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Valeurs spéciales de polylogarithmes multiples

par

M. WALDSCHMIDT

The Harmonic Algebra, Quasisymmetric Series and stuffle relations between polylogarithms in several
variables

On introduit l’algèbre harmonique de M. Hoffman, on étudie sa structure, le lien avec
les fonctions quasisymétriques, et on applique ces résultats aux polylogarithmes multiples en
plusieurs variables pour en déduire les deuxièmes relations de mélange entre polyzêta.

1. The Harmonic Algebra H?

There is another shuffle-like law on H, called the harmonic product by M. Hoffman [H 1997]
and stuffle by other authors [B3L 2001], again denoted with as ? (∗), which also gives rise to
subalgebras

H0
? ⊂ H1

? ⊂ H?.

It is defined as follows. First on X∗, the map ? : X∗ × X∗ → H is defined by induction,
starting with

xn0 ? w = w ? xn0 = wxn0

for any w ∈ X∗ and any n ≥ 0 (for n = 0 it means e ? w = w ? e = w for all w ∈ X∗), and
then

(ysu) ? (ytv) = ys
(
u ? (ytv)

)
+ yt

(
(ysu) ? v

)
+ ys+t(u ? v)

for u and v in X∗, s and t positive integers.
We shall not use so many parentheses later: in a formula where there are both con-

catenation products and either shuffle of star products, we agree that concatenation is always
performed first, unless parentheses impose another priority:

ysu ? ytv = ys(u ? ytv) + yt(ysu ? v) + ys+t(u ? v)

(∗) There should be no confusion with the rational operation S 7→ S∗ on power series, where
the star is written ∗ and is always in the exponent. Beware that we shall write S?2 for S ? S;
the square of S∗ will never occur here, but if would be written (S∗)2

http://www.math.jussieu.fr/∼miw/polylogs.html
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Again this law is extended to all of H by distributivity with respect to addition:
∑

u∈X∗
(S|u)u ?

∑

v∈X∗
(T |v)v =

∑

u∈X∗

∑

v∈X∗
(S|u)(T |v)u ? v.

Remark. From the definition (by induction on the length of uv) one deduces

(uxm0 ) ? (vxm0 ) = (u ? v)xm0

for m ≥ 0, u and v in X∗.

Example.

y?32 = y2 ? y2 ? y2 = 6y3
2 + 3y2y4 + 3y4y2 + y6.

Hoffman’s Theorem [H 1997] gives the structure of the harmonic algebra H?:

Theorem 1.3. The harmonic algebras are polynomial algebras on Lyndon words:

H? = K[L]?, H0
? = K

[
L \ {x0, x1}

]
?

et H1
? = K

[
L \ {x0, x1}

]
?
.

For instance the 10 non-Lyndon words of weight ≤ 3 are polynomials in the 5 Lyndon
words:

x0 < x0x1 < x2
0x1 < x0x

2
1 < x1.

as follows:

e = e, x2
0 = x0 ? x0,

x3
0 = x0 ? x0 ? x0, x0x1x0 = x0 ? x0x1,
x1x0 = x0 ? x1, x1x

2
0 = x0 ? x0 ? x1,

x1x0x1 = x0x1 ? x1 − x2
0x1 − x0x

2
1, x2

1 = 1
2x1 ? x1 − 1

2x0x1,
x2

1x0 = 1
2x0 ? x1 ? x1 − 1

2x0 ? x0x1, x3
1 = 1

6x1 ? x1 ? x1 − 1
2x0x1 ? x1 + 1

3x
2
0x1.

In the same way as Corollary 1.2 follows from Theorem 1.1, we deduce from Theorem 1.3:

Corollary 1.4. We have

H? = H1
?[x0]? = H0

?[x0, x1]? et H1
? = H0

?[x1]?.

Remark. Consider the diagram
Hx −→ K[L]xy f

y g

H? −→ K[L]?

The horizontal maps are just the identity: Hx = K[L]x and H? = K[L]?. The vertical map
f is also the identity on H, since the algebras Hx and H? have the same underlying set H
(only the law differs). But the map g is not a morphism of algebras: it maps each Lyndon
word on itself, but consider for instance the image of the word x2

0:, as a polynomial in K[L]?,
x2

0 = x0 ? x0 = x?20 , but, as a polynomial in K[L]x, x2
0 = (1/2)x0xx0 = (1/2)xx2

0 .
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2. Quasi-Symmetric Series

The harmonic product is closely connected with the theory of quasi-symmetric series as
follows (work of Stanley, 1974 [R 1993]).

