·xs, xs = ts/ts−1.

dt1 · · · dts = xs−1
1 xs−2

2 · · ·xs−1dx1 · · · dxs.



            

Fascicule 1 4

Similar integral expressions are valid for multiple polylogarithms in one variable:

Lis(z) =
∑

n1>n2>···>nk≥1

zn1

ns11 · · ·nskk
,

for s = (s1, . . . , sk). We give three examples. From

(z − 1)
d

dz
Li(1,1)(z) = Li1(z) with Li(1,1)(0) = 0

we deduce

Li(1,1)(z) =

∫ z

0

Li1(t)
dt

1− t =

∫ z

0

dt1
1− t1

∫ t1

0

dt2
1− t2

=
1

2

(
log(1− z)

)2
.

Next, from

(z − 1)
d

dz
Li(1,2)(z) = Li2(z) with Li(1,2)(0) = 0

we infer

Li(1,2)(z) =

∫ z

0

Li2(t)
dt

1− t =

∫ z

0

dt1
1− t1

∫ t1

0

dt2
t2

∫ t2

0

dt3
1− t3

·

Finally from

z
d

dz
Li(2,1)(z) = Li(1,1)(z) with Li(2,1)(0) = 0

we derive an expression of Li(2,1)(z) as a triple integral

Li(2,1)(z) =

∫ z

0

dt1
t1

∫ t1

0

dt2
1− t2

∫ t2

0

dt3
1− t3

·

Consider now the product of Li1(z) and Li2(z):

Li1(z)Li2(z) =

∫ z

0

dt

1− t

∫ z

0

du1

u1

∫ u1

0

du2

1− u2
·

For simplicity of notation, we assume z is real in the range 0 < z < 1. The set of (t, u1, u2)
in R3 satisfying 0 < t < z and 0 < u2 < u1 < z splits into three subsets

0 < t < u2 < u1 < z, 0 < u2 < t < u1 < z, 0 < u2 < u1 < t < z,

and two further subsets (with either t = u1 or else t = u2) which we are not interested
with, since they have Lebesgue dimension 0 and hence do not contribute to the integral. The
Cartesian product ∆1(z)×∆2(z) is the union of three domains isomorphic to ∆3(z). Indeed,
consider the points

O = (0, 0, 0), A = (z, 0, 0), B = (z, z, 0), C = (z, z, z), D = (0, z, z), E = (0, z, 0).
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Then the domain {0 ≤ x1 ≤ z, 0 ≤ x3 ≤ x2 ≤ z}, which is the convex hull of

{O,A,B,E,D,C},

is the union of the three domains

0 ≤ x3 ≤ x2 ≤ x1 ≤ z, 0 ≤ x3 ≤ x1 ≤ x2 ≤ z, 0 ≤ x1 ≤ x3 ≤ x2 ≤ z,

which are the convex hulls of

{O,A,B,C}, {O,B,C,E}, {O,C,D,E}

respectively. Therefore the product Li1(z)Li2(z) is the sum of three integrals which we already
met:

(0.4) Li1(z)Li2(z) = 2Li(2,1)(z) + Li(1,2)(z).

In the same way, if we decompose the domain

1 > z > t1 > t2 > 0, 1 > z > u1 > u2 > 0

into six disjoint domains (and further subsets of zero dimension) obtained by “shuffling” (t1, t2)
with (u1, u2):

z > t1 > t2 > u1 > u2 > 0, z > t1 > u1 > t2 > u2 > 0, z > u1 > t1 > t2 > u2 > 0,

z > t1 > u1 > u2 > t2 > 0, z > u1 > t1 > u2 > t2 > 0, z > u1 > u2 > t1 > t2 > 0,

one deduces

(0.5) Li2(z)2 = 4Li(3,1)(z) + 2Li(2,2)(z).

For z = 1 we get

(0.6) ζ(2)2 = 4ζ(3, 1) + 2ζ(2, 2).

This is a typical example of a “shuffle relation”.
Combining the shuffle relations with the stuffle relations arising from product of series,

one deduces linear relations between MZV, like

ζ(4) = 4ζ(3, 1).

We also claim

(0.7) ζ(3) = ζ(2, 1).
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Consider the double polylogarithms in two variables

Li(s1,s2)(z1, z2) =
∑

n1>n2≥1

zn1
1 zn2

2

ns11 n
s2
2

·

Notice that
Li(s1,s2)(z) = Li(s1,s2)(z, 1).

