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Polylogarithms and polyzetas occur in
e Control theory (Lille).

e Analysis combinatorics (Flajolet, Labelle,
Laforest, Salvy, Vallée, ...).

e Vassiliev knot invariants & Drinfel'd associ-
ator (Kontsevich, Gonzalez-Lorka, L&, Mu-
rakami, Furusho, Racinet, ...).
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Knizhnik—Zamolodchikov equation K_Z3

Drinfel'd constructed the solutions (80s) for
the Knizhnik—Zamolodchikov equation KZ3
dG(z) 1 /A B
i =i tio1) @ 0<a<y,
where A, B are noncommuting symbols, and
G(z) is a formal power series in A, B with co-
efficients that are analytic function of z.

e Perturbative quantum field theory (Broad-
hurst, Kreimer, ...).

G1(z) ~ LA/ 2im — eA/Qi‘irIOg(z), z— 0,
Go(z) ~ (1 — Z)B/Qiﬂ- — eB/inIog(l—z), z— 1,
e Chern classes of a manifold (Hoffman, ...). P r7(A, B) = Ga(2)"1G1(2).

= G1(1 —2) ~ 2B/27d ., (A, B), z— 0.
e K-theory (Gangl, Wojtkowiak, Zagier, ...).

Question 1 How to compute the associator

e Irrationality & transcendence of ¢(2k + 1) ®rz(A,B) ?
(Borwein, Ecalle, Goncharov, Zagier, ...).



Drinfel’d associators & (A, B)

Drinfel'd defined associator ®(A, B) as a Lie
exponential satisfying 3 relations :

1. Duality : ®(B,A) = ®~1(4, B).
2. Hexagonal : ...
3. Pentagonal : ...

bz € MZV{(A, B)) (L& & Murakami), where

sz:{g(sl,...,sk): > ﬁ}

ny>..>n>0"1 T g

Drinfel'd proved also the existence of associa-
tors with rational coefficients.

Question 2 How to compute the rational as-
sociators 7

Operations on formal power series

For S, T € C{X)), one defines

Vw € X*, (S+T|w) = (S|lw)+ (T|w),

Vwe X*, (STw) = > (S|v)(T|u),
u,vEX* uv=w
SwT = > (Slu)(T|v)uww.
u,veEX*

She(X) denotes the polynomial algebra equipped

the shuffle product L.

The exponentiel of S is the sum
(] Sk

exp(S) = Y o

k>0 ™*
The logarithm of 1 4+ S is the sum

o) Sk
log(1+8) = Y (_1)’9+1?
k>0

Non-commutative formal power series

X* : the free monoide generated by an alpha-
bet X for the concatenation with e (the empty
word) as the neutral element.

A formal power series S is an infinite sum
S= Y (Slw)w.
weX*
A finite FPS is called polynomial.

Letz,y € X,u,v € X*, zuww yv is the polynomial
defined recursively as follows

TULLIE = €L TU = TU,

zuw yv = y[(zu) wv] + z[u w(yv)].

Example — zgzriwaxor; =4 x%x%—i—Q TOT1TOT] -
O

C{X),C(X) denote the sets of FPS and poly-
nomials over X and with coefficients in C.
5

Lyndon words and Standard factorization*

A Lyndon word is a non empty word that is
less than each of its strict right factors (for
the lexicographical ordering).

Example — Let X = {zg,z1},z9 < z1. The
Lyndon words of length < 5 are the following
(in lexicographically decreasing order) :

{zg, zg:zrl, zgwl, acgm%, :z:%ml, m%mlxoxl, m%x%,

z313, Toz1, TOT120TT, T0TT, TOTS, 20T T, 71}
O

Lyn(X) denotes the set of Lyndon words.

Let ! € Lyn(X)\X. A standard factorization of
I, noted by st(1), is the sole couple (u,v), where
u,v are Lyndon words and v is the longest strict
right factor of [ verifying u < uv < v.