Denote by t = (t1, t2, . . .) a sequence of commutative variables. To s = (s1, . . . , sk),
where each sj is an integer ≥ 1, associate the series

Ms(t) =
∑

n1≥1,...,nk≥1

n1,...,nkpairwise distinct

ts1n1
· · · tsknk .

The space of power series spanned by these Ms is denoted by Sym and its elements are called
symmetric series. A basis of Sym is given by the series Ms with s1 ≥ s2 ≥ · · · ≥ sk and k ≥ 0.

A quasi-symmetric series is an element of the algebra QSym spanned by the series

QMs(t) =
∑

n1>···>nk≥1

ts1n1
· · · tsknk ,

where s ranges over the set of tuples (s1, . . . , sk) with k ≥ 0 and sj ≥ 1 for 1 ≤ j ≤ k. Notice
that, for s = (s1, . . . , sk) of length k,

Ms =
∑

τ∈Sk

QMsτ ,

where Sk is the symmetric group on k elements and sτ = (sτ(1), . . . , sτ(k)). Hence any
symmetric series is also quasi-symmetric. Therefore Sym is a subalgebra of QSym.

Proposition 2.1. The K-linear map φ : H1 → QSym defined by ys 7→ QMs is an isomorphism

of K-algebras from H1 to QSym.

In other terms, if we write

(2.2) ys ? ys′ =
∑

s′′

ys′′ ,

then
QMs(t) QMs′(t) =

∑

s′′

QMs′′(t),

which means

∑

n1>···>nk≥1

ts1n1
· · · tsknk

∑

n′1>···>n′k≥1

t
s′1
n′1
· · · ts

′
k

n′
k

=
∑

s′′

∑

n′′1>···>n′′k≥1

t
s′′1
n′′1
· · · ts

′′
k

n′′
k
.

The star (stuffle) law gives an explicit way of writing the product of two quasi-symmetric series
as a sum of quasi-symmetric series: from the definition of ? it follows that in (2.2), s′′ runs over
the tuples (s′′1 , . . . , s

′′
k′′) obtained from s = (s1, . . . , sk) and s′ = (s′1, . . . , s

′
k′) by inserting,
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in all possible ways, some 0 in the string (s1, . . . , sk) as well as in the string (s′1, . . . , s
′
k′)

(including in front and at the end), so that the new strings have the same length k′′, with
max{k, k′} ≤ k′′ ≤ k+k′, and by adding the two sequences term by term. Here is an example:

s s1 s2 0 s3 s4 · · · 0
s′ 0 s′1 s′2 0 s′3 · · · s′k′
s′′ s1 s2 + s′1 s′2 s3 s4 + s′3 · · · s′k′ .

Let QSym0 be the subspace of QSym spanned by the QMs(t) for which s1 ≥ 2. The

restriction of φ to H0 gives an isomorphism of K-algebra from H0 to QSym0. The specialization
tn → 1/n for n ≥ 1 restricted QSym0 maps QMs onto ζ(s). Hence we have a commutative
diagram:

H⋃

H1
φ∼−−−−→ QSym⋃ ⋃

H0 ∼−−−−→ QSym0

ζ̂

y ↙

R

ys 7−→ QMs(t)
↓ ↙
ζ(s)

Lemma 2.3. The following syntaxic identity holds:

y∗2 ? (−y2)∗ = (−y4)∗.

Proof. From the definition of φ in Proposition 2.1 we have

φ(y∗2) =
∞∑

k=0

∑

n1>···>nk≥1

t2n1
· · · t2nk ,

φ
(
(−y2)∗

)
=
∞∑

k=0

(−1)k
∑

n1>···>nk≥1

t2n1
· · · t2nk

and
φ
(
(−y4)∗

)
= (−1)k

∑

n1>···>nk≥1

t4n1
· · · t4nk .

