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Chapter 1

Basic Fourier Analysis

1.1 Preliminaries

The Fourier transform of a function v € L*(R") can be defined as

u(§) = /” u(z)e” ™S dy. (1.1.1)

Lemma 1.1.1 (Riemann-Lebesgue Lemma). Let u be in L'(R™). Then we have

u(g) o

Moreover the function @ is uniformly continuous on R™.

Proof. We note first that (1.1.1) is meaningful as the integral of an L' function and
we have also

sup [@(€)] < ull - (1.12)
EER™
Let ¢ € C*(R™). With a = (ay,...,a,) € N*, we define
1 0
D*=D"...D%, D= —— G =M o, 1.1.3
1 n o J 2 8£]7 5 1 'Sn ( )
We find the identities
&LP(8) = Dip(§),  Dp(&) = £*3(8), (1.1.4)

entailing (1 + [£]*)@(€) = Fourier (np + > <i<n D?gp). We find thus

L+ ERBOI< e+ D Dielnian,

1<j<n

which implies lim¢_, o0 (§) = 0. For u € L*(R"), we have

—_—

()] < |(w =)&)+ [2(E)] < [lu = @llLr@n + [2(E)];

5



6 CHAPTER 1. BASIC FOURIER ANALYSIS

so that for all ¢ € C*(R"),

limsup [u(§)] < |lu — @||p@ny = limsup [u(§)| < inf  |ju — ¢|[L1@n) = 0.
|00 |¢]—o00 peCee(R™)

We have also u(€ + 1) — 6(&) = [g. e 2™ (e 2™ — 1)u(z)dz, so that

e + ) — ae)] < / ()] |27 — 1] da

n

<2

and Lebesgue’s Dominated Convergence Theorem shows that, for all £ € R,
lim [ (€ +n) —a(§)] =0,
proving continuity. We have also for R > 1, |n| < 1,

(€ +n) —u(€)] < sup [u(€+n) —u(€)+2 sup |a(g)],
€I<R €/>R—1

so that for 0 < e < 1, if w, is a modulus of continuity' of the continuous function u
on the compact set {|z| < p},

sup  [u(€ +n) —u(§)| < wrsi(e) +2 sup |a(§)],
[n|<e,£€ER™ l€|>R—1

proving that the lim sup of the lhs when € goes to 0 is smaller than

2 sup |u(§)|, forall R>1.
|§>R—1

Since that quantity is already proven to go to 0 when R goes to +o00, we obtain the
uniform continuity of . m

We need to extend this transformation to various other situations and it turns
out that L. Schwartz’ point of view to define the Fourier transformation on the
very large space of tempered distributions is the simplest. However, the cost of
the distribution point of view is that we have to define these objects, which is not
a completely elementary matter. We have chosen here to limit our presentation
to the tempered distributions, topological dual of the so-called Schwartz space of
rapidly decreasing functions; this space is a Fréchet space, so its topology is defined
by a countable family of semi-norms and is much less difficult to understand than
the space of test functions with compact support on an open set. Proving the
Fourier inversion formula on the Schwartz space is a truly elementary matter, which
yields almost immediately the most general case for tempered distributions, by a
duality abstract nonsense argument. This chapter may also serve to the reader as a
motivation to the explore the more difficult local theory of distributions.

IFor a continuous function v defined on a compact subset K of R™, the modulus of continuity
w is defined on Ry by w(p) = sup zyex |v(x) — v(y)|. We have lim,_,, w(p) = 0.
le—y|<p
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1.2 Fourier Transform of tempered distributions

The Fourier transformation on .7 (R")

Definition 1.2.1. Let n > 1 be an integer. The Schwartz space ./(R™) is defined
as the vector space of C* functions u from R” to C such that, for all multi-indices.
a, € N,

sup |2%0%u(z)| < +oo.

TzeR™
Here we have used the multi-index notation: for a = (ay,...,a,) € N* we define
P =g, 0 =000 ol = ) o (1.2.1)

1<j<n

A simple example of such a function is e~ /**, (|| is the Euclidean norm of )
and more generally, if A is a symmetric positive definite n x n matrix, the function

va(z) = e"™HAT) (1.2.2)

belongs to the Schwartz class. The space .(R") is a Fréchet space equipped with
the countable family of semi-norms (p)ken

pr(u) = sup |290°u(z)|. (1.2.3)
1<k

Lemma 1.2.2. The Fourier transform sends continuously . (R™) into itself.

Proof. Just notice that
0fie) = [ e 0wt a)do(2im) P (1)

and since sup,cga (1 + |2|)"0%(2%u)(z)| < 400, we get the result. O
Lemma 1.2.3. For a symmetric positive definite n x n matriz A, we have

UA() = (det A)~1/2e AT, (1.2.4)
where v4 is given by (1.2.2).

Proof. In fact, diagonalizing the symmetric matrix A, it is enough to prove the
one-dimensional version of (1.2.4), i.e. to check

/G—Qiﬂ'xfe—ﬂ'xQdm _ /e—ﬂ(x+i£)2dxe—7r§2 _ €—7r$27

where the second equality is obtained by taking the é-derivative of [ e~ @+ dz -
we have indeed

d 2 2
d_g(/ e " dg) = /e”(”@ (—2im)(z + i&)dx
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For a > 0, we obtain
_9; 2 _ o —1g2
/6 227m;§€ maz® g — o 1/2e Ta 5’
R

which is the sought result in one dimension. If n > 2, and A is a positive definite
symmetric matrix, there exists an orthogonal n x n matrix P (i.e. ‘PP = Id) such
that

D ='PAP, D =diag(\,...,\,), all \; > 0.

As a consequence, we have, since | det P| = 1,

/ 672i7r:v-£€77r<Aw,ac) dr = / 672i7r(Py)-£€77r<APy,Py) dy
:/ 6—2i7ry-(tP€)€—7r<Dy7y)dy
R

(Wlth 7’] = tpg) = H / ei2iﬂyjnj€_7r>‘jyj2‘dyj — H )\;1/26—71')\;17]]2
1<j<n /R 1<j<n
= (det A)~2e=mP 70 — (det A)~V/2emIPATIE TPEPE)
[

Proposition 1.2.4. The Fourier transformation is an isomorphism of the Schwartz
class and for v € S (R™), we have

u(zx) = /e%”ﬁa(g)dg. (1.2.5)

Proof. Using (1.2.4) we calculate for v € (R") and € > 0, dealing with absolutely
converging integrals,

u(z) = / 2T (€)e I g
_ / / 207t eIy (1) e~y g
- / u(y)e ™ Py
- / (u(x + ey) — ulx)) e dy + u(z),

(.

~
with absolute value<e|y|||u’|| oo

Taking the limit when e goes to zero, we get the Fourier inversion formula

u(z) = / X mEG (&) dE . (1.2.6)

We have also proven for u € .(R") and u(z) = u(—x)

¢

u =

(1.2.7)

Since u +— @ and u — @ are continuous homomorphisms of . (R"), this completes
the proof of the proposition. ]
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Proposition 1.2.5. Using the notation

1 0 -
oo =—— D*=T[D% witha=(a,...,a,) €N, 1.2.8
7 2im Oz z 31;[1 z; Wi ( an) € ( )

we have, for u € S (R"™)

Dgu() = €*a(e),  (Dga)(€) = (~1)"au(a)(€) (1.2.9)
Proof. We have for u € ./ (R"), 4(¢) = [ e 2™ 4y(x)dz and thus

(Da)(E) = (1) [ ™o u(a)d
£ru(g) = /(—22’7?)"0"8;"(e_%m's)u(x)dx = /B_Qiﬂw'g(Qiﬂ)_la(8§u)(at)da7,

proving both formulas. O]

N.B. The normalization factor - leads to a simplification in Formula (1.2.9), but
the most important aspect of these formulas is certainly that the Fourier transfor-
mation exchanges the operation of derivation with the operation of multiplication.
For instance with

P(D)= )Y a,Dg,

|laj<m

we have for u € ' (R"), Pu(€) = | 0j<p aaE*0(E) = P(€)a(€), and thus

(Pu)(z) = / AP (12.10)

Proposition 1.2.6. Let ¢, be functions in ./ (R™). Then the convolution ¢ * 1)
belongs to the Schwartz space and the mapping

S (R") x L(R") 2 (¢,4) = px 9 € S(R")
18 continuous. Moreover we have
b+ = . (1.2.11)

Proof. The mapping (z,y) — F(z,y) = ¢(x — y)(y) belongs to .7 (R?") since z,y
derivatives of the smooth function F' are linear combinations of products

(0°¢)(z — ) (9°¥)(y)

and moreover

(1 + Jz[ + [y)™M(9°¢) (z — ) (07¥) (y)]
< (1+ |z = y)™(0*¢) (x — I + 2y V(@) ()] < p(d)a(),
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where p, ¢ are semi-norms on . (R™). This proves that the bilinear mapping (¢, v) —
F(¢,1) is continuous from . (R") x .#(R") into .(R**). We have now directly

95 (¢ x ) = (079) x4 and

(1+[2[)M107 (¢ + )| < /IF@%, V) (@, y)|(1+ [z])dy

< [ 1@ 60 )1+ 1) (L4 g™ (1 -+ ol)

<p(F)

where p is a semi-norm of F' (thus bounded by a product of semi-norms of ¢ and
1), proving the continuity property. Also we obtain from Fubini’s Theorem

@ DO = [ [ et (o~ g)uly)dyde = HEIE),
completing the proof of the proposition. n

The Fourier transformation on .'(R")

Definition 1.2.7. Let n be an integer > 1. We define the space .#/(R") as the topo-
logical dual of the Fréchet space ./(R™): this space is called the space of tempered
distributions on R".

We note that the mapping

L (R") 5 ¢ — §—¢ € 7 (R"),

ZLj

is continuous since for all £ € N, py(0¢/0z;) < pry1(¢), where the semi-norms py,
are defined in (1.2.3). This property allows us to define by duality the derivative of
a tempered distribution.

Definition 1.2.8. Let u € ./(R™). We define 0u/0z; as an element of .7/ (R") by

ou 0¢
- o = — s 1.2.12
<3m]~ ) ¢>Y 5 <U, 8[Ej >/ . ( )
The mapping u — OJu/0x; is a well-defined endomorphism of .#”(R") since the
estimates 9 96
u
Vo € S (R” — < Cupr, (=) < C, ,
b€ SE). GO < Cnn(52) < Coprnld)

ensure the continuity on ./(R") of the linear form Ju/0x;.

Definition 1.2.9. Let u € .#/(R") and let P be a polynomial in n variables with
complex coefficients. We define the product Pu as an element of .#/(R™) by

(Pu, @) 1.9 = (u, Pdp).gr 5. (1.2.13)
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The mapping u — Pu is a well-defined endomorphism of .#/(R™) since the
estimates

Vo e S(R"),  [(Pu,d)| < Cupr, (P9) < Cupr,+0(0),

where D is the degree of P, ensure the continuity on .%(R"™) of the linear form Pu.

Lemma 1.2.10. Let Q be an open subset of R", f € L () such that, for all
e € Cx(Q), [ f(x)p(x)dx =0. Then we have f = 0.

Proof. Let K be a compact subset of 2 and let x € C°(Q2) equal to 1 on a neighbor-
hood of K (see e.g. Exercise 2.8.7 in [15]). With p € C°(R™) such that [ p(t)dt =1,
and for € > 0, p.(z) = p(z/€e)e™™, we get that

lim p,* (xf) = xf in L'(R"),
6*}0+

since for w € L'(R"),

[ oo =) = wi))dy| da

< [[ @t - e2) = w@dzds = [ o) = vl

||p6 * W — wHLl(R”) = /

We know” that lim,_ ||[7hw — w|[p1gey = 0 and ||w — w|| ey < 2[|w||L1rn) so
that Lebesgue’s dominated convergence theorem provides

li_{% | pe ¥ w — wl| 1 @ny = 0.

We have (pe * (xf))(z) = /f(y)gc(y)p((x —y)e!)e " dy, with supp o, C supp

=¢2(y)
¢r € C°(2), and from the assumption of the lemma, we obtain (p. * (xf))(z) =0
for all x, implying yxf = 0 from the convergence result and thus f = 0, a.e. on K;

the conclusion of the lemma follows since {2 is a countable union of compact sets
(see e.g. Exercise 2.8.10 in [15]). O

Definition 1.2.11 (support of a distribution). For u € .#/(R™), we define the
support of u and we note supp u the closed subset of R™ defined by
(suppu)® = {z € R",3V open € ¥, wuy = 0}, (1.2.14)

where 7, stands for the set of neighborhoods of z and ujy = 0 means that for all

¢ € CE(V), (u,9) = 0.

“For ¢ € C2(R™), we have [[rhw—w]| i) < [[Thw=Thol L1 @n) +ITad—@ll L1 @) Hd—wl L1 @),
so that for |h| <1,

e — wll s gy < 2016 — w1y + / 6z — ) — p(a)|dz
< 2016 — wll s ey + | supp 6 + B sup é(x — ) — (a)]

which implies that limsupy,_,q [[Thw — w|| < 2infgccomn) [|¢ — w||p1(@ny = 0.
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Proposition 1.2.12.

(1) We have /' (R"™) D Ui<p<iooLP(R™), with a continuous injection of each LP(R™)
into ' (R™). As a consequence . (R™) contains as well all the derivatives in the
sense (1.2.12) of all the functions in some LP(R™).

(2) For u e CY(R") such that

(Ju(@)] + |du(z)]) (1 + |=|)~Y € L'(R™), (1.2.15)

for some non-negative N, the derivative in the sense (1.2.12) coincides with the
ordinary derivative.

Proof. (1) For u € LP(R") and ¢ € . (R™), we can define

(u, @) 7,9 = / u(z)¢(r)d, (1.2.16)
which is a continuous linear form on .7 (R"):

[{w; @).| < [l o) |9 £ ey

n+1 n + 1
10l o @y < Sup (L4 [2)) # [¢(2)]) Crp < Crppr(), for k > ky = o
TER™

with pg given by (1.2.3) (when p = 1, we can take & = 0). We indeed have a
continuous injection of LP(R™) into .””(R™): in the first place the mapping described
by (1.2.16) is well-defined and continuous from the estimate

[(u, D) < llull e Con ppi,, (0)-

Moreover, this mapping is linear and injective from Lemma 1.2.10.
(2) We have for ¢ € .7(R"), xo € C°(R"™), xo = 1 near the origin,

0 0 0
A= <a—§7¢>y@y = —(u, aj>5”’vy’ = — /Rn u(x)a—j(x)dx

so that, using Lebesgue’s dominated convergence theorem, we find

A=— El_l}%i - u(a:)a—%(x)x()(ex)das.

Performing an integration by parts on C' functions with compact support, we get

A=t { [ @u@oleds + e [ ulw)ole)@a)(er)ds}.

e—04

n

with 0ju standing for the ordinary derivative. We have also

|u(2)(x)(D5x0)(€x)]dz < {19 x0) || Lo (rn) / u()|(1 + |2[)"dz pn(¢) < +o0,

R

so that 5
(S By = lim | (Ou)(@)d(@)xo(er)dr.

64)0_4_ R™
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Since the lhs is a continuous linear form on ./(R™) so is the rhs. On the other hand
for ¢ € C°(R™), the rhs is [, (0;u)(x)@(x)dx. Since C°(R™) is dense in . (R™), we
find that

<§—:Z7¢>M,y = /n(@u)(m)gxﬁ(:zc)algc7

since the mapping ¢ — [, (9;u)(x)d(x)dx belongs to #'(R™), thanks to the as-
sumption on du in (1.2.15). This proves that 2% = §;u. O

The Fourier transformation can be extended to ./ (R"™). We start with noticing
that for T, ¢ in the Schwartz class we have, using Fubini Theorem,

[ 1@t = [[ 1@ inas = [ 1@,
and we can use the latter formula as a definition.

Definition 1.2.13. Let T be a tempered distribution ; the Fourier transform T of
T is the tempered distribution defined by the formula

~

(T,0) 9.9 =(T,0) 9.7 (1.2.17)

The linear form 7 is obviously a tempered distribution since the Fourier transforma-
tion is continuous on .¥’. Thanks to Lemma 1.2.10, if T" € ., the present definition
of T and (1.1.1) coincide.

This definition gives that, with dy standing as the Dirac mass at 0, (do, ¢).».» = ¢(0)
(obviously a tempered distribution), we have

5o =1, (1.2.18)

since (8o, ) = (60, B) = B(0) = [ pla)dr = (L, ).

Theorem 1.2.14. The Fourier transformation is an isomorphism of .'(R™). Let
T be a tempered distribution. Then we have®

A

T=T, T=T. (1.2.19)
With obvious notations, we have the following extensions of (1.2.9),
DeT(€) =&T(€),  (DeT)(€) = (=)™ T(w)(€). (1.2.20)

Proof. We have for T € .

X ~
~ ~ A

(T, )79 =T, V.9 ={T,@) .0 = (T, D) 1.0 = (T, ) 1,7,

O>

3We define T as the distribution given by (T, ) = (T, @) and if T € ., T is also a tempered
distribution since ¢ + ¢ is an involutive isomorphism of ..
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where the last equality is due to the fact that ¢ — ¢ commutes® with the Fourier
transform and (1.2.6) means

B¢

=,
a formula also proven true on .’ by the previous line of equality. Formula (1.2.9)
is true as well for T € . since, with ¢ € . and ¢, (§) = £*¢p(€), we have

-~ ~

(DT, @) g = (T, (=) D®) 5 o = (T, 03 1.0 = (T, 00} 1.7,

and the other part is proven the same way. O

The Fourier transformation on L!'(R")
Theorem 1.2.15. The Fourier transformation is linear continuous from L'(R™)

into L>°(R™) and for u € L'(R"), we have

ﬁ(f) = /eQi”’Eu(x)dx, HﬁHLoo(Rn) S HUHLI(Rn) (1221)

Proof. Formula (1.1.1) can be used to define directly the Fourier transform of a
function in L'(R") and this gives a L>(R") function which coincides with the Fourier
transform: for a test function ¢ € .#(R"), and u € L'(R™), we have by the definition
(1.2.17) above and Fubini theorem

(i )rnr = [ule)pta)ds = [ [ ut@yple)e 2o duds = [T©)(6)at

with a(¢) = [ e %™ €u(z)dr which is thus the Fourier transform of w. O

The Fourier transformation on L?(R")

Theorem 1.2.16 (Plancherel formula).

The Fourier transformation can be extended to a unitary operator of L*(R™), i.e.

there exists a unique bounded linear operator F : L*(R™) — L*(R"™), such that for

u € L (R"), Fu=1 and we have F*F = FF* = Id2@ny. Moreover
F*=CF=FC, F’C=Idpgn, (1.2.22)

where C'is the involutive isomorphism of L*(R™) defined by (Cu)(z) = u(—=z). This
gives the Plancherel formula: for u,v € L*(R"),

/ aw(&)o(€)de = / u(x)v(z)dz. (1.2.23)

Rn

Proof. For test functions ¢, € .#(R™), using Fubini theorem and (1.2.6), we get®
(@) = [ H€F@E = [ [ O odode = (. s,

Ut p € .7, we have §(¢) = [ e 2™ Ep(—a)dr = [ ¥ p(x)dr = G(—E) = G(£).
SWe have to pay attention to the fact that the scalar product (u,v): in the complex Hilbert
space L?(R™) is linear with respect to u and antilinear with respect to v: for A\, u € C, (\u, puv) 2 =

A (u,v) 2.




1.2. FOURIER TRANSFORM OF TEMPERED DISTRIBUTIONS 15

Next, the density of .# in L? shows that there is a unique continuous extension
F of the Fourier transform to L? and that extension is an isometric operator (i.e.
satisfying for all u € L*(R"), ||Ful|z2 = ||lul|z2, i.e. F*F =1d;2). We note that the
operator C' defined by Cu = 4 is an involutive isomorphism of L?(R") and that for
ue SR,

CF*u=u= FCFu= F*Cu.

By the density of .(R") in L?*(R"), the bounded operators
CF?, 1dpegny, FCF, F?C,
are all equal. On the other hand for u, ¢ € .7 (R™), we have

/ / 2 drd¢ = (CFu, )

so that F*u = C'Fu for all v € .% and by continuity £ = C'F' as bounded operators
on L*(R"), thus FF* = FCF = Id. The proof is complete. O

(F*u, 01 = (u, Fo) 2 = / (2) (@) dz

Some standard examples of Fourier transform

Let us consider the Heaviside function defined on R by H(z) = 1 forz > 0, H(z) =0
for z < 0 ; as a bounded measurable function, it is a tempered distribution, so that
we can compute its Fourier transform. With the notation of this section, we have,
with & the Dirac mass at 0, H(z) = H(—=x),

1

A+fi=i=0, A-H=sign —=-—24(€ = Dsian(€) = &signt.
i 2w

We note that R + In|z| belongs to .#/(R) and® we define the so-called principal
value of 1/x on R by

pv(é) = C%(ln |z|), (1.2.24)
so that, (pv i,(b) = /(b )In |z|de = — hrgl+ . &' (z) In |x|dz
1
—0
= lim gb(x)ldx. (1.2.25)

€—>0+ |$‘ZE xr

This entails §(s/ig\n§ — Lpu(1/€)) = 0 and from Remark 1.2.17 below, we get

— 1
sign§ — Epv(l/f) = ¢dy,

with ¢ = 0 since the lhs is odd”.

For ¢ € 7 (R), we have (In |z],¢(2)) 7/ (), 7®) = [z ¢(z)In |z|dz.
TA distribution T on R™ is said to be odd (resp. even) When T = —T (resp. T).
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Remark 1.2.17. Let T € .'(R) such that 27 = 0. Then we have T' = ¢dy. Let
¢ € L (R) and let xo € C(R™) such that xo(0) = 1. We have
¢(x) = xo()o(x) + (1 = xo(z))d(x)-

Applying Taylor’s formula with integral remainder, we define the smooth function

¥ by )
p(a) = LD

and, applying Leibniz’ formula, we see also that ¢ belongs to .#(R). As a result

<T7 ¢>Y’(R),Y(R) = (T, Xo¢> = (T, X0 (<Z5 - ¢(0))> + ¢(0)<T7 Xo) = ¢(0><T7 X0>7

since the function z — xo(z)(d(z) — #(0)) /2 belongs to C=*(R). As a result T’ =
<T7 XO)CSO-

We obtain
() = —po (1.2:20)
sign(§) = —pv— 2.
g iﬂ'p ¢
/(1\) /sign ¢ (1.2.27)
v(—) = —isign 2.
p - gng,
s 11 11
H=—+4—p(=s) = —. 1.2.28
SR Tl Rl Py (1.2.28)
Let us consider now for 0 < a < n the L{ _(R") function u,(z) = |z[*™ (|=| is

the Euclidean norm of z); since u, is also bounded for |z| > 1, it is a tempered
distribution. Let us calculate its Fourier transform v,. Since u, is homogeneous of
degree @ — n, we get that v, is a homogeneous distribution of degree —a. On the
other hand, if S € O(R") (the orthogonal group), we have in the distribution sense®
since u,, is a radial function, i.e. such that

0a(5§) = va(§). (1.2.29)

The distribution |£|“v, () is homogeneous of degree 0 on R™\{0} and is also “radial”,
i.e. satisfies (1.2.29). Moreover on R™\{0}, the distribution v, is a C'! function which
coincides with®

/ e~ o (@) |2 + €7 / e 2| Dy PN (X () 2] ) e,

where xo € C°(R") is 1 near 0 and x; =1 —xo, N € Na+1 < 2N. As a result
|€]%v0 (&) = ¢ on R™\{0} and the distribution on R™ (note that oo < n)

T = va(§) — calé]™

8For M € Gl(n,R/),_\T € ' (R"), we define (T'(Mx), ¢(z)) = (T(y), (M ~1y))| det M|~

9 We have iy = XoUa + X1ta and for ¢ supported in R™\{0} we get,

(Xt 8) = (Xaal€l?N, 6(€)1€172Y) = (|Da PN X1 tha, (E) ]2,
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is supported in {0} and homogeneous (on R™) with degree —«. The condition
0 < a < n gives v, = |7 To find ¢,, we compute

[ aperemtan =, [ e
n Rn
which yields

(07 a +oo 2 too 2
2_1F(§)7r_5 = / r e ™ dr = ca/ o le T dy
0 0

= ca2’1F(n _—

2

o (159)
We have proven the following lemma.

Lemma 1.2.18. Letn € N* and a € (0,n). The function u,(z) = |x|*™™ is L] (R™)
and also a temperate distribution on R™. Its Fourier transform v, is also Lj, (R™)

and given by
()

o)

2

va(§) = [¢]7 w5

Fourier transform of Gaussian functions

Proposition 1.2.19. Let A be a symmetric nonsingular n X n matriz with complex
entries such that Re A > 0. We define the Gaussian function va on R™ by va(z) =

e~™A%2) - The Fourier transform of va is
Ua(€) = (det A)" 12 mATIE8), (1.2.30)
In particular, when A = —iB with a symmetric real nonsingular matriz B, we get
Fourier(¢™ B> (&) = 0_5(¢) = | det B| /2T sign Be—im(B7168) (1.2.31)

Proof. Let us define T7 as the set of symmetric n X n complex matrices with a
positive definite real part (naturally these matrices are nonsingular since Az = 0 for
x € C" implies 0 = Re(Az,7) = ((Re A)x, 7), so that T3 C T,).

Let us assume first that A € T7; then the function v, is in the Schwartz class
(and so is its Fourier transform). The set Y% is an open convex subset of C"("1)/2
and the function Y% 3 A — v;(€) is holomorphic and given on T* N R +D/2 by
(1.2.30). On the other hand the function

T*+ 3 A efétraceLogAefTr(A_lé,E%

is also holomorphic and coincides with previous one on R™"+1)/2

tinuation this proves (1.2.30) for A € T*.

If A e Ty and ¢ € L(R"), we have (U4, ¢9) 9 .» = [va(z)p(x)dr so that
T, > A+ (0a, ) is continuous and thus (note that the mapping A — A7l is an
homeomorphism of Y ), using the previous result on Y7,

. By analytic con-

<@’ SO> = li%i_ <®’ 90> = Eli%i 6_%traceLog(A-‘reI)e—w((A-i-EI )~le€) (f)df,
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and by continuity of Log on T, and dominated convergence,

YO —1 trace Lo —m(A~1
() = [ ebmestondemia e g

which is the sought result. O

Multipliers of .#/(R")

Definition 1.2.20. The space 0)(R") of multipliers of .(R") is the subspace of
the functions f € C*°(R™) such that,

Va € N*,3C, > 0,IN, €N, Vo eR", [(02f)(2)] < Co(l + |z[)™. (1.2.32)

It is easy to check that, for f € &) (R"™), the operator u — fu is continuous
from .(R") into itself, and by transposition from .#’(R") into itself: we define for
T e (R, feOy(R),

(fT,0) 9.9 =T, fp)s o,

and if p is a semi-norm of .%, the continuity on . of the multiplication by f implies
that there exists a semi-norm ¢ on . such that for all ¢ € .77, p(fy) < q(p). A
typical example of a function in @, (R") is €'”(*) where P is a real-valued polynomial:
in fact the derivatives of e’¥(*) are of type Q(x)e’™® where @ is a polynomial so

that (1.2.32) holds.

Definition 1.2.21. Let T, S be tempered distributions on R™ such that T belongs
to Oy (R™). We define the convolution 7" % S by

T+S="T8. (1.2.33)

Note that this definition makes sense since 7' is a multiplier so that TS is indeed
a tempered distribution whose inverse Fourier transform is meaningful. We have

(T % S, ) 1(mny, 7@y = (T * S, ) 1 (@ny, 7@y = (S, TP) 1 (emy, o (m)-

Proposition 1.2.22. Let T be a distribution on R™ such that T is compactly sup-
ported. Then T is a multiplier which can be extended to an entire function on C"
such that if supp T C B(0, Ry),

3Co, No > 0,¥¢ € C*,  |T(¢)] < Co(1 + [¢[)NoeFolmel, (1.2.34)

In particular, for S € '(R™), we may define according to (1.2.33) the convolution
TxS.

Proof. Let us first check the case Ry = 0: then the distribution 7" is supported at
{0} and thus is a linear combination of derivatives of the Dirac mass at 0. Formulas

(1.2.18), (1.2.20) imply that T is a polynomial, so that the conclusions of Proposition
1.2.22 hold in that case.
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Let us assume that Ry > 0 and let us consider a function yx is equal to 1 in
neighborhood of supp T' (this implies xT' = T') and

A~

(T, 0) 1,9 = (XT, @)1, = (T, X&) 7. (1.2.35)
On the other hand, defining for ( € C" (with z - { =Y z;(; for z € R"),

F(Q) = (T(2), x(x)e ) 11 . (1.2.36)
we see that F is an entire function (i.e. holomorphic on C"): calculating

F(C+h) = F(Q) = (T(x), x(x)e 2™ (e ™" — 1))

= (T(x), x(x)e 2™ (—2irx - h))

(T (@), y(z)e~2m< /0 (1 = 0)e=207rh g~ 2imz - h)?),

and applying to the last term the continuity properties of the linear form T', we
obtain that the complex differential of F' is

D (T(@), x(w)e ™ (=2ima;))dg;.

