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1. For each prime p ≤ 13 and also for p = 31, list the values a ∈ F×
p which are primitive roots

modulo p (i.e. generators of the cyclic group F×
p ). Next, for each a and for n = 1, 2, . . . , p− 1,

compute an. Deduce a table of the discrete logarithm modulo p with respect to the primitive
root a.

Solution.

For each primitive root α modulo p, we give the table of the exponentials in basis α, namely
αn for n = 0, 1, . . . , p − 2. One can view the values of n modulo p − 1, while the values of αn

are modulo p. It is plain to deduce the table of the logarithms with respect to the primitive
root α. We give explicitly this table only for p = 31 and α = 3.

(a) p = 2, α = 1

(b) p = 3, α = 1 or α = 2.

(c) p = 5, α = 2 or α = 3.

αn :
n = 0 1 2 3
α = 2 1 2 4 3
α = 3 1 3 4 2

(d) p = 7, α = 3 or α = 5.

αn
n = 0 1 2 3 4 5
α = 3 1 3 2 6 4 5
α = 5 1 5 4 6 2 3

(e) p = 11

From 25 = 32 ≡ −1 (mod 11) it follows that 2 is a primitive root modulo 11 (a generator
of the cyclic group F×

11):

n =
2n =

0 1 2 3 4 5 6 7 8 9
1 2 4 8 5 10 9 7 3 6

We have ϕ(10) = 4, (Z/10Z)× = {1, 3, 7, 9}, the primitive roots modulo 11 are 2, 23 = 8,
27 = 7, 29 = 6.
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To get the table of exponentials 8n we take the shift of the table for 2n by 3:

n =
8n =

0 1 2 3 4 5 6 7 8 9
1 8 9 6 4 10 3 2 5 7

To get the table of exponentials 7n we reverse the order of the table for 8n (since 7 = 8−1):

n =
7n =

0 1 2 3 4 5 6 7 8 9
1 7 5 2 3 10 4 6 9 8

To get the table of exponentials 6n we reverse the order of the table for 2n (since 6 = 2−1):

n =
6n =

0 1 2 3 4 5 6 7 8 9
1 6 3 7 9 10 5 8 4 2

(f) p = 13

We have ϕ(12) = 4, the primitive roots modulo 13 are 2, 25 = 6, 27 = 11, 211 = 7.

The table of 2n for n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 is

n =
2n =

0 1 2 3 4 5
1 2 4 8 3 6

6 7 8 9 10 11
12 11 9 5 10 7

The table for 6n is obtained by shifting by 5 the table for 2n:

6n : 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11.

The table for 11n is the reverse of the table for 6n:

11n : 1, 11, 4, 5, 3, 7, 12, 2, 9, 8, 10, 6.

The table for 7n is the reverse of the table for 2n:

7n : 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2.

(g) p = 31

Since ϕ(30) = 8, there are 8 primitive roots modulo 31.

From 25 ≡ 1 (mod 31), it follows that 2 has order 5 in F×
31, hence is not a primitive root

modulo 31.

A primitive root modulo 31 is 3. The table of 3n for n = 1, 2, . . . , 30 is given by

n =
3n =

0 1 2 3 4 5 6 7 8 9
1 3 9 27 19 26 16 17 20 29

n =
3n =

10 11 12 13 14 15 16 17 18 19
25 13 8 24 10 30 28 22 4 12

n =
3n =

20 21 22 23 24 25 26 27 28 29
5 15 14 11 2 6 18 23 7 21

The primitive roots modulo 31 are

3, 37 = 17, 311 = 13, 313 = 24, 317 = 22, 319 = 12, 323 = 11, 329 = 21.
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One checks indeed that the numbers

3× 21 = 63, 17× 11 = 187, 13× 12 = 156, 24× 22 = 528

are congruent to 1 modulo 31.

The table for 17n is the shift by 7 of the table for 3n, the table for 13n is the shift by 4 of
the table for 17n, the table for 24n is the shift by 2 of the table for 13n, and we get the
other tables by reversing the order.