Hence from the identity

(2.4)
∞∏

n=1

(1 + tnt) =
∞∑

k=0

tk
∑

n1>···>nk≥1

tn1 · · · tnk

one deduces

φ(y∗2) =
∞∏

n=1

(1 + t2n), φ
(
(−y2)∗

)
=
∞∏

n=1

(1− t2n) et φ
(
(−y4)∗

)
=
∞∏

n=1

(1− t4n),

which implies Lemma 2.3.
We now prove the Zagier-Broadhurst formula.
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Theorem 2.5. For any n ≥ 1,

ζ
(
{3, 1}n

)
= 4−nζ

(
{4}n

)
.

This formula was originally conjectured by D. Zagier [Z 1994] and, according to [B2 1999],
first proved by D. Broadhurst.

Remark. (See formulae (36) and (37) of [B3 1997], (3) of [B2 1999], example 6.3 of [B3L 2001])
Since

ζ
(
{2}n

)
=

π2n

(2n + 1)!

(see (2.6) below) and
1

2n + 1
ζ
(
{2}2n

)
=

1

22n
ζ
(
{4}n

)
.

one deduces

ζ
(
{3, 1}n

)
= 2 · π4n

(4n + 2)!
·

Proof Here is the proof by Hoang Ngoc Minh [M 2000] using syntaxic identities. Theorem
2.5 can be formulated as

yn4 − (4y3y1)n ∈ ker ζ̂ .

From Lemma 2.3

y∗2 ? (−y2)∗ = (−y4)∗

and identities 1.1 of fasc.3

y∗2x(−y2)∗ = (−4y3y1)∗

one deduces, for any n ≥ 1,

∑

i+j=2n

(−1)jy2i
2 ? y2j

2 = (−y4)n

and ∑

i+j=2n

(−1)jy2i
2 xy2j

2 = (−4y3y1)n,

hence

yn4 − (4y3y1)n =
∑

i+j=2n

(−1)n−j(y2i
2 ? y2j

2 − y2i
2 xy2j

2 ) ∈ ker ζ̂ .

Remark. From the proof just given one deduces

ζ({4}n) = 4nζ({3, 1}n) =
∑

i+j=2n

(−1)n−jζ({2}2i)ζ({2}2j).
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From
sin(πz)

πz
=
∏

n≥1

(
1− z2

n2

)

one deduces the generating series for the numbers ζ
(
{2}k

)
, namely

∑

k≥0

ζ
(
{2}k

)
(−z2)k =

sin(πz)

πz
·

This provides a closed formula for these numbers:

(2.6) ζ
(
{2}k

)
=

π2k

(2k + 1)!
·

Remark. Other proofs of Theorem 2.5 are given in [B3L 1998] and [B3L 2001]§ 11.2). The
modification of Broadhurst’s proof which we give here is taken from [B3L 2001]. We start with
the right hand side. We introduce the generating function

F (t) =
∑

n≥0

2 · π4nt4n

(4n + 2)!
·

Since

1 + (−1)k − ik − (−i)k =

{
0 if k ≡ 0, 1,−1 (mod 4)
4 if k ≡ 2 (mod 4),

we have

F (t) =
1

2

∑

k≥0

πk−2tk−2

k!
·
(
1 + (−1)k − ik − (−i)k

)

=
1

2π2t2
(
eπt + e−πt − eiπt − e−iπt

)

=
1

π2t2
(
cosh(πt)− cos(πt)

)

= G(u)G(u),

where

G(u) =
sin(πu)

πu
et u =

1

2
t(1 + i), u =

1

2
t(1− i).

From Gauss relation:

2F1

(
α , β
γ

∣∣∣1
)

=
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)

if the real part of γ − α− β is positive, one deduces

G(u) =
1

Γ(1− u)Γ(1 + u)
= 2F1

(
u , −u

1

∣∣∣1
)
.
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Therefore the conclusion of Theorem 2.5 can be written

(2.8)
∑

n≥0

ζ
(
{3, 1}n

)
t4n =

∣∣∣∣2F1

(
u , −u

1

∣∣∣1
)∣∣∣∣

2

=
1

π2u2

(
cosh(πu)− cos(πu)

)

with u = t(1 + i)/2 as before. The relation (2.8) will follow, by specializing z = 1, from the
more general formula ([B3L 2001], Theorem 11.1)

(2.7)
∑

n≥0

Li{3,1}n(z)t4n = 2F1

(
u , −u

1

∣∣∣z
)
· 2F1

(
u , −u

1

∣∣∣z
)

which holds for |z| ≤ 1. One checks (2.7) as follows: first one expands the two sides as series
in z and see that they match up to order 4:

1 +
t4

8
z2 +

t4

18
z3 +

t8 + 44t4

1536
z4 + · · ·

Finally one checks that both sides of (2.7) are annihilated by the differential operator

(
(1− z)

d

dz

)2

·
(
z
d

dz

)2

− t4.