1<j<n
Moreover the derivatives of (1.2.36) are
F®(Q) = (T(x), x(x)e ™ (=2inz)*) 5 5. (1.2.37)

To evaluate the semi-norms of z — x(z)e 2"*¢(—2irz)* in the Schwartz space, we
have to deal with a finite sum of products of type

‘x”(@o‘x)(;z:)e*%”'c(—%ﬂ{)ﬂ‘ < (1 + ‘C‘)'Bl sup ‘x'y<aax>(x)e27r|x|\1m§||.
r€ER™

Ro+2¢

We may now choose a function xo equal to 1 on B(0,1), supported in B(0, o )

such that [|0%xo |~ < c¢(B)e P! with € = lffq. We find with

X(x) = xo(z/(Ro+¢€)) (which is 1 on a neighborhood of B(0, Ry)),

Suﬂg |x7(8ax)(aj)e2wlx||lmé“|| < (Ry + QE)M Suﬂg |(8axo)(y)627r(Ro+26)|Imq|
reR" yERn

< (Ro + 26)|7|627F(Ro+26)|ImC\C(Ooe*lal
Ry 2m(Ro+2720)| T 1+ [C]
= R 2— "Y‘ ﬂ—( 0+ 1+|C‘)‘ mC| |Oé|
( 0+ 1+’C’) € C(Oé)( RO )

< (3Ry)Pe2moltmllgtnRo () Ry (1 4 [¢)lel

yielding
[FO(Q)] < errfelimiloy (1 + [¢))™,
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which implies that R" 3 £ — F(§) is indeed a multiplier. We have also

(LX) = (T(@) x(@) [ $(E)e™*7dE) .7

Since the function F' is entire we have for ¢ € C°(R"), using (1.2.37) and Fubini
Theorem on ¢!(N) x L'(R"),

/n €)de = (T( 227Tx)k>/ 5k¢(§)§ (1.2.38)

k>0 uppo K

On the other hand, since ¢ is also entire (from the discussion on F or directly from
the integral formula for the Fourier transform of ¢ € C°(R™)), we have

(T, x0) = (T(x), x(z) Y_($)P(0)2*/k!)

= (T(x), x(x) lim (&) (0)"*/ k1)

convergence in CZ°(R™)

= lim > (T(x),x(x)z"/k!) / B(€)(—2im€) dE.

Thanks to (1.2.38), that quantity is equal to [, F(£)@(£)dé. As a result, the tem-
pered distributions 7" and F' coincide on C2°(R™), which is dense in .%(R™) and so
T = F', concluding the proof. n

1.3 The Poisson summation formula

Wave packets
We define for x € R™, (y,n) € R" x R”

pyn(z) = onfdem(w=y)? Q2im(z—y)n — gn/de=m(@—y=in)?*o=mn*

(1.3.1)

where for ¢ = (¢1,...,¢,) €C?, 2= Z QJQ (1.3.2)

1<j<n

We note that the function ¢, , is in .(R") and with L? norm 1. In fact, ¢, , appears
as a phase translation of a normalized Gaussian. The following lemma introduces
the wave packets transform as a Gabor wavelet.

Lemma 1.3.1. Let u be a function in the Schwartz class . (R"™). We define

(Wu)(y,n) = (u, pyn)r2@ny = 2* / w(z)e mEY) g2y gy (1.3.3)

= 2n/4/U(m)e_”(y_i"_$)2dxe_””2. (1.3.4)
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For u € L*(R™), the function Tu defined by
(Tu)(y + in) = ™ Wu(y, —n) = 2"/* / w(z)e "I gy (1.3.5)

is an entire function. The mapping u — Wu is continuous from . (R") to ./ (R*")
and isometric from L*(R™) to L*(R*). Moreover, we have the reconstruction for-
mula

wa) = [[ e (e)dudr (130
Proof. For u in #(R™), we have

(Wu)(y,n) = ™0 (n,y)

where Q' is the Fourier transform with respect to the first variable of the . (R?)
function Q(z,y) = u(z)e ™= *2%/4 Thus the function Wu belongs to .7 (R?"). It
makes sense to compute

Qin/Q(W'LL, WU)LQ(RQn) =

615(§l+ u(q;l)E(IQ)e_ﬂ'[(zl—y)2+($2—y)2+2i($1—$2)77+52772]dyd77dx1dx2' (1.3.7)

Now the last integral on R*" converges absolutely and we can use the Fubini theorem.
Integrating with respect to n involves the Fourier transform of a Gaussian function
and we get e e “@1-22)” Gince

2(x1 — y)® +2(xa — y)? = (z1 + 22 — 29)° + (21 — 12)%,

integrating with respect to y yields a factor 2=™/2. We are left with

(WU, WU)Lz (R27)

= 111(])[1 w(zy) U(ay)e "@1mw2) 2o e gy gy (1.3.8)
e—04

Changing the variables, the integral is

lim [ u(s+ et/2) u(s — et/2)e ™2™ dtds = ]| 2 gy

€~>O+

by Lebesgue’s dominated convergence theorem: the triangle inequality and the es-
timate |u(z)] < C(1+ |z])™""! imply, with v = u/C,

lu(s +et/2) v(s —et/2)] < (14 |s+et/2)) " (1 +|s+et/2)) "
< (L4 [s+et/2[ +|s —et/2)) "
< (1+2lsh)

Eventually, this proves that for u € . (R"),

Il gy = lal2eeny (1.3.9)



22 CHAPTER 1. BASIC FOURIER ANALYSIS

so that by density of .#(R") in L*(R"),
W L*(R™) — L*(R*™)  with  W*W = id2(rn). (1.3.10)

Noticing first that [[ Wu(y,n)py,dydn belongs to L?*(R™) (with a norm smaller
than ||[Wu| 11 gen)) and applying Fubini’s theorem, we get from the polarization of
(1.3.9) for u,v € L(R"),

(u, ) p2mny = (W, Wo) 2 geny = / Wu(y,n)(@yn, v) 2@y dydn

= ( / Wu(y,n)eyndydn, v)r2@n),

yvielding u = [[ Wu(y,n)py.,dydn, which is the result of the lemma. O

Poisson’s formula

The following lemma is in fact the Poisson summation formula for Gaussian functions
in one dimension.

Lemma 1.3.2. For all complex numbers z, the following series are absolutely con-

Z €—7r(z+m)2 — Z 6—7rm262i7rmz' (1311)

meZ meZ

verging and

Proof. We set w(z) = ZmEZZ e~™(=+m)” The function w is entire and 1-periodic since
for all m € Z, z — e ™™ ig entire and for R > 0,

sup |€77r(z+m ’ < sup |€ TZ |ef7rm26271'|m|R c gl(Z)

|2|<R |2|<R
Consequently, for z € R, we obtain, expanding w in Fourier series'’,

§ : szkz/ —2i7rkmdx

keZ
We also check, using Fubini’s theorem on L*(0,1) x ¢*(Z)

/ ( 217rkxd$ o Z / —7(x+m)? 72i7rkxd$
0

meZ

m+1 5
— E / e—7rt e—2m’ktdt
m

meZ

_ 42 9 _ 2
:/6 Tt e 2imkt —e 7k )
R

10 Note that we use this expansion only for a C° 1-periodic function. The proof is simple and
2itks _ sinT(2N+1)z
sinmx

requires only to compute 14+2Re ), ye . Then one has to show that for a

smooth 1-periodic function w such that w(0) = 0,

. Lsin Az
lim -
A=+oo Jo sinmz

w(z)dx =0,

which is obvious since for a smooth v (here we take v(z) = w(z)/sinnz) |f0 )sin(Az)dx| =
O(\~1) by integration by parts.
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So the lemma is proven for real z and since both sides are entire functions, we
conclude by analytic continuation. O]

It is now straightforward to get the n-th dimensional version of the previous
lemma: for all z € C", using the notation (1.3.2), we have

Z e—ﬂ(z+m)2 — Z e—wm262i7rm~z‘ (1.3.12)

meZL™ mezZ™

Theorem 1.3.3 (Poisson summation formula). Let n be a positive integer and let
u be a function in #(R™). Then we have

> ulk) =Y a(k), (1.3.13)

where U stands for the Fourier transform of w. In other words the tempered distri-
bution Dy = ) cyn O s such that Dy = Dy.

Proof. We write, according to (1.3.6) and to Fubini’s theorem

Spezrulk) = > / Wu(y,n)eyq(k)dydn

kez™

- // Wuly.n) D pyn(k)dyds.

kez™

Now, (1.3.12), (1.3.1) give

Z Pyn(k) = Z Pyn(k),

kez™ kez™

so that (1.3.6) and Fubini’s theorem imply the result. O

1.4 Periodic distributions

The Dirichlet kernel
For N € N, the Dirichlet kernel Dy is defined on R by

Dy (CL’) _ Z e2i7rka:

—N<k<N
. ) 2itNz __ 1
=1+2Re Z 62mkx = 1+2Re (62171':1:6%7”6 ] )
1<k<N 247, e =
=1 + 2 Re(€227rx—z7rz+z7rNa:) SH'I(W :C) -1 + 92 COS(TI'(N + 1)1’) SH.I(T(' l‘)
sin(rz) sin(mx)
sin(mr;(2N + 1))

14 R <sin(7T:L‘(2N +1)) - sin(mc)) =

sin(mx) sin(mx)
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and extending by continuity at € Z that 1-periodic function, we find that

sin(rz(2N + 1))

Dy (z) = Sin(r2) (1.4.1)
Now, for a 1-periodic v € C*(R), with
1
(Dn *u)(z) = / Dy (x — t)u(t)dt, (1.4.2)
0
we have
. ! . ' (v(x —1t) —v())
N1—1>I—Ii-1c>o ) Dy(z — t)v(t)dt = v(z) + NEIEOO i sin(mt(2N + 1)) S () dt,

and the function 6, given by 6,(t) = U(J;S;fz;:))(l')

Riemann-Lebesgue Lemma 1.1.1, we obtain

is continuous on [0, 1], and from the

1

1
: 2imkx —2imkt . : o —
Nl_l)I_Ii_loo 5 e /0 e v(t)dt = N1—1>I-I|-100 Dy (z — t)o(t)dt = v(x).

~N<k<N 0

On the other hand if v is 1-periodic and C'*!, the Fourier coefficient

for k #0 1
~= 1 [efZiﬂktU(w]if(l) + / 1 672i7rktv/<t)dt
2imk - 0 2imk ’

and iterating the integration by parts, we find c,(v) = O(k7'7!) so that for a 1-
periodic C? function v, we have

Z e e (v) = v(x). (1.4.3)

keZ

Pointwise convergence of Fourier series

Lemma 1.4.1. Let u: R — R be a I-periodic L} (R) function and let xy € [0, 1].

loc
Let us assume that there exists wy € R such that the Dini condition is satisfied, i.e.

dt < +o0. (1.4.4)

/1/2 |u(zo +t) + u(xg — t) — 2wy
t
0

Then, Ty 100 D <y e (u)e?™ 0 = o with ¢ (u) = fol e~ 2tk (t)dt.

Proof. Using the above calculations, we find

Usin(wt(2N + 1))
sin(7t)

(u(wog —t) — wo)dt,

>~ (e ™ = (Dy x u)(wo) = wo + /

|k|<N
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so that, using the periodicity of u and the fact that Dy is an even function , we get

12 gin (7
I

(u(zo — t) + u(mo + t) — 2wp)dt.

Thanks to the hypothesis (1.4.4), the function
u(zg —t) + u(zo +t) — 2wy
sin(7t)

belongs to L'(R) and Riemann-Lebesgue Lemma 1.1.1 gives the conclusion. O]

Theorem 1.4.2. Let u: R — R be a 1-periodic L}, function.

(1) Let zy € [0,1],wy € R. We define wyyw,(t) = |u(zo +t) + u(xo — t) — 2wy| and
we assume that

wxo’wo(t)7 < +00. (1.4.5)
0

Then the Fourier series (Dy * u)(xg) converges with limit wy. In particular, if
(1.4.5) is satisfied with wy = u(xg), the Fourier series (Dy * w)(xg) converges with
limit u(xg). If u has a left and right limit at o and is such that (1.4.5) is satisfied
with wy = 1 (u(xg + 0) + u(ze — 0)), the Fourier series (Dy * u)(zo) converges with
limit 5 (u(zo — 0) + u(zo + 0)).
(2) If the function u is Holder-continuous'', the Fourier series (Dyxu)(x) converges
for all x € R with limit u(x).
(3) If u has a left and right limit at each point and a left and right derivative at each
point, the Fourier series (D *u)(x) converges for all x € R with limit

%(u(x —0) +u(z +0)).
Proof. (1) follows from Lemma 1.4.1; to obtain (2), we note that for a Holder con-
tinuous function of index 6 €]0, 1], we have for ¢ €]0,1/2]

t W (t) < O e LY([0,1/2)).
(3) If u has a right-derivative at xg, it means that

u(xo +t) = u(xo + 0) + u,.(xo)t + teo(t), tl_igl €o(t) = 0.
+

As a consequence, for ¢ €]0,1/2], ¢~ |u(zo +t) — u(xo + 0)| < |ul(x0) + €o(t)]. Since
limg o, €o(t) = 0, there exists Ty €]0,1/2] such that |eg(t)] < 1 for t € [0,Tp]. As a
result, we have

1/2
/ tHu(wo +t) — u(ze + 0)|dt
0

T 1/2
< / (Jul.(xo)| + 1)dt +/ lu(xo +t) — u(zo + 0)|dtTy < +oo,
0 T
be- The integral f01/2 tHu(zg — t) — u(zg — 0)|dt is also finite and
the condition (1.4.5) holds with wy = (u(zo — 0) + u(zo + 0)). The proof of the
lemma is complete. [

since w is also Ll

1 Holder-continuity of index 6 €]0,1] means that 3C > 0,Vt, s, |u(t) — u(s)| < C|t — s|°.
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Periodic distributions

We consider now a distribution u on R™ which is periodic with periods Z". Let
X € CX(R™ R, ) such that x = 1 on [0,1]". Then the function y; defined by

xi(@) = x(z—k)

kezn

is O periodic'? with periods Z". Moreover since

R'sze [] IE DESIR

1<j<n

the bounded function y; is also bounded from below and such that 1 < yi(x). With
Xo = X/X1, we have

S xol@—k) =1, xo€CXRM).

kezn

For p € C°(R™), we have from the periodicity of u

() = 3 (u(@), p@)xolz — k) = S (u(@), oz + k)yo(x)),

kezn | =AL

where the sums are finite. Now if ¢ € Z(R"), we have, since xo is compactly
supported (say in |z| < Ry),

(@), p(z + k)xo@))| < Co  sup ['(z+ k)]

|a|<No,|z|<Ro

<Co sup |1+ Ro+ e+ k)" o'z + k)|(1+ k)

|| <No,|z|<Ro

< polp)(1 + [k~

where py is a semi-norm of ¢ (independent of k). As a result u is a tempered
distribution and we have for ¢ € .(R"), using Poisson’s summation formula,

(u, ) = (u(x), Y ola+ k)xo(w ), > Uk
—,_/
keZn k) kezZn
Now we see that 1/1$ = Jan (x4 t)xo(z)e 2™ dt = xo(x)e*™*@(k), so that
(u,0) = Y (u(z), xo(x)e™ ™) (k)
kezr

which means

u(x) = Z (u(t), Xo(t>€2iwkt>672iﬂ-lm _ Z (u(t), Xo(t)ef%ﬂ'kt>€2i7rkx'

kezn keZn

12Note that the sum is locally finite since for K compact subset of R, (K — k) Nsupp xo = 0
except for a finite subset of k € Z™.
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Theorem 1.4.3. Let u be a periodic distribution on R™ with periods Z". Then u is a
tempered distribution and if xo is a C2°(R™) function such that )y, ;. Xo(xr—k) =1,
we have

u= Z cp(u)e? ™ (1.4.6)
kezZm
=Y cp(w)de, with cp(u) = (u(t), xo(t)e ™), (1.4.7)
kezn
and convergence in ' (R™). If u is in C™(R™) with m > n, the previous formulas
hold with uniform convergence for (1.4.6) and

cp(u) = / u(t)e 2™ dt, (1.4.8)
[0,1]™

Proof. The first statements are already proven and the calculation of % is immediate.
If u belongs to Li,, we can redo the calculations above choosing xo = 1j1» and get
(1.4.6) with ¢ given by (1.4.8). Moreover, if u is in C™ with m > n, we get by
integration by parts that cg(u) is O(|k|™™) so that the series (1.4.6) is uniformly

converging. O

Theorem 1.4.4. Let u be a periodic distribution on R™ with periods Z™. If u € L3,
(i.e. w € L*(T™) with T" = (R/Z)"), then

u(z) = Z cr(w)e®™ ™ with e (u) :/ u(t)e 2t (1.4.9)
kezn [0,1]™

and convergence in L*(T™). Moreover ||u||%2(Tn) = > ez lce(w)|?. Conversely, if the

coefficients cy(u) defined by (1.4.7) are in (*(Z"), the distribution u is L*(T")

Proof. As said above the formula for the ¢ (u) follows from changing the choice of
Xo to 1jg» in the discussion preceding Theorem 1.4.3. Formula (1.4.6) gives the
convergence in ./(R"™) to u. Now, since

/ 62i7r(k—l)tdt — 6k,l
[0,1)"

we see from Theorem 1.4.3 that for u € C"T(T"),

() ey = 3 lewlw) 2
kezn
As a consequence the mapping L*(T") 2 u + (cx(u))rezn € €*(Z™) is isometric
with a range containing the dense subset ¢'(Z™) (if (cp(u))pezn € (H(Z"), u is a
continuous function); since the range is closed'®, the mapping is onto and is an
isometric isomorphism from the open mapping theorem (see e.g. Theorem 2.1.10 in

[14])- O

131f A : Hy — Ho is an isometric linear mapping between Hilbert spaces and (Auy) is a converging
sequence in Hg, then by linearity and isometry, the sequence (uy) is a Cauchy sequence in H;, thus
converges. The continuity of A implies that if u = limy uy, we have

v = lii:n Auy, = Au, proving that the range of A is closed.
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1.5 Convolution of L? functions

Let u,v € L*(R"™). We consider [u(y)v(z — y)dy = w(u,v)(x), which makes sense
since [ |u(y)v(z —y)|dy < ||ullz2]Jv]|z2 < +o0, so that w(u,v) € L>(R™). Moreover
w(u,v) € CY(R™) since, with (r,w)(z) = w(x — h), we have

w(u,v)(z 4+ h) —w(u,v)(x) = /U(y)((T—hv)(ﬂf —y) —v(z —y))dy,
and thus
|w(u, v)(z + h) — w(u,v)(@)] < [lul| 2@ [T-rv — V| L2@n),

and since' limy_q |70 — v||f2@®n) = 0, we get the uniform continuity of w(u,v).
The reader may check the chapter 6 in [15] to see that w(u,v) is the convolution
of w with v and that w(u,v) = w(v,u) by a change of variables. However, we
have to pay attention to the fact that we have given earlier (Definition 1.2.21)
another definition of the convolution when u € &'(R"),v € D'(R™), and we have to
verify that these definitions coincide when v € L2 (R™),v € L*(R"). In fact, for

comp

u,v € L*(R"), ¢ € C°(R") we have from the Fubini theorem

/w(u,v)(az)w(m)dm = // u(x)v(y)p(xr + y)dzdy, (1.5.1)
since with w(z) = [ |v(y)lle(z +y)ldy = w(l¢], [9])(x), we have’

lw(lels [oDllzz < llolle2 el

/ [u() o)l + y)ldedy < [lul| 2 llwll 2 < flull2{lv][z2 el < +o0,

and (1.5.1) gives w(u,v) = u * v, where the convolution is taken in the distribution
sense. We have proven the first part of the following lemma.

Lemma 1.5.1.
(1) The mapping L*(R™) x L*(R™) 3 (u,v) = u*xv € C°(R™) N L>®(R") as defined
above is symmetric and

||U * U“Loo(Rn) S ||u||L2(Rn)||v||L2(Rn) (152)

YFor v € L2(R™),p € COR™), Thv — v = (v — ) + Th(p) — ¥ + ¢ — v, and thus
v = wllzz < 2ljv = @llzz + I () = ¢llez = Timsup [[mo = vflp2 < 2o = ]2z,
—0
and since C%(R") is dense in L?(R™) this implies limy, o ||7v — v||z2 = 0.

15This follows from Young’s inequality (see e.g. the Théoréme 6.2.1 in [15]) but there is a simpler
argument: for wy € LY, wy € L2, then wy * wy € L? with ||wy * wa||p2 < |Jwi||p1||we| p2: we have

/ \ [wrwata )y

2
d < / o[22 / s ()] w2 (& — ) Py = [ |2 ]2
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and coincides with the convolution in the distribution sense when u (or v) is com-
pactly supported.
(2) For u,v € L*(R™), we have u * v = Ud.

N.B. The formula (2) is already proven for u € &'(R"),v € 2'(R"™); here, we know
that both sides of the equality makes sense, since u * v € L*(R") and thus is a
tempered distribution whose Fourier transform has a meaning. On the other hand,
@d is a product of L? functions and thus is a L' function.

Proof. We shall see that an approximation argument, the continuity property ex-
pressed by the inequality (1.5.2) will imply the result. For ¢ € ¥ (R™), we have
with x € C(R"), equal to 1 near 0 and xx(z) = x(z/k),

(Ux0,0) 1 7 = (UxV,Q) 1 o = /(u xv)(x)p(x)dr = lim [ (xpu *v)(x)p(x)de,

k—+4o00

since xxu tends to u in L*(R™) and thus

/ (Ot — w) % 0) (2)p()|dz < / (@) el — [l 2.

On the other hand, we get, since xzu,v € L*(R"),
[ @)@t = (G ) s = (G0

= /(FXkU)(x)(FU)(JJ)SO(I)dx = (F(xxu), pFv) 2 — (Fu, oFv) 2,

k—4o00

a limit which is equal to [(Fu)(x)(Fv)(x)p(z)dz. This completes the proof of (2)
in the lemma. L

1.6 Sobolev spaces

Definitions, Injections

For £ € R", we define
(&) = VI+IEP. (1.6.1)

It is easy to see that this function as well as all functions £ — (£)® when s € R
are elements of the space of multipliers &), as given by the definition 1.2.20. In
particular, it means that for v € #/(R"), the product (£)*u(§) makes sense and
belongs to .#/(R").

Definition 1.6.1. Let s € R. We define the Sobolev space H*(R") as

H*(R") = {u € Z'(R"), (€)"u(¢) € L*(R")}. (1.6.2)
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Proposition 1.6.2. Let s € R. The space H*(R"™) equipped with the scalar product

(u, ) e my = /(ﬁ)%ﬂ(&)A( )d§ = (a(€)(€)*, 0(E)(E)°) r2m); (1.6.3)

is a Hilbert space. The space . (R") is dense in H*(R™).

Proof. 1t is obvious that (u, v)gs®n) is a sesquilinear Hermitian and positive-definite
form: note in particular that 0 = (u, u) gs(en) = [[4(§)(€)"[|72gny implies a(£)(€)°* =0
in L?(R") and thus in .%/(R"), so that we can muliply that identity by the multiplier
(€)7°, get & = 0 and thus u = 0. On the other hand, if (ug)r>1 is a Cauchy sequence
in H*¢(R"), the sequence (vj,)i>1, vi(€) = 1(£)(€)* converges in L?(R"). Let v € L?
be its limit; the tempered distribution w defined by the product w(§) = () ~*v(&) is
such that u = w € H*(R") since (¢)*w(€) € L?: we have

lur = ullms = [[{€)° (&) — ()*w(E)llr2 = llok = vllz — 0,

and the result that H® is complete. Next we see that, since & — (£)°u(§) is in
S (R") C L*(R"), when u € . (R"), each H*(R") contains .(R"). To prove the
density of .7 (R"), we note that if u € (Z(R"))*+, i.e.

we IRV e SR, [ (PR = o
this'® implies V¢ € Z(R"), (4, V) 71(rn), 7@ = 0, L.e. & = 0 as a tempered distri-
bution, thus u = 0. O

Theorem 1.6.3. . Let s; < sy be real numbers. Then H®2(R™) C H**(R") with a
continuous injection: for u € H**(R™) we have

HSQ(R")' (].64)

lull o1 @y < lul

For a multi-index o € N™ with |a| = m, the operator 0% is continuous from H®*(R™)
into H~™(R™).

Proof. The inequality (1.6.4) holds true for u € .(R"). Now if u € H*?, u = limy uy,
in H*2 with u, € Z(R"); from (1.6.4) on .#(R"), we see that (uy) is a Cauchy
sequence in H®', thus converges to v € H*'. Now the convergence in H* implies the
weak-dual convergence in ./(R"), since for ¢ € .(R"), Y € L (R") with

(U, @) 71®m), 7 ®n) = (Gk, @) (@), @y = ((E)°T(E), (€)°G(€)) 12 = (up, V) .
—
P(E)(E)®

As a result, the sequence (ug) converges in the weak-dual topology on .#/(R"™) with
limit u (convergence in H*?) and limit v (convergence in H*'), thus u = v and the
injection property. The inequality (1.6.4) follows from its version with u € .(R")
and the density, and it implies the continuity. The last property follows from (1.2.9),
the density of .#(R™) in H*(R") and the inequality for m > 0, |£]"(€)*™™ < (£)°. O

16The mapping x +— X given by x(£) = (£)°x(£) is an isomorphism of .7 (R™).
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Identification of (H*)* with H~*

Let s € R. We consider now the following pairing

H*(R") x H*(R") — C (1.6.5)
(u,v) = (&) u(8), () 0(E)) L@y = T(u,v) -
so that
T (u, 0)| < flull s [[ol] - (1.6.6)
We see that it gives a mapping
¢ H*R") — (H*R")" (1.6.7)

defined by

(P(v), w) sy, ms = T(u,v), with |[|®W)||(gsy = sup |T(u,v)| = [[v||g--,

l[ull s =1

since the inequality supy,, .1 [T'(u,v)| < ||[v]|g- follows from (1.6.6) and, for v # 0,
taking u such that a(¢) = (£)720(¢)||lv||;L., we see that u € H* with [julx: =1
so that T'(u,v) = ||v|| g+, providing the equality. The mapping @ is isometric (thus
injective) and to prove that it is an isometric isomorphism, using the open mapping
theorem, it is enough to prove that ® is onto. Let us take Loy € (H*®)*: according to
the Riesz representation theorem, there exists uy € H® such that

(Lo, uaoy,ars = (u, wo) s = ((§)*0(€), (€)W (§)) 22 = ((€)°u(E), (€)™ ()™ (&) 12,

with vg € H™* since (£)*0y(&) = (£)*up(€) € L?, and this gives
<L0, u>(Hs)*’Hs = T(u,vo) = (I)(Uo),
and the surjectivity of ®;. We have proven the following theorem

Theorem 1.6.4. The pairing (1.6.5) gives a canonical isometric isomorphism ®
(1.6.7) from H—*(R™) onto the dual of H*(R™).

Continuous functions and Sobolev spaces

Theorem 1.6.5. Let m € N. Then
H™R") = {u € 2'(R"),Ya € N" such that |a] <m, 0%u € L*(R")}. (1.6.8)

Moreover, H™(R") is the completion of C>°(R™) for the norm

(Z ”agu”%2(R"))1/2' (1.6.9)

|a|<m
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Proof. Taking u € H™(R") in the sense of the definition 1.6.1, we get that u €
SR, (£)™a(€) € L2(R") and as a consequence @ € L2 _, Doy = £%4(¢) belongs
to L?(R") if |a| < m since

locy

/ €va(e) e < / (€2](€)[2de < +oo.

Conversely, if u satisfies (1.6.8), u belongs to L?(R") C ./(R"), and £*4(€) is in
L*(R") for |a| < m. We have also from Holder’s inequality

O =1+ > <1+ DY &M)n+nm, (1.6.10)

1<j<n 1<j<n

so that [(£)*™]a(¢)PdE < (”u”L?(R” + Y i<j<n DT ul32 Rn))(n + )™ < 4oo.
We have thus proven the first statement of the theorem and also that the Hilbertian
norms of H™(R") and (1.6.9) are equivalent. We have already seen in the proposition
1.6.2 that .#(R"™) is dense in H™(R™), with a continuous injection since for ¢ €
y(R")’

lollz. = / (€| p(6) 246) e < Clmpa(p), (1.6.11)

where p; is a semi-norm on .%(R").
Lemma 1.6.6. C°(R") is dense in Z(R").
Proof of the lemma. Let ¢ € ./ (R™) and x € C°(R™;[0,1]) equal to 1 on the unit

ball of R”, the sequence of functions ¢, € C:°(R") defined by ¢ (z) = x(z/k)p(z)
has limit ¢ in .7 (R"™): we calculate with the standard Leibniz formula

G =X 5 —k P07 (/%) (03) ()

B+y=a

so that

|2 (@?(sok — 90)) ()]
Z o ,k PHOE) (x/k) (07) ()] + |2 (x(x/k) — 1)(9%¢)(2)]

ﬂﬁﬂ_"}; la |z|>k
on its support

and

sup (@2 (o = @) (0)] < K p(O)C (G @) + = sup (1 + |z)z* (02 ¢) (2)],

proving that the sequence () converges to ¢ in #(R") and the lemma. O

The inequality (1.6.11) and the lemma give the density of C°(R™) in H*(R"): for
e > 0and u € H®, there exists ¢ € .7 (R") such that ||u—¢||gs < €/2 and for that ¢
there exists ¢ € C2°(R") such that ps(p — ) < 36071 implying llp — U||gs < €/2
and then ||u — ¢||gs < e. O
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If f € Oy (R™) (see the definition 1.2.20), we define the operator, called a Fourier
multiplier, f(D) on .#'(R™) by @ = f(&)u(¢) and we note that f(D) is an endo-
morphism of . (R"). The notation is consistent with the fact that for a polynomial
P on R", the differential operator P(D) is indeed the Fourier multiplier P(D).

Lemma 1.6.7. Let s,t € R. Then the Fourier multiplier (D)® is an isomorphism
from HSTH{(R™) onto H'(R™) whose inverse is (D)~*. If f € Oy is bounded, then
f(D) is an endomorphism of H*(R™). If m € N, H-™(R") is the set of linear
combinations of deriatives of order < m of functions of L*(R").

