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» What is the arithmetic nature of a real number z € R? We can ask whether z is rational, or
algebraic, or transcendental. Very little is known in terms of decimal expansions.

There is a recent conjecture of Kontsevich and Zagier in their joint paper “periods” (Mathemat-
ics Unlimited - 2001 and Beyond. Engquist, B.; Schmid, W., (Eds.), Springer (2000), 771-808).

But it is too vague to be disproved by counterexamples.

Examples. z = Z o ;, where P,Q € Z[xz], with deg@ > deg P + 2. We omit those finitely

n>0
many n > 0 with Q(n) = 0 in the sum.
1
Ezample 1. Z 7_1_1) This is a telescoping series, where the general term can be written as

nt—(n+ 1) . So the sum converges to 1, a rational number.

Similarly, we can consider Z , witha,b € Z, a # b.

(n +a)(n +b)

1
Ezample 2. Z - The general term is (2n + 1)~ — (2n +2) 1. The series is now
n

~ (2n+1)(2n +2)
seen to be convergent to log 2, which is transcendental by Hermite-Lindeman.

1

T
F _T
zample 3. Z n+1)@n+1)@dn+1) 3

1
Ezample 4. Z H n ot~ 1320 —(1921og 2 — 81log 3 — TwV/3)-

n=0i=1
Write 7 as ilog(—1), we can use Baker’s theorem to see that this number is transcendental.

Baker’s theorem asserts that a finite sum ) 8; log ov;, with algebraic o, £;, is transcendental when-
ever the sum is non-zero.

» The work of Adhikari Saradha, Shorey, Tijdeman.

Consider z = Z Qo ;, where @ has only simple rational zeros and deg @ > 2 + deg P. Then

n>0
we can rewrite the series in the following form

a
S
b o k; n—l—r]
with 0 < 7 < kj.
Define
zTL
1) kn—i—r.



This can be analyzed by considering g(z) = 2" f(2¥), then z¢'(z) = 2" /(1 — 2*). We then get

a m Cj ril
z= T+ 2 -G leg(t k),

where (;, = e(1/k;), e(z) = exp(2miz). Thus we conclude that z is either rational or transcendental.
It can never be an algebraic irrationality. The proof also gives a way to decide whether z is rational
or transcendental. If it is rational, it is just a/b.

1

Ecample. Y is transcendental.

:Eamp e (5n + 1)(5” + 3)(5n + 5) 1S transcenaenta.

Erample. > ! s .t L 1 This t t to be rational as the “t

rample. — . 1S turns ou O De rational as e ran-
P In+1 4n+2 4dn+3 dn+4

scendental part” is log 2 —log(1+1) —log(1 —1) is 0, but this is not apparent without going through
the computations.

» Now consider the case that @ has distinct roots, but not rational.

Ezample. 3 1 L™ @re " Thisist dental by a th f Nesterenk
. —_— = = —_— e S 1S ansce: enta. a eore O estere O:
.’Eampe —~ n2+1 2 2 677_6777 1S 1 ran 11 1 y rem Te1. Vi
n_

and e” are algebraic independent.

Schanuel’s conjecture. Let z1,...,z, be complex numbers linearly independent over Q. Then
the transcendence degree of Q(z1,...,Z,, €%, ...,e")/Q is at least n.

Question. What is a function field version of this conjecture related to Drinfeld modules?
Bundschuh’s formula. For s € Z, s > 2,

I ds  wi e(¢?)+1
Z n3—1_2_%_?§:<ae(§g)—ll

[n|>2,n€Z

Here, §s = 1 or 2 depending on s is odd or even, and (s = ¢(1/s), and 1 < o < s, 0 # s/2.

1 3 .
Ezample. Let s = 2, then we get 2 Z =1~ 3 (telescoping).
n>2
1 7 T4+e ™
Ezercise. Let s =4. We get 2;7#1 =1 g . Z”fzﬂf

Proof of Bundschuh’s formula. We use residue calculus. Consider

1 m cot(mz) L
[T = v,

271 25 —1

where Iy is the square with side length 2N + 1 centered at the origin. The poles are Z U ;. Be
careful at z = +1, where we may have second order poles.



The case of multiple zeroes for (). For example,
Y=
5= —
w1 n 6

This can be done by the same method of residue calculus. Here we give a proof of Calabi, which
appeared in a recent Bourbaki talk (Cartier, 2001).

Consider
dx dy s 1
] erraa= 3 gy

Now apply change of variables: z = sinu/ cosv, y = sinv/ cosu, so that dz dy/(1 — z°y?) = dudv.
The new region of integration is 0 < u < 7/2, 0 < v < /2, u+ v < w/2. This gives that the
integral is w2/8, from where the desired result follows.