Example — St(w%xlwowl) = (m%zl,mowl). O

*M. Lothaire.— Combinatorics on Words, Encyclopedia
of Mathematics and its Applications, Addison-Wesley,
1983.
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Sirsov lemma and Radford theorem

Lemma 1 (SirSov) For any w € X*,

w=12. 05 11> >

Example — Let X = {zg,z1},z0 < z1.

T1TQT1T1TOT1T1LQTOT] = T1.LQT1XL1-LQT1L1-TQTOTL

— 2

= I1.T0T1T71.20TOT1,
here z1 > zgzr1x1 > zoxor1 are Lyndon words.
|

Theorem 1 (Radford) The C-algebra Shg(X)
is the polynomial algebra generated by Lyn(X).

Example — Let X = {zg,z1},20 < x1-

woxla%a:l = xQT1 L m%a:l -3 w%mlwowl -6 .CL‘%.’E%,

3

—15 mgxlxowl —35 xgmlmoxl —70 :ngl.

O

2

3

zomlxga:l = xgml L wéwl -5 xéwlmoxl

2

Free Lie algebra

The free Lie algebra, noted by Liec(X), is the
C-algebra of polynomials, over X, equipped the
bracket [.,.] defined as follows

[P,Q] = PQ - QP
and verifying the following properties

VP,Q € Liec(X),

[P, P] = 0,
[P, [Q, Rl + [@, [R, PI] + [R, [P,Q]] = O.

An element of Liec(X) is called Lie polynomial.

Let S € C{(X)), S is called Lie series if it can
be written as follows

S:Z‘le

E>1
where P, is a homogenous Lie polynomial of
degree k. Liec((X)) denotes the set of Lie series
over X.

PBW basis and dual basis

The bracket form P, of a Lyndon word [ is
defined recursively by

for uv = st(l),

Pr==z for xz € X,

The set {P}; | € Lyn(X)} is a basis for the free
Lie algebra Lieg(X).

{Pl:[PUan]:Pqu—Pqu

The PBW basis B={Py; w € X*} is obtained
by setting

Py, =F'P2...PF, v=1{. Gl > >,

and its dual basis B* is obtained by setting

S; = zSw, Vie Lyn(X),l = zw, z € X, w € X*,
I_Ll'il |_|_|’ik
S, Tw...wS; ; ;
Sy = —— —kw =100k > >
i1l .. 4! k

10

Example
l P, S=P =1
o o xo
1 xr1 1
ToT1 [zo, z1] zox1
z3T1 [zo, [x0, z1]] wjT1
zoz? [[zo, 1], 21] Toz?
z3T1 [zo, [zo, [z0, z1]]] w31
z3w? [o, [[wo, z1], z1]] wda?
a:oarf [[[zo, z1], 1], 1] a:oa::f
zgzl [zo, [zo, [zo, [z0, z1]]]] zgzl
z3z? [zo, [0, [[z0, z1], z1]]] z3z?
z%zlzozl [[zo, [0, z1]], [To, z1]] 2181‘% + zgzlzozl
z3z3 [zo, [[[xo, z1], z1], z1]] z2z3
a:oa:u:ozf [[zo, z1], [[zo, z1], z1]] 3x§r?+zoz1rozf
zow} [[[[zo, z1], z1], z1], 1] TozT
z3T1 [zo, [0, [0, [x0, [zo, z1]]]]] | x3z1
zga:? [zo, [zo, [z0, [[z0, 1], z1]]]] zga:f
z3z120m1 | [0, [[T0, [0, 21]], [T, 71]]] | 2282% + 23z17021
w33 [wo, [0, [[[z0, 1], z1], z1]]] | w3a?
mgrlzoz% [zo, [[zo, z1], [[z0, z1], z1]]] 31381":1’ + zgzlroz%
a:garfzocm [[zo, [[x0,z1], z1]], [z0, z1]] 61381":1" —+ 3zgmlzoa:f + m%z%zorl
z3xt [zo, [[[[zo, z1], z1], z1], z1]] | =2z}
zoz1z07; | [[xo, 1], [[[xo, z1], z1], 1]] | 42zt + zoz1m00?
ToT3 [[[zo, 1], z1], z1], z1], 1] | woa$
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Factorization Hopf algebra

C(X) ® C(X) denotes the tensorial product of
C(X) with itself. The co-product & of the
concatenation is defined as follows
Vu,v € X*, (Pwlu®v) = (uv|w)
<= dw = Z u @ v.
u,vEX* uv=w

® is an morphism for the shuffle algebra :

VYu,v € X*, P(uwv) = d(u) wud(v),
A co-unity e is defined by :

e: C(X) — C(X),
P +—— e(P) = (Ple).