Proof. We assume first t = 0; we have indeed for v € H®, ||u||gs = ||[{(D)"u/||r2, and
for u € L?, ||ul|r2 = |[(D) *ul|g=, with (D)*(D)~* = (D) *(D)* = Idgr(rn . If t # 0,
we use the identity (D) = (D)~*(D)***, (valid on .#'(R")), so that

>S+t >7t

ot 2 » H,

\HO (D

~
~ ~

Now if f € Oy is bounded, f(D) is bounded on H? and the identity f(D) =
(D)=*f(D){D)* (valid on ./(R™)) proves the boundedness on H*. For the second
part, we consider for a multi-index a with |a| < m, the Fourier multiplier D* is
bounded from L? into H~™ from the theorem 1.6.3. With x;(&) = &(£)~, the
Fourier multiplier

1+ > x;(D)Dy)™

1<j<n

is an isomorphism from H® onto H~™. This implies that for u € H~™ Jv € L? such
that

u=(14+ > xj(D)D)"v =Y D*¥u(D)v

1<j<n || <m

with each 1, (D) bounded on L? as a product of x;(D). O
Theorem 1.6.8. Let s > n/2. Then H*(R") C C(OO) (R™) with continuous injection.

Proof. For u € H*(R"™), we have 4 € L*(R") and 4(&) = (£)~*(&)*a (&) with (£)™* €
LA(R"™), (&)*u(€) € L*(R™) so that & € L'(R™) and we can apply the Riemann-
Lebesgue Lemma . The injection is continuous since (1.2.21) applied to the L'
function u gives

lulli < fifl < ( / <5>28d5) - ( / <£>281ﬁ(€)l2dé) P ol (16,12

]
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Chapter 2

Littlewood-Paley decomposition,
Oscillatory integrals

2.1 The Littlewood-Paley decomposition
Let @9 € C°(R™), 1 > ¢o(&) > 0 such that
wo(§) =1 if [¢| <1 and ¢o(&) =0 if [£] > 2, po radial decreasing of |£].

We set
p(€) = wo(§) — wo(28).

The function ¢ is supported in the ring 1/2 < |£] < 2 : if [{] > 2, ¢(§) = 0 and if
1€] < 1/2, po(§) =1 = ¢p(2€) so that p(§) = 0. We have also 0 < ¢(&) < 1. We

define, for a positive integer v, ¢, to be

wu(§) = p(£/2")

which is supported in the ring {2"7! < [£] < 2Y"1}. We have then

0o ()eu(€) =0 if [y —p| > 2.

We set, for v € N,

S, = D euld).

0<u<v

and we have

S =)+ Y wo(€/2") — po(&/2"7Y),

1<p<v

so that
Su(€) = po(€/2°) =1 if ¢ <2 and 0if |¢] = 277,

Consequently, we obtain

1= Z@u(@

35
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Moreover, we get (with ¢_; = 0)

1= Z gou(ﬁ)goy(f) = Z PuPu—1 + (70;3 + PuPu+1

n=0

and thus .
1/3< ) @u6)?* <1,
n=0

the last inequality follows from 0 < ¢,(§) < 1. We'll use that ¢,(D,) is the
convolution with ¢(2"x)2"".

Theorem 2.1.1. Let s € R. Then there exists Cs > ¢, > 0 such that

Vu € H*(R™), cs||u|

e < Z lou(Da)ull 7o @ 2 < Csllullf-

Let p € (0,1). We define the space

|u2’) = u(z")]

C?(R") = {u € L™®(R"), S’;lp” T < +00}, (2.1.1)
|u(z’) — uf2")]
[ullco@ny = [[ull o @ny + ISIEE/ =2 (2.1.2)

For p € (0,1), C*(R™) equipped with the above norm is a Banach space; moreover,
there exists C' > ¢ > 0 such that

Vu e C*(R"),  cflul|cr@ny < sg%) |01 (Da)u| Loo @y 2 < Cul| comn).-
>

Proof. Defining the Besov space By (R") for s € R,p,q > 1 by
B (R") = {u€ SR, (27 o(D)ulliran), 0 € O}, (213)
the theorem is stating that
Vs € R, By o(R") = H*(R"), Vpe (0,1),B5 (R")=C"(R").

The first statement is quite obvious since for £ € supp o, we have 1 < (€) < 5'/2,
and for

5 E Supp@y, v Z 17 2—1 S 2 (1 + 221/ 2)1/2 <2€_> S (1 + 22V+2)1/2 S 51/2’

so that

1 2s —3|s 2
Sag &% <271 (o)

v>0

< Z 221/3 23| 8| Z 23|s| <§>2s

v>0 v>0
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Let us now assume that u € C?(R"), i.e. u is a continuous bounded function on R"
such that ||ul[ar < +00. Then, with ||u|lce = ||u||z= + ||u|/rr, we have

lou (D)ul|Loomny = |@(27-)2"" * | oo @ny < 2777 ||ul|co C(0),

since it is obvious for v = 0 and for v > 1, since ¢(0) = 0 (thus [ ¢ = 0), we have

(2727 s« u) (x) = / B2 (u(x — ) — ulx))dy,

which implies ||, (D)ulpeo@ny < [ 0(27y) |27 [|ul|ae [y|*dy = C(po)||ul|ar27*. Con-
versely if u € Bf, , then u=}_ -, ¢,(D)u and

00,00

lullie <D e (D)ulliee <Y 27 |lullpe, ...

v>0 v>0

so that u € L*>. Moreover for x, h € R", we have

[u(z +h) —u(@)] < Y (eu(D)u)(e+h) = (p(D)u)()[+2 Y 277 [|ullps, .-

14 14
|h|<2- |h|>2-7
N NG

/

=A(h) <Clh|?

/

On the other hand, with ¢ € C2°(R™),¢ = 1 on the support of ¢, ¥ = 0 near 0, so
that with v > 1, ¢,(§) = ¢, ()¥,(§) with 1, () = ¥(£277), Yo € CZ(R™), ¢ = 1

on the support of ¢y, we have

A(h) < Y 2nlhl|| Dy (D) (D)ull o=

hj<2-

<orlh| Y 227 Dy (D)eu(D)ul e
h<2

<2nlhl Y- 2leu(D)ulo
1<v
|h[<27¥

<2rlnl 3 20l
1<v
|h[<27¥

N
< Cllullpg, LRI (117,
so that |u(z + h) — u(x)| < C'|A[?||ul|gs, . and the sought result u € C”. O

Theorem 2.1.2. The space B}, (R") given by (2.1.3) has the following character-
ization: u € B, (R™) if and only if u € L>(R") and

lulli =  sup  |u(x +h)+u(z — h) — 2u(z)||h| " < +oo. (2.1.4)
2€R™ 0£hER™

There exists C > ¢ > 0 such that, Vu € B, ,(R"),

cllull s, . eny < lullzomqeny + ulh < Clull s,z (2.1.5)
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Moreover, if u € B, . (R"), 3C > 0 such that
Vo € R*"Vh € R", |u(z + h) —u(x)| < C|h|(1+1n(|h]™")). (2.1.6)

We define Lip(R™) = {u € L*(R"),Vu € L>®(R")}; this is a Banach space for the
norm ||ul| e wny + || V|| Loomny. The inclusion Lip(R") C B, ., is continuous and
strict.

Proof. Let us consider u € L>(R") such that |Juf|; < +o0c. Then we have

l@u (D)ul| ooy = [[P(27)27 ]| oo ey < 277 ([t e + Jull)C(00),
since it is obvious for v = 0 and for v > 1, since p(0) = 0 (thus [ ¢ = 0), we have,
using that ¢ is even,

2(p(27)2"" % u)(x) = /95(2”y)2”" (u(z —y) +ulz +y) — 2u(w))dy,

which implies

2|lspu (D)ul| oo gry < / [2(27y) |27 [lulls [yldy = 2C (o) [lulli 27",

and the first inequality in (2.1.5). Conversely if u € Bl , then u =37 _ ¢, (D)u

and
[ullzee <Y len(Dullpe <27 lullpy, . = 2lullp

v>0 v>0

so that u € L*°. Moreover for x, h € R", we have

lu(z + h) +u(z — h) — 2u(x)| <
> l(@(Dyu)(@ + h) + (pu(D)u)(z — h) = 2(p,(D)u)(x)]

v
|p|<27

J/

+4 > 27 Jullpy -

v
|h|>2—7

=A(h)

<Clh|

We set v, () = (¢, (D))u(x) and we note that v, is a C* function; we have
1
vy (z + h) =v,(z) + v, (x)h + / (1 — 0)v!(z + Oh)dOR*
0

and thus v, (z + h) +v,(z — h) — 2v,(z) = [, (1 — |0])0(z + Oh)dOR>. As a result,
we have

A(h) < |BPax® Y [ID*p, (D)ul| .

14
|h|<2—



2.1. THE LITTLEWOOD-PALEY DECOMPOSITION 39

We consider ¢ € C°(R™),7 = 1 on the support of ¢, ©» = 0 near 0, and ¢ even,

so that with v > 1, 9,(6) = @, (€)1 (€) with ,(€) = $(£27) and v € CF(R"),
19 = 1 on the support of p,. We have

A(h) < |hP4m® Y ID%0u (D)l = [h*47® Y [[D*0, (D) (D)ul| e
|h|<27 |h|<27v
= [A*4n® Y 2|27 D, (D), (D)ul e
|h|<27Y
< ClhfP4n® Y 2% |pu(D)ul o
|h[<27¥
< ClhPar*|lullpy, . D 2" < Cilblullsy, [P,
|n|<27"
so that
lu(z + h) +u(z —h) — 2u(x)| < C”|hH|uHBéom,

and the second inequality in (2.1.5). Let us consider now u € BJ . Moreover for
x,h € R" with h # 0, we have

(@ +h) —u(@)] < > [(eu(D)u) (@ +h) = (g (D)u) (@) +2 > 27 |lullpy .
|h|<2—v Ih[>2-

<C|h|

With the same 1 as above, we have

u(z + h) = u(@)| < |R|Cyllullp _+ Y |27 Dby (D), (D)ull 1~
Ih|<2—
< |hCillullpy, .+ > |h|2727|[27 Dib, (D), (D)ul|
Ih|<2
< |h[Cillullpy, .+ 1RICs D 2u(D)ull
Ih| <2
< |[hlCillullpy, . + [B|Csllullpy, . Card{r € N, 2" < [n]7'},

'

<Logy(|h|~1)

which gives (2.1.6). We consider now u € Lip(R"™). We have ||po(D)u||z~ < C|lu|| L
and for v > 1,

(e (D)u)(x) = ($(27)2"" * u)(x) = /@(Z”yﬁ”" (u(z —y) — u(z))dy.

We have also in the distribution sense

u(r —y) —u(r) = /O u'(x — By)dby = |u(x —y) — u(@)| < [[v/[ L]yl
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so that [l¢,(D)ullr= < [|p(27y)|2""|y|dy||u|| 1 < C||/|| =277, proving the con-
tinuous inclusion Lip(R") C B, . (R"). Let us prove finally that this inclusion is
strict: we consider

T(ZL’) — /1'+00 €2iﬁ$£§_2d§.

The Fourier transform of 7' belongs to L'(R) and thus 7' is a continuous bounded
function. We have also

(D)) = | " gmimatg-2,, (e)qe

and for v > 1,
—+00

+oo
(D)) = [ e ptags 2 [ et

—v

Since the function ¢ is (non-negative and) supported in 1/2 < [¢| < 2, we get for
v > 1 that

2
2(,(D)T)(x) = / R G
2
— (1270, (D)T|| ooy < . £2p(€)dE < +o0.

On the other hand
+oo ]
(D)) = [ =t (e,

is a bounded function ; we have proven that T' € Bl (R). Let us prove that 7" is
not in Lip(R™). We calculate for e > 0,

—2,.2

<T/7€—1e—7re x >y’(]R),y(R)

+oo
= 2im (€T, e‘”2§2>y'(R),y(R) = 2i7T/ 5_16_”252d£—> + 00,
1 E~>0+
say from the Fatou theorem, and if 7" were a bounded function, we would have
—2.2 —2,.2

(T e e ) < T lemlle ™ e™™  llm = 1T ze@ < +oo.

The proof of the theorem is complete. O

2.2 Paley — Wiener’s theorem

Lemma 2.2.1. Foru € .'(R"™) the following properties are equivalent.

(1) we CPR"), suppu C {z e R |z| < R}.
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(i7) @ can be extended to C™ as an entire function such that

VN € N,3Cy >0, [|a(¢)] < On(1 + |¢|) N Eltmdl, (2.2.1)

Proof. Let us assume (). Using the notation C" 5 ( = £+1in,&,n € R", the Fourier
transform of u can be extended to C" as an entire function, simply with the formula

w(§ +in) = /emm'(&i")u(aﬂ)dm (note z-(£+in) =x-&+ix-n).

As a result, for a polynomial P on R™, we have (@)(Q = P(¢)u(¢) and thus
[P(Q)a(Q)] < 1P(D)ul|prgme™ e,
implying for all multi-indices a € N", |¢*@(C)| < || D%ul| 1 gnye® I e,
GGl (O] < 1Dl g ey
As a consequence, for m € 2N, we have with [[ullywma =37, <, [[Dul[1Rn),
(L+ ISP ™21a(Q)] < Culluflwma ™™ = (id).

Conversely, if (ii) holds, the function @ is C*° on R™ and for all N € N, |u(¢)|
Cn(€)™N. Thus @ € L'(R") and one can apply the theorem 1.2.15, so that u(z)
Jan €™ C0(€)dE. Now we have also for all n € R" and = € R,

A

/ 621wm§a(§)d§ — 62i7rx-(§+i77)a(£ + Zn)dé-,

]Rn

where both sides make sense thanks to the estimate (2.2.1), which also allow to shift
integration of the entire function ¢ + @(¢)e*™®¢ from R™ to R" +in. Now if |z| > R,
we obtain for all n € R”,

()] < Cye> R+ / (1+ |e)NVde

n

and in particular choosing n = Az/|z|, N = n + 1, we get for all A > 0, |u(z)| <
C! 2 (FA=AlZ)) "5 that for |#| > R we obtain u(x) = 0 and (4). O

Lemma 2.2.2. Let Q be an open set of R™, g € Q and u € 2'(Q2). The following
properties are equivalent.

(1) o ¢ singsuppu,
(i1) IVh € Y4, such that for all x € C(Vy), for all N € N, 3C such that
a(é) < C+eh™.
(23i) IVh € Yoy, Ixo € C(Vhy), such that xo(xo) # 0, for all N € N, 3C' such that

Xou(§)] < C(L+ g~
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Proof. 1f (i) holds, 3V € ¥, such that for all y € C>(Vh), xu € CX(R") C . (R")
and thus yu € .(R™), implying (i). If (i¢) holds, then it is the case of the weaker
(7i1); we take xo € C°(Vp), different from 0 on a compact neighborhood V; of zg,
and we get You € L'(R"), so that

(o) (&) = / () de

and the estimate of (4ii) gives xou € CF(R") and uy, = ﬁ()@u)m e C>*(\),

implying (7). O

Lemma 2.2.3. Let Q be an open set of R™, g € Q and u € 2'(2). The following
properties are equivalent.

(1) zo ¢ singsuppu,
(13) IVh € Y4, such that for all x € CX(Vy), for all N € N, 3C' such that

IXu()] < C+1g)".

(113) IV € Yoy, Ixo € CF(Vh), such that xo(xo) # 0, for all N € N, 3C such that
[Nou(§)] < C(1+ ¢~

Proof. 1f (i) holds, 3V € ¥, such that for all y € C(Vh), xu € CX(R™) C . (R")
and thus xyu € .(R"), implying (i7). If (i7) holds, then it is the case of the weaker
(i71); we take xo € C(V}), different from 0 on a compact neighborhood Vi of z,
and we get you € L*(R"™), so that

(o) (z) = / () de

and the estimate of (i44) gives xou € C®(R™) and up; = ——(xou), € C*(V1),

X0|vy

implying (7). O

Lemma 2.2.4. For u € /'(R") the following properties are equivalent.
(1) ue &'(R™), suppu C {x € R" |z| < Ro}.
(79) @ can be extended to C" as an entire function such that

[a(¢)] < Co(1 + [¢])Noerrtioltmel, (2.2.2)

Proof. 1f (i) holds, we get that @ is the entire function @(¢) = (u(z), e 2™ ) 4 4.
Moreover, since u is compactly supported in B(0, Ry), we have for all ¢ > 0 and
Xo € C°(R™) equal to 1 on B(0, 1), supported in B(0, %0012;), such that HX&B)HLOO <
c(B)e”?,

s
Ry + €

) 6721'”96'4)5/7,5.

i(C) = (u(), xo(
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This implies

~ —2imx-C fo x —
(Ol < Co sup e <¢* (8%x0)( ) (R +¢)le(8)
|z|<Ro+2e Ro + €
|ee|+]B]<No

and thus

Ve >0, [a(Q)] < Coe*™Ror29lmel sup  |¢(Ry + €)l|ePle(B).
la|+[B|<No

We choose now, assuming Ry > 0 (otherwise the distribution u is supported at the
origin and is a linear combination of derivatives of the Dirac mass) € = 1f°C
then

m (|
()] < Coe2mRol el T (1 4 |¢)™ max c(8) Ry

|B|<No ( )

Conversely, if (i) holds, we consider a standard mollifier p. given with ¢ > 0 by
pe(x) = e "p(xfe), p € C(R"), [ p = 1, p supported in the unit ball. We have
u* p. = 0p(e-) and the function @p(e-) is entire with

| ( ) (EC)| <C’N5(1—{—|<|) N 2 (Ro+e)[ Im ¢|

From the first lemma 2.2.1, we have supp(u * p.) C B(0, Ry + ¢€). For ¢ € C>*(R")
we have

<U * Pes 90> = <U, 166 * Q0> — <U, 90>7
E—>0+
and thus if suppy C (B(O,Ro + e))c, we get (u * pe,0) = 0 = (u,¢), so that
suppu C B(0, Ry + ¢) for all € > 0 and eventually
suppu C NesoB(0, Ry + €) = B(0, Ry),
yielding the conclusion. O]

Remark 2.2.5. Let us recall the expression of E, fundamental solution of the wave
equation:

sin (2mct|¢|)
2ml¢]|

Since cos(2mes|E]) = Zk>0 =k éi’rcs (31<j<a &))" the function E(t,-) is entire on

C? and we have for ¢ € C?, using the notation (2 = D i<i<a$hs

B (4 €) = cH(1) — CH(1) /0 cos(2res|¢|)ds. (2.2.3)

27rcs) 2k

(t ¢)=c*H(t e (¢*)rds = cQH(t)/ cos(2mes(C?) V%) ds.
: 0

0 k>0

We have also for z € C

2| cos z|? = 2(cos z)(cos Z) = cos(2Re z) + cos(2i Im z) < 1 + 2l < ge2Mmzl,
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and as a consequence
for 0 <s<t, |cos(2mes(¢?)V?)| < exp2nct] Im((C2)1/2)|. (2.2.4)
We note that with ( =& +in,&,n € R”,
¢ = &P — Inf® +2i(&,m) = [¢° — [n* + 2i0l¢]In], with o € R, [o] < 1.
Soif z=a+ib e C,a,b € R is such that 22 = (2, we have
a® =0 =[P = nl?, fab] < [€]ln]-

If we had |b| > |n|, that would imply from the first equation that |a| > [£| and
|ab| > |&||n|, which contradicts the second equation; as a result we have |b| < |n| and

[ Tm ((¢*)'/?)] < [Im ], implying
By (1,0)] < etH(t) exp 2met] Im ],
which gives from the Paley-Wiener theorem 2.2.4 that

supp B, (t,-) C {z € R", |z| < ct}. (2.2.5)

2.3 Stationary phase method

Preliminary remarks

It is well-known that

/Smxd:ﬁ:m although /
R L R

To get this, we integrate the function ¢*/z on the following path: the segment e, R],
the half-circle (R, iR, —R), the segment [—R, —¢|, the half-circle (—¢, i€, €). We get

sin x

dx = +o0. (2.3.1)

T

R T _iRe" T iee'®
. sin x e o e L
0=2: dxr + = iRe"dh — = iee”ds.
e T o Re 0 €€’

The third integral has limit i7 for € — 0. The absolute value of the second integral is
bounded above by [ e~ #*"?df which goes to zero when R goes' to infinity, yielding
the value 7 in (2.3.1). On the other hand, for n € N*, we have

2n+1)w 92

2n+1)m
/ dx > —/ sinxdr = ———,
o 2n+ D7 Jopr (2n+ )m

! One may apply Lebesgue’s dominated convergence theorem, but it is way too much: it is
enough to note that 0 < 2% < sind for 6 € [0, 7/2] and

sin x

T

- ' /2 ) /2
/ e_Rsmgde _ 2/ e—Rsm«‘)de < 2/ 6—2R0/7rd9 < 7T/R
0 0 0
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the general term of a diverging series, so that (2.3.1) is proven. In the integral
fR Sigxdx, the amplitude 1/x is too large at infinity to guarantee the absolute conver-
gence of the integral, although the oscillations of the term sin z = Im e** compensate
the size of the amplitude and lead to some cancellation phenomena. We want to
study this phenomenon more closely and in more geometrical terms. Although the
function sin z/x does not belong to L!'(R"), we still* have in the sense of weak-dual
convergence

lim 1sin(Az)

A—+o00 T x

In fact for ¢ € C}(R),supp ¢ C [—My, My], the function ¢ defined by

= do. (2.3.2)

b(z) = 2 (o) — 9(0)) = / o/ (0)d0

is continuous and equal to —p(0)z~! for |z| > My(> 0). As a consequence, we have

/siniA:E) o(z)dz = /y(x)l[_MmMo](Izsin()\x)dx + go(O)/ ! sin(Ax)da.

|z| <Mo

€Ll (R)

The Riemann-Lebesgue Lemma implies that the first term in the rhs tends to 0 with
1/, whereas

/ v sin(Ax)dr = / v sinzdr — T,
lz[<Mo ly|<AMo A——+00

proving 2.3.2.

Non-stationary phase
Theorem 2.3.1. Let a € CP(R™) and ¢ be a real-valued C* function defined on
R"™ such that d¢ # 0 on the support of a. We define for A € R,

I\ = / @ g (x)dx. (2.3.3)

Then for all N > 0, sup,cg [NV I(N)] < +o00.

Proof. Since the support of a is compact, we know that inf,csuppq |dP(z)| = ¢o > 0.
We define then the differential operator L on the open set ) = {x € R" d¢(x) #
0} D suppa by

2
2.3.4
Y el (23.4)
1<]<n
2Ifu € LYR™), ¢ € COR"™) N L>®(R"), then with A > 0, we have [u(Az)\"p(x)dz =
Ju(z)e A~12)dz, and using the Lebesgue dominated convergence theorem, this gives

lim u(Az) A" p(z)dx = ¢(0) /u(:z)dx

A—~+o00
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On Q, we have L(e"?) = Xe"* 37, . ]dgzﬁ]‘%%% = e aswell as for all N € N,

e = (AN LY)(e*?), implying that, for X # 0,
1) =AY / LY (€™)a(2)dz = AN / £ (11N ) (1) d.
Q suppa
As a result we get for A € R, [ANI(A)| < ['LVa| 12 rny < 400, since
0 ¢
tL _ _ —2_ tLN — e o0 Q .
¢ Z axj|d¢‘ 81:]7 Z Ca<x>ax7 Ca € C ( )
1<j<n la|<N

]

This theorem means that the integral (2.3.3) is rapidly decreasing with respect
to the large parameter A, provided the real phase ¢ does not have stationary points
on the support of the amplitude a. We shall now concentrate our attention on the
case where the phase does have stationary points ; a first simple model is concerned
with (real) quadratic phases.

Quadratic phase

We recall part of the proposition 1.2.19 as a lemma.

Lemma 2.3.2. Let A be a real symmetric nonsingular n x n matriz. Then x +—

e™Az) s o bounded measurable function, thus a tempered distribution and we have

Fourier(¢"™A%%)(€) = | det A|~1/2¢/T signAg—im(A7168) (2.3.5)

Theorem 2.3.3. Let a € S (R™) and A be a real symmetric nonsingular n X n
matriz. Defining I(X) = [, e a(z)dx, we have for A > 0,

1 = Tl A2 (A7 D, DYra) (0 A 2.3.6
()_W<Z @(( ,D)*a)(0) + 7 ))7 (2.3.6)
0<k<N
7.[.2N
Irn(A)] < )‘_NWH<A_1DaD>NaHFL17 (2.3.7)
where ||ul|prr = ||| L@y, so that ||[(A™'D, D)Nallprr = (A7, )N al|prrny (see

also the notation (1.2.8)).

Proof. We write with A = 7 that

I\ = (e”<“’4r’x>, a(z)) o9 = <Fourier(e”<“Am’m>), (Xl>y/,y

_ ﬂ_n/2‘detA|_1/26iZSignA/e_iTw1<A1575)&(5)(15,
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and since
/e—mulﬂlfﬂd(@dg: Z M/(A*g,g)ka(g)dg
0<k<N k!
1 N-1 N\ Y
o1 ATE0)  A-1g )N a(e)de 9 -
we get (2.3.6) with [rx(A)] < (A€, E)Va(€) | 11 omn -

Remark 2.3.4. In particular, under the assumptions of the theorem, we have, if

a(0) # 0,

/ DG (N dp = T(\)  ~ (0), (2.3.8)

etA|1/2a

(o

a sharp contrast with the results of the previous subsection 2.3. Naturally, in this
case, the phase has a (unique) stationary point at the origin. Note also that in one
dimension, we can recover® the so-called Fresnel integrals

/eixde = Wl/ge”/4, ie. /cos(xQ)dm :/sin(xQ)dm = \/E (2.3.9)
R R R 2

The Morse lemma
The most important step in the proof is the following lemma.

Lemma 2.3.5. Let U be a neighborhood of 0 in R", and f : U — R be a C*
function such that df (0) = 0 82f(O) # 0. Then there exists a local diffeomorphism v

? Qx?

of neighborhoods of 0 such that

10?
(Fomln.yf) = o(0) + 555 Ot

Proof. We may assume that f(0) = 0. Thanks to the implicit function theorem,
we note that the equation aa—gfl(xl,x’) = 0 has a unique solution z; = «(2’) near
the origin: there exists 79 > 0, a neighborhood W of 0 in R*~! and a C*° function
a: W — R such that «(0) = 0 and for |z1]| < 9,2’ € W,

of / /

——(21,7") =0 <= 11 = a(x’).

o (o) L= a(a)

3We have with y € C2°(R) even, equal to 1 on [—1,1], supported in [~2,2],

T
) ) xX 22 X
2/ e””dx:/e”x—da:—2/ e x(=)dx
; (7) . (7)

= /eiT%Qx(x)d;vT— 2/ 2ixe”’2x(£)(2ix)_1dx.
z>T T

From (2.3.8), limp_ 400 feiszzx(x)de = 71/2¢'7/4 and an integration by parts yields that the
last term is O(T~1).
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As a result, we have for |z1| < 1,2’ € W,

f(z1,2") = f(a(z'),2) +/ (1-— H)g—mj;(oz(:r’) + 0(z; — a(z')),z")df (z1 — CM(ZL‘I))Q,

0

i.e. with a C*° function e defined in | — rq, ro[x W, a C* function g defined in W,

Flond) = o) + 35 Oe(o) (11— ae)’s e(0) =1

Shrinking if necessary the neighborhoods, we define near 0 the local diffeomorphism
K by
R(z1.a") = (e(x) (21 — a(a’),2") = (y1,9/)

and we have with v = k!

82
(F o)1) = far,2') = o)+ 5 55 O

yielding the conclusion. O

Theorem 2.3.6. Let xp € R", U € ¥, and f : U — R be a C™ function such that
df (o) = 0,det f"(xg) # 0. Then there exists an open neighborhood Uy of o, an
open neighborhood Vi of 0 and a C*° diffeomorphism v : Vo — Uy such that Uy C U,
det /(0) = 1, and for y € Vy,

1
(for)(y) = (for)(0) =3 > wyl, (2.3.10)
1<j<n
where (p1, ..., n) are the eigenvalues of the symmetric matriz f"(xq).

Proof. We may assume for notational simplicity that o = 0 and f(0) = 0. After
composing f with a rotation, we may assume that e; is an eigenvector of f”(0), so
that in particular, the assumptions of the previous lemma are satisfied. Then we are
reduced to tackle a function g(z') + 323, We have dg(0) = 0, the eigenvalues of
17(0) are {u1} Uspectrum(g”(0)). We get the conclusion by an induction on n. [

Stationary phase formula

We consider now, for A > 0 and
I(\) = /ei’\d)(’”)a(:c)d:z:, (2.3.11)

where the amplitude a € C2°(R"™) and the phase function ¢ is a Morse function, i.e.
a real-valued smooth function such that

Vo € suppa, dp(x)=0= det¢”(z) # 0. (2.3.12)
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Using the Borel-Lebesgue property, we get that

suppa C {z € R, d(z) # 0} Ur<jan Y

=Qq

where ; for 1 < 7 < N is an open set such that there exists a C* diffeomorphism
vj : V; = €;, where Vj is a neighborhood of 0 in R™ with

(601)(5) = (60 13)(0) + 36" (5(0))y*

We are able to find (1;)o<j<n with ¢; € C°(8;), such that > ..y ¥; is 1 near
supp a. We obtain then that

I\ = / W@y (2)a(z)de + Y / 2Dy ()alw)de

d _ 1<j<N
=0(A~>) from Theorem 2.3.1

e, I(A) =21 en ij M)W (4;a) (v;(y))| det v (y)|dy + O(A~>°). We note that,
according to the theorem 2.3.3

/ AW (40 (v (y))| det v (y)|dy
v
— A(5(0)) / X3 O (4a) (1 (1)) det v} () |dy

‘/?7.
n/2 ,i% sign ¢ (v;(0))
(o Bm)" et det O
ety B 05 OD] et (0)] + OE™),

We note also that the stationary points of a Morse function are isolated, since for
an invertible symmetric matrix @, the only singular point of y — (Qy,y) is 0. In

_ )\** i (v

particular, there are only finitely many singular points of a Morse function in a
compact set.