Following [C 2001], we deduce from (2.6) the rationality of ζ(2k)/π2k, by means of the
Newton’s formulae which relate the symmetric series

Ms = Ms(t) =
∑

n≥1

tsn (s ≥ 1)

to the quasi-symmetric ones

λk(t) = QM{1}k(t) =
∑

n1>···>nk≥1

tn1 · · · tnk ,

namely:

Lemma 2.9. For k ≥ 1,

Mk =
k−1∑

j=1

(−1)j+1λjMk−j + (−1)k+1kλk.

Consider the morphism of algebras φ̃ : QSym→ R which maps tn onto 1/n2. Clearly we
have, for k ≥ 1,

φ̃(λk) = ζ
(
{2}k

)
et φ̃(Mk) = ζ(2k).
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Hence Lemma 2.9 implies

ζ(2k) =
k−1∑

j=1

(−1)j+1ζ
(
{2}j

)
ζ(2k − 2j) + (−1)k+1kζ

(
{2}k

)
.

Using (2.6) one deduces by induction

ζ(2k)π−2k ∈ Q.

For instance from

M2 = λ1M1 − 2λ2, M3 = λ1M2 − λ2M1 + 3λ3,

M4 = λ1M3 − λ2M2 + λ3M1 − 4λ4

we derive

ζ(4) = ζ(2)2 − 2ζ(2, 2), ζ(6) = ζ(2)ζ(4)− ζ(2, 2)ζ(2) + 3ζ(2, 2, 2)

and
ζ(8) = ζ(2)ζ(6)− ζ(2, 2)ζ(4) + ζ(2, 2, 2)ζ(2)− 4ζ(2, 2, 2, 2),

which yields

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, ζ(8) =

π8

9450
·

Notice also the relations
M{1}k = λk1 et QM{1}k = λk.

3. The Harmonic Algebra of Multiple Polylogarithms

We shall use another case of the harmonic ? product, on the free algebra K < Y > on the
alphabet Y of pairs (s, z) with s a positive integer and z a complex number satisfying |z| ≤ 1.

It will be convenient to write the elements in Y∗ (the words) as
(
s1,...,sk
z1,...,zk

)
, or simply

(
s
z

)
,

which means that the concatenation of
(
s
z

)
and

(
s′

z′

)
is denoted by

(
s,s′

z,z′

)
. For instance

(
s1

z1

)(
s2

z2

)
=

(
s1, s2

z1, z2

)
.

The star product on the corresponding set of polynomials K〈Y〉 is defined inductively by

e ? w = w ? e = w

for any w ∈ Y∗ and

(3.1)
(( s
z

)
u
)
?
((s′

z′

)
v
)

=
(s
z

) (
u ?

(
s′

z′

)
v
)

+

(
s′

z′

)(( s
z

)
u ? v

)
+

(
s + s′

zz′

)
(u ? v)
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for u ∈ Y∗, s ≥ 1 and z ∈ C. This star product may be described as follows: start with
(
s
z

)

and
(
s′

z′

)
in Y∗. Write

ys ? ys′ =
∑

s′′

ys′′ ,

as in (2.2). Then (
s

z

)
?

(
s′

z′

)
=
∑

s′′

(
s′′

z′′

)
,

where the component z′′i is zj if the corresponding s′′i is just a sj (corresponding to a 0 in s′),
it is z′` if the corresponding s′′i is just a s′` (corresponding to a 0 in s), and finally it is zjz

′
` if

the corresponding s′′i is a sj + s′`. Here is an example:

s s1 s2 0 s3 s4 · · · 0
s′ 0 s′1 s′2 0 s′3 · · · s′k′
s′′ s1 s2 + s′1 s′2 s3 s4 + s′3 · · · s′k′
z′′ z1 z2z

′
1 z′2 z3 z4z

′
3 · · · z′k′ .

For instance ( s
z

)
?

(
s′

z′

)
=

(
s, s′

z, z′

)
+

(
s + s′

zz′

)
+

(
s′, s
z′, z

)
.