For S € C{X)), the antipode of S is the follow-
ing FPS (w denotes the miror of w)

a(s) = 3 (-1)(S|w) @.

weX*

(C{X),w,1,d,e,a) is the factorization Hopf
algebra.
12

Primitive and group-like

Let S € C{(X)), S is called primitive if
MmS=19S+S5®1.
S is called group-like if
MnS=S®8S.
S verifies the Friedrichs criterion if

Vu,v € X*,  (Sluwv) = (S|u){S|v).

Theorem 2 (Ree)

S € Liec{( X))
S is primitive
ed s group-like

eS verifies the Friedrichs criterion.

117
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Decomposition Hopf algebra

The map Ny is defined as follows
Vu,v,w € X*,  (Mw|lu ®v) = (w|uw v).
In particular
Vee X, Tor=1Qzxz+z®1.
It is extended to C{X)) as follows

(MaSlu®v) = Z (S|w)Mow = (S|uu v).
weX *

"> is an morphism for the associative algebra :
Yu,v € X*, To(uv) = Ma(w)Ma(v).

And it is a co-associative coproduct.

(C{(x),.,1,T2,e,a) is the decomposition Hopf
algebra.

13

Diagonal series & Schiitzenberger factorization*

Let us consider, in the completed tensorial prod-
uct C(X)®C(X), the following operation : the
shuffle product for the left factor, the concate-
nation for right factor (for uy,v1,un,vo € X*) :

(u1 ®v1) (U2 ® v2) = (u1 wus) @ (v1v2).
By a Schiitzenberger factorization, the follow-
ing diagonal series in C(X)®C(X)

D= Z wR w
weX*
can be factorized in an infinite product, in-
dexed by the Lyndon words :

N
D= ex1®x1 H epl*®pl em0®m0
leLyn(X)\X

— I1 el ®F = ¢—w1®71 p —To®a0,
leLyn(X)\X
*C. Reutenauer.— Free Lie Algebras, London Math.

Soc. Monog. 7 (new series), Clarendon Press-Oxford
Sciences Publications, 1993.
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From iterated integrals to words

The iterated integrals over the differential forms

{wo(2),...,wn(z)} can be encoded by the words
w =z, ...x; over X ={xzq,...,zn} (Fliess) :
4
o) = [ “wi(tr)..wq(t)
0
1 if w=e,

= /Zwi(t)aio(v) if w==x;v.
20

Remark — In control theory, Fliess takes the
differential forms w; that are in the form a;(t)dt,
where q;(t) are real piecewise continous. [

a is a C-algebra morphism for “w" (Chen) :

o : She(X) — {comb. of iterated integrals,4-,.}.

Vu,v € X*\ {e}, af(ut+v) = of (u)+aZ (v),

VAeCue X*, of (M) = Xai,(u),
Vu,v € X*,  af (uwv) = of (u)ai,(v).

16

From word to polylogarithm

Definition 1 For any word v € X*xz1. Let us
define the polylogarithms as follows :

z
Lizgu(2) = ad(zov) = /O wo(t) Lin(2),
z
Lizyo(2) = ad(z1v) = /O w1 (t) Liy(2).
And for any v € zgX*z1, the polyzetas as
¢(v) = Liy(1).

Fact 1 Forv = mgl_lxl . ..xgk_la:l, one has :

z"M

Liy(z) = > 5

n1>..>n>0 Ny ---Ny
- -1
Fact 2 vzwgl lzl...a:gk x1 > (81,---,5)-

Liy(z) = Lisy,....50(2) and ¢(v) =({(s1,...,5k)-

We extend the definion 1 over X* by putting

Lg"(z), Lig,2n(2) =/0zw1(t)7logn(t)-

leg(z) - n! n!