Then one easily checks, by multiplying the series,

Lis(z)Lis′(z) = Li(s,s′)(z, z) + Li(s′,s)(z, z) + Lis+s′(z
2)

for s ≥ 1 and s′ ≥ 1. In particular

(0.8) Li1(z)Li2(z) = Li(1,2)(z, z) + Li(2,1)(z, z) + Li3(z2).

We combine with the relation (0.4) arising from integrals and deduce

(0.9) Li3(z2) + Li(2,1)(z, z)− 2Li(2,1)(z, 1) = Li(1,2)(z, 1)− Li(1,2)(z, z).

As z → 1 the left hand side converges towards ζ(3)− ζ(2, 1). We claim that the difference

F (z) = Li(1,2)(z, 1)− Li(1,2)(z, z) =
∑

n1>n2≥1

zn1(1− zn2)

n1n2
2

tends to 0 as z tends to 1 inside the unit circle. Indeed for |z| < 1 we have

|1− zn2 | = |(1− z)(1 + z + · · ·+ zn2−1)| < n2|1− z|,

hence
n1−1∑

n2=1

|1− zn2 |
n2

2

< |1− z|
n1−1∑

n2=1

1

n2

and

|F (z)| ≤ |1− z|Li(1,1)(|z|) =
1

2
|1− z|

(
log
(
1/(1− |z|)

))2

.

This completes the proof of Euler’s formula (0.7).

Notation. Given a string a1, . . . , ak of integers, the notation {a1, . . . , ak}n stands for the
kn-tuple

(a1, . . . , ak, . . . , a1, . . . , ak),

where the string a1, . . . , ak is repeated n times. For instance {1, 2}3 = (1, 2, 1, 2, 1, 2).
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1. Noncommutative Polynomials and Power Series

1.1. The Free Algebra H = K〈X〉 on a Set X

Let K be a subfield of R (most often we shall take either K = Q or else K = R). Consider
the universal problem of constructing a K-algebra K〈X〉 and a map i : X → K〈X〉 such that,
for any pair (A, f) where A is a K-algebra and f a map X → A, there is a unique morphism
f of K-algebras for which the diagram

X
i−−−−→ K〈X〉

f
↘

y f̄

A

commutes.
If X consists of a single point, then the solution is the ring of commutative polynomials

in a single variable. For a general set X, if we replace the category of K-algebras by the
category of commutative algebras, then the solution is the ring of polynomials in a set of
indeterminates indexed by X. For convenience of notation we shall assume that the elements
in X are algebraically independent over K. Hence this ring of polynomials can be written
simply K[X].

Here we do not require commutativity, and the solution is given by non-commutative
polynomials.

Denote by X∗ = X(N) the set of finite sequences of elements in X, including the empty
sequence e. Write x1 · · ·xp with p ≥ 0 such a sequence (it is called a word on the alphabet X
- the elements xi in X are the letters). This set is endowed with a monoid structure, which
produces the universal free monoid with basis X, and the law is concatenation:

(x1 · · ·xp)(xp+1 · · ·xp+q) = x1 · · ·xp+q.

The neutral element is e.
Next consider the set K(X∗) of maps X∗ → K with finite support; for such a map S

write (S|w) the image of w ∈ X∗ in K and write also

(1.1) S =
∑

w∈X∗
(S|w)w.

By definition, for S ∈ K(X∗) the support of S is the finite set

SuppS = {w ∈ X∗ ; (S|w) 6= 0}.

On K(X∗) define an addition by

(1.2) (S + T |w) = (S|w) + (T |w) for any w ∈ X∗
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and a multiplication (∗) by

(1.3) (ST |w) =
∑

uv=w

(S|u)(T |v)

where, for each w ∈ X∗, the sum is over the (finite) set of (u, v) in X∗×X∗ such that uv = w.
Further, for λ ∈ K and S ∈ K(X∗), define λS ∈ K(X∗) by

(1.4) (λS|w) = λ(S|w) for any w ∈ X∗.

With these laws one checks that the set K(X∗) becomes a K-algebra, solution of the above
universal problem, which is therefore denoted by K〈X〉 and is called the free algebra on X.