Riemann’s zeta.
1
=) —
n>1
Consider the case that s is an integer > 2. It was known to Euler that

, 227'713 - ,
¢(2r)=(-1) HT)!QWQ

B n
for r > 1, where = Z - In particular, B, € Q.
n=0 nl

From here, we know that ¢(2r) are rational multiples of 72", hence are transcendental. But only
relatively recently, it is shown that {(3) is irrational (Apéry). Now we know that there are infinitely
many ((2r + 1), r > 1 which are irrational (Rivoal, 2000, C.R.A.S.). In fact, the dimension of the

1
Q-vector space spanned by ((3),...,¢(a), (a: odd) is > 1_;)%(1 + o(1)) (Ball, Rivoal, 2001,
0og

Invent. Math.). Moreover, Rivoal and Zudilin showed that one of the 9 numbers ((5),...,¢(21) is
irrational in June 2001. In July, Zudilin improved 9 to 8, then recently to 4: one of the 4 numbers

¢(5),¢(7),¢(9),¢(11) is irrational.
Expectation. The numbers 7, ((3),{(5),...,((2r 4+ 1),... are algebraically independent.

et —

Multiple zeta values. We want to consider

Y =l = (o)

ni>->np>1 0 1

Here, s1,...,8;, € Z, s1 > 2, s; > 1 for 2 < j < k. For k = 1, this reduces to Riemann’s zeta

function. We call k& the length or depth of s, and |s| = )" s; the weight of s.

Remark. These multiple zeta values have been considered by J. Ecalle in the context of “resurgent
series” where he introduced “mould calculus”. Roughly, for each s, he introduced an object M2, in
a category, say of modules over a ring A, with lots of symmetries.

Multiple zeta values have also been considered by N. Nielsen, A.B. Goncharov and D. Zagier.



Fact. There are many algebraic relations among ((s).
Now we feel that we have found all the relations and there should be no more. It is not easy to
check whether a “new” relation is a consequence of known ones.

Simple ezample. ((s)((s") = Z % Z % = Z + Z + Z =((s,8) + (s, 8) + (s + 5).

n>1 m>1 n>m n<m n=m
This is an example of a quadratic relation, generally of the form

((8)¢(s) =D (o)

Some non-commutative polynomial algebra Q(X), X = {z¢, 1}, and shuffle products, - -- will be
used to describe the relations.
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Remark. Adhikari-Saradha-Shorey-Tijdeman also considered sums of the form

f(n)
)

n>0

where @ is a polynomial with simple rational zeros, and f is periodic modulo ¢ > 0, such that the
convergence condition is satisfied.

Corollary. Let x be a Dirichlet character modulo ¢, not principal, then

x(n)
L(x,1) n%:l "
is transcendental.
Remark. But this is not a new way to prove the non-vanishing of L(x,1).
Free algebras.

Let K be a field (to be specialized to a subfield of R later; three main examples: Q, QN R, R).

Let X be a set. Consider the universal problem of constructing a K-algebra K(X) and a map
X — K(X) such that for any K-algebra A, any map f : X — A, there is a unique extension f
making the diagram

commutative.

If X = {z}, the solution is just that K(z) = K|z], the polynomial algebra in a single variable.
In general polynomial algebras solve the problem if we replace algebras by commutative algebras.

Let X* be the set of words on X, that is, monomials z1---z,, n > 0, z; € X. Denote by e
the empty product. Take X* as the basis of K(X) as a K-vector space. We can think of K(X) as
KX") the space of functions from X* to K with finite supports.

Thus elements of K(X) are finite sums s = > . (s|lw)w. The addition is defined compo-
nentwise, so (s + §'|w) = (s|w) + (s'|w). Multiplication is defined by concatenation, so (ss'|lw) =
Zu,vEX*,uv:w (S|u) (S,|U)'

Let # = K(X). This is a non-commutative graded algebra. The grading is defined by assigning
weight n to a word z1---z,. Let #, be the subspace spanned by words of length n. Clearly,
Hp Hm C Hptm-

Most important to us is the case X = {z,z1}. We will write H = K (o, z1).



Fact. The algebra K(Y) with Y = {y;, 9, ...} is isomorphic to a subalgebra of K(zg,z1).
This is very different from the case of free commutative algebras. To see this, we write a
map Y — K(X) by ys» $871$1 for s > 1. By the universal property, we get a morphism
f:K(Y) = K(X). It suffices to show that this is injective, which is not difficult.
The image H' of f is a subalgebra of #, and is precisely the subalgebra spanned by words
which end with z;. The set of such words is denoted by X*z;. We have H! = K.e+ M.