Theorem 2.3.7. Let a be a CX(R™) function and ¢ be a Morse function (see
(2.3.12) ). We define I(X\) by (2.3.11). We have for A — +o0

I = 52m)"? Y e

z,d¢(x)=0
TrESuUpp a

et7 sign(¢” (z)) _n_q
gt OO (2313)

Proof. We note that the determinant of »/(0) is 1 in the theorem 2.3.6 and the
formula of Theorem 2.3.3 gives the result if we replace 1;a by a; it is indeed harmless

to do this since we can assume that zi,...,zy are the distinct singular points of ¢
in supp @ and write, with C°(R") 3 ¢j = 1 near x;, ’QZJ]’Q/)k =0if1<j#k<N

Z %a—l—a— Z {/jja

1<G<N 1<j<N

supported in Qg
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2.4 The Wave-Front set of a distribution, the H?
wave-front set

Let © be an open subset of R" and u € 2'(€2). Let us recall that the support and
the singular support of u are defined by

suppu = {z € 2, there is no open V' 3 z with v = 0}, (2.4.1)
singsuppu = {x € Q, there is no open V' 3 z with vy € C*(V)}. (2.4.2)

Both sets are closed and we have obviously singsuppu C suppu. The Fourier
transform allows a more refined analysis of singularities: first we notice that zy ¢
singsupp u iff there exists a neighborhood U of xy such that for all y € C°(U),

VN €N, Sup () ()¢ < 0. (1)

This is obvious when we assume zy ¢ singsupp u since there exists a neighborhood
U of xq such that yu € C®(R™) and thus yu € .(R"). Conversely, since Yu is the
Fourier transform of a compactly supported distribution, it is an entire function on
C", and assuming (}), we see that (yu)(z) = [ e*™¢xu(£)d¢, and the rhs is a C°
function, ged.

We use the notation Q x R™\{0} = 7*(Q), the cotangent bundle minus the zero
section.

Definition 2.4.1. Let Q be an open set of R” and let v € 2'(2). The wave-front-set
of u, denoted by W Fu, is defined as the complement in 7%(2) of the set of points

(0,&0) such that there exist some neighborhoods U,V respectively of g, & (with
UxV CT*Q)) such that for all x € C(U),

VYN eN, sup|(xa)©)|[E]N < oo, with V = U,serV. (2.4.3)
eV
Remark 2.4.2. Note that the wave-front-set is a closed (its complement is open) conic
subset of 7*(Q): conic means here that for all 7 > 0, (z,£) € WFu = (z,7€) €
W Fu. On the other hand, with pr : 7%(Q2) — Q defined by pr((z,£)) = =, we get
that
pr W Fu = singsupp u. (2.4.4)
Let xg ¢ singsuppu. Then from (1), we see that for all £ € S"7!, (x¢,&) ¢ W Fu, so
that xo ¢ pr W Fu. Conversely, if zo ¢ pr W Fu, for all n € S*~!, there exists some
neighborhoods U,, V;, of x¢,n such that for all x € C*(U,),

VN €N, sup |(xu)(©)[|¢]" < oo.
eV,

By compactness, we get S"~! C Uy<;<,V,, and defining U = My<;<,U,,, we get that
for all x € C=(U),

Vie{l,...,v},YN €N, sup |[(xu)()[¢" < oo,
gevy,

which gives the result (}) since Ulgjg,,‘z]j =R™\{0} and Xu is a smooth function.
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Examples. 1t is easy to see that

(1) WF(60) = {0} x R"\{0}, 4y is the Dirac mass at zero in R",

(2) WF(5) = {0} x (0,+00), —5 = 4 (In |z|) — imdy, distribution on R,
(3) and with H = 1g,, considering the distribution on R?,

WF(H(z1)H(z2)) = {(0,22,&,0) }y50620 U {(21,0,0,8) } oy 50,620
U {(0,0)} x R*\{(0,0)}.

(4) If u is a distribution, one can easily define the complex conjugate by duality?
and we have

WEFu=WFu={(z,¢) such that(x, —¢) € WFu}

and in particular, a real-valued distribution (i.e. such that u = ) has a projective
wave-front-set, i.e. (z,§) € WFu <= (x,—¢§) € WFu, so that, instead of being
included in the sphere fiber S*(§2) image of the fiber bundle T*(R) by the mapping
(x,&) — (x,&/[€]), the wave-front-set of a real-valued distribution can be seen as a
part of the projective bundle for which the fibers are the quotient of the sphere S**
by {—1,1}, that is P""!(R). In particular for a real-valued distribution u on an open
set ) of the real line, then the wave-front-set does not carry more information than
the singular support since W F'u = singsupp u x R*.

The following lemma provides a characterization of the wave-front-set which is
closer of the pseudo-differential approach.

Lemma 2.4.3. Let 0, € C*(R™; [0, 1]), supp 6o C B(0,1), 6 =1 on B(0,1/2). Let
Q be an open set of R" and uw € 2'(Q). The complement of W Fu in T*(S2) is the
set of (x,&) such that there exists v > 0 such that

T.(D)t,u belongs to ./ (R"),
ahere T,(6) = 0 (5 1) (1= ) (). tolo) = o (=52

Proof. Let us assume first that 7*(Q) 3 (zo,&) ¢ W Fu. Using the definition 2.4.1,
we get that for some positive r, for all N, T,(€)tu(¢) = O((¢)™) and since the
functions D¢ (@) = (—1)‘“|x/azf74\u are also rapidly decreasing on the support of T,
(from the definition 2.4.1), we get that & — T,.(€)f,u(€) is in the Schwartz class as
well as its inverse Fourier transform 7T,.(D)t,u.

Conversely, if for (zo,&) € T*(Q) (we may assume |£| = 1) and some positive
r, T.(D)t,u € .7 (R"™), we get indeed as in (2.4.3)

VN e N, supl|iu(€)||€]N < oo, with V neighborhood of &.
cev

4We define < u, (2 >‘@I(Q)7@(Q): < u, gé_? }_@/(Q)“@(Q).
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Now if x € C®(B(xg,r/2), we have y = xt, and

ﬂmﬁwmazﬂwaaﬁﬁ@>=ﬂﬂ@{/X@—nwnwmamwm

O((g=m=N) O(m—2N)

+Ta(e) [ (e —n) (L= ) Tita) an

J
-~

O((m)Mo)

Using the Peetre inequality®, we get that the first term is O((£)~"). To handle the
next term we note that, on the support of 7,4, we have

£ &

5 2 4 T, Tl Te 1 S r/4
Iz i~ el ="
and on the integrand we have either || < 1/r (harmless term since x € .%) or
In| >1/r and n_ Lo >r/2 :>’i—£ >r/4. (%)
Il 1l Il €l
Using the inequality®
[nlg — 1&ln| (1€] + [nl) < 4&]lnllE —nl, (2.4.6)

we obtain here (for the nonzero vectors &, satisfying (x) ), 4/ —n| = £(|¢] + n]),
so that the rapid decay of x(§ —n) gives the result of the lemma. O

The wave-front-set of a distribution depends only on the manifold structure of
the open set €.

Theorem 2.4.4. let k : Qs — 2y a C*° diffeomorphism of open subsets of R™ and
let uy € 2'(Q). Then we have

WEF (5" (w))= k" (WFu) = { (/@’1(1:1),%'(571(%))51) }

(z1,£1)EW Fuy

Proof. Let us define uy = £*(u1), so that for xyo € C*(€y), we have, for ¢y €
C>(Qy), with brackets of duality and v = k™', x1(21) = x2(v(z1))|det v/ (z1)| (note

SWe use (€ +1n) < 21/2(¢)(n) so that, for all s € R,

(€ +m)® <212y (bl

a convenient inequality (to get it for s > 0, raise the first inequality to the power s, and for s < 0,
replace £ by —¢ — ) a.k.a. Peetre’s inequality.

SThe proof of (2.4.6) is the following: we have |[n]€ —[&|n| < [n]|€ —n|+[nl[|€] = [n]| < 2[n]|& —n]
and thus |[n]¢ — [€[n| < 2/¢ — | minJe],|n]) which gives

(2.4.5)

|0l = 1€ln| (1€] + Inl) < 2|¢ — n| min([&], [n])2 max(|&], [7]) = 4l&]lnll€ - nl-
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that x; belongs to C2°(€Q) and x1|dz;] is the k-push-forward of the density ya|dxs|),
Uy € C(82) equal to 1 on the support of x1,

X2t2(E2) :/Xl(xl)ul(9C1>@_2im<m1)'52dx1

x1ui(&r) (/ 62iw(£1m1_52y(x1))¢1(Jfl)dxl) d&,

where the integral with respect to &; is in fact a bracket of duality. We may thus
consider the identity

(1 + (51 —ty/(x1)§2) ,Dml) (e2i7r(§1331—521/(9c1))) _ e2z’7r(§1$1—521/(ac1))(1 + ||fl _tV/($1)§2||2)

which gives with L = (1 +11& —ty’(x1)§2||2)_1 (1 + (51 —tl/’(xl)fg) . le),

VN c N LN< 2im (€11 — 521/(551))) 627,71'(61131 &av(r1))

o that ia(&) = [ ai(6) ([ AmEm—erte) ()N () (o1)day) dé; amd
(6] < C / K6~ (@0)E)  appyp(e)duades. (5)

Let us assume that T7*()) 3 (zo1,&01) ¢ W Fuy; the point (g, &2) is defined as
(v(x01),'V (z01) " €01). We assume that & belongs to a conic neighborhood T’y of &ps.
We consider first for » > 0 the conic subset of R™ defined by

Di(r)={& eR"V& €Ty, inf & =" (21)&] < r(|&] + &)}

1 ESupp Y1

The set I'y(r) is also open and contains £y;. If 7 is small enough and the support
of xo is included in a small enough ball around x(,, we have from our assumption
IX1ui(€)| = O((&1)72) on T'y(r). When the integration in (%) takes place in I'y(r),
we estimate that part of the integral, using the footnote on page 52 by

Ciy [ 1607 (/@)Y Lol )dsdes = O((2) ™).

When the integration in (*) takes place outside I'; (1), we know that for some r > 0
and all 1 € supp ¥, [& ="/ (x1)&| > r(|&1] +|&2|). We have thus the estimate, with
a fixed My,

/ 51 52)) supqu;(«rl)dxldgl = O(<§2>_N), for N > MO + n.

The proof of the theorem is complete. n

Definition 2.4.5. Let Q be an open set of R™, let u € Z'(2) and s € R. The
H*-wave-front-set of u, denoted by W Fyu, is defined as the complement in 7*(2) of
the set of points (xg, &) such that there exist some neighborhoods U, V' respectively

of 0, & (with U x V' C T*(Q)) such that for all xy € C>(U),

[ Pl < oo with V= UnsorV.
V{lgl>1}
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2.5 Oscillatory Integrals

Definition 2.5.1. Let €2 be an open subset of R", m € R, N € N*. The space
S™(Q x RY) is defined as the set of functions a € C*(2 x RY; C) such that, for all
K compact subset of €2, for all a € N*, 3 € NV there exists C s such that

Ve e K,V0 e RN, |(0%0Pa)(x,0)| < Cxasl0)™ 1P, 2.5.1
] o, 3

It is a easy exercise left to the reader, consequence of the Leibniz formula, to
prove that the space S™(Q x RY) is a Fréchet space and that the mappings

S™(Q x RY) x §™2(Q x RY) 3 (a1, az) = ajay € S™ ™2 (Q x RY)
are continuous. Moreover for any multi-indices a, f € N* x NV, the mapping
S™(QxRY) 3 a— 920)a € SV x RY)
is continuous.

Definition 2.5.2. Let Q be an open subset of R", N € N*, ¢ € S1(Q2 x RY). The
function ¢ is called a standard phase function on € x RY whenever ¢ € S*(Q2 x RY)
is real-valued and such that, for all X compact subset of €2, there exists cx > 0 such
that

2 2

Vo € K,v0 € RN with |0 > 1, (g: 0)| >cxl0®. (2.5.2)

7

‘ <b

For a € S™(2 x RY) with m < —N and ¢ a standard phase function, we define

Too(x) = /ei‘b(x’o)a(x,@)de (2.5.3)
which is a continuous function on 2 ; note also that if m < —N — k with k € N,
T, s belongs to C*(0Q).

Theorem 2.5.3. Let Q be an open subset of R", m € R, N € N* a € S™(Q x RY)
and ¢ be a standard phase function on Q x RN. Then T, , is a distribution on Q
with order > m + N in the following sense. The mapping

Ce(Q) x SM(QAxRY) — C

(u, CL) — ff euﬁ(aze (l’ Q) ( )dl‘d@ (254)

extends the formula (2.5.3) defined for m < —N in a unique way and continuously.

2.6 Singular integrals, examples

The Hilbert transform

A basic object in the classical theory of harmonic analysis is the Hilbert transform,

given by the one-dimensional convolution with pv(1/7z) = —%(In|z|), where we
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consider here the distribution derivative of the L{ (R) function In|z|. We can also
compute the Fourier transform of pv(1/7z), which is given by —isign&. As a result
the Hilbert transform .5 is a unitary operator on L*(R) defined by

Tu(€) = —isign £a(€). (2.6.1)

It is also given by the formula

r—y

(Hu)(z) = Tim —/_ ) ) g,

The Hilbert transform is certainly the first known example of a Fourier multiplier
(H#u = F~'(au) with a bounded a).

The Riesz operators, the Leray-Hopf projection

The Riesz operators are the natural multidimensional generalization of the Hilbert
transform. We define for u € L?(R"),
Ryu(&) = éh—jﬁ(f), so that R; = D;/|D| = (—A)™/?——

0, (2.6.2)
The R; are selfadjoint bounded operators on L*(R™) with norm 1.

We can also consider the n x n matrix of operators given by ) = R® R =
(RjRyi)1<jk<n sending the vector space of L*(R") vector fields into itself. The
operator @ is selfadjoint and is a projection since Y, R} = Id so that Q* =
(>, RiRiRRy);r = Q. As a result the operator

P=Ild-R® R=1d—|D|*(D® D) =1d-A"(Va V) (2.6.3)

is also an orthogonal projection, the Leray-Hopf projector (a.k.a. the Helmholtz-
Weyl projector); the operator P is in fact the orthogonal projection onto the closed
subspace of L? vector fields with null divergence. We have for a vector field u =
>_; u;0;, the identities graddivu = V(V - u), graddiv=V @V = (-A)(iR®iR),
so that

Q=R®R=A'graddiv, divR® R = div,

which implies divPu = divu — div(R ® R)u = 0, and if divu = 0, Pu = u. The
Leray-Hopf projector is in fact the (n x n)-matrix-valued Fourier multiplier given by
Id —|€]72(€ ® €). This operator plays an important role in fluid mechanics since the
Navier-Stokes system for incompressible fluids can be written for a given divergence-
free vy,

v —vhv = =PV (v @ v),

Pv =,

U|t:0 = 9.
As already said for the Riesz operators, P is not a classical pseudo-differential opera-
tor, because of the singularity at the origin: however it is indeed a Fourier multiplier
with the same functional properties as those of R.
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In three dimensions the curl operator is given by the matrix

0 —035 0,
curl=|( 05 0 =01 | =cuwl (2.6.4)
-0, 01 0

so that curl> = —AId + grad div and (the Biot-Savard law)
Id = (=A) ' eurl> + A~  grad div,  also equal to (—A)~! curl® +1d —P,
which gives curl®> = —AP, so that

[P, curl] = A~ (AP curl —A curl P) = A~ (— curl® 4 curl(—AP)) = 0,
Pcurl = curl P = curl(—A) ™' curl® = curl(Id —A™" grad div) = curl

since curl grad = 0 (note also that div curl = 0).
Theorem 2.6.1. Let Q be a function in L'(S"™') such that [y, , Qw)do(w) = 0.
Then the following formula defines a tempered distribution T':

el p(a)ds =~ [z e

T T

(T, ) = lim Q(

— )|z ™" In |z|dz.
€04 |z|>€ ’l"

|z]

The distribution T is homogeneous of degree —n on R™ and, if ) is odd, the Fourier
transform of T is a bounded function.

N.B. We shall use the principal-value notation

T = pv(]x\”Q(é—,))

When n = 1 and = sign, we recover the principal value pv(1/z) = < (In |z|) which
is odd, homogeneous of degree -1, and whose Fourier transform is —im sign &.

Proof. Let ¢ be in Z(R™) and € > 0. Using polar coordinates, we check

— /Sn_1 Qw) [gp(ew) In(e™t) — /€+Oow ~dp(rw) Inrdr|do(w).

Since the mean value of €2 is 0, we get the first statement of the theorem, noticing
that the function x — Q(z/|z|)|z|7"* In(|2])(1 + |2])~2 is in L}(R"™). We have

(-0, T, p) = —(T,x-0pp) — (T, ) (®)

and we see that

(T, x - Opp) = lim Q(w) /+OO rw - (dgp)('rw)gda(w)

e—04 Ssn—1

= [ 0w [T e @it

= [0 [T ew)irote) = o) [ 0ot =0

r
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so that (®) implies that x- 0,7 = —nT which is the homogeneity of degree —n of T'.
As a result the Fourier transform of 7" is an homogeneous distribution with degree
0.

N.B. Note that the formula

- [ ool

7 )@ ™" In |z|dx

makes sense for Q € L'(S"™1), ¢ € (R") and defines a tempered distribution. For
instance, if n = 1 and Q = 1, we get the distribution derivative - (signzIn|z]).
However, the condition of mean value 0 for €2 on the sphere is necessary to obtain T’
as a principal value, since in the discussion above, the term factored out by In(1/e)
S fouo1 Q(w)p(ew)do(w) which has the limit ¢(0) [g,, Q(w)do(w). On the other
hand, from the defining formula of 7', we get with Q;(w) = %(Q(w) + (-1)7Q(-w))
(Q1(resp.Q2) is the odd (resp. even) part of )

215) @(tw)>/'(Rt) S (Ry) do(w)

+ /Sn1 QQ(w)<i(H(t) In t), P(tw)) 7(ry).7 Ry do(W).  (2.6.5)

T = [ )l

dt

Let us show that, when € is odd, the Fourier transform of 7" is bounded. We get

o= Q<w><pv<§>,$<m>>da<w>

proving that

/ . /  Q(w)sign(w - )p(€)ddo(w)

T(E) =~ /S 0w)sign(w- €)do(w) (2.6.6)

which is indeed a bounded function. O
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Chapter 3

Pseudo-differential operators

3.1 Prolegomena

To illustrate the power of pseudo-differential methods, we begin with a simple and
classical regularity result for the Laplace equation.

Theorem 3.1.1. Let Q2 be an open subset of R", let s € R and let f € HS (). If
u 15 a distribution on §2 such that

Au = f, (3.1.1)

then u belongs to HE2(Q). If f belongs to C>(Q) and if u is a distribution solution
of (3.1.1) in §, then u belongs to C*(£2).

Proof. Let Qg be a relatively compact open subset of Q. Let x € C(€): we have
XAu = xf € H*(R").
The Fourier multiplier (1 — A)~! sends H*(R") into H*™?(R"), and we have
(1—A)'xAu =g € H"(R").
This implies

g=1=A)""(A-Du+(1—-A) " yu

— (1= A (A — D — xu+ (1 A) My

=(1—A)"x, Alu — (1 —(1- A)_l)xu.

We note that the operator Ry = [x, 4] is a first-order differential operator with

smooth coefficients supported in the support of Vy and thus compactly supported
in 5. As a result, we have

(1-1=-A)Yxu=1-A)"Ru+yg. (3.1.2)
The Fourier multiplier 1 — (1 — A)~! has the symbol

el forfgl>

w(f) =1 (1 +47T2|§|2)—1 — {E [0 1/2) for |§| <

51 -

99
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Let 1y be a function in C°({|¢] < 1/7};[0,1]) equal to 1 on |{| < 5-. Then the

function
wo(&) = w(&) +Yo(€) s valued in [1/2,2],

so that the Fourier multiplier wy(D) is an isomorphism of H*(R") for all s € R. We
have thus from (3.1.2)

xu = wo(D) (1 = A)'"Riu+ g + o(D)xu). (3.1.3)

From the Paley-Wiener Theorem, since () is relatively compact in €2, we may as-
sume that u € H;°(Qp), i.e. xu € H*(R") for all x € CX(). From (3.1.3),
we get that wy(D)™1(1 — A)~'Ryu belongs to HTHR"™), wy(D) g € HT*(R"),
wo(D) M bo(D)xu € H™°(R™) = Nyer H (R™). We obtain thus that

Vx € C2(Qp), Yu € H™MnEH2s0t )Ry o g e FmnET20t (),

loc

which gives the sought result whenever sg > s+ 1. If s < s + 1, we have proven
that u € H%M(Q).

Claim: u € H;?(Q). To prove that claim, we consider

I = {O' € R?“’ € HfO.C<QO>}'
We know that I is not empty (it contains sq) and also that
sop €l =min(s+2,s0+1) €I, (—o0,s0 €.

Let sy =sup[l. If s; < 400, then s; — % € I and thus since s; +% ¢ 1,

min(s—|—2,31—%+1) :min(s+2,sl+%) el=s+2¢l
If sy = 400, then s+ 2 € I. We have proven that u belongs to HfotQ(Qo) for any
relatively compact open subset Qy of R", which implies that H:*(Q), since € is
locally compact.

If fis C* on Q, we find that it is H} () for any s € R and thus from the
previous result that u is H;t?(Q) for any s € R, so that u € C°(Q), thanks to the
next lemma.

Lemma 3.1.2. Let € be an open subset of R™. Then ,

C(Q) = Hyge® () = Nier Hi ().

loc

Proof of the lemma. If u is a smooth function on © and x belongs to C°(2), then
xu € C°(R™), so that yu belongs to .#(R™) and thus for any s € R,

(1+ le[*)/2xul¢) € LAR™),

implying u € H,}>(Q). Conversely, if u € H;'>°(Q) and x € C=(R), we find that
for all s € R,
(1+[¢*)*2xu(¢) € L*R™),
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so that
eLlng”)
(D3 ) (@) = [ et [eP) P (L JeP) R de.

€L?(R™) €L2(R")
if o] —s < —n/2

so that D%(xu) is a continuous function for any « and thus that u is a smooth
function on €. O

The proof of Theorem 3.1.1 is complete. O

If we look back at the proof of this theorem, we note that the key point was to
invert the symbol of —A, which is 472|¢|?, away from 0. We introduced the Fourier
multiplier (1—A)~! and we got from (3.1.3) a representation of yu in terms of yAu,
up to some unimportant terms. This should serve as a motivation to study more
general Fourier multiplier as well as more general operators of this type.

3.2 Introduction
A differential operator of order m on R"™ can be written as
a(z,D) = Y aa(z)Dy,
laj<m

where we have used the notation (1.2.8) for the multi-indices. Its symbol is a poly-
nomial in the variable ¢ and is defined as

a6 = 3 au(0)en, =g g
|| <m

We have the formula

(a(z, D)u)(x) = / €20 (0 €)i(E)de, (3.2.1)

n

where @ is the Fourier transform. It is possible to generalize the previous formula
to the case where a is a tempered distribution on R?".
Let u,v be in the Schwartz class .(R™). Then the function

R™ x R" 3 (,€) = 0(&)0(2)e* ™4 = Q. (7, €) (3.2.2)

belongs to .(R?") and the mapping (u, v) — €, is sesquilinear continuous. Using
these notations, we can provide the following definition.

Definition 3.2.1. Let a € .¥/(R*") be a tempered distribution. We define the
operator a(z, D) : ./ (R") — *(R™) by the formula
(a(z, D)UWW*(R"),Y(R”) == a, > ' (R2n),# (R2n)

where .#*(R") is the antidual of .#(R"™) (continuous antilinear forms). The distri-
bution a is called the symbol of the operator a(z, D).
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N.B. The duality product (u,v)s«(g2n), @), is linear in the variable u and anti-
linear in the variable v. We shall use the same notation for the dot product in the
complex Hilbert space L? with the notation

(u,v) 2 = / u(@)o(z)dz.

The general rule that we shall follow is to always use the sesquilinear duality as
above, except if specified otherwise. For the real duality, as in the left-hand-side of
the formula in Definition 3.2.1, we shall use the notation < u,v == [wu(z)v(z)dz,

e.g. for u,v € S (R").

Although the previous formula is quite general, since it allows us to quantize®
any tempered distribution on R?", it is not very useful, since we cannot compose
this type of operators. We are in fact looking for an algebra of operators and the
following theorem is providing a simple example.

In the sequel we shall denote by C§°(R?") the (Fréchet) space of C*> functions
on R?" which are bounded as well as all their derivatives.

Theorem 3.2.2. Let a € C°(R*). Then the operator a(x, D) is continuous from
S (R™) into itself.

Proof. Using Definition 3.2.1, we have for u,v € . (R"),a € C5°(R*"),
(a(z, D)u, v) @), 7 @) = // X Cq (2, €)0(€)v(x)dud.

On the other hand the function U(z) = [ €*™<a(x,&)u(€)d¢ is smooth and such
that, for any multi-indices «, 3,

' : / "
SO = 0 [ e (e (0 o), i) s
| . ” —
() 3 [ (D5 o) DT ()
o'+a'’ =«
and thus
a! B!

sup [z D3U(x)] < ) 1D¢ D5 al| o g2y | D* D] 1 .

»eRP o'l B/!ﬁ”!

o'+ =a
B+6"=5
Since the Fourier transform and 0,; are continuous on .#/(R"), we get that the
mapping u +— U is continuous from .#(R") into itself. The above defining formula
for a(x, D) ensures that a(x, D)u = U. O

'We mean simply here that we are able to define a linear mapping from .7’ (R?") to the set of
continuous operators from .7 (R") to ./ (R™).
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The Schwartz space .(R?") is not dense in the Fréchet space C§°(R*") (e.g.
Vi € . (R?™),sup,cpen |1 — ()] > 1) but, in somewhat pedantic terms, one may
say that this density is true for the bornology on C§°(R?"); in simpler terms, let a
be a function in C{°(R?") and take for instance

ak(2,€) = alz, €)oo HER

It is easy to see that each aj belongs to .#(R?"), that the sequence (az) is bounded
in Cp°(R?") and converges in C*(R?") to a. This type of density will be enough for
the next lemma.

Lemma 3.2.3. Let (a;) be a sequence in . (R*") such that (a) is bounded in the
Fréchet space C°(R*™) and (ay) is converging in C*°(R®") to a function a. Then a
belongs to C°(R*™) and for any u € #(R"), the sequence (ay(x, D)u) converges to
a(x, D)u in L (R™).

Proof. The fact that a belongs to C°(R?*") is obvious. Using the identities in the
proof of Theorem 3.2.2 we see that

2”D% (ay(z, D)u — a(z, D)u) = 2" D% ((ax, — a)(z, D)u)
O Y o [ A0l D - ) (.6 DY D (e

o/l BB

o' +a’'=a
B'+8"=p
ol Bl b
= > i (1 + [])
AP AN
wim ol Lppm
B+p"=p

« / (1+ [Def?) (%7¢) (D' D2 (g — a)) (. €) DF" D €) e,

that is a (finite) sum of terms of type Vi(z) = (1 + |z*)™ [ 2™ by (z, )w,(§)dE
with the sequence (b;) bounded in C§°(R?") and converging to 0 in C*(R?*"), u — w,
linear continuous from .%(R") into itself. As a consequence we get that, with Ry, Ry
positive parameters,

[Vi(z)| < sup [bi(z,§)] [0, (§)]dE1 <R,
|z|<R1 [€I<R2
|€|<R2

n / 0 () 51 ([l o 20y Lt
|€|>Ra keN
Ry sy sup [ o oy / (6|
keN
implying
Vi(@)| < ex(Ru, Ry) / €€ + () 5up [ e
S

- O(Ry) sup el o eon) / wa(€)de
keN
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with limy_ o ex(R1, R2) = 0,limg_ 100 n(R) = limg 1 O(R) = 0. Thus we have
for all positive Ry, Ro,
12mSUPI|Vk||L°° < n(Rz)SuprkHLoo(R% +9(R1)Sup||bk||Lw(R2n /|wu(§)|d€,
—4-00

entailing (by taking the limit when Ry, Ry go to infinity) that limg o || Vi|lze = 0
which gives the result of the lemma. O]

Theorem 3.2.4. Let a € C5°(R*™): the operator a(z, D) is bounded on L*(R™).

Proof. Since .(R") is dense in L*(R"), it is enough to prove that there exists a
constant C' such that for all u,v € .Z(R"),

We introduce the polynomial on R defined by Py(t) = (1 + [t|?)*/2, where k € 2N,
and the function

Wo(e,€) = / u(y) Pul — y) e 2eay,

The function W, is the partial Fourier transform of the function R” x R" > (z,y)
u(y)Pr(z — y)~" and if k& > n/2 (we assume this in the sequel), we obtain that
[ Woall 2eny = cil|u||L2@ny. Moreover, since u € .(R"), the function W, belongs to
C>(R?") and satisfies for all multi-indices a, 3,7
sup P(@)€|(000W,) (. €)] < ox.
(x,£)ER?™
In fact we have
s (R")

(0007 W,) (x,€) = / (y)(—2imy)” 0*(1/Pe)(z — y) (=)D} (e dy
— Z gk /D;/(u(y)(—%ﬁy)ﬂ)(—%ﬂ)W

1At
v A" =y 7

0" (1) Py) (@ — y) (e ™) dy
and
0°(1/Pi)(z = y)| < Car(l+ |z —y)) ™" < Cap(1+ |2)) (1 + y])*.