18

Iterated integral and shuffle algebra

Let us consider the following differential forms

wo(z) = dz—z and  wo(z) = dz.

Example — Note that

To LW X = 20X + ToTQ.

But ag(zowz2) = of(xo)ag(z2) and af(xzozg)
diverge while ag(zp) = 2. O

Example — For any n > 0, one has

af(zfz2) = af(z2) = 2.
O

Theorem 3 (FPSAC98) Forwg =dz/z,w; =
dz/(1 — 2), a is injective from Shg(zg,z1) to
the smallest algebra that contains C and that is
Sstable under integration with respect to wq, w1 -

17

Non-commutative g.s. of Liy(2)

Definition 2 L(z) = >  Liw(2) w.
weX*

Proposition 1 (FPSAC98) L(z) satisfies the
differential equation (Drinfel'd equation) :

dL(z) = [zowo(2) + z1w1(2)]L(2)
with the boundary condition

L(e) = e%0199¢ 4 o(\/2) for e—0t.

Proof — (sketched) Observing that

L(z) =1+ Z Lizgu(z)zou+ Z Liz,v(2)z1v.
ueX* veEX*

The exponential term ¢/°9¢ %0 comes from the

definition of Lixg,n > 1.

The coefficient of each other word w in L(g)
is easily seen to be bounded by o(e™log™e),
where n is the number of z1's in w. O

19



Solutions of Drinfel’d equation
Proposition 2 If G(z) and H(z) are solutions
of Drinfel’d equation then

d[H(z)"1G(z)] = 0.

Proof — Since H(z)H(z)~1 =1 then
[dH (2)]H (2)" = —H(2)[dH(2) 7).
Therefore if H(z) is solution then
[dH(2)™!] = —H(2) '[dH(2)]H(2)"*
= —H(2) zowo(z) + z1w1(2)],

d[H(2)"1G(2)] = [dH (2)11G(2) + H(2) T [dG ()]
= —H(2) Haowo(2) + z1w1(2)]G(2)
+H(2) Yzowo(2) + z1w1(2)1G(2).

We get then the expected result. [

Corollary 1 Let g« be the substitution mor-
phism defined by g«xqg = —x1,9xx1 = —xqg. If
H(z) is solution of Drinfel’d equation then

dH(z) 1g+H(1 — z)] = 0.

20

Factorization of the g.s. L(z)

Corollary 2

vu,'U € X*, Liumv(z) == Llu(z) le(z).

Proof — Use the Friedrichs criterion. O

Corollary 3
L(z) = e—Iog(l—Z)lereg(z)elog(z)xo,
where

¢
Lreg(z) = II

exp(Lip=(2)P).
leLyn(X)\{zo,z1}

Proof — Use the Schitzenberger factorization.
O

22

L(z) is groupe like
Theorem 4 (FPSAC98) AL(z) = L(2)®L(z).

Proof — (sketched) Intuitively speaking, it fol-
lows from the boundary condition and thus the
limit at 0 of L(z) is a Lie exponential, and L(z)
is a Lie exponential for any z.

We have to prove T(z) = AL(z) — L(z) ® L(z)
vanishes for all z. We claim that T satisfies
dT(z) = (AV(2)) T(2)dz,

lim T(e) = O,
e—0t ()

where V(z) = [zowg(z) + z1w1(z)]. Thus we
have a recursive formula for the coefficients of
T(z) by means of differential equations with
limit conditions in 0. Since these limits all
vanish in 0O, it follows by induction that the
coefficients of T all vanish globally. I

21

Asymptotic behaviour at z =1

Corollary 4 The asymptotic expansion of L(z)
atz=1 is given by :

L(l —6) ~e Tl log ELreg(l)exog, for & — O+

Example — For ¢ — 01, we have
Lizg(1 —€) ~e and Liz(1—¢€)~ —loge.
The Radford theorem gives
x%xo = mox% —zox1wz] + 1/2z0 m'iu 2.
Therefore
Lig2,,(1 =€) ~¢(2,1) +((2) loge — %e log2e + ...