This is a graded algebra, when elements of X are given weight 1: the weight of a word
x1 · · ·xp is p, and for p ≥ 0 the set K〈X〉p of S ∈ K〈X〉 for which

(S|w) = 0 if w ∈ X∗ has weight 6= p

is the K-vector subspace whose basis is the set of words of length p. For p = 0, K〈X〉0 is the
set Ke of “constant” polynomials λe, λ ∈ K - it is the K-subspace of dimension 1 spanned
by e. For any S ∈ K〈X〉p and T ∈ K〈X〉q, we have

ST ∈ K〈X〉p+q.

If X is finite with n elements, then for each p ≥ 0 there are np words of weight p, hence the
dimension of K〈X〉p over K is np, and the Poincaré series is

∑

p≥0

tp dimK K〈X〉p =
1

1− nt ·

We shall consider mainly two examples: the first one is where X = {x0, x1} has two
elements; in this case the algebra K〈x0, x1〉 will be denoted by H. Each word w in X∗ can
be written xε1 · · ·xεp where each εi is either 0 or 1 and the integer p is the weight of w. The
number of i ∈ {1, . . . p} with εi = 1 is called the length (or the depth) of w.

We shall denote by X∗x1 the set of word which end with x1, and by x0X
∗x1 the set of

words which start with x0 and end with x1. The subalgebra of H spanned by X∗x1 is

H1 = Ke + Hx1,

and Hx1 is a left ideal of H. Also the subalgebra of H1 spanned by x0X
∗x1 is

H0 = Ke + x0Hx1.

(∗) S Sometimes called Cauchy product - it is the usual multiplication, in opposition to the
Hadamard product where (ST |w) = (S|w)(T |w).
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The algebra H1 is our second example of a free algebra: it is the free algebra on the countable
set Y = {y1, . . . , ys, . . .}, where, for s ≥ 1, ys denotes xs−1

0 x1. It is easy to check that the
set X∗x1 is nothing else than the set of ys1 · · · ysk , where (s1, . . . , sk) ranges over the finite
sequences of positive integers with k ≥ 1 and sj ≥ 1 for 1 ≤ j ≤ k. For s = (s1, . . . , sk) with
k ≥ 0 it will be convenient to write ys for ys1 · · · ysk , so that

ys = xs1−1
0 x1 · · ·xsk−1

0 x1

and the empty product (for k = 0) is, as usual, the empty word e.
In the same way, H0 is nothing but the free algebra K〈y2, . . . , ys, . . .〉, since the set

x0X
∗x1 coincides with the set of ys1 · · · ysk , where (s1, . . . , sk) ranges over the finite sequences

of positive integers with k ≥ 1, s1 ≥ 2 and sj ≥ 1 for 2 ≤ j ≤ k.
An interesting phenomenon, which does not occur in the commutative case, is that the

free algebra k〈x0, x1〉 on a set with only two elements contains as a subalgebra the free algebra
k〈y1, y2, . . .〉 on a set with countably many elements. Notice that this last algebra also contains
as a subalgebra the free algebra on a set with n elements, namely k〈y1, y2, . . . , yn〉. From this
point of view it suffices to deal with only two variables!

1.2. The Algebra Ĥ = K〈〈X〉〉 of Formal Power Series

Let us come back for a while to the general case of a set X. According to the definition
of K〈X〉 as a solution of a universal problem, for each K-algebra A the map f → f̄ defines a
bijection between AX and the set of morphisms of K-algebras K〈X〉 → A.

We introduce now the algebra Ĥ = K〈〈X〉〉 of formal power series on X and we shall
see that it is isomorphic to the dual of K〈X〉, which is the set HomK

(
K〈X〉,K

)
of K-linear

maps K〈X〉 → K.

The underlying set of the algebra K〈〈X〉〉 is the set KX∗ of maps X∗ → K - here there
is no restriction on the support. For such a map S write (S|w) the image of w ∈ X∗ in K and
write also

S =
∑

w∈X∗
(S|w)w.

On this set KX∗ the addition is defined by (1.2) and the multiplication is again Cauchy product
(1.3). Further, for λ ∈ K and S ∈ K(X∗), define λS ∈ KX∗ by (1.4). With these laws one

checks that the set KX∗ becomes a K-algebra which we denote by either K〈〈X〉〉 of Ĥ.

To a formal power series S we associate a K-linear map:

K〈X〉 −→ K

P 7−→
∑

w∈X∗
(S|w)(P |w).