Also

(s
z

)
?

(
s′1, s

′
2

z′1, z
′
2

)
=

(
s, s′1, s

′
2

z, z′1, z
′
2

)
+

(
s + s′1, s

′
2

zz′1, z
′
2

)
+

(
s′1, s, s

′
2

z′1, z, z
′
2

)
+

(
s′1, s + s′2
z′1, zz

′
2

)
+

(
s′1, s

′
2, s

z′1, z
′
2, z

)
.

4. Multiple Polylogarithms in Several Variables and Stuffle

The functions of k complex variables (∗)

Lis(z1, . . . , zk) =
∑

n1>n2>···>nk≥1

zn1
1 · · · znkk
ns11 · · ·nskk

(∗) Our notation for

Li(s1,...,sk)(z1, . . . , zk),

also used for instance in [C 2001], corresponds to Goncharov’s notation [G 1997, G 1998] for

Li(sk,...,s1)(zk, . . . , z1).
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have been considered as early as 1904 by N. Nielsen [N 1904], and rediscovered later by
A.B. Goncharov [G 1997, G 1998]. Recently, J. Écalle [É 2000] used them for zi roots of unity
(in case s1 ≥ 2): these are the decorated multiple polylogarithms. Of course one recovers
the one variable functions Lis(z) by specializing z2 = · · · = zk = 1. For simplicity we write
Lis(z), where z stands for (z1, . . . , zk). There is an integral formula for them which extends
the relation (see fascicule 3)

Lis(z) =

∫ z

0

ωs.

To start with, in

Lis(z) =

∫ z

0

ωs−1
0 ω1

we replace each integration variable ti by t′i = tiz, which amounts to replace the differential

ω1(t) = dt/(1− t) by zdt/(1− zt) and the Chen integration
∫ z

0
by
∫ 1

0
:

Lis(z) =

∫ 1

0

ωs−1
0

zdt

1− zt ·

It will be convenient to define

ωz(t) =





zdt

1− zt if z 6= 0,

dt

t
if z = 0.

Hence, for k = 1 and z 6= 0,

Lis(z) =

∫ 1

0

ωs−1
0 ωz.

We extend this formula to the multiple polylogarithms thanks to the differential equations

z1
∂

∂z1
Lis(z) = Li(s1−1,s2,...,sk)(z)

for s1 ≥ 2, while for s1 = 1

(1− z1)
∂

∂z1
Li(1,s2,...,sk)(z) = Li(s2,...,sk)(z1z2, z3, . . . , zk).

Hence

(4.1) Lis(z) =

∫ 1

0

ωs1−1
0 ωz1ω

s2−1
0 ωz1z2 · · ·ωsk−1

0 ωz1···zk .

Because of the occurrence of the products z1 · · · zj (1 ≤ j ≤ k), Goncharov [G 1998] performs
the change of variables

yj = z−1
1 · · · z−1

j (1 ≤ j ≤ k) et zj =
yj−1

yj
(1 ≤ j ≤ k)
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with y0 = 1. Set

ω′y(t) = −ωy−1(t) =
dt

t− y
,

so that ω′0 = ω0 and ω′1 = −ω1. Following the notation of [B3L 2001], we define

(4.2)

λ

(
s1, . . . , sk
y1, . . . , yk

)
= Lis(1/y1, y1/y2, . . . , yk−1/yk)

=
∑

ν1≥1

· · ·
∑

νk≥1

k∏

j=1

y
−νj
j




k∑

i=j

νi



−sj

.

= (−1)p
∫ 1

0

ωs1−1
0 ω′y1

· · ·ωsk−1
0 ω′yk .

This is Theorem 2.1 of [G 1998] (see also [G 1997]). With this notation some formulae are
simpler. For instance the shuffle relation is easier to write with λ: the shuffle is defined on
words ω′y (y ∈ C, including y = 0) by induction with (see § 1):

(ω′yu)x(ω′y′v) = ω′y(uxω′y′v) + ω′y′(ω
′
yuxv).

Hence the functions Lis(z) satisfy shuffle relations. Moreover they also satisfy stuffle
relations arising from the product of two series. For this we use the star product defined in
§ 1 for the set Y of pairs (s, z) with s ≥ 1 and |z| < 1, where the underlying field K is C.