1
~¢(3)+¢(2)loge — 55I0925+
The last expression is obtained by use of the
Euler's identity ¢(2,1) =¢(3). O
In the other words, for any w € X*, for e — 0,
Liw(l —e) ~ Y Qui(loge)e”.

i>1

23



Non-commutative g.s. of polyzetas

Let ¢, =(oreg,,, where

reg,, @ C(X) — C(X)),
such that reg,, xo =reg,,, x3 =0,

Yw € zgX*z1, reg,,w = w,
Yu,v € X*, reg,, uwiv =reg uiireg,  v.
Definition 3 Z = ) (,(w)w.
we{zo,z1 }*

Theorem 5 (FPSAC98)

N\

Z = Lreg(1) = I1
leLyn(X)\{zo0,z1}

exp[¢(P) P

Proof — Z is the image by (,, ® id of D. U

Corollary 5 Vu,v € X*, ¢, (viwv) = ¢, (u)¢,,(v).

Therefore, for any convergent words u and v,
C(uwv) = ¢(w)((v).

24

Chen series & analytic continuation of L(z)

For a differentiable path v : [0,1] — C\{0, 1}
between a and b, let Sy be the evaluation at b
of the solution of the differential equation

{ dSy(z) [zowo(2) + z1w1(2)]S4(2),
S~(a) 1.

Sy € C(X) is called the Chen series along ~.
Sy is a Lie exponentialand it depends only on
the homotopy class of v (Chen).

Proposition 3 (FPSAC98) Let zp~z be a dif-
ferentiable path on C\{0,1} s.t. L admits an
analytic continuation. Then L(z) = Szyw2L(20).

Proof — L(z) and Szy-:L(2g) satisfy the Drin-
fel’d equation taking the same value at zg. O
Corollary 6

Spsq_e ~ e T1l09e Zz—m0l0gE  for o, oF,

Proof — S..,1_e = L(1 —¢)L(e)~! and the
behaviour of L lead to the expected result. [
26

Z and log Z up to order 4 by computer

7 — ... 8¢ [x0,[z0,[z0,1]l] . . . (C(3)[z0,z1],21] . . .
e £ @mo.m1] . 016¢(2) (w0, [[wo,@1]2al] . .
.. L@ zo,[z0,21]] . .. BC(2)[z0,[z0,[z0.za]l] . ..
=14 ¢(Izo, z1]
+¢(3)([zo, [z0, z1]] + [[zo, z1], z1])
+2¢(2)% (w0, [z0, [z0, 2111 + [lz0, z1], 211, 21

+2lwo, 112 + 3 leo, lleo, 21l z1l) + -+,
log Z = ((2)[zo, 1]
+¢(3)([wo, [xo, z1]] + [[x0, z1], z1])

+§C(2)2([$0, [zo, [zo, z1]]] + [[[z0, z1], z1], 1.

+, w0, [le0, 2], 2111) + -

25

Monodromy of the g.s. L(z)

Paths of integration

Theorem 6 (FPSAC98) The monodromy of
L(t) fort €]0,1[ around 0 and 1 is given by
MoL(t) = L(t)e%™o,

ML) = L®)Z 'e ™17 = L(t)e*™,

where mq is a Lie series given by the formula

~ —¢prad P
my = H e CPI [

leLyn(X)\{zo,z1}

(—z1).

27



Proof of the monodromy theorem

e Monodromy of L(z) around 0
MOL(t) = SentS.yy(e)Stme L (1),
= L(t)L71(e) 8, (o) L(e),
= L(t)ei%n+ L7(e)S, (o) L(e),

= L(¢) lim e~ %0 log ee2i7racoew0 loge
e—0
= L(t)e?™o.

e Monodromy of L(z) around 1

M1L(t) = S1 —ewtsfyl () Sts1-eL(1),

= L)L (1 — )8, () L(1 — ),

— L(t) lim Z—lewl log Ee—Q’iﬂ'mle—(El log EZ

e—0T )
= L(t)Z le 217,

Using the expression of Z and the formula

ad .
etebe—a = £“7% e get finally the expres-
sion for mq.
28

Monodromy around z =1 (for p = 2in)