Notation. For s _ = (s1,...,8k), we write ¥s = ys, . .- Ys, -
The words ys, - - - ys, with s; > 2 are the words which start with o and end with 1.
We define the set of convergent words to be {e} U (zgX*z1), and a subalgebra H’ = K.e +
20.H.z1. We have H° c H' c .
Now assume that K C R. We define ¢ : H® — R to be the K-linear map defined by CA(yé) ={(s)
for s = (s1,...,8k) with 51 > 2.

Goal. Define a law on H’, denoted by *, such that

~ ~ ~

Clys)C(ys) = Cys * ys')-

Notice that the left hand side is simply ((s) - ¢(s).
Now

((s)-¢(s) = Z %nsk Z ﬁ

n Loopl 8
n>e>nE>1 L koonh >, >1 ™ L

We rewrite this as ) ((c) and define ys * yy = > yo.
Definition. We define * by induction on k + k': for s > 2,5’ > 2, and u,v € X*, we define

(ysu) * (ysrv) = ys(u * (ysrv)) + Yo ((ysu) * v) + Yspo (u * v).

(Cf. the quadratic relation computation for ¢(s)¢(s')).

Now we have defined x on H°. We will extend it to H' and H. We do so by defining 7' x u =
u * zy" = uzg. Then H is a commutative algebra for (+,*). The commutativity is obvious. This
commutative algebra will be denoted by #,, and called the harmonic algebra. The subspace H°
and H! are subalgebras, denoted by H? and H!. By definition, f : HY — R is a morphism of
K-algebras.

The relation

Cluxv) = C(u) - E(v) (stuffle product)

is a quadratic relation among zeta values.

Ezxamples.
C(2)2 = 2¢(2,2) +C(4),
C(2)° =6(2,2,2) +3((2,4) +3((4,2) +¢(6).
Quasi-symmetric functions. Consider infinitely many commuting variables ¢1,...,%,,... and

power series in these variables (with coefficients in K). The algebra of such power series is denoted
by K{[t]].



The symmetric functions form a subalgebra Sym of K[[¢t]], which is spanned by

Myt)= Y etk

n1>1,..,np>1

In fact, the M,’s with (s; > --- > s; > 1) form a basis Sym.
The algebra @ Sym of quasi-symmetric functions is spanned by

ny>>nE>1

where s1,...,5; > 1. This contains the symmetric functions as M; ~ )", QM;, where t range over
permutations of s.
There is an isomorphism of algebras from H! and @ Sym, such that y, — QM,(t) = F(ys),
where F'(ys) = >, s .sp,>1 0k -+ 15k extended by linearity. We have
F(ys) - Flyy) = F(ys * yy)-

Hoffman shows that #* is a polynomial algebra on the so-called Lyndon words.
We put an order on X* by using the lexicographic order with zy < z1. For example, for words
of length < 2:

o < ZE% <2021 < T1 <2120 < a:%

Then a Lyndon word is a word w which is smaller than each proper right factor: if w = uv then
w < v. Lyndon words of length < 2 are xg, z¢z1, Z1-
Each Lyndon word different from xg, z; starts with zy and ends with ;.

Consequence. Using this product, we can not get algebraic relations between f(z%ml) and é(mozf)
(z2z1 and z¢z? are Lyndon words). But the first one is ¢(3) and the second one (2, 1), and they
are actually the same. Thus we have not captured all relations.

2%
Exercises. Check ((2,...,2) (k copies of 2’s) is equal to T
w2k sin(7z) 22
Hint. T k()R = = 1-2).
" Z(Qk—i—l)!z (=1) T2 H( n)
k>0 n>1

10— #t) = S DoMD",
n>1 E>0

where M\ (t) = Zm>___>nk21 tny o, = QM 1y (k copies of 1s).
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» Chen’s iterated integrals.

Let ¢1,..., ¢, be holomorphic differential forms on some open set of C. We define

b
/wl...gop
a

by induction: (when p = 1, it is the usual integral)

b b t
/<p1---<pp=/ sal(t)/ ©2 " Pp.
a a a

By means of a change of variable we may assume that a = 0 and b = 1.
We have the following explicit formula:

1
/gol---wp:/ o1(8) - plty).
0 1>t > >tp>0

These iterated integrals occur naturally when one studies product of integrals:

1 1 1 1
/ <P1/ sﬂzz/ ©1(t)pa(u) :/ +/ :/ 901<P2+/ P21
0 0 1>£50,1>u>0 Jisust>0  Jistsuso  Jo Jo

Lemma. Define
Spg =10 € Sptq:0(1) <--- <a(p),olp+1) <---<alp+q)}
Then

1 1 1
/0 (Pl...gop/o (Pp+1...(pp+q: Z ‘/O(Pa(l)-..(po_(p+q).