Notice that the sum is finite since P ∈ K〈X〉 has finite support.
Since X∗ is a basis of the K-vector space K〈X〉, a linear map f ∈ HomK

(
K〈X〉,K

)
is

uniquely determines by its values (f |w) on the set X∗. Hence the map

HomK

(
K〈X〉,K

)
−→ Ĥ

f 7−→ ∑
w∈X∗(f |w)w
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is an isomorphism of vector spaces between the dual HomK

(
K〈X〉,K

)
of H = K〈X〉 and Ĥ.

This is the classical dual; there are other notions of dual, in particular the “graduate dual”,
which in the present case is isomorphic to H, and the “restricted dual”, which is the field
RatK(X) of series which are “rational” which we now consider.

1.3. Rational Series

We introduce a map, denoted with a star ? (not the same star as in the notation X∗ for

the set of words!), from the set of series S in Ĥ which satisfy (S|e) = 0 to Ĥ, defined by

(1.5) S? =
∑

n≥0

Sn = e + S + S2 + · · ·

The fact that the right hand side of (1.5) is well defined is a consequence of the assumption
(S|e) = 0. Notice that S? is the unique solution to the equation

(1− S)S? = e,

and it is also the unique solution to the equation

S?(1− S) = e.

A rational series is a series in Ĥ which is obtained by using only a finite number of letters
(this is a restriction only in case in case X is infinite), as well as a finite number of rational
operations, namely addition (1.2), product (1.3), multiplication (1.4) by an element in K and
the star (1.5). The set of rational series over K is a field RatK(X).

For instance for x ∈ X the series

e + x2 + x4 + · · ·+ x2n + · · · = x?(−x)?

is rational, and also the series ∑

p≥0

ϕm(p)xp = (mx)?,

when ϕm(p) = mp is the number of words of weight p on the alphabet with m letters. Series
like ∑

p≥0

xp/p,
∑

p≥0

xp/p!,
∑

p≥0

x2p

are not rational: if X has a single elements, say x, rational series can be identified with elements
in K(x) with no poles at x = 0.

For a series S without constant term, i.e. such that (S|e) = 0, one defines

exp(S) =
∞∑

n=0

Sn

n!
·
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It is easy to check for instance that if S satisfies (S|e) = 0 then the series

T =
∞∑

n=1

Sn

n

is well defined and has
exp(T ) = S?.

1.4. The Shuffle Product and the Algebra Hx

Let again X be a set and K a field. On K〈X〉 we define the shuffle product as follows.
On the words, the map x : X∗ ×X∗ → H is defined by the formula

(x1 · · ·xp)x(xp+1 · · ·xp+q) =
∑

σ∈Sp,q

xσ(1) · · ·xσ(p+q),

where Sp,q denotes the set of permutation σ on {1, . . . , p + q} satisfying

σ(1) < σ(2) < · · · < σ(p) and σ(p + 1) < σ(p + 2) < · · · < σ(p + q).

This set Sp,q has (p + q)!/p!q! elements; it is the disjoint union of two subsets, the first one
with (p−1+q)!/(p−1)!q! elements consists of those σ for which σ(1) = 1, and the second one
with (p+ q− 1)!/p!(q− 1)! elements consists of those σ for which σ(p+ 1) = 1. Accordingly,
the previous definition of x : X∗ ×X∗ → H is equivalent to the following inductive one:

exw = wxe = w for any w ∈ X∗,

and
(xu)x(yv) = x

(
ux(yv)

)
+ y
(
(xu)xv

)

for x and y in X (letters), u and v in X∗ (words).

Example. For k and ` non-negative integers and x ∈ X,

xtxx` =
(k + `)!

k!`!
xk+`.

From

x1x2xx3x4 = x1x2x3x4 + x1x3x2x4 + x1x3x4x2 + x3x1x2x4 + x3x4x1x2

one deduces
x0x1xx0x1 = 2x0x1x0x1 + 4x2

0x
2
1.

In the same way the relation

x0x1xx2
0x1 = x0x1x

2
0x1 + 3x2

0x1x0x1 + 6x3
0x

2
1
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is easier to check by computing first x0x1xx2x3x4.

Notice that the shuffle product of two words is in general not a word but a polynomial in
K〈X〉. We extend the definition of x : X∗ × X∗ → H to x : H × H → H by distributivity
with respect to addition:

∑

u∈X∗
(S|u)u x

∑

v∈X∗
(T |v)v =

∑

u∈X∗

∑

v∈X∗
(S|u)(T |v)uxv.