M Lizy = Ligg

M]_ Lixo(cl = Liwoxl —p LI.’L‘O
. _ . b, .0
Ml legml = legzl —5 leo
p2
M LICCOGC% = Llwowi —p leozl +E L'mo +PC($O$1)
. _ . b, .3
M L'wgm = legm 6 L'wo
P’ o
Ml legx% = le%m% —-P le%xl +Z I—':Eo

+p¢(zow1) Lizg +p¢(z81)
2

. L . p° .
MqLi 3 = Li 3—pL|m0w%+EL|x0m1

zoTy ToT]
3 2
P>, . p
5 Ligg +p¢(z0z3) — 5C($0$1)
. . . p .4
My Llwéml = L'w8w1 “oa Liz,

30

The series m1 up to order 6 by computer

m1 = —[z1] + ((zoz1)[wor] + ((2dz1) [233]
+¢(zorD) [zoz3] + ((2321) [2323]
—((zgz1)[2dz12021] + ¢ (232D) [2323]
+(¢(@BeD) — H¢(or1)?won1ow)
+¢(zo23) [zoat] + ¢(adz1) [2823]
—2¢(z3z1) [zdz1m0m1] + ((2822) [33]
+(3¢(232?) + ¢ (zBz12021)) 23212027
+(3¢(2322) + ¢(zoz1)¢(zd21)
+2¢(23z12021)) [28232021] + ((2323) [233]
+(4¢(2823) + ((woz12023)) [20z12023]
+¢(wor?) [zoad]

29

Structure of the monodromy group

Corollary 7 Monodromy of Liy is given by

Ml LiU)IE]_ = Liwxl —2i71' Liw+"' 5
The remaining terms are combinations of poly-
logarithms encoded by words of length < |w|.

Proof — The monodromy theorem implies

Mgy = €%™0 = 1 4 2irzg + words of length > 1
My = ™1 = 1 — 2izz; 4+ words of length > 1
O

Corollary 8 The monodromy group of Liy for
|lw| < nis nilpotent at order n+ 1.

Proof — Mgy = 270 and M; = e~ 2mz1t
From efeBe=4e=B = elA:Bl+ it follows that
the commutator MoM; Mg *M7 ! does not con-
tain any Lie brackets of length 1. Iterating this
computation, the brackets of lengths 2, next
3, etc. until n disappear. O

31



A structure theorem

Theorem 7 (FPSAC98) The polylogarithms
are lenearly indepedant.

Proof — This is trivial for n = 0. Assume
that we have proved our assertion for all k,
0<k<n-—1. For k=mn,

> Awliw=0

lw|<n.

e Al + Z )\uwo Liuxo + Z )\uml I_|u;1;1 = 0

lul<n lu|<n
(the Aw are elements of C). Applying (Mg—1Id)
and (Id — Mj), we have

2im > AuggLiut+ Y. puliv = 0,

|lu|=n—1 |lul<n—1
2im > AuggLiu+ D, wuliy = O.
lu|=n—1 |lu|<n—1

By the induction hypothesis, we get the ex-
pected result.
32

Lis(1 —t) by computer

Li1(1—¢t) = -—log (%)

Lio(1 —¢t) = —Lis(¥) 4+ log(t)Lii(t) +¢(2)

Lig(1 —t) = —Liz1(t) + Lir(#)Lix(¢)
—Xlog(t)Liq (t)?
—¢(2)Lir(®) +<¢(3)

Liz1(1 —t) = —Lig(t) 4 log(¢)Lix(t)

—3log (1)Li1 () +¢ (3)

Lig(1 —t) = —Lio1,1(t) + Lig(t)Liz1(2)

—LLi1(1)2Lix(®)
+3log(t)Liy (£)3 + 3¢ (2Liy (¢)?
—¢ (3)Lir(t) + 2¢ (2)?