The table of the discrete logarithms with respect to 3 modulo 31 is the following (the first
row is 3n modulo 31, the second row is n modulo 30):

1 2 3 4 5 6 7 8 9 10
0 24 1 18 20 25 28 12 2 14

11 12 13 14 15 16 17 18 19 20
23 19 11 22 21 6 7 26 4 8

21 22 23 24 25 26 27 28 29 30
29 17 27 13 10 5 3 16 9 15

2. Binary error correcting codes.

Let n ∈ {1, 2, 3, 4}. Among 2n playing cards, you select one without telling me which one it
is. I display some of them and I ask you whether the card you selected is one of them. You
answer yes or no.

(a) How many questions should I ask in order to know which card you selected?

(b) Same problem, but now you are allowed to give me at most one wrong answer, and I want
to decide whether or not all you answers were right. If you gave always the right answer,
I want to know which card you selected (error detecting code).

(c) Same problem, again you are allowed to give me at most one wrong answer, but now,
I want to know which card you selected, even if one of your answers was wrong (error
correcting code).

Solution.

(a) Given 2n card, label them starting from 0 to 2n − 1; write the labels in binary form. Ask
n questions, for the k–th one, display the cards having a label with 1 for the k–th binary
digit. The sequence of yes and no gives you the binary expansion of the answer, with the
digit 1 for yes and 0 for no.

(b) In order to detect a wrong answer, ask one more question using the parity bit. The number
of questions is n+ 1.

(c) In order to correct a wrong answer, use an error correcting code.
• For n = 1 and 2 cards, ask 3 questions using the repetition code (display the same card
3 times). The corresponding error correcting code is Example 80 in the notes [1].
• For n = 2 and 4 cards, ask 5 questions: repeat twice the two questions which give the
solution when there is no wrong answer, and for the last one use the parity bit. The
corresponding error correcting code is Example 82 in the notes [1].
• For n = 3 and 8 cards, ask 6 questions: questions 1,2,3 are the ones which give the
solution when there is no wrong answer, the next 3 questions are the parity bits between
questions (1 and 2), (2 and 3), (1 and 3). The corresponding error correcting code is
Example 83 in the notes [1].
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• For n = 4 and 16 cards, ask 7 questions only using Hamming’s code.

3. Three people are in a room, each has a hat on his head, the colour of which is black or white.
Hat colours are chosen randomly. Everybody sees the colour of the hat of everyone else, but
not on ones own. People do not communicate with each other. Everyone tries to guess (by
writing on a piece of paper) the colour of their hat. They may write: Black/White/Abstain.

The people in the room win together or lose together as a team. The team wins if at least one
of the three persons does not abstain, and everyone who did not abstain guessed the colour of
their hat correctly.

(a) What could be the strategy of the team to get the highest probability of winning? What
is this probability?

(b) Same questions with seven people.

Solution.

(a) With three people, one solution is that the team bets that the three colours are not the
same. When they see twice the same colour on the heads of the two other people, they
bet that their own hat is not of that colour. If they see two different colours, they abstain.

There are 8 possible distributions of the colours, two of them where the hats have all
the same colours (white–white–white or black–black–black); in this case they all bet the
wrong colour and the team looses. In the remaining 6 cases, the team wins. Hence the
probability of winning is 3/4 = 75%.

This is the best probability for this game, but there are other equivalent strategies: they
select two distributions of colours which have no common element, like white–black–white
and black–white–black, and they bet that these two distributions do not correspond to
the correct answer.

(b) With seven people, use the [7, 4] Hamming code in place of the [3, 1] repetition code.
Replace the two colours by 0 and 1, so that the distribution of colours corresponds to
an element in F7

2. The team bets that the distribution of colours is not an element of
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the Hamming code. When one member of the team sees the 6 other colours, he or she
looks at the two possible elements in F7

2 which correspond to the distribution of hats. If
one of them lies in the Hamming code, he or she writes the colour corresponding to the
other element. Otherwise, the two possible answers correspond to elements which lie in
two different Hamming balls of radius 1, this person does not know which is the center
of the Hamming ball containing the right solution and in this case he or she abstains.
The team looses in 16 cases, there are 27 = 128 possible distributions, so he wins in
27 − 24 = 128 − 16 = 112 cases, the probability of winning is 7/8 = 87.5%, and this is
optimal.

The optimality for each of the questions in the exercises 2 and 3 is proved by counting the number
of Hamming balls of radius 1 and the number of points in each such ball.
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Remark. These exercises and the solutions are now included in the version of the notes [1] revised
on March 3, 2020.
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