One checks that the shuffle x endows K〈X〉 with a structure of commutative K-algebra.
From now on we consider only the special case X = {x0, x1}. This algebra will be denoted

by Hx. Since H1 as well as H0 are stable under x, they define subalgebras

H0
x ⊂ H1

x ⊂ Hx.

There is a description of the shuffle product in terms of automata due to Schutzenberger
(see [R 1993] and [Lo 2002]). We only give an example with a sketch of proof of the following
so-called “syntaxic” identity (Minh-Petitot):

Lemma 1.6. The following identity holds:

(x0x1)?x(−x0x1)? = (−4x2
0x

2
1)?.

Sketch of proof. To a series S? one associates an automaton, with the following property: the
sum of paths going out from the entry gate is S. As an example the series associated to

(1.7)
⇐=

=⇒ 1
x1←−−−−

−−−−→
x0

2

is
S1 = e + x0x1 + (x0x1)2 + · · ·+ (x0x1)n + · · · = (x0x1)?

and similarly the series associated to

(1.8)
⇐=

=⇒ A

x1←−−−−
−−−−→
−x0

B

is
SA = e− x0x1 + (x0x1)2 + · · ·+ (−x0x1)n + · · · = (−x0x1)?.

The “shuffle product” of these two automata (we do not give the general definition, only this
example) is the following

(1.9)

⇐=

=⇒ 1A
x1←−−−−

−−−−→
x0

2A

−x0

y
x x1 −x0

y
x x1

1B
x1←−−−−

−−−−→
x0

2B
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Let S1A be the series associated with this automaton (1.9). One computes it by solving a
system of linear (noncommutative) equations as follows. Define also S1B , S2A and S2B as the
series associated with the paths going out from the corresponding vertex. Then

S1A = e− x0S1B + x0S2A,

S1B = x1S1A + x0S2B ,

S2A = x1S1A − x0S2B ,

S2B = x1S1B + x1S2A.

The rule is as follows: if Σ is the sum associated with a vertex (also denoted by Σ) with
oriented edges ξi : Σ→ Σi (1 ≤ i ≤ m), then

Σ = x1Σ1 + · · ·+ xmΣm,

and xiΣi is replaced by e for the entry gate.
In the present situation one deduces

S1A = e− x0(S1B − S2A), S1B − S2A = −2x0S2B ,

S2B = x1(S1B + S2A), S1B + S2A = 2x1S1A

and therefore

S1A = e + 4x2
0x

2
1S1A,

which completes the proof of Lemma 1.6, if we take for granted that the series associated with
the automaton (1.9) is the shuffle product of the series associated with the automata (1.7)
and (1.8).

The structure of the commutative algebra Hx is given by Radford Theorem [R 1993].
Consider the lexicographic order on X∗ with x0 < x1. A Lyndon word is a word w ∈ X∗

such that, for each decomposition w = uv with u 6= e and v 6= e, the inequality w < v holds.
Examples of Lyndon words are x0, x1, x0x

k
1 (k ≥ 0), x`0x1 (` ≥ 0), x2

0x
2
1. Denote by L the

set of Lyndon words.
Any Lyndon word starts with x0 (with the only exception of x1) and ends with x1 (with

the only exception of x0). In other terms x0 is the only Lyndon word which is not in H1
x, while

x0 and x1 are the only Lyndon words which are not in H0
x.

Theorem 1.10. The three shuffle algebras are (commutative) polynomial algebras

Hx = K[L]x, H1
x = K

[
L \ {x0}

]
x and H0

x = K
[
L \ {x0, x1}

]
x.

For instance there are 15 words of weight ≤ 3, and 5 among them are Lyndon words:

x0 < x2
0x1 < x0x1 < x0x

2
1 < x1.
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We write the 10 non-Lyndon words of weight ≤ 3 as polynomials in these Lyndon words as
follows:

e = e, x2
0 = 1

2x0xx0,
x3

0 = 1
3x0xx0xx0, x0x1x0 = x0xx0x1 − 2x2

0x1,
x1x0 = x0xx1 − x0x1, x1x

2
0 = 1

2x0xx0xx1 − x0xx0x1 + x2
0x1,

x1x0x1 = x0x1xx1 − 2x0x
2
1, x2

1 = 1
2x1xx1,

x2
1x0 = 1

2x0xx1xx1 − x0x1xx1 + x0x
2
1, x3

1 = 1
3x1xx1xx1.

Corollary 1.11. We have

Hx = H1
x[x0]x = H0

x[x0, x1]x and H1
x = H0

x[x1]x.
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