34

L(1—-1¢)

Proposition 4 (FPSAC98) For any t €]0, 1],
L(1 —t) = g«[L(¥)]Z,

and g« is defined by gsxg = —x1,9gxx1 = —xQ-

Proof — (sketched) One has firstly

L(1-t) = S1-ew1-tL(1—¢)
gxSe~st L(1 — )
g«[L(HL™ ()] L(1 —¢)
g+L(t) g«L~1(e) L(1 — ).

and secondly
L(1 —t) ~ g«L(t) gse~%0!09¢ c—21109¢ 7.

If g(t) = 1—t then giwg = —wq1 and g«w1 = —wg-
Therefore g«xg = —x1 and g«xr1 = —xg. Hence
it follows the expected result. O

Corollary 9 Let g« be the morphism defined
by gsxg = —z1 and gsx1 = —xq. Then

t(3) =)~
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Duality relation

Proposition 5 Let 7 be the composition of
the mirror morphism and of the involutive sub-
stitution morphism xq — xz1 and x1 — xzq. Then

Z =1(Z).

Proof — For t €]0,1[, one has

Stw1-t(x0,21) = S1_tut(—21, —T0)
-1

= S;1_4(—=z1,—x0)

= 7[Stw1-t(z0,z1)]-
By the renormalisation

Sts1_t ~ e ™1 log tZe_mO log t, for ¢t — 0+,

and then
T(Spw1—t) ~ €719t (Z)em 0109t for t — 07,
we get the expected result. [
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L(1—1/t)

Proposition 6 (FPSAC98) For any t €]0, 1],

L(1 - 1/t) = g[L(D)]g(Z~)e ™0,
and g« is defined by gxzg = —zo+z1, gsx1 = x1.

)

1-1/t —€ ‘ €

Proof — L(1 —1/t) = S_...1_1/4Sen—cL(e) =
S_Ewl_l/tei”moemo loge. For g(t) = 1 — 1/t then
gxwo = —wo + w1 and gsw1 = —wqg. This leads
to g«xg = —xg + 1 and g«x1 = —xg. Thus

S cwio1jt = GxS1—cwt = gx(L(H)L™H(1 —¢))
— g*(L(t)Z_lewllogE).
O

Corollary 10 For any w € X*, fore — 0T,

_1)wle
Lin(=1/c) ~ % log?!(e).
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Hexagonal relation

Proposition 7 Let p be the substitution mor-
phism zq — x1 and z1 — xzg. Then

Zeiﬂ'wop(z)eiﬂ'(—mo-i-ml)pQ(Z)e—iﬂ'wl =1,

Proof — Let g(2) = 1 — 1/z permuting the

singularities 0,1 and co. Then gswg = —wg+w1
and gxw1 = —wq. This leads to gxxg = —zg+x1
and gxx1 = —xg-. Thus

SEWI—Eem-wa*(S€~/~>1—Eem-wo)gz(SEWI—eezwwo) =1.

By the renormalisation
Sensl_e ~ e TLI0gEZo—T0lOgE  for oy 0t

we get the expected result. O
By Campbell-Baker-Hausdorf formula, one has

Corollary 11 (¢(2) = 7?/6.
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Lis(1 —1/t) by computer

log(1—1/t) = (em)— Liy (¢) —log(t)
Li1(1 —1/t) = log(t)
Lio(1 —1/t) = Lio(t) — log(¥)Liy(t)

—¢(2) — 3log(t)?
Liz(1 —1/t) = Lip1(¢) — Liz(?) — Li1(¥)Liz2 (?)

+3log(t)Li1 (1)

+(¢(2) + 3log(t)?)Lix (1)

+10g(t)¢ (2) + glog(t)*
Lio1(1—1/t) = —Lig(t) + log(¢)Lix(¢)

—3log (t)2Liy (t)

+¢(3) — ¢log(t)?

37

Drinfel’d associator ¢, (A, B)
and non-commutative g.s. of polyzetas

By changing
B

A
rg:=— and z1 = ——
25T 2T

we have
®rz(A,B) = Z(zg,21)
Thus

1
log A,B)=—[A,B
g KZ( 3 ) 24[ ) ]

+%([[A, B],B] — [A,[A, B]])
+— L (ll[A, B], B], B] - [A, [A, [4, B]]

1440 L
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