0€Sp,q
The subset Sp g C Sptq is called the set of (p, g)-shuffles.

PROOF. The idea is in the above simple example.

LHS = / P1(t1) ** Ppiqltptq)
1>t1>>1p>0,1>t, 11> >, 44

Now use the fact that the domain of integration is a product of two simplices, and decomposes into
the disjoint union of {1 > #,1) > -+ > t,1q)} for o € Sy

1 p 1 T
/ <m---<pp=2/ <m---<pj/ ©it1 pe
Zo j=0 x o

PROOF. This is an exercise. Also an exercise: this is not true with f;} o105 [ @it pp.

Lemma.

8



» Polylogarithms.

The classical polylogarithms are

zn
D

Lis(2)

n>1
Here, s > 1 is an integer, z € C is such that |z| < 1 (or s > 2 and |z| < 1). We have ((s) = Lig(1).
Now
z" ? o dt
Li = — = 1 1-— — "
R I e

d . .
Z Lis(2) = Lis_1(2), s> 2.
So

By induction,

Z dt dts_1 di
Li(2) = o Shsml B
0 t ts—1 1 — s
Put wg = dt/t, wi = dt/(1 — t), so that

2 z
Liy(2) = / Wil = / ws,
JO JO

Multiple polylogarithms in a single variable. Let s = (sq,

where w; = w871w1 for s > 1.

.., 8k). Define

. 2™
L1§(z) = Z S1 . Sk )

ny ---n,
ny>e>np>1 1 k

where s; > 1 and |z| < 1. Also we can allow |z| <1 if s; > 2. We have Lis(1) = ((s)

Observe
d _. 1_.
E Lls(z) = ; Ll(slfl,sz,...,sk)(z)
if S1 Z 2;
d _. 1 .
E Lli(Z) = 12 Ll(sg,...,sk) (Z)
lf 81 = 1. SO



For s = (s1,...,5k), define wy = wy, - - wy,, SO

L) = [ o

Recall that Q € K C R and we have defined H = K(zg,z1), ys = m(sflml for s > 1, ys =
Ysy -+ Ys, for s = (s1,..., k). We have

H' = Ke + Hzxq :{co—l-Zciyi:co,ciEK}.
S

Now define
Liy, = Lis
and extend the definition by linearity:

Licy+3 cpp, = €0 + Z ¢s Li; .
S

Hence Liy(2) is well-defined for u € ', |2| < 1.

We want to investigate Lis(2) - Liy(2). For s = (s1,...,sx), recall wy = w' ™ 'w; - --w(s)rlwl.
We can rewrite this as we, - - - w,, where ¢; € {0,1}, where p =) s; and #{i:¢; = 1} = k.

Recall the lemma:

z z z
/0 Wey "~ " Wep /0 Weppr " Wepyg = z : /0 Weo(1) """ Weg(pra)*

0ESp,q

Definition of Shuffle 1 on H by induction

ellw=wille =w

TUTT TV = Te(UTT ZoV) + T (Tu T 0)

and distributivity. It follows by induction that the shuffle product is commutative. Denote the
vector spaces H O H' D H° with the shuffle product by

Huw D HE D MO,

Proposition. For u,v € H', flu(z)flv(z) = fiumv(z).
Corollary. For u,v € H°, ((u)((v) = ((umrv).
Ezamples. Li}(z) = n!Liyy, (2), where {1}, = (1,...,1) (n copies).

Li1 (Z) ng (Z) =2 Li(Q,l) (Z) + Li(l,g) (Z)

Let u =z1,v = 2921. Then u v = 2:5035% + z1zox1. This gives the above formula.

Lig(2)” = 4Lig1)(2) + 2Liga 2 (2).
Collorary. ((2)% = 4¢(3,1) 4+ 2¢(2,2). (Shuffle).

10



Compare with stuffle: ((2)% = 2¢(2,2) + ¢(4). We get ¢(4) = 4¢(3,1).
The algebra Hy was studied by Radford. It is a polynomial algebra with a basis the set of
Lyndon words L.

Take a simple non-Lyndon word z3:

:1:82:.10*.100:.%(2)

T2 = zo 11 7o = 273.

Generating series for fiw(z), w € X*. We need to define fiw(z) for w = ux{’, m > 1. The trick is
?dz ?dz
“/ it BN ne.
0o < 1 <

1
= —(log2)™
m!

So we set
f;im()” (2)
and define flw(z) by induction: for i = 0,1,

Lig,u(z) = /0 ’ w; (t) Liy ().