From Definition 3.2.1, we have

(a(r, D)u, v) o= (wn), 7 (®n) ://Rn . e* ™ q(x, €)u(€)v(x)dxde,

and we obtain, using an integration by parts justified by the regularity and decay of
the functions W above,

(a(z, D)u,v)

= [[ ate.onioo) ( [ ut e = o<y ) oy

/ / ol O PUD) (7 W, 0(r) e

€7 (R2m)
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- [[voni.owie. o n. ( [ @m0 Rie - Tiiin) dods
— [[ i@ OWalar, OPUD.) (Wil 2)e) dadg
= D Cip / / |Dx|2l((Pk(Df)a)(xvf)Wu(x,f)>W5(f,x)ezmx'fdxdf

0<I<k/2
= Y o [[ DD DAWN @O Wileer) s
%,_/
‘ﬂl‘i||§|k§k? bounded € L?(R?™) with norm

Ck”’U”LQ(Rn)

Checking now the x-derivatives of W, we see that
DYV 6) = [l D71/ R o — y)e ey

and since D7(1/P;) belongs to L*(R™) (since k > n/2), we get that the L?(R*") norm
of D)(W,) is bounded above by c, ||u||L2(rn). Using the Cauchy-Schwarz inequality,
we obtain that

(a(z, Dy, v)| < Y~ capyl|OfOFall oo (geny | DIWal| p2qeen) | Wil 2(2n)

| <k
18]+ 1vI<k
< Chllull2@n)llv] L2@n) sup 10802 al| oo r2n),
181<k
where C), depends only on n and 2N > k£ > n /2, which is the sought result. O

The next theorem gives us our first algebra of pseudo-differential operators.

Theorem 3.2.5. Let a,b be in C{°(R®*"). Then the composition a(z, D)b(x, D)
makes sense as a bounded operator on L*(R™) (also as a continuous operator from
S (R™) into itself), and a(x, D)b(x, D) = (aob)(x, D) where acb belongs to C°(R*™)

and 1s given by the formula

(a0 b)(w,§) = (exp 2im Dy - Dy)(a(z, & +n)b(y +2,£))y=01=0, (3.2.3)

(aob)(z.€) = / / 2N, € + )by + . €)dydn, (3.2.4)

when a and b belong to ./ (R*). The mapping a,b — a o b is continuous for the
topology of Fréchet space of C3°(R*™). Also if (ax), (by) are sequences of functions
in & (R*), bounded in C5°(R*"), converging in C*(R*") respectively to a,b, then a
and b belong to C5°(R?™), the sequence (a,oby) is bounded in C5°(R*™) and converges
in C°°(R*") to aob.

Remark 3.2.6. From Lemma 4.1.2 in [13], we know that the operator e*™PvPn is an

isomorphism of C§°(R?"), which gives a meaning to the formula (3.2.3), since for
a,b € C*(R*™), (z,€) given in R?", the function (y,n) — a(x,& +n)b(y + z,£) =
Cre(y,m) belongs to Cp°(R**) as well as JC, ¢ and we can take the value of the
latter at (y,n) = (0,0).
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Proof. Let us first assume that a,b € #(R?*"). The kernels k,, k;, of the operators
a(z,D),b(z, D) belong also to .(R?") and the kernel k. of a(x, D)b(x, D) is given

by (we use Fubini’s theorem)

k(z,y) = /k:a(x,z)kb(z,y)dz = ///a(x,f)emw(x_z)fb(z,C)e%ﬂ(z_y)'cdgd{dz.

The function k belongs also to . (R?*") and we get, for u,v € . (R"),
(a(z, D)b(x, D)u, v) 2 (mny

_ / / / / / (2, €)X Ep (. ()2 () o(2)dCdE dzdydar.
- / / / / a(z, £)e ™ (z, )™ () d(dédzv(x ) dx
= / / / / a(z, £)e* ™ Eh(z, ()X CdEdze® ™ () d(o(z) d

_ / / c(x, O)e* ™S a()d¢o(x)dx
with

cz, () = / / a(x, £)e*™ @2 E0p(5 ¢)dedz
_ / / a(z,€ + O 2™ bz + o (Vdedz, (3.2.5)

which is indeed (3.2.4). With ¢ = a ¢ b given by (3.2.4), using that a,b € . (R?*")
we get, using the notation (1.2.8) and Py (t) = (1 + [t|*)Y/2, k € 2N,

c(z,§) = // Py(D ‘2“”"”> Py(y)~ a(w,& +n)bly + x,&)dydn
B // ™M Py (y) " (Pe(Da)a)(w, & +n)bly + ., §)dydn
= [ BB () Pty Puly) (D). + )bty + . )y

= Yl [femn (R by + 5. 6)

0<i<k/2

Py(n) " (Pe(D2)a)(, € + n)dydn. (3.2.6)

We denote by a¢b the right-hand-side of the previous formula and we note that, when
k > n, it makes sense as well for a, b € C$°(R*), since |02 (1/P)(t)| < Con(1+]t])7*
We already know that a¢b = adb for a, b in the Schwartz class and we want to prove
that it is also true for a,b € C5°(R?"). Choosing an even k > n (take k =n+1 or
n+ 2), we also get

|a3b|| oo (r2ny < Cy sup  ||0fal|poc(meny sup  [|O5b]| oo m2n).
|a| <n+2 |B]<n+2
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Moreover, we note from (3.2.6) that
¢, (adh) = (0¢;a)db 4 ad(0¢,b), 0, (adb) = (0y;a)db + ad(0y,b)
and as a result

10202 (aBb) | oo o)

< Chayp sup 108" 02" al| o o) 07" O
|o/[<n+2,|8'|<n+2
a//+a/ll:a’ 5//+5///:6

1"

b”Loo(RQn), (327)

which gives also the continuity of the bilinear mapping C{°(R?") x C{°(R**) 3
(a,b) — adb € C°(R*). We have for u,v € S (R"),a,b € C5°(R*"),

ay(x, &) = e FPHERR g0 &) by (z, &) = e EPHEP/F (5 €,
from Lemma 3.2.3 and Theorem 3.2.2, with limits in .%(R™),
a(, D)b(, D)u = lim ax(z, D)b(z, D)u = lim (lilm ax(z, D)bi(z, D)u>,
and thus, with Q, ,(z,€) = *™€4(£)7(z) (which belongs to 7(R>™)),
(a(z, D)b(x, D)u, v) 12 = lim (nlm«ak o b)) (z, D)u, v))
—tim (i [ [ @20 0) (0. €) (0. o) = [ [ (38)(0,€) (o, €,

which gives indeed a(x, D)b(x, D) = (adb)(x, D). This property gives at once the
continuity properties stated at the end of the theorem, since the weak continuity
property follows immediately from (3.2.6) and the Lebesgue dominated convergence
theorem, whereas the Fréchet continuity follows from (3.2.7). Moreover, with the
same notations as above, we have with

O (y,m) = alw, &+ n)b(y + x,€)
(see Remark 3.2.6) for each (x,¢) € R*",
(JCE)(0,0) = lim(JCLE™)(0,0) = lim((ax o by) (2, €)) = (adh)(, )
which proves (3.2.3). The proof of the theorem is complete. O

Definition 3.2.7. Let A : ./ (R") — /(R"™) be a linear operator. The adjoint
operator A* : S (R") — .'(R"™) is defined by

(AU, V) g+ mr), 7 (RP) = <AU7u>f*(R"),f’(R”)’

where .*(R™) is the antidual of .’(R™) (continuous antilinear forms).
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Lemma 3.2.8. Let n > 1 be an integer and t € R*. We define the operator
J' = exp 2irtD, - Dg (3.2.8)

on . (RExRE) by (FJ'a)(§,x) = e*™*a(€, x), where F stands here for the Fourier
transform in 2n dimensions. The operator J* sends also (R} x RE) into itself
continuously, satisfies (for s,t € R) J*T = J5J" and is given by

(J'a)(z,&) = [t|™ // e~ 2N (1 4y, € + n)dydn. (3.2.9)

We have
Jta = ™ BPD) g = [¢| eI B 4 g, (3.2.10)

0 I,

with the 2nx2n matrizc B = (I 0

) . The operator J* sends continuously C7°(R*")

into itself.

Proof. We have indeed (FJ'a)(€,x) = e2™%q(¢, 2) = ™ B=5)4(Z). Note that B
is a 2n X 2n symmetric matrix with null signature, determinant (—1)" and that
B! = B. According to the proposition 1.2.19, the inverse Fourier transform of
emUBEE) g || e~ im T BXX) g6 that J'a = [t| """ (B2) % a. Since the Fourier
multiplier ¢"™5%2) is smooth bounded with derivatives polynomially bounded, it
defines a continuous operator from .#(R?*") into itself.

In the sequel of the proof, we take ¢t = 1, which will simplify the notations without
corrupting the arguments. Let us consider a € .%(R?*"): we have with k € 2N and
the polynomial on R” defined by Pi(y) = (1 + |y|?)*/?

(o)) = [ [ R ) D) (Peln) (Do) + 0. € + 1) )y,

so that, with |T,z(n)| < Py(n)~" and constants c,z, we obtain

(Ja)(z,§) = Z Cap // e_gi”y'”Pk(y)_lTag(n)(D?Dfa)(w+y,§—|—77)dyd77. (3.2.11)

18|<k
| <k

Let us denote by Ja the right-hand-side of (3.2.11). We already know that Ja = Ja
for a € #(R?"). We also note that, using an even integer k& > n, the previous
integral converges absolutely whenever a € C5°(R?"); moreover we have

||ja||Loo§Cn sup ||D§‘Dfa||Loo,
la|<n+2
|Bl<n+2

and since the derivations are commuting with J and J, we also get that

|07 Jal|p~ < C, sup || DEDEO a1 (3.2.12)
| <n+2
|Bl<n+2
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It implies that .J is continuous from C§°(R?*") to itself. Let us now consider a €
C°(R*™ x R™); we define the sequence (ay) in .7 (R?") by

ar(w, &) = e~ PHEDF g (2 ).

We have <JCL, @)y*(RQn)7y(R2n) =

[[ e T8 ) = tim_ [ [ e T TR
=t [ [ a9 dsd = [[(a)(w. 0,

k—+o0

so that we indeed have Ja = Ja and from (3.2.12) the continuity property of the
lemma whose proof is now complete. O]

Theorem 3.2.9. Let a € /' (R*) and A = a(x, D) be given by Definition 3.2.1.
Then the operator A* is equal to a*(x,D), where a* = Ja (J is given in Lemma
3.2.8 above). If a belongs to C°(R*™), a* = Ja € C{°(R*™) and the mapping a — a*
is continuous from C5°(R*™) into itself.

Proof. According to the definitions 3.2.7 and 3.2.1, we have for u,v € .(R"), with
(@, ) = ™ 0(Eu(x),

(Au, U)?’*(R")J(R”) = (Av, u>§”*(R"),,S/’(R") =<0,y >_Y’(IR{2"),§”(R2")

=< aaﬁv,u }y/(ﬂpn),y(ﬂ@n) .

On the other hand, we have

(T Qo) (2. 6) =

=

/62i7r(m—y)-(§—n)e—2i7ry'"5(n)u(y)dydn

so that, using (3.2.10), we get
(AU, V) e (&), 7Ry == @y JQup = gr@men) @2y == J@, Qyy = 71 (m20), 7(R2M)

and finally A* = (Ja)(x, D). The last statement in the theorem follows from Lemma
3.2.8. O

N.B. In this introductory section, we have seen a very general definition of quanti-
zation (Definition 3.2.1), an easy . continuity theorem (Theorem 3.2.2), a trickier
L*-boundedness result (Theorem 3.2.4), a composition formula (Theorem 3.2.5) and
an expression for the adjoint (Theorem 3.2.7). These five steps are somewhat typical
of the construction of a pseudo-differential calculus and we shall see many different
examples of this situation. The above prolegomena provide a quite explicit and ele-
mentary approach to the construction of an algebra of pseudo-differential operators
in a rather difficult framework, since we did not use any asymptotic calculus and
did not have at our disposal a “small parameter”. The proofs and simple methods
that we used here will be useful later as well as many of the results.
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3.3 Quantization formulas

We have already seen in Definition 3.2.1 and in the formula (3.2.1) a way to associate
to a tempered distribution a € .#/(R?") an operator from . (R") to .#/(R™). This
question of quantization has of course many links with quantum mechanics and we
want here to study some properties of various quantizations formulas, such as the
Weyl quantization and the Feynman formula along with several variations around
these examples. We are given a function a defined on the phase space R” x R" (a is a
“Hamiltonian”) and we wish to associate to this function an operator. For instance,
we may introduce the one-parameter formulas, for ¢t € R,

(op; a // 2@ La (1 — t)z + ty, &) uly)dydé. (3.3.1)

When t = 0, we recognize the standard quantization introduced in Definition 3.2.1,
quantizing a(z); in a(z)D,; (see (1.2.8)). However, one may wish to multiply first
and take the derivatives afterwards: this is what the choice t = 1 does, quantizing
a(x)§; in Dyja(x). The more symmetrical choice ¢ = 1/2 was done by Hermann
Weyl [27]: we have

(op1 a)u // Zim(@=y)- ;y,ﬁ)u(y)dydf, (3.3.2)

and thus op%(a(x)éj) = 1 (a(z)Dy; + Dya(z)) . This quantization is widely used
in quantum mechanics, because a real-valued Hamiltonian gets quantized by a (for-
mally) selfadjoint operator. We shall see that the most important property of that
quantization remains its symplectic invariance, which will be studied in details in
Chapter 2; a different symmetrical choice was made by Richard Feynman who used
the formula

[ e alo.6) + alw. ) gutw)duds (333)

keeping the selfadjointness of real Hamiltonians, but loosing the symplectic invari-
ance. The reader may be embarrassed by the fact that we did not bother about the
convergence of the integrals above. Before providing a definition, we may assume
that a € ./ (R*),u,v € #(R"),t € R and compute

((op,a)u,v) = ///a((l —t)r + ty,f)eQi’T(x’y)'éu(y)@(x)dydfdx

— / / / a(z,&)e ™ (2 4+ (1 — )s)v(z — ts)dzdéds

/// (2, £)e™ ™ u(z + (1 - t)2)o(x — tz)dzdédz,

so that with

Qu(t)(x,8) = /e_%mfu(x + (1 —t)2)o(x — tz)dz, (3.3.4)
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which is easily seen” to be in .(R*") when u,v € .¥(R"), we can give the following
definition.”

Definition 3.3.1. Let a € ./(R*") be a tempered distribution and ¢ € R. We
define the operator op,a : ./ (R") — .*(R") by the formula

((ops@)u, v) g+ (Rn), 7 (mm) == @, Ly (t) ” 7 (R2n),.7 (R2n) 5
where .*(R") is the antidual of .’(R™) (continuous antilinear forms).

Proposition 3.3.2. Let a € .%'(R*™) be a tempered distribution and t € R. We
have

op,a = opy(J'a) = (J'a)(z, D),
with J* defined in Lemma 3.2.8.

Proof. Let u,v € (R"™). With the .#(R*") function €, ,(t) given above, we have
for t # 0,

(J'2u,0(0)) (,€) = [ / / e 2m e, L (0) (y, m)dydn
= [t // D () y) e dydn
_//e2zﬂz (&—n) 5 (77)1_)(.’17—t2) 2im(x— tz)ndzd77

= /e_%mfu(x + (1 =t)z)o(x — tz)dz = Q. (t)(z, §), (3.3.5)

so that

<(Opta)u, v>y*(R7L)7y(Rn) =< a, Quﬂ, (t) = 71 (R2n), 7 (R2n) (definition 3.3.1)

=< a, JtQu,U(O) = 1 (R2n), 7 (R27) (property (3.3.5))

== Jta, Quﬂ,(O) > 71 (R2n), .7 (R2n) (easy identity for J*)

= <(JtCL> (33, D)u, /U>y*(Rn)wy)(Rn) (definition 3.2.1),
completing the proof. n

Remark 3.3.3. The theorem 3.2.9 and the previous proposition give in particular
that a(z, D)* = op,(a) = (Ja)(z, D), a formula which in fact motivates the study of
the group J*. On the other hand, using the Weyl quantization simplifies somewhat
the matter of taking adjoints since we have

(0P1/2(a))* = (OPO(J1/2G))* = OPO(J(m» = Opo(Jl/Qa) = Opl/Q(d)

2In fact the linear mapping R" xR"™ > (x, z) +— (z—tz,z+(1—t)2) has determinant 1 and Q,_,(¢)
appears as the partial Fourier transform of the function R” xR" 3 (z, z) — 0(x —tz)u(z+ (1 —1t)2),
which is in the Schwartz class.

3The reader can check that this is consistent with Definition 3.2.1.
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and in particular if a is real-valued, op; ;5(a) is formally selfadjoint. The Feynman
formula as displayed in (3.3.3) amounts to quantize the Hamiltonian a by

1
éopo(a + Ja)

and we see that (opy(a+.Ja))" = opy(Ja+J(Ja)) = opy(Ja+a), which also provides
selfadjointness for real-valued Hamiltonians.

Lemma 3.3.4. Leta € ./ (R?"). Then for allt € R, op,(a) is a continuous mapping
from ' (R") in 7 (R™).
Proof. Let a € (R*"): we have for u € /'(R"), A = a(z, D),

o 1 ~ 2irx-£ ¢’ . o’
(DgAu)(z) = ) o é) e P (DY a)(x, ). (my), o 2

a'+a'=a

so that Au € Z(R™) and the same property holds for op,(a) since J* is an isomor-
phism of .%’/(R?"). O

3.4 The S5class of symbols

Differential operators on R" with smooth coefficients are given by a formula (see
(3.2.1))

a(x, D)u = Z ao () DY

|| <m
where the a, are smooth functions. Assuming some behaviour at infinity for the a,,
we may require that they are Cp°(R™) (see page 62) and a natural generalization is
to consider operators a(x, D) with a symbol a of type S}, i.e. smooth functions on
R?" satisfying

(0807a)(x,€)| < Cag()™ 1, (€) = (1 +[¢")"%. (3.4.1)

The best constants Cyp in (3.4.1) are the semi-norms of @ in the Fréchet space S7%.
We can define, for a € 57, k € N,

Vram(@) = sup (02 02a)(z, &)|(€)mFlel. (3.4.2)

(z,6)ER?™ |al+|B|<k

Ezample. The function (§)™ belongs to STj: the function
RxR" 3 (r,§) = (7 + ¢

is (positively) homogeneous of degree m on R™"\{0}, and thus 92 (72 + [£[*)™/?)
is homogeneous of degree m — || and bounded above by

m—|al
2 .

Co(T* + [€]%)

Since the restriction to 7 = 1 and the derivation with respect to £ commute, it gives
the answer.
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We shall see that the class of operators Op(S77) is suitable (Op(b) is opyb, see
Proposition 3.3.2) to invert elliptic operators, and useful for the study of singularities
of solutions of PDE. We see that the elements of ST are temperate distributions, so
that the operator a(x, D) makes sense, according to Definition 3.2.1. We have also
the following result.

Theorem 3.4.1. Let m € R and a € STy. Then the operator a(x, D) is continuous
from Z(R™) into itself.

Proof. With (D) = Op((£)), we have a(z, D) = Op(a(z,&){£)"™)(D)™. The func-
tion a(z, £)(€)™™ belongs to C5°(R?™) so that we can use Theorem 3.2.2 and the fact

that (D)™ is continuous on . (R™) to get the result. O
Theorem 3.4.2. Let a € SY,. Then the operator a(x, D) is bounded on L*(R™).
Proof. Since S, C C;°(R*"), it follows from Theorem 3.2.4. O

Theorem 3.4.3. Let my, my be real numbers and a; € S{,a2 € S{§. Then the
composition ai(x, D)ay(x, D) makes sense as a continuous operator from .7 (R™)
into itself and ay(z, D)ag(x, D) = (a1 ¢ az)(x, D) where ay o ay belongs to Syg™™
and 1s given by the formula
(a1 © az)(x,€) = (exp 2irD, - Dy) <a1(x, € +n)as(y + z, g))l S (343)
y=u,n=

N.B. From Lemma 4.1.5 in [13], we know that the operator e*™PvPn is an iso-

morphism of S{{(R*"), which gives a meaning to the formula (3.4.3), since for
a; € S7g(R®™), (x,€) given in R?", the function (y,n) — ai(x,€ + n)as(y + z,§) =
Cue(y, 77) belongs to ST (R*") as well as JCp¢ and we can take the value of the
latter at (y,n) = (0,0).

Proof. We assume first that both a; belong to ./(R*"). The formula (3.2.4) provides
the answer. Now, rewriting the formula (3.2.6) for an even integer k, we get

@oa)e )= 3 Chy [ ™D (1) aaly+2.0)

0<I<k/2
()M (Dy)Fan) (. € + n)dydn. (3.4.4)
We denote by a;day the right-hand-side of (3.4.4) and we note that, when k& >
n + |my|, it makes sense (and it does not depend on k) as well for a; € Sf}{, since

105 ()| < Canly) ™", 10 as(y + 2, )] < Ca(€)™, |0)ar(x, & + )| < Co(E+m)™

so that the absolute value of the integrand above is* °

< ()R TREY™2 (€ 4 )™ < (y) TR () TRHIml(gymitme

We use (€ +n) < 2Y/2(¢)(n) so that,
Vs € RV, €R™, (€ 4m)° < 2BI2(6)s (e, (3.4.5)

a convenient inequality (to get it for s > 0, raise the first inequality to the power s, and for s < 0,
replace £ by —¢ — n) a.k.a. Peetre’s inequality.

5We use here the notation a < b for the inequality a < Cb, where C' is a “controlled” constant
(here C depends only on k,mi, ms).
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Remark 3.4.4. Note that this proves that the mapping
ST % ST 3 (a1, a2) — arday € Sy
is bilinear continuous. In fact, we have already proven that
|(a16az)(z, §)| < C(€)™ ™,
and we can check directly that a;%ay is smooth and satisfies
Ok, (aléag) = (O, a1)%az + a18(0, az)

so that [0, (a1as)(x,&)] < C(§)™+™~1 and similar formulas for higher order
derivatives.

Remark 3.4.5. Let (c,) be a bounded sequence in the Fréchet space ST, converging
in C*°(R*") to ¢. Then ¢ belongs to ST, and for all u € .#(R"), the sequence
(ck(z, D)u) converges to c¢(x, D)u in #(R™). In fact, the sequence of functions
(cx(z,€)(€)™™) is bounded in C°(R?") and we can apply Lemma 3.2.3 to get that

limy, Op(cx (2, £)(€) ™) (D)™ u = Op(c(z, £)(€) ™" ){D)"u = Op(c)u in 7 (R").

The remaining part of the argument is the same than in the proof of Theorem
3.2.5, after (3.2.7). O

Theorem 3.4.6. Let s,m be real numbers and a € S{. Then the operator a(z, D)
is bounded from H*t™(R™) to H*(R™).

Proof. Let us recall that H*(R") = {u € ' (R"),(§)*0u(¢) € L*(R™)}. From the
theorem 3.4.3, the operator (D)®a(x, D)(D) ™% can be written as b(z, D) with
b e SY, and so from the theorem 3.4.2, it is a bounded operator on L?(R"). Since
(D) is an isomorphism of H?(R") onto L*(R™) with inverse (D)7, it gives the
result. O

Corollary 3.4.7. Let r be a symbol in S;¢° = N,,S7y. Then r(z, D) sends &' (R")
into S (R™).

Proof. We have for v € & and ¢ € C°(R") equal to 1 on a neighborhood of the
support of v, iterating

.7ch6?"(95, D)v = [z, Dﬁr(a:, D)y + DPr(z, D)xjv = ri(x, D)v, 15 € S1¢°,
that 2*DPr(z, D)v = ras(z, D)v,res € S15°, and thus
z*DPr(z, D)v € N,H*(R™) C C;°(R™),

completing the proof. O



34. THE S% CLASS OF SYMBOLS 75

Theorem 3.4.8. Let my,my be real numbers and a; € Sig,as € S7G. Then
ar(x, D)ag(x, D) = (a1 ¢ az)(x, D), the symbol ay o az belongs to ST™™ and we
have the asymptotic expansion, for all N € N,

1
a o= Y —Dgaday + 1y (ar, az), (3.4.6)

la|<N
with TN(CLl,G,Q) c S{?&'ﬁ‘mz—Nl Note that D?alagCLQ belong to S{tlé+m2*|a|.

Proof. We can use the formula (3.4.3) and apply that lemma to get the desired
formula with

rn(as, az)(z, )

PA =N siop.De o N

= [ ——e¢ =Pe(2in D, - D)™ (a1 (x,)as(2,€))d0 _, . (3.4.7)
o (N=1)!

The function (2, ¢) + by e(2,¢) = (€)™2(2ir D, - D¢)Nay(x, ()az(z, ) belongs to

ST(}_N (Rg"g) uniformly with respect to the parameters (z,£) € R*": it satisfies, using

the notation (3.4.2), for max(|al,|5]) < k,

10807b2,6(2, )| < Vi (A1) Vioam (@2) ()™ N1,

Lemma 3.4.9. Let n > 1 be an integer and m,t € R. The operator J' sends
continuously S{’?O(RZ”) into itself and for all integers N > 0,

||
(), €) = 3~ (DEa)(w, &) + ra()(w,€), ra(t) € ST,

laj<N

(0. = ¢ [ T (0000 )

Proof. We apply Taylor’s formula on J* = exp 2intD, - D¢ to get for operators on
y/(R2n>7

¢ tk . L1 —-gnN-t N
Jh = Z E(Dé - 02)" + ; WJ (tD¢ - 0,)" db, (3.4.8)
0<k<N :
and since . (D) Do, )
— (D¢ - 0,)F = §9%.) \eGen)
k!( ) a1+~;1 o an!
CleNn

we obtain the above formulas for a € /(R*"). On the other hand, we get from
(3.4.1) that the term Dgdga belongs to Sfl(f'a'. It is thus enough that we show
that J* sends continuously ST into itself. For that purpose, we can use the formula
(3.2.11) (and assume that ¢ = 1) in the proof of the lemma 3.2.8; also the same
reasoning as in the proof of this lemma shows that the right-hand-side of (3.2.11) is
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meaningful for a € ST} if & > n + [m| and is indeed the expression of Ja. We get,
for all £ € N,

Jale &) < Co [ [ )74 n) g+ mmdea

so that Peetre’s inequality (3.4.5) yields, for k > n + |m|, [Ja(z,§)| < C . (§)™.
The estimates for the derivatives are obtained similarly since they commute with J.
The terms involving integrals of J* can be handled via Remark 4.1.4 in [13], which
provides a polynomial control with respect to t. O]

Applying Lemma 3.4.9, we obtain that the function

0= [ e
px,§ 9 - 0 (N - 1)| x,£ 9
belongs to ST S_N(RZZ) uniformly with respect to x, &, so that in particular

sup  |pae(z, O(C) ™ N = Cp < +o0.

(z,€,2,0) R
Since r(ay, az)(x, £)(€) ™™ = pre(x, &), we obtain
[ (ar, az) (@, )] < Co(g)™Fm=N. (3.4.9)

Using the formula (3.4.7) above gives as well the smoothness of rx (a1, as) and with
the identities (consequences of 0, (a1 ¢ az) = (0,,a1) © az + a; © (0y,az))
39;]- (TN(CH, a2)) = TN(azjah az) + ry(ai, am]-a2)

8§j (TN(al, ag)) = TN(8§ja1, CLQ) + rN(al, 85].@2)
it is enough to reapply (3.4.9) to get the result ry € S77" -, O

We have already seen in Theorem 3.2.9 that the adjoint (in the sense of Definition
3.2.7) of the operator a(x, D) is equal to a*(z, D), where a* = Ja (J is given in
Lemma 3.2.8). Lemma 3.4.9 gives the following result.

Theorem 3.4.10. Let a € STy Then a* = Ja and the mapping a — a* is conlinu-
ous from ST into itself. Moreover, for all integers N, we have

* 1 a o= m—
a* = Z aDg Opa+ry(a), rn(a)€ ST N
la|<N
A consequence of the above results is the following.
Corollary 3.4.11. Let a; € Sﬁ{,j =1,2. Then we have

a; © ay = aja; mod SZ‘(}J”"Q_I, (3.4.10)

1
—{aj,a2} mod SI’}}’L’”TQ, (3.4.11)

um
%8@2 _ aal 8a2
1<7<n 6@ 8:6]- ij 85] .