It will be convenient to write Li
(
s
z

)
in place of Lis(z), and to extend the definition of Li by

C-linearity: for

S =
∑

(
s
z

)
∈Y∗

(
S|
(
s

z

))(s
z

)
∈ C〈Y〉,

define

Li(S) =
∑

(
s
z

)
∈Y∗

(
S|
(
s

z

))
Lis(z).

Then

(4.3) Li(u)Li(v) = Li(u ? v)

for any u and v in C〈Y〉. These relations amount to

Li
((s

z

)
?

(
s′

z′

))
= Li

(
s

z

)
Li

(
s′

z′

)
.

Example. For k = 1 = k′ = 1 we get

(4.4) Lis(z)Lis′(z
′) = Li(s,s′)(z, z′) + Li(s′,s)(z′, z) + Lis+s′(zz

′).
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For instance, for s = 1, s′ = 2 and z = z′, we deduce

Li1(z)Li2(z) = Li(1,2)(z, z) + Li(2,1)(z, z) + Li3(z2).

Here is another example with k = 1 and k′ = 2:

Lis(z)Li(s′1,s′2)(z′1, z
′
2) = Li(s,s′1,s′2)(z, z′1, z

′
2) + Li(s′1,s,s′2)(z′1, z, z

′
2) + Li(s′1,s′2,s)(z′1, z

′
2, z)+

(4.5) Li(s+s′1,s′2)(zz′1, z
′
2) + Li(s′1,s+s′2)(z′1, zz

′
2).

We consider now the special case of the relations (4.3) when all coordinates of z and z′ are
set equal to 1. Recall the definition (§ 1) of the stuffle ? on the set Q〈x0, x1〉 of polynomials
in x0, x1.

The second standard relations between multiple zeta values are

(4.6) ζ̂(ys ? ys′) = ζ̂(ys)ζ̂(ys′)

whenever s1 ≥ 2 and s′1 ≥ 2.
For k = k′ = 1 this relation reduces to Nielsen Reflexion Formula

ζ(s)ζ(s′) = ζ(s, s′) + ζ(s′, s) + ζ(s + s′).

In particular
ζ(s)2 = 2ζ(s, s) + ζ(2s) for s ≥ 2;

for instance

ζ(2, 2) =
1

2
ζ(2)2 − 1

2
ζ(4) =

π2

120
·

Another example is given by (4.5) with z = z′1 = z′2 = 1:

ζ(s)ζ(s′1, s
′
2) = ζ(s, s′1, s

′
2) + ζ(s′1, s, s

′
2) + ζ(s′1, s

′
2, s) + ζ(s + s′1, s

′
2) + ζ(s′1, s + s′2)

for s ≥ 2, s′1 ≥ 2 and s′2 ≥ 1.

Remark. The generating series for the multiple polylogarithms in several variables is the
following

∑

s1≥1

· · ·
∑

s1≥1

Lis(z)ts1−1
1 · · · tsk−1

k =
∑

n1>···>nk≥1

zn1
1

(n1 − t1)
· · · znkk

(nk − tk)
·

Compare with

∑

s1≥1

· · ·
∑

sk≥1

Lis(z)ts1−1
1 · · · tsk−1

k =
∑

n1>···>nk≥1

zn1

(n1 − t1) · · · (nk − tk)

for k ≥ 1, |z| < 1 and |ti| < 1 (1 ≤ i ≤ k).
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A very general function worth to be considered is

(4.7)
∑

n1>···>nk≥1

zn1
1

(n1 − t1)s1
· · · znkk

(nk − tk)s1
·

This function depends on complex variables (z1, . . . , zk), (t1, . . . , tk), and on positive integers
(s1, . . . , sk) (one could even take complex numbers for (s1, . . . , sk)). In the case k = 1,
this is Lerch function ([C 2001] formula (61)) which specializes to Hurwitz function ([C 2001]
formula (56)) for z1 = 1. For k ≥ 1, if we specialize t1 = · · · = tk = 0, we recover the
multiple polylogarithms in several variables (hence also the multiple polylogarithms in only
one variable, and therefore also the multiple zeta values). On the other hand if we specialize
z1 = · · · = zk = 0 in (4.7), we get Hurwitz multizeta functions which have been studied
by Minh and Petitot, and have a double shuffle structure (shuffle products for series and for
integrals).
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