The generating series for fiw:
Li(z) = Z Liw(z) - w
we X*

is a (non-commutative) power series in xg, 7.
Differential equation. On a simply connected open set in P! not containing 0, 1, co:

4 fit) = (x—o e )ﬂi(z).

dz z 1—2z

11



There are three singularities 0, 1, 0o, and are all regular.

Since the residues at z = 0 and z = 1 are the variables =y and z; up to sign, one can think of
this differential equation as a “universal” first order differential equation with regular singularities
at 0,1, 00.

Near 0, we have

Initial condition:

lim Li(z)e %0187 = 1,
z—0

Near 1, we have

lim e~ 812 Li(2) = drc z(wo, 7).
z2—1

This is the associator of Knizhnik-Zamolodchikov, introduced by Drinfeld.
We can study the monodromy of the differential equation. Minh and Petitot proved:

Theorem. {Liy(2)}wex- are linearly independent over R(z).

12
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Conjectural description of ker é . We first review the known linear relations among zeta values.
Take u,v € HY (with k = Q), then

C(usxv—umwv) =0.

PRrROOF. ((u)-{(v) =C(uxv) =C(umv). B

We also have the following relation, due to Euler:
((3) =<2, 1).
Therefore, y3 —y2y1 € ker é . But the preceeding system of relations all have weights > 4. So Euler’s
relation is not spanned by the previous ones.
We have
T1 % (ToT1) = Y1 * Y2 = Y1y2 + Yay1 + Y3,
z1 1 (ToT1) = 2m0$% + T1T0T1.

Notice that z1 ¢ H9. Still, the above computation suggests that
C(la 2) + C(Qa 1) + C(3) = 2<(25 1) + C(la 2)'

However, ((1,2) is not well-defined. If it were, we would have got Euler’s relation legitimately.
We have (from Chen integrals)

L11(z) . LIQ(Z) = Lii11ﬂz0£1 (Z) = 2Lig’1(z) + Lil’g(z),
valid for |z| < 1. If we look at the series,
2" 2™
Lit(2) -Lis(z) = S 2§~ 2
R DD O

n>1 m>1
z2n

2"m
D D k) DD D

n>m m>n n=m

= Li]’g(z.‘ 2,’) + Li2’1 (Z, Z) + L13(22)
Here, we have used

Definition.

ni ng
Z PO Z
. . 1 k
Lis(z1,...,2) = E S
nl .. .nk
ny>->np>1

We now have
Lig(2%) — 2Lip1(2) + Lio,1 (2, 2) = Li1 2(2,1) — Li1 2(2, 2).
The LHS is ¢(3) — ¢(2,1) when z = 1. It is an exercise that lim,_,; RHS = 0.

13



This proves the Euler relation, which is an example of the third standard relations:
C(zr*w—z1mw) =0 for all w € H°.

Algebraic relations among zeta values.
Linear relations < ker é
Conjecture 1. (Hoffman). ker { is spanned by elements in % homogeneous for weight.

Denote by Z, the Q-space spanned by ¢ (w), w € ’Hg (homogeneous elements in H° of weight
p)-
Conjecture 1 implies that the Q-algebra spanned by Z,, p > 0 is @p>0 Zp. That is, all algebraic
relations are given by homogeneous relation. This statement was conjectured by Goncharov.
We have:

Zy=Q

Z, =0,

25 = (((2))o = (72,
23 = (¢(3))q>

2y = ((@)g = (v,
25 =(((2)¢(3):¢<(5))o

So if we put d, = dim Z,, we have di = 0, dy =dy =d3 =ds =1, 1 < ds < 2. We do not know
whether ((2)¢(3)/¢(5) € Q.

There is a program for finding relations, called “EZ-face”, available on the internet

http://www.cecm.sfu.ca/projects/EZFace/index.html

Ezercise. <(3a 1) = %C(4)7 C(252) = %<(4)a C(Qa 1, 1) = 4(4)
Conjecture. (Zagier). For all p > 0, d, = d,—2 + d,—3. Hence

1
y - .
det T 1—¢2_¢3
p>0

The “exercise” of checking the compatibility of conjectures of Zagier and Goncharov is not an
easy one, and has not yet been done completely.

The number of ((s) of weight s; + -+ - + s, = p (with 51 > 2) is 2P72.

The number of linear relations is 2P~5(p + 1). Here we are not counting independent relations
just the ways of getting relations. It is not easy to see what are the independent linear relations
among these relations.

Each ((s) with |s| < 11 are homogeneous polynomials in

€(2),¢(3),¢(5),¢(7),€(9),¢(11),¢(6,2),¢(8,2), (8,2, 1).

Broadhurst has given a conjectural description for such a list for |s| < p. (This is a problem in
algebra).

14



Suggestion of Hoffman. A basis for Z, may be

C(s1y---,8K), 8; €{2,3}.