Forae Sy, a"=a mod S (3.4.13)

a1 o as — as ¢ ay

where the Poisson bracket {aj,as} = (3.4.12)
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Theorem 3.4.12. Let a be a symbol in STy such that inf , ¢)epen |a(x, &)[(£)™™ > 0.
Then there exists b € Sy " such that

b(x,D)a(x,D) = Id+l(x,D),

a(z,D)o(z,D) = Id+r(z,D), 150 =S

Proof. We remark first that the smooth function 1/a belongs to S; ¢": it follows from
the Faa de Bruno formula or more elementarily, from the fact that, for ||+ (5] > 1,
920l(%a) = 0, entailing with the Leibniz formula

adg 0y (1/a) = > 0807 (1/a)dg" 0 (a)e(a’, B,
a’—&-a”:a,ﬁ’—&-ﬂ”:ﬁ
o[+ |<|al+8]

with constants ¢(o/, ). Arguing by induction on |a| + | 3|, we get
adgdi(1/a)l S Y (&) O™ < (g) T
a'+a'=a

and from |a| 2 (£)™, we get 1/a € S;". Now, we can compute, using Theorem
3.4.8,

1
—ca=1+10l, L €S
a/ b

Inductively, we can assume that there exist (by,- -+ ,by) with b; € S~/ such that
(bo+ - +by)oa=1+Iyp1, Iyp1 €S0 " (3.4.14)
We can now take by, 1 = —Iy1/a which belongs to S—m=N=1 and this gives

(bo+ -+ by +byi1)oa=1+Iyp1 — Ive1 + Ing2, Iviz € Sig 2

Lemma 3.4.13. Let p € R and (¢;) en be a sequence of symbols such that ¢; € Sﬁaj.
Then there exists c € Sty such that

chcj, r.e. VN eN, c— Z chSfaN.
J 0<j<N
Proof. The proof is based on a Borel-type argument similar to the one used to
construct a C* function with an arbitrary Taylor expansion. Let w € C3°(R™) such
that w(§) = 0 for || < 1 and w(§) = 1 for || > 2. Let (\;);en be a sequence of
numbers > 1. We want to define

oz, &) = Z cj(z, w(EA), (3.4.15)

and we shall show that a suitable choice of A\; will provide the answer. We note that,
since A\; > 1, the functions & — w(f)\j_l) make a bounded set in the Fréchet space
S?,o- Multiplying the ¢; by () 7#, we may assume that @ = 0. We have then, using
the notation (3.4.2) (in which we drop the second index),

5, O (EX) < 0(e)(6) “Ligza, < ()X *(6) 7,
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so that,
Vi >1, A > 2%90(cy)7 = pl” = V5 > 1 (@, ©)w(EN!) < 277(8) 2,

showing that the function ¢ can be defined as above in (3.4.15) and is a continuous
bounded function. Let 1 < k € N be given. Calculating (with w;(§) = w(&)\j_l)) the
derivatives 9¢0f (c;w;) for |af + |B| = k, we get

|8§‘8§(cjwj)| < ’Yk;(cjwj)<€>_j_|a|1‘£|2)\j < %(Cj)/\j—jﬂ(@—la\—%’
so that

2 . :
Vi >k Ay > 2 (k)T = i = 5 >k, (0200 ()| < 277(€) 74, (3.4.16)
showing that the function ¢ can be defined as above in (3.4.15) and is a C* function
such that

(@£02) (@, ) < 3 Aule) (@7 + 3279 (e) 7 < )l

0<j<k =k
It is possible to fulfill the conditions on the A; above for all £ € N: just take
(k)

Aj 2 sup fu
0<k<j

The function ¢ belongs to Sfo and

rN =C— Z ¢ = Z (wj—l)cj—l—chwj,

0<j<N 0<j<N - J>N
€573

and for |a| + || = k, using the estimates (3.4.16), we obtain

S(@ylel=ig(g)~lal-N

N

> 1020 (cjwi) (@, )] < > |08 0] (c;w;) (2, €))

j>N N<j<max(2N,k)
+ ) [0207 (cjwy) (. )|
j>max(2N,k) R
273 (g) T 5ami(g) ~lal-N
proving that ry € Sy, &. The proof of the lemma is complete. m

Going back to the proof of the theorem, we can take, using Lemma 3.4.13,
Sig Db~ ijo b;, and for all N € N,

boa € Z bjoa+SiéV_m0a:1+SiéV,
0<j<N

providing the first equality in Theorem 3.4.12. To construct a right approximate
inverse, i.e. to obtain the second equality in this theorem with an a priori different b
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follows the same lines (or can be seen as a direct consequence of the previous identity
by applying it to the adjoint a*); however we are left with the proof that the right
and the left approximate inverse could be taken as the same. We have proven that
there exists b, 6@ € S7§" such that

boael+55, aob® el+ S

Now we calculate, using” the theorem 3.2.5, (b o a) o b® = b mod S;§° which
is also b o (a0 b@) = b® mod S;§° so that bM) —b? € S75°, providing the resuls
and completing the proof of the theorem. n

Remark 3.4.14. The mapping .'(R*") 5 a — a(x, D) is (obviously) linear and one-
to-one: if a(z, D) = 0, choosing v(z) = e ™#=%01” (&) = e~ we get that the
convolution of the distribution a(z,&) = a(x,£)e* ¢ with the Gaussian function
e~ (2P +IE%) ig zero, so that, taking the Fourier transform shows that the product of
the same Gaussian function with @ is zero, implying that a and thus a is zero. It is
a consequence of a version of the Schwartz kernel theorem that the same mapping
S'(R*™) 5 a + a(z, D) € continuous linear operators from . (R") to ./'(R") is
indeed onto. However the “onto” part of our statement is highly non trivial and a
version of this theorem can be found in the theorem 5.2.1 of [5].

An important consequence of the proof of the previous theorem is the possible
microlocalization of this result.

Theorem 3.4.15. Let x be a symbol in S?,o and let a be a symbol in ST} such
that inf ; ¢)esuppy |a(x, §)[(§) ™™ > 0. Let b be a symbol in 5(1),0 such that supp ) C
{x = 1}. Then there exists b € Sio" such that

b(x, D)a(x, D) = (x,D)+(z,D), €5,
Proof. We consider the symbol by = x/a, which belongs obviously to S §". We have

(Xll X

bopoa=x+1, llésl_ﬁ, —7—1-5)0&:)(4-[1(1—)()4‘[2, 12651_,3-

Inductively, we may assume that there exists (bo, ..., by) with b; € S~/ such that

(b0+bl+"'+bN)<>a:X+ Z lj(l_X)+lN+1a lN+1 € Sié_N.
1<j<N

Choosing by = —xlnyi1/a, we get

(bo+br+ -+ +by+byy1)oa=x+ Z L =x) +Ins2, Invp € Sig ™
1<G<N+1

6A consequence of Theorem 3.2.5 is the associativity of the “law” ¢ since

Op(a < (boc)) = Op(a)(Op(b)Op(c)) = (Op(a)Op(b))Op(c) = Op((a < b) o c)

so that the injectivity property of Remark 3.4.14 gives the answer.
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Taking now a symbol ¢ € S?,o such that supp ¢ C x*({1}), we obtain for all N € N,
the existence of symbols by, - - - , by with b; € S™™7 such that

Yo (bo+bi+---+by)oa=vYox+1o Z Li(1—=x)+olyn (Iny1 € Sfol_N)
1<G<N
_1-N

= +ryg, TN+1 € S1g
Using now Lemma 3.4.13, we find a symbol b € S ¢* such that, for all N € N,
voboa€y+ SN, ie. we find be Sio" such that boa=1 (mod S1o00)- O

3.5 Garding’s inequality

We end this introduction with the so-called Sharp Garding inequality, a result proven
in 1966 by L. Hérmander [3] and extended to systems the same year by P. Lax and
L. Nirenberg [9].

Theorem 3.5.1. Let a be a nonnegative symbol in ST. Then there exists a constant
C such that, for all u € S (R"),

2
Re(a(z, D)u,u) + C’Hu||H%(Rn) > 0. (3.5.1)
Proof. First reductions. We may assume that m = 1: in fact, the statement for
m = 1 implies the result by considering, for a nonnegative a € ST, the opera-
tor (D) 2" a(z, D)(D) 2" which, according to Theorem 3.4.8 has a symbol in Stos
which belongs to (§)'""a(z, &) + S{,. Applying the result for m = 1, and the L*
boundedeness of operators with symbols in S, we get for all u € ' (R"),

Re((D) =" a(z, D){D) =" u,u) + Cllu|22gn) > 0,
which gives the sought result when applied to u = (D)mTflv. We may also replace
a(x, D) by a™, where a® is the operator with Weyl symbol a . In fact, according to
Lemma 3.2.8, J'2a — a € 57 and Op(SY,) is L*-bounded.
Main step: a result with a small parameter. We consider a nonnegative a € 51170 and

ah _

w € CZ((0,400); R,) such that /+OO o(h) . 1. (3.5.2)
0
This implies .
o= [ l©nalr. ) T (353)
0 \‘,_/

=ap(,8)
We have, with T'y(z, &) = 2" exp —2n(h~tx|? + hl€]?) and X = (z,€),

(ap * Tp)(X) = ap(X) + /01(1 —0)a} (X +0Y)Y?T,(Y)dY df

= ap(X) +ra(X). (3.5.4)
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The main step of the proof is that (aj * I';)" > 0, a result following from the next
calculation (for u € .#(R™)), due to Definition 3.3.1. We have, with Q,, defined in
(3.3.4),

((an * D), 1) = / / (an % T) (@, €) ( / e a4 Yl §)dz) dds

— // a(y, n)(Quu(1/2) = T'n)(y, n)dydn,

and since (€,,,(1/2) * ') (2, ) =

/// e Py (1 — y 2) a(x—y - 5)2 exp =2 (A~ y|* + hin|*)dzdydn
//6 2imz-€ (CE —y+ 2) (I —y— %)Qn/2e—2wh—1|y|2h_n/2e—ﬁ\z|2dzdy

// u(z — y)u(r —yo)e 2”(”‘?“)'52"/2h‘”/26‘%'ylﬂ/?‘Qe‘%m‘”'Qdmdyz

2

_ 2n/2h—n/2 >0

Y

/ u(z — )™ S I gy,

we get indeed (ap x I'p)* > 0. From (3.5.3) and (3.5.4), we get

~+o00 +o00 +oo
v = / a’htdh = / (an * Tp)h~'dh — / rPhtdh >
0 0 0

+o00
—/ rh~'dh.
0

Last step: f0+°° r®h~tdh is L?-bounded. This is a technical point, where the main
difficulty is coming from the integration in h. We have from (3.5.4) and the fact
that I'j, is an even function,

1
r(X) = 8_7Ttraceh ap(X 3' // (1— (4) (X +0Y)Y*T,(Y)dY db,

with tracey, aj (X) = htrace 2ay + h~" trace Ofay. Since ¢ € C((0,+00)), we have

+o00 +o00
/ htrace O%aph~*dh = trace 0%a(w, £) / ©({€)h)dh = ctrace 2a{€) ™,
0 0

with ¢ = [[" ¢(t)dt. The symbol ctrace d2a(¢)~! belongs to SY, as well as the

other term fOJrOO h~" trace zan(x, §)h~'dh: we have

(Ocan) (@, €) = (Oca) (x, ) p(h(€)) + a(x, §)¢ (h(§))h(€) ¢
(Ogan)(x, &) = (0ga)(x, &) p(h(€)) + 20ca(x, &) (h(§))h
+a(z, §)@" (h(€)h*(€) 76" + alx, )¢/ (h(€))hde (§(€) ),
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and checking for instance the term ["> h~1(02a)(z, &)@(h(€))%L, we see that it is
equal to

@) [ heleDG = @O [ ren ]

= e1(0Fa)(x, £)(€) € Sy,

whereas the other terms are analogous. We are finally left with the term

1
p(X) = % / / / (1—6)%al" (X + 0Y)Y'T),(Y)dY h~"dhds,
: 0

and we note that on the integrand of (3.5.3), the product h(£) is bounded above
and below by fixed constants and that integral can in fact be written as

r1(§)
0@ = [ el@halzdn/h

Ko (€) !
with 0 < kg = minsupp ¢ < k1 = maxsupp . Consequently the symbol ay, satisfies

the following estimates:
0802ay| < Cogh™ 't

where the C,s are some semi-norms of a (and thus independent of h). As a result,
the above estimates can be written in a more concise and convenient way, using the
multilinear forms defined by the derivatives. We have, with T'= (t,7) € R” x R",

0 (X T < Ch~ g (T)?,  with g (t,7) = > + B2|7]>.
We calculate
1 1
p®(X)TF = o / / / (1— 0% (X + 0Y)Y*T*T,(Y)dY h™ dhds,
: 0
which satisfies with wy,(t,7) = h ™ gy (t, 7),

[p®(X)T*|
C4+k

//1{h<m}h Lgn(T)F/? gh(Y) e~ 2mn(M) gy h=tdh

7h2wh (Y)?

CM T // Y)21{h < k1 }2e My dh < Cy([t] + |7])*

and this proves that the function p belongs to C°(R?"), as well as J'/2p (Lemma
3.2.8) and thus p* = (J/2p)(x, D) is bounded on L? (Theorem 3.2.4). The proof is
complete. O

Remark 3.5.2. Theorem 3.5.1 remains valid for systems, even in infinite dimension.
For definiteness, let us assume simply that a(z, ) is a N x N Hermitian non-negative
matrix of symbols in S{,. Then for all u € S (R"CY), the inequality (3.5.1)
holds. The vector space C can be replaced in the above statement by an infinite-
dimensional complex Hilbert space H with a valued in Z(H) and the proof above
requires essentially no change.
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3.6 The semi-classical calculus

A semiclassical symbol of order m is defined as a family of smooth functions a(-, -, h)
defined on the phase space R?", depending on a parameter h € (0, 1], such that, for
all multi-indices «, 3

sup |(3?8£a)(x,§, h)| A1l < 400 (3.6.1)
(2,€,h)ER™ XR™ % (0,1]

The set of semi-classical symbols of order m will be denoted by SI. A typical
example of such a symbol of order 0 is a function a;(x, h) where a; belongs to
C3°(R?"): we have indeed 9202 (a1(z, h€)) = (0205a1)(x, hE)RI. Tt turns out that
this version of the semi-classical calculus is certainly the easiest to understand and
that Theorem 3.2.4 is implying the main continuity result for these symbols. The
reader has also to keep in mind that we are not dealing here with a single function
defined on the phase space, but with a family of symbols depending on a (small) pa-
rameter h, a way to express that the constants occurring in (3.6.1) are “independent
of h”. We shall review the results of the section on the ST class of symbols and
show how they can be transferred to the semi-classical framework, mutatis mutandis
and almost without any new argument. To understand the correspondence between
symbols in ST}, and semi-classical symbols, it is essentially enough to think of the

S10 calculus as a semi-classical calculus with small parameter ().
We can define, for a € 87, k € N,

scl»

Ym(a) = sup (Opa)(x, &, WAL (36.2)
(z,€,h)ER27 x (0,1],|a| +|B]| <k

Theorem 3.6.1. Let a € S7,. Then the operator a(xz, D, h)h™ is continuous from

L (R™) into itself with constants independent of h € (0, 1].

Proof. We have a(z, D, h) = Op(a(z,§, h)). The set {a(z,¢, h)hm}he(o I8 bounded
in Cp°(R*"), so that we can use Theorem 3.2.2 to get the result. O

Theorem 3.6.2. Let a € S™,. Then the operator a(x, D, h)h™ is bounded on L*(R™)

scl -

with a norm bounded above independently of h € (0,1].

Proof. The set {a(w, £, h)hm}he(0 1 being bounded in C§°(R?*"), it follows from The-
orem 3.2.4. 7 ]

Theorem 3.6.3. Let my,ms be real numbers and a; € Sy, a2 € Si. Then the

composition ay(x, D, h)as(x, D, h) makes sense as a continuous operator from . (R™)
into itself, as well as a bounded operator on L*(R"™) and

ai(x, D, h)as(z, D, h) = (a1 ¢ az)(x, D, h)

ST +m2

where a; © ay belongs to S,

and 1s given by the formula

(ar o az)(z, €, h) = (exp 2inD, - D,) (al(:v, €+ 1, R)as(y + . £, h)) . (3.6.3)

ly=0,7=0
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Proof. This is a direct consequence of Theorem 3.2.5 since
Ujm12{P™ a;(x,&, h) }heo)  is bounded in Co(R?™).
O

Theorem 3.6.4. Let my,my be real numbers and a; € Sii,ay € S, Then

ay(z, D, h)ag(z, D, h) = (ay o az)(z,D,h), the symbol a; o ay belongs to ST+
and we have the asymptotic expansion, for all N € N,

1
aoay= Y —DEadfay +ry(ar, az), (3.6.4)
la|<N

mi1+ma—|a|
scl :

with ry(ay,az) € Smutmz=N = Note that Dga 03 ay belongs to S

scl

Proof. Since h™ia;(z,&,h),j = 1,2, belongs to S2,, we may assume that m; = my =

0. We can use the formula (3.4.3) and apply the formula (3.4.8) to get the desired
formula with

11 _p\N-1
TN(abaz)(a:,f,h):/ %emwzq
0 :
(2inD, - Do) (ar(z, ¢, h)az(z, &, h))db| _, . (3.6.5)

The function (z,() = byen(2,¢) = (2inD, - D¢)Nay(z, ¢, h)as(z,&, h) belongs to
SN (Ri”c) uniformly with respect to the parameters (z,¢) € R*": it satisfies, using

scl

the notation (3.6.2), for max(|al, |3]|) < k,

108 02bs.e1(2, Q) < Vi (@1)Vimg (a2) RV,

Applying Lemma 3.2.8, we obtain that the function
1 N-1
(1-190) 0
T 9 - b([ , d9
pren(=:0) = [ L2 a0

—-N
scl

belongs to S (Rg%) uniformly with respect to z,&, h, so that in particular

sup |pz.en(2, C)h’N| =Cy < +00.
(z,&,2,¢)ER*™ he(0,1]

Since ry(a, az)(x, &) = pren(x, &), we obtain
Irn (a1, as)(z, €)] < Coh. (3.6.6)

Using the formula (3.6.5) above gives as well the smoothness of ry(a;, as) and with
the identities (consequences of 0, (a1 ¢ az) = (0,,a1) © az + a; © (0y,az))

Og; (TN(ah CL2)) = TN(axjal, az) + ry(ai, azjaz)

85j (TN(al, (12)) = TN(agjab az) + TN(al’ a&ja2)>

it is enough to reapply (3.6.6) to get the result ry € S_V. O

scl
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Lemma 3.2.8 and Taylor’s expansion (3.6.5) give the following result.

Theorem 3.6.5. Leta € S7,. Then a* = Ja and the mapping a — a* is continuous

from ST into itself. Moreover, for all integers N, we have

* 1 a N~ m
a* = Z aDgaxa—i—rN(a), rn(a) € SN,

la|<N

Corollary 3.6.6. Let a; € S.3

scl

"7 =1,2. Then we have

ay o ag = aja; mod ST ! (3.6.7)

1
a1 0y — A O A = - {a1,a2} mod ngllmz_z, (3.6.8)
Forae S}, a" =a mod smt, (3.6.9)

Lemma 3.6.7. Let p € R and (¢;) en be a sequence of symbols such that c; € S%7
Then there exists ¢ € S, such that

: N
c~ E ¢j, i.e. YNeN, c— E c;je st
j 0<j<N

Proof. The proof is almost identical to the proof of Lemma 3.4.13.
Let w € Cp°(R;R,) such that w(t) = 0 for ¢ < 1 and w(t) =1 for ¢ > 2. Let
(Aj)jen be a sequence of numbers > 1. We want to define

c(x, & h) =Y e, & hw(h AT, (3.6.10)
>0

and we shall show that a suitable choice of A; will provide the answer. Multiplying
the ¢; by I, we may assume that = 0. We have then

lej (2, & h)w(h™" A7) < yo(e) W Tisay, < v0(ci) A7,
so that,
Viz 1A 2 20(e) = ) =9 2 1 el € ) |w(h ) < 27

showing that the function ¢ can be defined as above in (3.6.10) and is a continuous
bounded function. Let 1 < k € N be given. Calculating (with w; = w(h™'A;")) the
derivatives wjagaf(cj) for |a| + |B| = k, we get

w1080 (c))| < (e Lz, < ey A7/ 2hINES,

so that
2
J

ik N2 2 (o) = =V =k, [0£0] (cjewp)| < 27RO (3.6.1)

showing that the function ¢ can be defined as above in (3.6.10) and is a C* function
such that

(02000) (2, &, M) < > Al 4y " 27nl < Gyl

0<j<k >k
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It is possible to fulﬁll the conditions on the A; above for all & € N: just take

Aj 2 SUPy<k<; ,u] . The function ¢ belongs to S?, and, with S_7° = N,,crS™,
ry =cC— Z cj = Z —163—1-20]%,
0<j<N 0<j<N S. o j>N

scl

and for |a| + |5] = k, using the estimates (3.6.11), we obtain

<plalti<plal+N

A

M logodc@enl < Y 10808 (e €, )]

Jj>N N<j<max(2N,k)

+) 0208 (cwy) (€, Rl

j>max(2N,k)

52—jh|a\+%52—jh\a|+N
proving that ry € SS_CfV . The proof of the lemma is complete. n

Remark 3.6.8. These asymptotic results (as well as the example a;(z, h§) with a; €
C°(R?™) see page 83) led many authors to set a slightly different framework for
the semiclassical calculus; instead of dealing with a family of symbols a(z, &, h)
satisfying the estimates (3.6.1), one deals with a function a € C§°(R?") and consider
the operator a(x,hD,) or the operator a(x, h§)"; another way to express this is to
modify the quantization formula and to define for instance

(@™ u)( // ) x;y,é“)u(y)dydfh_ﬁZ ie. a"" =a(x,h)”. (3.6.12)

Then, using Lemma 3.6.7, given a sequence (a;);>o in C;°(R?*"), it is possible to
consider a(x, &, h) € S°, with

a(z,§,h) ~ > hWaj(x,h€), ie. VYN, a(z,§h)— > Waj(x,hé) € S

>0 0<j<N

The symbol ag is the principal symbol and
a(z,&,h)" ~ > Waf*, ie. VN, a(x,&h)" = > Wal =hVrih,

>0 0<j<N

where {ry}o<n<i is bounded in C§°(R?"): in fact we have from Theorem 3.6.4,
hWNryn(@, he) = sy(x, & h), sy €S, ie ryn(x,&) =hVsy(z, h7'¢ h),
and thus
|(0g0Frnp)(w,€) = KNI Og a7 sn) (2, h™HE, )| < AN 1%y 5w NI,

Ifa,b € Sy, and a ~ 3. oW a;(w,h),b~ 3o Wbj(x, hE) as above, then one can
prove, using Corollary 3.6.6 and Lemma 3.2.8

ab" = (aghy)™™ mod h(S2,)", (3.6.13)
h
[a¥,b"] = 5 {ag,bo}*"  mod h*(S2,)". (3.6.14)
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There are many variations on this theme, and in particular, one can replace the
space C5°(R?*") by a more general one, involving some weight functions, for instance
with polynomial growth at infinity. At this point, we are leaving an introduction
to the pseudo-differential calculus and can use our more general approach of Chap-
ter 2, involving metrics on the phase space, which incorporate all these variations.
Expecting these generalizations, we shall not use the w;, quantization in this book,
except for the present remark.

Theorem 3.6.9. Let a be a symbol in S°; such that

S

inf a(x, & h)| > 0.
(I,E)G]R2",h€(0,l]’< 5 )‘

Then there exists b € S%, such that

C

b(z,D,h)a(x,D,h) = Id+I(z,D,h),

a(l’, D, h)b(x, D7 h) = Id +T(JJ, D’ h), T,l - S_ =N

scl v ;/cl‘
Proof. The only change to perform in the proof of Theorem 3.4.12 to get this result
is to replace everywhere S; g by Ssq. O

0

Theorem 3.6.10. Let x be a symbol in S2, and let a be a symbol in S, such

that nfpe 01, (.e)esuppx (b |a(z, & h)] > 0. Let ¢ be a symbol in SY, such that

scl

supp ¥ (-, -, h) C {(z,€), x(z,&, h) = 1}. Then there exists b € S°, such that

scl

b(x,D,h)a(x,D,h) = (x,D,h)+1(x,D,h), 1S5

scl

Proof. Here also we have only to follow the proof of Theorem 3.4.15 and use Lemma
3.6.7 instead of Lemma 3.4.13 in the course of the proof. O]

Theorem 3.6.11. Let a be a nonnegative symbol in S°,. Then there exists a con-
stant C' such that, for all u € #(R"),

Re(a(z, D, h)u,u) + hC’HuH%z(Rn) > 0. (3.6.15)
Equivalently, there exists C' > 0 such that a* + Ch > 0.

Proof. The proof of Theorem 3.5.1 is containing a proof of this result: noticing that
it is harmless to replace the standard quantization by the Weyl quantization for this
result, since J'/2a — a belongs to S, (see the formula (3.4.8) and Lemma 3.4.9), we

use the formula (3.5.4) to obtain than (a x I';)" > 0. The difference a x ', — a is
[ (1 =) fann a”(X + Y, h)Y?T,(Y)dY dd, which belongs to S° 0

scl*
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Chapter 4

Local versions of
pseudo-differential operators

4.1 Pseudo-differential operators on
an open subset of R"

Introduction

The main reason for studying the class STy of pseudo-differential operators as intro-
duced in the second subsection of the section 3.4 is that the parametrix of an elliptic
differential operator of order m has a symbol in the class Sy ". More specifically, we
have the following result.

Proposition 4.1.1. Let m be a nonnegative integer, 2 an open set of R™ and let
A= Z|a|§m ao(x)DS be a differential 'operator with C*° coefficients on Q (i.e.
a, € C*(Q)). We assume that A is elliptic, i.e.

V(x,&) € 2 x R\{0}), D aa()* #0.

laf=m

Then, if u is a distribution on Q such that Au belongs to H; (S2), we obtain that u
belongs to H;'™(Q), implying that singsupp u = singsupp Au (for the C™ singular
supports’).

This result will be proven in the next subsection in a far greater generality; first
we shall use the notion of wave-front-set which microlocalizes the notion of singular
support and also we shall prove this result for a microelliptic pseudo-differential
operator. In fact, the proof relies essentially on Theorem 3.4.12 which allows the
invertibility of an operator of the same type as A above. Nevertheless, one should
note that the function (z,§) = 37, <., @a()* does not belongs to S7j since in
the first place it is not defined on R?" when Q # R”, and even if Q) were equal to
R™, we do not have any control on the growth of the a, at infinity. Also we see

'We use the notation (1.2.8) for the D2.
*For v € Z'(2), (singsupp v)© is the union of the open subsets w of Q such that v|,, € C*°(w).

89
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that the ellipticity condition concerns only the principal symbol, i.e. the function
> jal=m @a(2)€". To get a good understanding (and a simple proof) of the previous
result, we have to introduce the notion of pseudo-differential operator on an open set
of R", as well as the proper notion of ellipticity. The elliptic regularity theorem will
be a simple consequence of the calculus of pseudo-differential operators on an open
set of R™. One of the most important result of this theory is that pseudo-differential
operators are geometrical objects that can be defined on a smooth manifold without
reference to a coordinate chart; this invariance by change of coordinates has had a
tremendous influence on the success of microlocal methods in geometrical problems
such as the index theorem.

Definition 4.1.2. Let Q be an open subset of R” and m € R. S (2 x R™) is defined
as the set of a € C*(Q x R*") such that for any compact subset K of €, for all

multi-indices «, § € N", there exists Cqp such that, for (z,£) € K x R™,
(0200a)(, )] < Crasl€)™ . (4.1.1)

We note in particular that the differential operators of order m with C° coeffi-
cients in § have a symbol in S (€2 x R™), i.e. can be written as

(Auﬂx)::/e%“%aﬁgﬂa@ﬁk, for u € C(€), (4.1.2)

with a(z,§) = 37, 1< @a(@)E”, an € C(€2).
Theorem 4.1.3. Let Q2 be an open set of R™ and let a be a symbol in S]".(£2 X

loc
R™). Then the formula (4.1.2) defines a continuous linear operator (denoted also by

a(x, D)) from CF(2) into C*(Q), from &'(Q) into Z'(Y), and from H}M () to
H; () for all s € R.

Proof. To obtain the last result, we note that for x € C2°(£2), the operator

x(z)a(z, D),

has the symbol x(z)a(z,§) which belongs to ST} and thus, from Theorem 3.4.6,
x(x)a(z, D) sends continuously H*T™(R™) into H*(R™), which gives that a(z, D)
sends continuously HZ 7 (€2) into Hy (€2). This implies also that the formula (4.1.2)

defines an operator from .7 (R") into C*°(2). Moreover the formula (4.1.2) defines
a mapping from &’(2) into 2'(Q), via the identity®

< a(z, D)u, ¢ =g@)a@== (&), / p(x)a(z, )e* ™ dx = g1 (mn), 7 @) -

3 Using Theorem 3.2.2, we see that for ¢ € C2°(£2), the function

€= Vole) = | alw )i

belongs to .Z(R™): for x € CX(f2) equal to 1 on the support of ¢, we consider the symbol
b(z,€) = x(&)a(€, z){x) =™ which belongs to C°(R?*") and we have

Vo(8) = (O™ /n X(@)a(z, €)(€) " p(x)e* ™ ¢dx = (€)™ (Op(b)$)(6).
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]

Definition 4.1.4. Let 2 be an open set of R” and m € R. The set of operators
{a(x, D) }aesim (xrn) as given by the formula (4.1.2) is defined as U™ (2), the set of

pseudo-differential operators of order m on €.

We have to modify slightly the quantization of our symbols to get an algebra
of operators, sending for instance C2°(£2) into itself. Let us consider a locally finite
partition of unity in Q, 1o(z) = >,y ¢;(x) where each ¢; belongs to C°(€2). Let
a be a symbol in S (2 x R™) and A be the operator defined by the formula (4.1.2).
We consider the operator

A= E ©; Apg. (4.1.3)
.’k
Supp ¢; ﬂ]supp i)

The operator ¢;Apy has a symbol in ST which is given by p;a ¢ ¢. We consider
the finite sets

Jj = {k € N,supp p; N supp ¢y, # 0} (4.1.4)

and the function

P = Z or € C°(Q), @, =1 on a neighborhood of supp ¢, (4.1.5)
kEJj

so that for all multi-indices «
0;(2)05(1 — @,)(z) = 0. (4.1.6)

We check now the symbol a = Zj pja o P; of A. Given a compact subset of it
meets only finitely many supp ¢; and thus a belongs to S (€2 x R™). On the other
hand, we have on €2 x R™,

a—d:Zgoja—gojaOCI)j:Zgojao(l—q)j)
j J

J

and we get from Theorem 3.4.8 and (4.1.6) that that each p;a o (1 — ®;) belongs to
S1 ¢ ; moreover the sum is locally finite, so that a—a € S 7 (2 xR™) = Myer Sy (€2 X
R™).