Conjecture. The three standard relations (shuffle, stuffle, and the third, which are respectively
quadratic, quadratic, and linear) generate the ideal of all algebraic relations among zeta values.

More precisely, take independent variables Z5, s = (s1,...,s5) with s; > 2 and consider the
map Q[Z, : s1 > 2] - R, Z; — ((s). Then the conjecture is that the kernel of this map is the ideal
spanned by

Zqu - Zumva Zqu - Zu*v-, Zx1*w—z1mwa

where u,v,w € #°, and Z, means Zs if u = y,.
Consequence(?). =, ((3), ((5), ... are algebraically independent.

Other relations. Ts it true that ((u* v —umv) = 0 with u,v € H' but u v —umov € H°? The
answer is no. There exist u,v € H' such that u*v —utv € H® but ((u*v —umw) # 0.

Ezample. u=x1,v =z, ulllv = 235% and u*xv = T1 %L1 = Y1 *yY; = Qy%—l—yg = 2x%+y2. Therefore,
uxv—utov =yy € HO but ((y2) = ¢(2) # 0.

The map CA : H® — R is a morphism of algebras for * and mr. We want to extend it to H'. If
é : H' — R were a morphism for * and 1, we would have

{(21)? = (1 % 31) = (21 m z1).

But the 2nd equality is not true.

15
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Extension off to H! O HO. Recall that
H = Q(xg, z1) ) H' =Qe+Ham ) H = Qe + zo.H.z1.

Also, recall that Tiy (2) is defined for w € H', and (w) is defined for w € HO.
We also have

Hu = QL) ) M = QL ~ {zo}m ) HO = QL ~ {z0, 1 }]w-

Also ¢ : HY — R and HL, = HY[z1]. So we only have to decide what ¢(1) is. The difficulty is that
¢(1) is not defined (possible candidates: 0 or the Euler constant ). An easy way out, since there
are more than one reasonable choices, is to make no choice:

Denote by Zy the unique morphism of algebras HL — R[T] such that Zm(w) = ¢ (w) for
w e ’H(I)H, and Zm (z1) =T, where T is an indeterminate. We do the same with H,. We have

Zo: M S RT),  z-T.

Theorem. (Boutet de Mouvel, Zagier). There is an isomorphism of R-vector spaces p : R[T] —
R[T] such that

R[T]

is commutative.

In fact, p is determined by the formula:

. n=2

>0

explicit formula is more interesting.

Egample. p(I°) = 1, p(T) = T, p(T?) = T? +((2), p(T%) = T° + 3¢(2)T — 2((3), p(T*) =
T* - 6¢(2)T — 8C(3)T + 6¢(4) + 3¢(2)*.

We can check: z; 1121 = 272, so Zm(2z2) = T2. On the other hand, z1 * 71 = 22? + 75. So
Z,(222) =T? — ¢(2).
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We have for s > 2,
=, \nt" -l
exp(z(q) EC(sn)) = _H(1+j—s) .
n=1 j>1
The RHS reminds us of the product formual for I'-function. In fact, we should compare the above
with
o tn
— _ n— =
exp( vt + Z( 1) - C(sn)) I'(1+1).
n=2
We also have
Tty _ Tt o n(n)n)
ple’’)=e exp(Z( 1) = t").
n>2

So we can consider p as a differential operator

n>2
Hint for the proof of Zagier-Boutet de Mouvel. Recall

Hi 5 QSym, g m QM) = D k.-t

n1>>np>1

The specialization t, = 1/n, n > 1 gives (,t on HO.
Take N large and consider the specialization t — (1,1/2,1/3,...,1/N,0,...), we get asymptotic
expansions. Moreover, consider

tn
expy(tyr) = D —ui'™ =D "y,

n>0 n>0

t’n
exp, (ty) = ) 91"
n>0

We then use Newton’s formulae.
Nezt step. From H! to H. We will extend the map

bt ML - RIT-2% R

to Hw. Recall that Hy = HY[xo, z1] (commutative polynomial algebra). So given w € Hy, we can
associate the constant term (as a polynomial in zg,z;) in HY. Call this map Reg,, : Hm — HY,
(the notation means: regularize a possibly non-convergent word to a convergent word). We now
define

fm:fORegm:Hm—)R

17



Proposition. (K. Thara and M. Kaneko). Let w € X*, w = 2™ wpz? with wy € #°. Then
1 0

m n
regy, (w) = Z Z(—l)’ﬂx’l ut (27" 'wozy 7)) m .
i=0 j=0

Moreover,
m
w= E Regy (27" *wozy 7)) m 2} 11 2.