Proposition 4.1.5. Let Q2 be an open set of R™, let a be a symbol in S} (R™). There
exists a symbol a € S7. (2 x R™) such that

loc

(i) a—ae€ S, (2 xR"), a(x, D) — a(x, D) sends &' () into C>(£2),

loc

(ii) the operator a(x, D) is properly supported', and sends continuously C°()
into itself, C>°(Q) into itself, &' (Q) into itself, D'(Y) into itself,

4A continuous linear operator A : (V) — 2'(U) is said to be properly supported when both
projections of the support of the kernel k from suppk in U,V are proper, i.e. for every compact
L C V, there exists a compact K C U such that suppv C L = supp Av C K and for every
compact K C U, there exists a compact L C V such that suppv C L¢ = supp Av C K°.
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(i4) a(x, D) defines a continuous linear operator from H3 " (Q) to HE,, (S), from
Hy™ () to Hi (9).
Proof. We have already proven (i), using &”(Q) = UsH?

comp(£2) and Theorem 4.1.3.
Using the above notations, we get for u € C°(Q),

a(x, D)u = Z p;ja(z, D)Pju (4.1.7)

J

with a finite sum of C2°(£2) functions since supp v meets only finitely many supp ®,.
If u € C*(Q), we have ®;u € CX(2) C CF(R") and }_; pja(z, D)®;u is a locally
finite sum of C°(Q2) functions, thus a C*>°(Q2) function. For u € &'(Q2) with a
(compact) support K C €, the ®;u are all zero, except for a finite set of indices
Ji and then 3", wja(z, D)®ju belongs to &(Q). If u € Z'(Q), we have ®;u €
&'(Q) and ), pja(z, D)®;u is a locally finite sum of distributions in 2 and thus a
distribution on €2, proving (7i). The assertion (i) and the continuity properties are
direct consequences of (7i) and of Theorem 4.1.3. O

Remark 4.1.6. Let us now consider a symbol a belonging to S{7.(€2 x R™). We can
quantify this symbol into a properly supported operator, say Opg(a), given by the
formula (4.1.7), which has the properties of the operator a(x, D) in the proposition
4.1.5. This quantization defines a linear mapping from S/ (£2 x R™) to the quotient
W (§2) /W 2(92), where W (€2) stands for the properly supported pseudo-differential
operators of order m on €2, and W, >(Q) = NyerV7L(2). A change in the choice of
the partition of unity (¢;) will not change this mapping. From the proposition
4.1.5, we see that the operators of W7 (Q) are continuous from C°(€2) into itself,

from C'*°(£2) into itself, from &”(€2) into itself, from Z’'(Q2) into itself, from H T (€2)
into Hg,,(Q) from Hp™(Q) into H (). Note also that if A € ¥, () and
ue 2'(Q), if w is a relatively compact open subset of €2, u belongs to Hj (w) for
some s and thus Au € H;)>°(w) so that Au € C*°(w), proving that W_ () sends
2'(Q2) into C*(Q).

Theorem 4.1.7. Let Q be an open set of R, my,my € R. Let a; € 5,7 (Q x R™).

loc

Then the operator Opg(a1)Opg(az) belongs to Wi+™2(Q) and is such that,

Opg(a1) Opg(az) = Opg(aias) mod WI+m2=1((),
Opq(a1) Opg(az) = Opg(aias + Deay - Oya2) mod \I/;’;l+m2’2(§2),

and more generally, for all N € N,

1
Opg(a1) Opg(as) = Opg( Z aDg’“al@g‘az) mod \1117;';1+m2—N(Q).

la|<N

Proof. Let ¢,y € CX(Q) with 92 = 1 on a neighborhood of the support of ;.
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From Theorem 3.4.8, the proposition 4.1.5 and Remark 4.1.6, we have

¥10pgq(a1)¥20pg(az) = (Yra1)(x, D)(Peas)(z, D) mod ¥>(Q),
= z/;1< Z $D?a18§a2)(x, D) mod \I}ml+m2—N(Q>’
la|<N

1
= 11 Opg( Z aDgalQ‘jag) mod W Tm2=N (),

la| <N

and since the lhs and the first term in the rhs are both properly supported, the
equality takes place mod U7 *m2~N(Q) It means that for all ¢ € C(2), we
have

1 _
v,blOpQ(al)OpQ(ag) = ¢1OpQ( Z aD?CLlagag) mod \I/g;l—"_mQ N(Q)
la] <N

Since the operator Opg,(a) is properly supported and completely determined modulo
W 22(2) by its definition on Cg°(§2), it concludes the proof. O

Let @ € S].(2 x R") and let us consider as above the operator Opg(a) =

(
> jek P30T, D)y, j ~ k meaning supp ¢; Nsupp ¢y, # 0. With &; given by (4.1.5
we have Opg(a) = 3. ;. »;®;a(z, D)y and thus the adjoint operator is

> ¢l (@), D),

Since J(®;a) = > lal<N 5 Dg0g(®;a) 4 ry; with ry; € ST N, we get

(Opg(a Z(pk Z —D? *(®;a)(z, D)y; +ngk7“N] (x, D).
Jj~k |a] <N : j~k
Let a* € S[.(€2 x R™) such that for all N,

1
at — Z —Dgota € SN (Q x R™).

loc
|a\<N

Since ®; is 1 near the support of ¢;, we obtain (Opg(a))* = (Opg(a*)) modulo
Uo(Q)).

ps

4.2 Inversion of (micro)elliptic operators

Definitions

Let Q be an open subset of R” and (zq,&) € Q x (R"\{0}) = T*(Q); a conic-
neighborhood of (z,&) is defined as a subset of 0 x R"\{0} containing for some
positive r the set

& &

Wi g (r) = {(2,€) € R" x R"\{0}, [ — xo| <,
el Tl =

r €] > } (4.2.1)
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Definition 4.2.1. Let a € S} (Q x R") and (z, &) € Q@ xR"\{0}. The symbol a is
said to be elliptic at (x9,&), when there exists a conic-neighborhood W' of (zg, &)
such that

inf |a(x, > 0. 4.2.2
JinfJa(, )16 (4.22)

The points of 7*(2) where a is not elliptic are called characteristic points.

Let us give an example of an elliptic symbol of order 0 at (g, &). Considering a
function yo € C°(R), xo(t) = 1 for t < 1, xo(t) = 0 for ¢t > 2, we define on R*" for
r>0

Or 0,60 (1, §) = Xo(r™?[z — o|® Xo( _2| e |£ | ‘ >(1 —x0(2r1¢]7)).  (4.2.3)

It is easy to check that 6,4, .¢, belongs to S7 g, is elliptic at (zo, &) (note that b,z ¢, =
L on Wa g (T> and supp 9T7$07£0 - on,EO(QT))‘

Definition 4.2.2. A function a defined on  x R™ will be said positively-homoge-
neous of degree m when for all £ € R™ with [{] > 1 and all ¢t > 1, a,,(z,t§) =
"™y, (2, €). A function a defined on © x R™\{0} will be said positively homogeneous
of degree m when for all £ € R"\{0} and all t > 0, a,,(z,t&) = t"™an(x,§).

Lemma 4.2.3. Let a € S

loc

(Q x R™) and (x0,&) € Q© x R"™\{0} such that the
symbol a is elliptic at (xo,&). Then for b € S (Q x R™) with m' < m, the symbol
a-+b s elliptic at (z9,&o). In particular, if there exists a,, € C™(2 x R™) positively-
homogeneous of degree m such that

am(z0,&0/|%]) #0, a—am € S),. HQ xR,

then the symbol a is elliptic at (xqg,&y). This is the case in particular of a differential
operator with C>(82) coefficients 3, <,, @a(x)Dg such that

0 7& am(xo,&))(: Z aa(x0)§g>‘

laj=m

Proof. The first part of the lemma is obvious since for K compact subset of €2,
limyg|—s o0 (SUP,eg [b(2, €)])|€] ™™ = 0. The second part is due to the fact that the
property of homogeneity and the smoothness of @ imply® that a,, € S7 (2xR"). [

loc

Remark 4.2.4. Note that if Opg(a1) = Opg(az) with a; € S[”

(€ x R™), then
Opg(a1 — az) € ¥,(Q2) and thus

(a1 — ag)(x, D) = r(z, D) with r € S_

loc

Q2 x R™).

® For w € C§°(R™) vanishing for |¢| < 1/2 and equal to 1 for || > 1, we have in fact

am (1, &) = w(§)am(x, /IEDIEN + (1 — w(&))am(z,§) € Sppe( x R™) 4+ 5,7 (€ x R™).
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A consequence of Remark 3.4.14 is that, for all x € C*°(Q), x(x)(a; — az)(z,§) =
x(z)r(z, &) which gives a1 — as = r(as functions of S| ;2°(©2 x R™)). As a result, the
characteristic points of a; and as are the same, and one may define char Opg,(a) as
the characteristic points of a.

Lemma 4.2.5. Let a € S]L.(2xR"™) and (z9,&) € Q@ xR"\{0} such that the symbol

a is elliptic at (zo,&). Then there exists r > 0 and b € S, (2 x R"), elliptic at
(x0,&0) such that

Opq(b) Opg(a) = Opg(raq.g) + Opalp),
with p € S;,;2°(Q2 x R™) and 0, 4, ¢, is given by (4.2.3).

Proof. Since a is elliptic at (g, &), we may assume that (4.2.2) holds for some conic-
neighborhood W, ¢, (o). Let us consider the symbol 6, 4., € S7 with 7y = 79/2
so that supp 0, z0.c0 C Wap.e (70). The assumption of Theorem 3.4.15 is verified with
X = Oy 2060~ Considering ry = 19/4 so that supp b, +o.c0 € Waoto(11) C {05 060 =
1} we can find by € S} " such that, omitting the subscripts o, o,

bi(z,D)(0,,a)(z, D) = 6,,(z, D) + p(z, D), pe€ S1os
implying with r = r¢/8,
0,.(x, D)by(x, D) (@Tla)(x, D) =0,(x,D)+ p(x, D), pe Sy,
and thus, with b = 6, o by, which belongs to ST}, we have modulo ¥, >(€2)

Opg(b)Opg(a) = Opg(b)Opg(0r,a) + Opg (6, © b1)Opg((1 — 0,,)a)
= Opq(b)Opq(6;,a)
= Opq(0,).

[
Definition 4.2.6. Let Q2 be an open set of R", a € S (2 x R"), A = Opgq(a).
We define the essential support of A, denoted by essupp A as the complement in
Q2 x R™"\{0} of the points (xg, &) for which there exists a conic-neighborhood W so
that a is of order —oo in W i.e.

V(N,a,3) e Nx N" x N* sup |(8§‘85a)(:v,§)||§|]v < 00.
(z,£)eW

Note that from Remark 4.2.4, this definition depends only on A and the essential sup-
port is a closed conic subset of 7%(€). Thanks to Lemma 4.2.3, if A = Opg(a,, + b)
with a,, € C=(Q x R") positively-homogeneous of degree m and b € S (2 x R"),
then char A = {(z,€) € T*(Q), am(z,€) = 0}

Remark 4.2.7. Let 2 be an open set of R™ and (4, B) € W71 () x ¥2(Q2). Then
we have

essupp(AB) C essupp A N essupp B. (4.2.4)
In fact if 7%(Q) > (z0,&) belongs to (essupp A)¢ U (essupp B)¢, the composition
formula of Theorem 4.1.7 shows that (z¢,&p) is in (essupp AB)°.
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Theorem 4.2.8. Let Q be an open set of R", A € W7 (Q). Let (w9,&0) be an elliptic
point for A, i.e. (x0,&) ¢ char A. Then there exist B € W, "(Q), R, S € ¥ (),
such that

BA=1d+R, AB=1d+S, (x0,&) ¢ essuppR, (0,&) ¢ essuppS. (4.2.5)

Proof. Lemma 4.2.5 implies the first result. On the other hand we can prove similarly
that there exists B; € W ™(Q) such that AB; = Id +51, (zo, &) ¢ essuppS;. Now
we see that

B = B(AB, — $;) = (Id+R)B; — BS, = B, + RB; — BS},

so that AB = 1d+S, (29, &) ¢ essupp S, (using (4.2.4)). The proof is complete. [

The wave-front-set of a distribution

Definition 4.2.9. Let Q be an open set of R™ and u € 2'(€2). The wave-front-set
of u, denoted by W Fu, is the subset of T*(£2) whose complement is given by

(WFu)® =
{(z,€) € T*(Q), 3W conic-neighborhood of (z,€) s.t. Va € S (Q x R")
with suppa C W, we have Opq(a)u € C*(Q)}. (4.2.6)

Proposition 4.2.10. Let 2 be an open set of R™ and u € 2'(Q2). The wave-front-set
of u is a closed conic subset of T*(S) whose canonical projection’on € is singsupp u.
Moreover, we have

(WFu)® = {(z,€) € T*(Q),3a € S .(Q x R") elliptic at (z,&)
with Opg(a)u € C*(Q)}. (4.2.7)

Proof. The first assertion (closed conic) follows immediately from the definition.
Now if o ¢ singsuppu, there exists ro > 0 such that w g,y is C, (B(z,r)
stands for the open Euclidean ball of R™ with center x and radius 7). As a result if
So €S ae S (QxR") with suppa C Wy, ¢, (11),71 = 10/2, X0 € C(B(x0,70)),

Xo = 1 on B(zg,m)

€C(Q) €C™>(Q)
Opo(a)u = Opg(a u\—l—rO a)(l — U
po(a) Pa(a) xou +Opg( )ﬁ Xo)
€Ce () eV, (Q)

since A € W, >°(Q) sends 2'(Q2) into C**(Q), proving that {zo} x S*~' C (W Fu)°.
Conversely, if 2o € singsupp u, there must exists some & € S"~! such that (x¢,&) €
W Fu, otherwise {zo} x S"™' C (WFu)¢ and using the compactness of S™™!, we
could find an open neighborhood w of zy in €, such that for all a € SP (9 x

loc

6This is the mapping 7*() 3 (z,£) — x € Q.
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R"™),suppa C w x R™, Opg(a)u € C=(Q); taking a(z,&) = x(z) where x € C®(w)
would give u € C*(w), contradicting xy € singsupp u. Calling N, the complement
of the set defined by (4.2.7), we see immediately that (W Fu)¢ C N¢; conversely, if
(x0,&0) € NE, we can find A such that

AeW) (Q), AueC>(Q), (x,&) ¢ char A.

Applying Theorem 4.2.8, we find B € ¥) () so that (4.2.5) holds and this implies
for ¢ € SJI.(2 x R™),

loc

BAu = u + Ru = Opgq(c)u = Opg(c) BAu —Opq(c) Ru
—_—
€C>(Q)
and since (z9,&) ¢ essupp R, there exists a conic-neighborhood W of (¢, &) such

that R is of order —oo in W so that, taking ¢ supported in W will imply Opg(c)R €
U 2(Q) and Opg(c)Ru € C*(R), proving that (zg,&) ¢ W Fu. The proof of the

ps
proposition is complete. O

Lemma 4.2.11. Let Q) be an open set of R" and u € 2'(?). Then

(W Fu)® ={(z,€) € T*(Q),3IW conic-neighborhood of (z,€) s.t. VA € W (9),
with essupp A C W, we have Au € C*(2)}. (4.2.8)

Proof. Calling M, the complement of the set defined by (4.2.8), we have obviously
M¢ C (W Fu)¢ and conversely if (g, &) ¢ W Fu, there exists 1o > 0 such that for all
a € Sp. (82 x R™) supported in Wy, ¢ (r0), Opg(a)u € C=(£2). Now if B € U7 (),
with essupp B C Wy, ¢,(70/2), we have

B = Opq(b) = Opq( bbr,2 ) mod 1, >(Q)
——

supported
in W(ro)

and thus Bu € C*(Q)), completing the proof of the lemma. O

The elliptic regularity theorem
Theorem 4.2.12. Let §) be an open set of R™ and A € W7(S2). Then foru € 7'(Q),

WF(Au) C WFu C char AU W F(Au).

Proof. 1f (xq,&) ¢ W Fu, there exists a conic-neighborhood W of (¢, &) such that
(4.2.8) holds and taking C' € W7 () with essuppC C W, we get from (4.2.4)
that essupp CA C W, and Lemma 4.2.11 implies that (zg,&y) ¢ WF(Au). On the
other hand, if (z¢,&) ¢ char A and (x¢,&) ¢ WF(Au), Theorem 4.2.8 provides
B € ¥, "(Q) satisfying (4.2.5): we get

u= BAu — Ru, (x¢,&) ¢ essupp R 1i.e. R of order —oo on W,
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where W is a conic-neighborhood of (¢, §y). Taking C' € W7 (2) with essupp C C W
we have
Cu=CBAu—- CR wu,
=~
€V ()

so that CRu € C*(2). On the other hand, since (zo,&) ¢ WF(Au), thanks
to Lemma 4.2.11, there exists a conic-neighborhood W; of (z¢, &) such that, for
all P e V() with essupp P C Wi, we have PAu € C*(Q). This proves that
CBAu € C*(9), provided essupp C C W; and with essuppC C W1 N W we get

Cu € C*(2), which implies (z¢,&) ¢ W Fu, using Lemma 4.2.11. O
Corollary 4.2.13. Let Q be an open set of R, A € W7(Q). Then for u € 2'(52),
singsupp(Au) C singsupp u C singsupp(Au) U pr(char A) and in particular, if A is
elliptic on §2, i.e. char A = (), we obtain that singsupp u = singsupp(Au).

Definition 4.2.14 (H*® wave-front-set). Let 2 be an open set of R”, s € R and

u € 2'(Q). The H® wave-front-set of u, denoted by W F,u is the subset of 7*(Q)
whose complement is given by

(W Fu)® = {(z,€) € T*(Q), 3W conic-neighborhood of (z,€) s.t.
VA € 9°(Q) with essupp A C W, we have Au € Hi ()}, (4.2.9)

When (z,§) ¢ W Fyu, we shall say that v is H* at (z,{) and write u € Hf, ..

The proof of the following theorem is a simple adaptation of the proof of Theorem
4.2.12.

Theorem 4.2.15. Let 2 be an open set of R", s,m € R and A € W7(Q2). Then for
ue 72'9Q),
WF,(Au) C WFsyu C char AU W Fy(Au). (4.2.10)

4.3 Propagation of singularities

Let © be an open subset of R", m € Rand P € ¥ (€2) a pseudo-differential operator
with symbol p such that

p(x,f) :pm(%f)w(f)_"pmfl(xaf)v (4'3'1)

with p,, positively homogeneous of degree m and p,,_; € S]"- (2 x R") and

loc

w(§) =0 for || <1/2,

w() =1 for|gl>1. (4.3.2)

w e C*(R"), {
We shall say that p,, is the” principal symbol of P. Note also that the function
pm(z, §)w(&) is positively-homogeneous with degree m, according to the terminology
of Definition 4.2.2. In the sequel, we shall mainly consider operators of that type.

"If P, qm are positively homogeneous of degree m on Q x R™\{0} such that for |{| > R > 0

[P (2, €)= qm (,€)| < C|¢[™ 1, this implies [p (z,€/1€]) —gm (x,€/|€])| < Cl¢]~" and thus p, = ¢m
on Q x R™\{0}.
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Theorem 4.3.1. Let P as above, ty < t; € R and I = [tg, ;] > t = (t) € T*() be
a null bicharacteristic® curve of Rep,,. Let us assume that Imp,, > 0 on a conic-
neighborhood of v(I). Let s € R and u € 2'(Q2) such that Pu € H® at v(I) (i.e.
WFE,Pun~(I)=10). Then

’}/(to) € WFS+m_1U, — ’7<t1) S WF5+m_1u. (433)

Remark 4.3.2. The property (4.3.3) means that the singularities are propagating
forward when the imaginary part of p,, is nonnegative A statement equivalent to
(4.3.3) is

Y(t1) ¢ WEspm1u = y(to) ¢ WFsimu, (4.3.4)

meaning that the regularity is propagating backward in that case. If we change
the sign condition on Imp,,, we have to reverse the direction of propagation of
singularities and we have under Im p,, < 0 near (1),

’Y(tl) € WFs+m_1u - /7(250) S WFS+m_1U. (435)

When the imaginary part of p,, is identically 0, the propagation takes place in both
directions and W F,,,_1u\W F,(Pu) is invariant by the Hamiltonian flow of p,,; this
implies in particular for a real-valued p,, that W Fu\W F(Pu) is invariant by the
Hamiltonian flow of p,,.

Proof of Theorem 4.53.1. Multiplying by an elliptic operator of order 1 — m, we are
reduced to the case m = 1. We have to prove that

u € Hiw,), Pu€ Hypy = u € Hig). (4.3.6)
It is enough to prove that
s—1 s
u € Hi,), Pu € Hygy,u € H, gy == u € Hyg). (4.3.7)

_1
In fact, since () is compact, we may assume that u € Hj?I)Q for some sy. The

sot L
property (4.3.7)s, is identical to (4.3.6)s,. Assume now that u € HW(();F)Q,
o

so+1 - . . so—L
H;E;;% this implies that u € Hi‘()tl), Pu € Hj‘()l) and since u € H_,,?, the property

sotd
(4.3.7), gives eventually u € Hj;) so that the property (4.3.7)50+% gives u € HW?;SZ.
Inductively, we assume that for some k£ € N*,

Pu €

k soLk soLk
we Hy 2 Pue HY\? = ue HYp? (4.3.8)

( () () -

8For a C' on Q x R™, the Hamiltonian vector field of a is

a — - . - T = = .
1<5<n 8€j ij 8xj ij
The integral curves of H, are called the bicharacteristic curves of a. Since H,(a) = 0, a is constant
along its bicharacteristic curves; the null bicharacteristic curves are those on which a vanishes.
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so+ 4L kf1
Then if u € H 2 (()+2 and the property

V()
(4.3.7), Lk gives u € I

PueH() , (4.3.8) gives u € H
0+2

o © -+ so that (4.3.7) implies (4.3.8) for all k£ € N and all

1

so such that v € H® (1)2, meaning that(4.3.7) implies (4.3.6). Now to prove (4.3.7),
it is enough to get it for s = 0: assuming (4.3.7) for s = 0 and considering properly
supported pseudo-differential operator F,, E_, of order s, —s, elliptic on a neigh-
borhood of v(I), whose symbols have an asymptotic expansion ZjeN Cos—jy Cosj

positively-homogeneous of degree +s — j and such that
E_(E;=1d+R, ~(I)C (essupp R)*
we get under the hypothesis of (4.3.7) that

—-1/2
Ew e HY, ) EPE_Eu€ H)), Eu e H )7,

and since the operator F,PFE_, is of order 1 with the same principal symbol as P,
we can then apply (4.3.7) for s = 0, entailing F,u € H (1) Which gives u € H5, |
using the ellipticity of Es. The remaining part of the proof is devoted to establishing
(4.3.7) for s = 0. As a last preliminary remark we note that

J ={t € [to,ts],u € H), for s € [t,11]}

is a nonempty open interval of [ty, ¢1]; if inf J belongs to J it is also closed and thus
equal to [to,t1]; as a result, we may assume that J =]to,t1]. Of course there is no
loss of generality setting to = 0,7; = 1. Summing-up, we have to prove

1/2

u e Hyy for t €]0,1], Pu € HYo),u € H 47

We may also assume that u is compactly supported: if ¢ € C°(Q) is 1 near the first
projection of ([0, 1]), we have Ppu = [P, ¢|u + ¢ Pu and since

(essupp[ P, ¢])* 2 ([0, 1])

we get that pu satisfies as well the assumptions of (4.3.9). On the other hand,
if py is the real part of the principal symbol of P, we may assume that at (0),
dp1 A € - dx # 0, otherwise Oep1(7(0)) = 0,0.p1(7(0)) = A(0) and the solution
V(t) = (x(t),£(t)) of

#(t) = Oepr (x(1),£(1)),  &(8) = =Bupr(x(),€(F)),  (2(0),£(0)) = 7(0),

is z(t) = x(0), £(t) = e ME(0); since the wave-front-set is conic, (4.3.9) is obvious.
Let us consider W a conic neighborhood of ¥([0, 1]) such that in Wy Pu € H®,u €
H~'2. Let mg € S° real-valued. The symbol of P is py+iq, +po+igo with p;, q; € S
real-valued, py, ¢; positively-homogeneous of degree 1 and ¢; > 0. We calculate with
M =mg(z,D), A=%(P+ P*),B = 5.(P — P*), for v € C(Q),

2Re(Pv,iM* Mv)
= ([A,iM*M|v,v) +2Re(M*[M, Blv,v) + 2Re(BMv, Mv). (4.3.10)
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From the Garding inequality (Theorem 3.5.1) we have
2Re(BMuv, Mv) + ag||Mv||2 >0, g a semi-norm of g;. (4.3.11)

On the other hand, the principal symbol of M*[M, B| is purely imaginary, belongs
to SY, and so that
2 Re(M*[M, Blv,v) + Cy|v]| 5 > 0. (4.3.12)

We have also
(A, M Mo, v) + Callol]21 5 > ({p1,m?} (w,D)v,v)%. (4.3.13)
As a result, we have
IMPUI2 + (1 + a0) | M2 + (Cr + Co)|[v]21 5 > ({pr,m?} (z, D), m%. (4.3.14)

We can find (t,y,7,17) € R x R"1 x R x R""! as C* local symplectic coordinates
near v(0), (z,€) — (t,y) homogeneous functions of degree 0 with respect to &,
(x,&) — (7,m) homogeneous functions of degree 1 with respect to &, so that 9, = H,,.
We choose 6y € C(R) supported on [—eg, 0] with g9 > 0, positive on (—eg, &),
with L%norm 1 and consider 6;(t) = 0(t — 3g¢): with

K(t) = /t (Bo(s)* — 01(s)*)ds = /t Oo(s)*ds,

—&0 t—3eo

we have for the C' function k supported in [—&, 4¢¢],
0<Kk<1, k=0—07 [—e0,280) C{k >0}, suppr C [—eo,4e0],

and the following variation table.

—&p 0 €0 250 350 480
D] 0 + R0)>0 + 0 0 0 — #(3€)<0 — 0
kO] 0 2 k0)>0 2 1 1 1 N #B%)>0 N 0

We multiply now the function s by v* with v € C®(RZ%[0,1]),v(0) = 1, v

homogeneous with degree 0 with respect to 7,7, and we get that

0< MV (Y) <1, a(st)v*(Y)) = (65(t) — 63(1))v*(Y),
[—¢0,260] X suppr C {A®1v? >0}, supp s ® v* C [—ep, 4e0] X supp v,
k(0)2(0) >0, A(0)*(0) >0, {k®v* <0} C [28,4e0] X suppv.

The mapping

RxR"'xRxR"!> (t,y,7,m) — x(t,y,7,n),E(t,y,7,m) € R" x R"
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is a local symplectomorphism ©, with x homogeneous of degree 0, £ homogeneous
of degree 1, and the push-forward p of Kk ® v? by © given by o © = k ® 12 is
homogeneous of degree 0 with respect to 7,1 and satisfies

p € C(T™();10,1]),  supp p C O([—e0,420] x suppv),  pu(y(0)) >0,
Hy (1) = X2 =3, xo.x1 € C2(T*(Q),  xo(7(0)) >0,
supp Xo = O([—¢€0, 0] X suppv), supp x1 = O([2¢0, 4o] x supp ),
and thus supp o N supp x1 = 0.

The function p is homogeneous of degree 0 such that

supp o C W, conic neighborhood of y([—¢q, 4e0]) C W

Hy, (1) = x5 — X1, suppxa € Wi,
where W, C W is a conic neighborhood of v(3gy) with u € H® on W;.

We consider now, with 7' =t 0 ©~! so that H,, (T) = 1, and T is homogeneous with
degree 0, the symbol

m = peT

where A is so that A > (1 + ap)27 and o is given in (4.3.11). Checking

H,, (m?) = 27 (1 + ag)m?® = 2ue™ (Hy, () + XM ) — 27 (1 + ap) pi”e*”
=20 H,, (1) + 11" (2X — 27(1 + ) ) > 2ue* " H,, (1)

Since pe**" H,, (1) is supported in W, positive at 7(0) and non-negative except on
a neighborhood of v(3¢), in fact such that

pe®™ Hy, (1) = (e x0)* = p(ex1)%,

the inequality (4.3.14) gives with Ay, A; € \Ilgs(Q), Ay elliptic at v(0), essupp A; C
W17

140v[lg < 1Arv]lg + M Pol[§ + (C1 + Ca)llv]124 5. (4.3.15)

Replacing in that inequality v by Nv where N € wgs(Q),essuppN C Wy, with a
symbol equal to 1 on W gives with R € 1, >(2)

1Aovlle < A5 + M Pol[§ + (C1 + Ca)[Nv2y 5 + [ Ru]l5- (4.3.16)

Since u € &'(Q2), we can apply (4.3.16) to v. = u* p. where p.(x) = p(x/e)e™™, with
p € C(R™) of integral 1 and & small enough so that v. € C°(Q). Since u is H® on
W, and also H~/2 on Wy, Pu is H° on W), we get that the || Agv.||? is bounded for
e — 0., implying that the weak limit Agu in &”(£2) belongs to H, proving that u
is H% at (0). The proof of Theorem 4.3.1 is complete. O
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4.4 Local solvability

Functional analysis arguments

Definition 4.4.1. Let Q be an open subset of R", zy € 2, m € R and P € W (2)
a properly supported pseudo-differential operator. We shall say that P is locally
solvable at xg if there exists an open neighborhood V' C 2 of xy such that

VfeC®(Q), JueP(Q) with Pu=finV. (4.4.1)

Note that this definition makes sense since P is properly supported (in particular
P is an endomorphism of 2'(2)) and we can actually restrict a distribution to an
open set. Moreover the set of points x € €2 such that P is locally solvable at x is
open.

Definition 4.4.2. Let ), xq, P be as above and let ; > 0. We shall say that P is
locally solvable at xq with loss of u derivatives if, for every s € R, there exists an
open neighborhood V' C Q of zy such that

Vfe H (), FuecHI™MQ) with Pu=finV. (4.4.2)

loc

Remark 4.4.3. Note that the neighborhood V' above may depend on s.