Ezamples. Regy(zh) = Regy(z7) = 0 for n > 1,m > 1. Also Regy(z7z]) = (—1)"Fm 1gngm,

Theorem. (Thara and Kaneko). For w € H'! and wy € H°,
reg . (w * wy — w M wg) € kerC.

That is, CAm(w * wp — w M wg) = 0.
Conjecture. (Thara and Kaneko) As a Q-vector space, keré is spanned by these elements.

The third standard relations can be obtained from w*wy —w mwy by taking w = z;. In general,
we must regularize. This conjecture is probably more reasonable (more generators for the kernel),
but is perhaps equivalent to the previous conjecture.

Ezample. x% X LoxL1 — :c% m 2oL, = xlxox% - :Elxg:vl - x%x% is not in M.
(Esterlé shows: The conjecture of Thara and Kaneko is equivalent to the following: kerf is spanned
by

wy * wo — wq 1L we, with wy, wy € HO
and

Regy (z * wg — = 1 wp) with wy € H® and m > 1.

For each m > 1, consider the map
Om :H — M, m — (—1)"Regy (7" x w — 27" M w).

For wy € H°, it is known that 6y, (wq) € ker(C).
-~ Form=1, w21 Mw— z1 *w (no need to regularize).
- Regy(z1") =0 = Op(w) = (—1)"Regp (2T * w).

Definition. We define f* as fo Reg,, where Reg, : H. = Hl[zo,z1] — H? is again “taking the
constant term”.
We have

for wg € HY.

18



Other linear relations on the multiple zeta values.

Duality. Start with

Zo

T1
/ <p1---<pp=/ gol(tl)---gap(tp)z/ oy or( 1),
To T1>t1 > >tp>x0 T1

1 1
/ Wey * " We,, = / Wi—ep * " Wi—¢q-
0 0

Denote (1,...,1) (£ times) by {1},. Write

So

s = (315---7316) = (tl +27{1}"'17t2+27{1}7'2a"-atm+2a{1}7'm)

with ¢1,...,tm,71,...,7m > 0. Let 7 : H — H be the anti-isomorphism exchanging zg and z;.
Then 7y, = yy where s’ = (1, +2,{1}4,,,-..,71 +2,{1}¢,). The duality relation is:

C(rys) = C(ys)-
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Introduction to Multiple Zeta Values, VI

M. WALDSCHMIDT
August 28, 2001

Recall that we have

H = Qxzo, 1)

|

H' = Qe+ H.z1

I

HO = Qe+ z¢.H.21 L

ker{C <> linear dependence relations among multiple zeta values.
We have the basic double shuffie relations:

~

Cw)l(v) = C(umv) = C(u xv) for all u,v € H°,
== umvfu*vekeré.

Thara and Kaneko give the more general regularized double shuffle relations:
(RDSR) Reg, (w11 wy — w * wg) € ker ¢, wo € HO,w e HY,
where

Regy : H = ’Ho[mo,xﬂm — 0

sends a polynomial to its constant term.

Remark.

— For w = z1, £1 Mwy — z * wy = dp (wgy) € HO for wy € HO, there is no need to regularize.
— For w =z7, n > 1, RDSR can be written as

n
Z(—l)ix’i (277" % wp) € ker (.
i=0
— The function d; : H® — H° above is the derivation (satisfying d(uv) = udv + (du)v) on H
with dy(z¢) = zoz1, di(z1) = —z011. We have

s—1
s—1 7 s—1—1 s
di(zy z1) = E THL1T T1 — THX1-
=1
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— Consequence of dq(ys) € ker ¢

s—1
(Euler) Cs+1) =) ((i+1,5—1).
i=1

This is a special case of the more general sum formula: for p > k+ 1, k > 1 fixed,
> ¢(s) = ¢(p)-
5=(81,--,8k) 181+ +5K=p

This reduces to Euler’s relation when k = 2. For k = 3, it was proved by Hoffman and Moen
(1996). The general formula for k£ > 2 is due to Granville-Zagier (1997). They were often
first observed numerically on computers.

Ezamples.

¢(3) =¢(2,1), and more generally,
- €(2,{1}g-1) = ((k+ 1) (take p = k + 1 in the sum formula).

Proof of the sum formula from RDSR. Granville-Zagier proved the formula by analytic means. We
would like to see how to get the formula from RDSR.
For m > 0, w € H, let

O (w) = (—1)"Regy (2T * w).

S0 O (w) € ker  for m > 1, w € HO.
Lemma. (Thara-Kaneko) For p > k+1, k> 1,

—k— —k— _ k-
Or (2} '21) = zo(a¥ m z Ny — zo(z¥ 1 m zh Y.

The proof is just a simple induction.
The expression z’f‘l il x€7k71 is of length k£ — 1 and weight p — 2 (recall that the length is the
number of z1’s, and the weight is the number of letters). Let

S(p, k) = zp(a" m zgfkfl)xl.
This is the sum of all convergent words of length k and weight p. Thus
Ok(mg_k_lxl)=S(p,k+l)—S(p,k) € ker(, 1<k<p-1.

It follows that S(p, k) —S(p,1) € ker(, for 1 <k < p—1. But S(p, 1) is just xﬁflzl, so ((S(p,1)) =
¢(p). On the other hand,

(A(S(p,k)) = Z C(Sl,...,sk).

5122,51+ - +5p=p

This proves the sum formula.
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Ohno’s relations. These contain all the relations given earlier.

Let’s first recall the duality relation: let 7 : # — H be the anti-automorphism exchanging z
and z; (anti-automorphism means that 7(uv) = 7(v)7(u)). Then (1 — 7)wg € ker( for w € H;
this follows from the identity

1 1
t1+1, r1+1 tm+1, rm+1 _ rm+1, tm+1 ri+1 ti1+1
A UJO w1 s wo wl = A CJO wl R wo wl

which can be checked by a change of variables. Fix s = (s1,...,s) and £ > 0. Write 7y, = yy,
s' = (s},...,8}). Then Ohno’s relation is

Z C(s1+ ety 86 +ex) = Z C(sh + €y .o, +ef).
e1+-tex=~Le;>0 e’1+---+e’k,:l,6920
This contains the duality relation: just set £ = 0. It also contains the sum relation, which is
=Y, <o
|o|=p,length(c)=h
We can take k=1,s1=h+1l,e=p—h —1.

Ihara-Kaneko: Ohno’s formula is equivalent to: for n > 1, w € HO, d,(w) € keré, where d,, is the
derivation on H such that

dn(z0) = zo(z0 + 21)" 21,
dn(ftl) = —Io(.’Eg =+ $1)n71$1.

Notice that (zq + x1)" ! is the sum of all monomials of weight n — 1, and d,,(zg) is the sum of all
monomials of weight n + 1 in H°.
People are working on deriving Ohno’s relation from RDSR.

A conjecture of Zagier. The conjecture was given in 1994, and solved by Borwein in 1997.
Bradley and Minh-Petitot (2000) proved it using syntaxic identities:

4¢({3, 1) = C({4}n)-
Definition. For S € Q{(zq, 1)) such that (S|e) =0,
S*=e+S+8%+-..
is the unique solution to either (1 — §)S* = e or S*(1 — S) = e. We have (y3) * (—y2)* = (—y4)*.

Idea of proof: consider H? -~ @ Sym, sending y5 to

OM() = > i
n1>-->np>1
and

>t =J[a+8) —

ny>->np>1 n>1
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So the formula y3 * (—y2)* = —y; amounts to

[Ta+e) [T - =T]a )

(1) (zoz1)* M (—zoz1)* = (—4xda?)*.
We replace g by twy = tdz/z, 1 by tw) = tdz/(1 — z). We get

/0 (—twlwn)” = 3 (=) *C({4he).

k>0

1
/0 (—attwiwd) = S (atYRC({3, 1),

k>0

Thus Zagier’s relation is that the difference of the LHS’s is in the kernel of é .

Ezample. Consider the following automatom:

Zo

(2) gives 81 = 1+ zoz1 + (021)? + - - = (zo11)*.
1

(B) gives S1 = 1 — zoz1 + (zo71)? + -+ - = (—z0m1)*.
T

\ (1)
/
\, -
/

Values of Lis(z) at roots of unity. Say we consider N-th roots of unity.
When N = 1, this is the classical theory of multiple zeta values. We have Zagier’s conjecture
on the dimension spanned by zeta values:

dy=4dy 2 +dp 3.
When N = 2,
dy = dy_1 +dpo.
When N = 3,
dy = 2.

N =4, complicated...
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Half integers. For example,

N

Lip(1/2) = == —

. (log 2)?,

N | =

¢(3) = 11—27r2 log 2 + Liz1y(1/2) + Liz(1/2).

This last formula is due to Ramanujan:

n

<1 1
> g D = 008) - 1y g2,
n=1 j=1

L =

Generalized Hurwitz zeta function.
ng

> oo <
s T (ny —t1)% (ng — tg)5k

What about the transcendence of ((1/2) or ¢(i)? The solution may not have immediate conse-
quence but certainly requires new ideas.

http://www.institut.math.jussieu.fr/~miw/articles/ps/ncts.ps

http://math.cts.nthu.edu.tw/Mathematics/english/lecture.html

see also: http://www.institut.math. jussieu.fr/~miw//articles/ps/mpl.ps
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