Lemma 4.4.4. Let Q be an open subset of R", 2o € 2, m € R and let P € V(Q2)
be a pseudo-differential operator solvable at xo. Then there exists a neighborhood
VCcQofxg, NeN, C >0 such that

Yo e C(V), C|P*|y > ||v]-n- (4.4.3)

Proof. The solvability of P at xq gives the existence of a neighborhood V' of x( such
that (4.4.1) holds. We consider now vy € C°(V') such that P*vg = 0: Then, for all
@ € C(V) the solvability property implies the existence of u € 2'(Q2) with Pu = ¢
in V. As a result, we have for all p € C°(V)

/80(3?)00(95)6190 = ((Pu)v, vo) 2= (vy,2(v) = (Pu,v0) 2+©),2(2)
= <U, P*U0>@*(Q)7@(Q) = 0, (444)

which gives vy = 0. Then for any compact subset K of V, the space C¥(V) is a
metrizable topological space for the topology given by the countable family of norms
{||P*v|| g+ }ren. Let K be a compact subset of V, neighborhood of a given compact
subset K of V' and consider the space CI‘?(O(V), equipped with its standard Fréchet
Hs }sen. For a fixed

topology, where the semi-norms may be given by the family {||¢|
v e CR(V), the mapping

CEV)2¢p— /gp(x)@dx
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is obviously continuous since C%O(V) is equipped with its standard Fréchet topology.
For a fixed ¢ € CF(V), the mapping

CEV)svm /gp(x)v(x)dx

is continuous for the topology on C72(V) given by the family {||P*v| g }ren since
¢ = Puon V with u € 2'(Q2) and thus, as in (4.4.4),

< Cul| P ]|

‘/ dl’ = <'U, P U>j*( 0),2(2)

A separately continuous bilinear form on the product of a Fréchet space with a
metrizable space is in fact continous so that

3C > 0,3N €N, Yv € CF(V),Vp € CZ(V),

‘/ o(@)da

and since K is a neighborhood of K, it gives the lemma. O]

< Cl[Pv|nllellN,

Lemma 4.4.5. Let ) be an open subset of R™, xg € ), m,s,;u € R and let P €
\IIZLS(Q) be a pseudo-differential operator such that there exists an open neighborhood
V' of xy such that

Vfec H (), FuecHIMHMQ) with Pu=finV. (4.4.5)

loc

Then there exists a neighborhood W C € of xg, C > 0 such that
Vo e CR(W), CIP Ve = V] (4.4.6)

Proof. We consider vy € C(V) such that P*vy = 0: Then, for all ¢ € CX(V)
the solvability property (4.4.5) implies (4.4.1) and the proof of Lemma 4.4.4 gives

= 0. Then for any compact subset K of V, the space C2(V) is a normed
space with the norm || P*v||_y i, Let K be a compact subset of V, neighborhood
of a given compact subset K of V' and consider the Hilbert space Hz (V). For a
fixed v € CE(V), the mapping Hz(V) 3 ¢ + (p,v) is obviously continuous since
)] < @l l[o]l—s. For a fised @ € H(V), the mapping

CE(V)3v e (p,v)

is continuous for the topology on C7(V) given by the norm ||P*v|_s_+, since
¢ = Puon V with u € H>""7*(Q) and thus, as in (4.4.4), with x € C=(Q), x = 1

loc

near the support of P*(C¥(V)),

|<907U> = (u, P"v) 9+0),2(0) = (xu, P*v)HHm_#’@m”
S ||Xu||5+m_li||P*U||—S—m+,u-
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As before, this bilinear form is continuous,
3C > 0,Yv € CE(V), Vo € HE(V),[(¢,v)| < Cl[P™0| —s—mplllls,

and since K is a neighborhood of K, it gives ||v||_s < C||P*v||_s_miy, for all v €
C® (V). Choosing K as a compact neighborhood of z( included in V| we can take
W = K to obtain the lemma. O

Lemma 4.4.6. Let Q) be an open subset of R", 2o € Q, m € R and P € V}(52) a
properly supported pseudo-differential operator. Let s € R. Assume that there exists
1 >0 and an open neighborhood V- C Q of xq such that,

3C > 0,YVo € CF(V), |lv|l=s < C||P*0|| —s—mtp- (4.4.7)
Then, for all f € HP (Q), there exists u € HT"™*(Q) such that Pu= f in V.

Proof. Let fo € Hy.(©). The inequality (4.4.7) implies the injectivity of P* on
C°(V). Assuming as we may that V' &€ Q, we get that the space P*(C°(V)) is a
subspace of C(£2), where K is a compact subset of 2. We consider P*(C*(V)) as
a subspace of Hy *~"(Q) and we can define the linear form

PHCEV)) 3 Pro = (v, fo)
which satisfies the following estimate: with y € C>°(Q) equal to 1 on V, we have

|<U7f0>| < HUH—SHXfo”s < CHP*UH—S—W—I—MHXfOHS'

We can extend this linear form to the whole Hy * ™ (Q) to a linear form ¢ with
norm < C|x fo||s by the Hahn-Banach theorem. This means that there exists uy €
Hs™m=1(€)) such that

Vg € Hy "(Q),  (g.u0) =&(9),  luol
and in particular for all v € C(V),
<U7f0> = é(P*U) = <P*U7u0> = <U7Pu0>

and thus Pug = fo on V. O

metm-n(@) < Cllxfolls:

Remark 4.4.7. Note in particular that if the estimate
[0llotm—p < Cl[ P[4

is proven true for any o € R, for v € C>®(V,), where V, is a neighborhood of
(which may depend on o), then the result of the lemma holds and P is locally
solvable at xy with loss of p derivatives (see Remark 4.4.3). The estimate above
can be true for p = 0 if and only if P is elliptic at xy. Moreover the two previous
lemmas show that the local solvability questions for a properly supported operator
are equivalent to proving an a priori estimate of the type (4.4.3), (4.4.7).
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Lemma 4.4.8. Let Q) be an open subset of R”, xy € Q, m € R and P € V. (Q2)
a properly supported pseudo-differential operator. If P is solvable at xy, then there
exists a neighborhood V' of xq and an integer N such that

VieCNQ), Jue&NEQ), with Pu=fin V. (4.4.8)
Proof. In fact, from (4.4.3), the estimate
CllP™ ][y = [Joll-~ (4.4.9)

holds for all v € C° (V') for some neighborhood V' of xy and some N € N. We may
assume V € Q. Let fo € CY(Q). The inequality (4.4.9) implies the injectivity of P*
on C(V). We consider the space P*(C°(V)) as a subspace of C¥ (), where K is
a compact subset of 2 and we can define the linear form

PHCE(V)) 2 Pro = (v, fo)
which satisfies the following estimate: with y € C%°(Q), x = 1 near V, we have

(v, fo)| < llvll-nlIxfolly < CllPvl[nlIxfollv < Cillxfollw sup [0%(P*v)(z)].

la]<N
zeK

By the Hahn-Banach theorem, we can extend this linear form to a linear form &
defined on C™(£2) such that

Vg € CN(Q),  [6(g)l < Cilxfollw sup [0%g(x)].

la| <N
zeK

This means that there exists uy € é’”N(Q) such that Vg € CY(Q), (g,u0) = &(9)
and in particular for all v € C*(V),

(v, fo) = &(P*v) = (P*v,ug) = (v, Pug)

and thus Puy = fo on V. O

Remarks on solvability with loss of i derivative(s)

To establish local solvability at xy with loss of p derivatives, it is enough to prove
(see Lemma 4.4.6 and Remark 4.4.7) that for every s € R, there exists r > 0 and
C' > 0 such that

Yo € CZ(B(xo,7)), C|P||—smmipn > ||v]=s. (4.4.10)

However, we may be able to prove a weaker estimate only for some s. The next
lemma establishes local solvability as a consequence of a weak estimate.
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Lemma 4.4.9. Let Q be an open subset of R", zp € Q,m € R, u > 0,8 < n/2 and
P e \IJI’Z(Q) a properly supported pseudo-differential operator. Let us assume that
there exists r > 0,C > 0 such that

Vo e CF(B(xo, 7)),  Cllvll-s—1 + ClIP ]| -somip = [v]l-s. (4.4.11)

Then, there exists r > 0,C'" > 0 such that (4.4.10) holds and for all f € H} .(Q),
there exists u € H*t™#(Q) such that Pu = f in V, where V is some neighborhood
of xo. In particular P is locally solvable at x.

Proof. We get that ||ul|—s—1 < ¢(r)||u||-s with lim,_,o¢(r) = 0, provided —s >
—n/2 and this proves that shrinking r leads to (4.4.10) which implies the lemma by
applying Lemma 4.4.6. O

On the other hand, we may also want to stick on our definition 4.4.2 of solvability
with loss of u derivatives for which we need to prove an estimate for every s € R.

Lemma 4.4.10. Let 2 be an open subset of R", o € Q, m € R,u > 0 and
P e \I/I’Z;(Q) a properly supported pseudo-differential operator, with homogeneous
principal symbol p,, such that

S" 3 €+ pi(T0, &) is not identically 0. (4.4.12)
Let us assume that for every s € R, there exists r > 0,Cy, Cs such that
Yo e CF(B(xo, 7)),  Caflvll-sm1 + CLll P ol —smmp = [J0]l s (4.4.13)
Then, for every s € R, there exists r > 0,C > 0 such that (4.4.10) holds.

Proof. 1f (4.4.10) were not true, we could find a sequence (vy)g>1 such that v, €
C>®(B(zo, k1)) with [Jug|l—s = 1 and limy, || P*vg||—s—m+, = 0. The estimate (4.4.13)
implies that Cy|lvg||-s—1 > 1/2 for k large enough and since the sequence (vy) is
compact in H~*71 it has a subsequence strongly convergent in H ! towards vy #
0, which is a weak limit in H~*. We have

P*vy =0, suppuvg={zo}, so that vg= Q(D)d,,
where () is a non-zero polynomial. As a consequence, we have for u € C2°(€2)

(Q(D)Pu,d,,) = (u, P'ug) = 0= (Q(D)Pu)(xo) =0, for all u € C(Q),

and that, for all £ € R™\{0}, q({)p(z0,&) = 0, where ¢ is the principal part of @
(homogeneous with degree v) and p the principal symbol of P, since

q()p(wo, Hu(x) = lim ((QD)P)(e*™ Su())) (wo)t™ e~z ),

Since ¢ is a non-zero polynomial?; this implies that & — p(xg,€) is identically zero,
contradicting the assumption. The proof of the lemma is complete. O

9The open set {£ € R™, q(&£) # 0} is dense since the closed set {¢£ € R™, ¢(¢) = 0} cannot have
interior points because g is a non-zero polynomial.
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Lemma 4.4.11. Let Q be an open subset of R", 2o € Q,m € R and P € V() a
properly supported pseudo-differential operator. To get (4.4.11), it suffices to prove
that for every & € S"!, there exists some ¢ € 5?,0 non-characteristic at (xq, &),
such that

3C, Irg > 0,Vr €]0,1¢], JA(r), Ie(r)with lime(r) = 0, Vv € C(B(xg, 7)),

r—0

e()vllosm—pn + A [Vllosm—p—1 + ClIP o = 0 0llo1m—p, (4.4.14)
with 0 = —s —m + p.

Proof. To get (4.4.11)s with s = —0 — m + p, it is enough to prove that, for every
o € S"7!, there exists some ¢ € 57, non-characteristic at (o, &), r > 0,C > 0,
such that

Vo € CF(B(wo,7));  Cllvllorm—p-1 + Cl[P0]le =l 0o rm—p- (4.4.15)

In fact, if (4.4.15) holds, one can find finitely many 1, ..., ¢, such that
Z lp;|* s elliptic at z
1<j<v

and for all v € C(B(xg,70)) (ro is the minimum of the ; > 0 corresponding to
each ¢;),

||U||c2r+m—u <Cy Z ||()0§]U||c2r+m—u + CQH”Hi—I—m—p,—I

1<j<v
< Cw2C?||P*o||2 + (Cy + C1v2C%) ||v]|?

o+m—pu—1

which gives C||v|lo4m—p—1 + C||P*v|ls > ||v]lo+m—p- The same argument as above
gives the implication (4.4.14) = (4.4.11),. O

Remark 4.4.12. Assume in particular that m = 1 and that, on a conic neighborhood
of (0;e,) the principal symbol of p is

& +q(xy, 2 ), g complex-valued. (4.4.16)

Considering a positively-homogeneous function of n variables y, supported in

{£eR™ |G| < Gil€}

equal to 1 on {& € R™|&| < Col¢'], €] > 1}, and )y a positively-homogeneous
function of n — 1 variables supported in a conic-neighorhood of &, = (0,...,0,1) €
R"! and equal to one on a conic-neighborhood of &), the symbol

iz, &) =& + q(@y, 2, E)ho(€)x0(€) € Sip

coincides with p on some conic-neighborhood of (0, e,) and we have

w

I = D (gl @', €)o(€) "= (aen, ' € (€)1 = x0(€))) "

q1
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The symbol ¢; does not belong to S} ;(R*"), but only to S} 4(R3"¢?), uniformly with
respect to xp. Let us assume that for v € (R"), suppv C {|z1| < T},

C||Dyv + ¢Pvllo > T v (4.4.17)

We consider x; positively-homogeneous function of n variables supported in {£ €
R™, |&] < Col€'|}, and we apply (4.4.17) to p(x1T1)xYu where u € (R"), sup-
ported in |z1| < T/2 and p1 € Cf%, 5(R), equal to 1 on [—1,1]: we get

20|11 p(x: T )xPu+ (1= xo)ar) " p(z1 T~ )X ul|
> T p(z1 T~ xPulo.

The term ((1—x0)q1)" p(z1T~)x} has a symbol in S; 5°(R?") (to be checked directly
by the composition formula whose expansion is 0). The term

J

TV
] supported in
[—T,T]

[, plarn T™HxPu = (2inT) ™ o' (ar T71) Xy p(20: T ™) w = riu
T

0on [T

rp € S;o°(R*"). The term [I{, x}'] is L*-bounded and we have thus
Xyt ullo + [lullo + a(T)ull-1 = lIxiul

which gives (4.4.14) for m = 1,0 = 0, = 1. Staying with the case p = 1 (loss
1), the argument is not different for other values of m,o. We can of course replace
the assumption (4.4.16) by e(z,£) (&1 + q(x1,2,¢&")) where e is elliptic on a conic-
neighborhood of (0;e,).

Remark 4.4.13. On the other hand, when p > 1, the rhs in the estimate (4.4.17)
has to be replaced by ||v||;-, and the fact that this suffices to prove local solvability
requires some particular care.

Operators of real principal type

Theorem 4.4.14. Let Q be an open subset of R, m € R and P € V7(2) a pseudo-
differential operator with symbol p such that (4.3.1) holds with p,, real-valued and
positively-homogeneous of degree m. We assume that P is of principal type, 1.e.

V(x,6) € T*(), pm(,€) =0 = 0epp(z, &) #0. (4.4.18)

Then the operator P is locally solvable at every point of Q0 with loss of one derivative.

Proof. One could of course use the estimate (4.3.16), but the argument for solvability
alone is so simple in that case that it may be worthy to look at it. We consider a
point xq € Q. If p,, is elliptic at xg, the estimate

Cllvllosm-1+ Cl|P*|s > [[V]lorm
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follows from Theorem 4.2.8 for v supported in B(zg,79) with ro > 0 small enough.
If there exists & # 0 such that p,,(zo,&) = 0, we may choose the coordinates so
that o =0,& = e, and

pm(£7€) = (él + CL(:Ul, x/7£/)>€('x7€>

with a homogeneous of degree 1 with respect to &', e elliptic with degree m — 1 on a
conic-neighborhood of (0,e,). According to Remark 4.4.12 the question reduces to
proving an estimate for the operator L = D,, +a(xy,2',£")* where a € C°(R*"~ 1 R)
such that, for all a, 3,

sup (080 a)(z, &Y€) < oo
(z,6')eR" xRn—1

We find )
2Re(Dg,u+ a(xy, ', &) u, ixqu) 2 = 2—||u||(2), (4.4.19)

T
so that for u € C®(R™), uw = 0 on |z1| > T, we have 2||Lul[oT||lullo > 5=|u[|3 and
thus || Lullo > 52 |ulfo. O

Operators of principal type, complex symbols with a nonnegative imagi-
nary part

Theorem 4.4.15. Let Q2 be an open subset of R, m € R and P € V7 () a pseudo-
differential operator with symbol p such that (4.3.1) holds with p,, complez-valued
and positively-homogeneous of degree m. We assume that P is of principal type (see
(4.4.18) ) such that the function Im p,, is nonnegative (resp. nonpositive). Then the
operator P is locally solvable at every point of ) with loss of one derivative.

Proof. To handle the complex-valued case, we see that the principal type condition
(4.4.18) implies that at a non-elliptic point,

pm<x07§0) = 07 d(Impm)<x07€0) = 07 85<Repm)(x07§0) 7£ 0.

The first thing that we can do is to use the estimate (4.3.15): assuming m = 1,
the bicharacteristic curve ¥ = Hge,,, (77) starting at v(0) = (o, &) we find Ay, 4; €
WD.(€2), Ag elliptic at v(0), essupp Ay C Wy, Wi conic-neighborhood of 7(3go) where
o > 0, 7(0) & Wi, M € U2,(0),

1A0vl[5 < [1As0l[5 + M Pol[§ + (C1 + Co)llvlZy 2. (4.4.20)

Applying this to v € C°(B(xo, 7)) with r small enough, the principal-type assump-
tion O¢ Repy,(x0,&) # 0 implies, with xo supported in the unit ball of R”, that
Arv = Aixo((- — o) /r)v with essupp A1 xo((- — 0)/r) = 0, so that (4.4.14) holds
with = 1,m = 1,0 = 0. The other cases are analogous.

On the other hand, it is also interesting to find directly a multiplier method, as
in the real-principal type case. We need only to handle

L:I: = D:clu + a(xlazlvfl)wu + Zb($7€)w + ,,,,0(1.75)10
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with b € 51,0 > 0, a(xy, -, -) real-valued in S} ((R2';?) uniformly in 21 and o € 59,
With 6 € C*(R;R), we calculate

2Re{Deyu+ alis, o/, &)+ b, €)"u, 181V u)sz = — {08, u) + 2 Relbu, 0%u).
We have

020" + b 0 = 006" + 600 = 0], b"] + 206”0 + [b, 0]0 = 206" 6 + [[b*“, 4], 0]
and thus, from Garding inequality (Theorem 3.5.1), we find

2Re(Lyu,i0%u) > =(00'u, u) + ([[b*, 6], O)u, u) — Col|Oul|* — ||[r0, O]ul?

3 | =

where Cy depends on semi-norms of b, rg; to handle the term ry, we have used
(r&u, 0*u) = ([0, 78 ]u, Ou) + (r@Ou, Ou).

We have with A\ > 0, 6(z1) = e, for u € C°(R™) vanishing at |z1] > 1/ (so that
with xo € C°(R) equal to 1 on [—1,1], u = xo(Az1)u)

2Re(Lyu,ie**™u) > (77X — Cp)||e M ul|* — C’()\)||u|]2_1/2

implying 27T/\*1||X0(/\x1)e’\”31L+u||(2)+C()\)||u||2_1/2 > (2 —Cp)|le* ul|?, and assuming
Xo valued in [0, 1], vanishing on (—2,2)¢ and A > 47Cy,

2 A M| Lyullg + CON[ull2y o > 5 llull*.

4re?

Choosing A = 1+ 47Cj, we find that there exists ro > 0 such that, for u € C°(R"),
with diameter(supp u) < ro

Cil|Lyullo + Chllull =12 > [[ulfo,

proving the local solvability of L ; the case of L* is analogous. O

4.5 Pseudo-differential operators
in harmonic analysis

Singular integrals, examples

The Hilbert transform

A basic object in the classical theory of harmonic analysis is the Hilbert transform,
given by the one-dimensional convolution with pv(1/7z) = -L(In|z|), where we
consider here the distribution derivative of the L} _(R) function In |z|. We can also
compute the Fourier transform of pv(1/mz), which is given by —isign¢ (see e.g.
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(1.2.26)). As a result the Hilbert transform # is a unitary operator on L?*(R)
defined by -
Fu(E) = —isign&u(§). (4.5.1)

It is also given by the formula

(Hu)(z) = lim l/ Mdy.

lz—y|>e T — Y
The Hilbert transform is certainly the first known example of a Fourier multiplier
(#u = F~'(at) with a bounded a). Since the sign function is bounded, it is
obviously bounded on L?(R), but is is tempting to relate that result to Theorem
3.4.2 of L*-boundedness of the S?,o class; naturally the singularity at 0 of the sign
function prevents it to be a symbol in that class.

The Riesz operators, the Leray-Hopf projection

The Riesz operators are the natural multidimensional generalization of the Hilbert
transform. We define for u € L*(R"),

_— & - o
Rju(§) = ﬁu(f), so that R; = D;/|D| = (=A) 1/2@-

The R; are selfadjoint bounded operators on L*(R™) with norm 1.
We can also consider the n x n matrix of operators given by ) = R® R =
(RjRk)1<jk<n sending the vector space of L*(R") vector fields into itself. The
operator @ is selfadjoint and is a projection since Y, R} = Id so that Q* =

(>, RiRiRRy);r = Q. As a result the operator

(4.5.2)

P=Id-R®R=I1d—|D|*(D®D)=1d-A" (Ve V) (4.5.3)

is also an orthogonal projection, the Leray-Hopf projector (a.k.a. the Helmholtz-
Weyl projector); the operator P is in fact the orthogonal projection onto the closed
subspace of L? vector fields with null divergence. We have for a vector field u =
> u;0;, the identities graddivu = V(V - u), graddiv=V @V = (-A)(iR®iR),
so that

Q=R®R=A"'graddiv, divR® R = div,

which implies divPu = divu — div(R ® R)u = 0, and if divu = 0, Pu = u. The
Leray-Hopf projector is in fact the (n x n)-matrix-valued Fourier multiplier given by
Id —|€|72(€ ® €). This operator plays an important role in fluid mechanics since the
Navier-Stokes system for incompressible fluids can be written for a given divergence-
free vy,

v +P((v-V)v) —vAv=0

Pv =,

Vjt=0 = Vo.
As already said for the Riesz operators, IP is not a classical pseudo-differential opera-
tor, because of the singularity at the origin: however it is indeed a Fourier multiplier
with the same functional properties as those of R.



4.5. SINGULAR INTEGRALS 113

In three dimensions the curl operator is given by the matrix

0 —035 0,
curl=| 05 0 —0;| = curl’, (4.5.4)
-0y 0 0

since we can note that the matrix

0 —i&s &
C€) =2m | i&3 0  —i&
—1&y 1€ 0

is purely imaginary and anti-symmetric, a feature that could not happen for scalar
Fourier multiplier. We get also curl* = —A Id + grad div and (the Biot-Savard law)

Id = (—=A) 'curl®> +A~  grad div, also equal to (—A)~!curl® +1d —P,
which gives curl®> = —AP, so that

[P, curl] = A~ (AP curl —A curl P) = A (— curl® 4 curl(—AP)) = 0,
Pcurl = curl P = curl(—A) ' curl® = curl(Id —A™" grad div) = curl

since curl grad = 0 (note also the adjoint equality div curl = 0).

These examples show that some interesting cases of Fourier multipliers are quite
close to pseudo-differential operators, with respect to the homogeneity and behaviour
for large frequencies, although the singularities at the origin in the momentum space
make them slightly different. They belong to the family of singular integrals that
we shall review briefly.

Theorem 4.5.1. Let Q be a function in L'(S*™') such that [y, , Q(w)do(w) = 0.
Then the following formula defines a tempered distribution T':

x
|z]

The distribution T is homogeneous of degree —n on R™ and, if Q) is odd, the Fourier
transform of T is a bounded function.

)|z ™" In |z|dz.

T =lim [ (D)l ele)de =~ [ (o dupla))

=04 |z|>e |$|

N.B. We shall use the principal-value notation 7' = pv<|:v|*”9(%)>; when n =1

and ) = sign, we recover the principal value pv(1/z) = - (In|z|) which is odd, ho-
mogeneous of degree -1, and whose Fourier transform is —im sign ¢ (see e.g. (1.2.26)).

Proof. Let ¢ be in #(R™) and € > 0. Using polar coordinates, we check

/Sn_l Yw) /;Oo @(Tw)%da(u})

- /Snl Qw) [go(ew) In(e™!) — /€+00 w - do(rw) Inrdr|do(w).
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Since the mean value of €2 is 0, we get the first statement of the theorem, noticing
that the function z — Q(z/|z|)|z|™" ™ In(|2])(1 + |z|)~2 is in L'(R™). We have

(2 0,T.0) = (T - 0up) — (T p) (4.5.5)

and we see that

(T,x - 0pp) = lim - Qw) /+00 rw - (d@)(rw)%da(w)

E—>0+

[ ow /O ™ o (do) (rw)drdo(w)

Sn—1
+00 d
= / Q(w)/ — (p(rw))drdo(w) = —4,0(0)/ Qw)do(w) =0
S§n—1 0 d?“ S§n—1
so that (4.5.5) implies that x - 9,7 = —nT which is the homogeneity of degree —n
of T. As a result the Fourier transform of T is an homogeneous distribution with
degree 0.

N.B. Note that the formula — [(z - 8190(3:))9(%) |z| 7" In |z|dz makes sense for §) €
LY(S™1), ¢ € #(R™) and defines a tempered distribution. For instance, if n = 1 and
2 =1, we get the distribution derivative % (signx In |x|) However, the condition of
mean value 0 for €2 on the sphere is necessary to obtain 7" as a principal value, since
in the discussion above, the term factored out by In(1/e) is [g, , Q(w)p(ew)do(w)
which has the limit ¢(0) [, Q(w)do(w). On the other hand, from the defining
formula of T', we get with Q;(w) = (Q(w) + (=1)’Q(—w)) (21 (resp.€,) is the odd
(resp. even) part of )

To) = [ QG (HO MmO, o0 707 r(w)

1

= £ (W) (po(

- g% P(tw)) 7/ (my), () do (W)

+/Sn1 QQ(W)<%<H(t) Int), p(tw)) 7 (w,),7®)do(w), (4.5.6)

since

e AR 1

) e(tidr(e) = =3 [ @)l dolte))do(w)

t 2

and (In [t|,w - dp(tw)) = f0+°° w - dp(tw) Intdt + fOJrOO w - dp(—sw)(In s)ds so that

A = /S  O)(H() I, —%w (dp(tw) + dp(—tw)))do (w)

and thus since 27 is odd,

A= [ )G W), () = (1)) o)

_ /S (@) () Int), plt)) do(w).
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Let us show that, when Q is odd, the Fourier transform of 7" is bounded. Using
(4.5.6) and (1.2.26) we get

@) = [ )l 6le)inte)
—=5 [ | awsients- 9ple)dcinte)

proving that

7€) = —%T / Q(w) sign(w - €)do(w) (4.5.7)
S§n—1
which is indeed a bounded function since € L*(S"71). O

4.6 Remarks on the Calderén-Zygmund theory
and classical pseudo-differential operators

It is possible to generalize Theorem 4.5.1 in several directions. In particular the
LP-boundedness (1 < p < 00) of these homogeneous singular integrals can be es-
tablished, provided some regularity assumptions are made on T (see e.g. Theorem
7.9.5 in [5], the reference books on harmonic analysis by E.M. Stein [24] and J.
Duoandikoetxea [2]).

Also a Calderén-Zygmund theory of singular integrals with “variable coeffi-
cients”, given by some kernel k(x,y) satisfying some conditions analogous to ho-
mogeneous functions of degree —n of x — y, has reached a high level of refinement
(see e.g. the book by R. Coifman & Y. Meyer [1] and the developments in [2]). Al-
though that theory is not independent of the theory of classical pseudo-differential
operators, the fact that the symbols do have a singularity at £ = 0 make them quite
different ; the constrast is even more conspicuous for the L? theory of Calderén-
Zygmund operators, which is very well understood although its analogue for general
pseudo-differential operators (see e.g. [21]) has not reached the same level of under-
standing. We have seen above that the classes 5275 give rise to L?-bounded operators
provided 0 < § < p < 1,0 < 1, and it is possible to prove that the operators with
symbol in the class S?,o are LP-bounded, 1 < p < co. The method of proof of that
result is not significantly different of the proof of the Calderén-Zygmund theorem
of LP-boundedness for standard homogeneous singular integrals and is based on the
weak (1, 1) regularity and the Marcinkiewicz interpolation theorem. However, some
operators with symbol in the class S? 5 with 0 < ¢ < 1 are not LP-bounded for p # 2.

The present book is almost entirely devoted to the developments of the L? theory
of pseudo-differential operators, but it is certainly useful to keep in mind that some
very natural and useful examples of singular integrals are not pseudo-differential
operators. For the very important topic of LP-theory of pseudo-differential operators,
we refer the reader to [20].
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Chapter 5

The Huygens principle

5.1 First order real principal type operators
We study here the Cauchy problem for the linear first-order equation
D+ a(t,z,D)u=f on (0,7) xR, wu—g = uo, (5.1.1)

where T is a positive parameter, a € C™([0,T] x R*") such that for all («,3) €
N™ x N”,

sup (0502 a)(t, =, £)()™ ] < 400, (5.1.2)
(t,x,£)€[0,T] xR xR"

and

sup Ima(t, z,§) < +o0. (5.1.3)
(t,2,6)€[0,T] xR X R™

We expect the Cauchy problem to be well-posed so that looking at the ODE
0 + (a1(t) +iaz(t))u =0, a; smooth real-valued,,
7

we have u = u(0) exp fg(—z’al(s) + as(s))ds so that |u(t)] = \u(0)|ef5a2(5)ds, the
latter integral remains bounded for ¢ > 0 whenever a; = Ima is bounded above.
This makes Condition (5.1.3) rather natural.

Lemma 5.1.1. Let a,T be as above and let o € R. There exists A(c) such that for
any A > X(o), we have for every u € C*([0,T]; H°(R™)) N C°([0, T]; H* T (R™)),

sup e_’\t||u(t)||Ha(Rn)
te[0,7]

T
< |u(0) || o +/ e M| Dyu+ a(t, x, Dy)ul|gro@nydt.  (5.1.4)
0
N.B. Tt should be noted that no better estimate than (5.1.4) is satisfied for the ODE
Dy + a(t) where a is a complex-valued function with an imaginary part bounded

above.

117
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Proof. We assume first that ¢ = 0 and we note that, with L?>(R") norms and dot-
products, assuming A} = Ay, A5 = —A,, 0 <t < T,

2Re/0 (Dsu + (Al(s) + iAg(s))u, —ilp(s)u) = —[Ju(0)[]* + [Ju(t)|?

+2 /O (= Ay(s)u, uds.

and assuming that Ay < 0 (operator inequality) we get with £ = D, + A(t)

2/0 I(Cu)()[[us)llds + [u(O)* = [lu®)]*,

and thus .
lu(®)]* < R(t) = 2/0 I(Lw) () l[u(s)llds + [[u(0)]],
so that
R =2|[(Lu)(®)|[lu(®)]| < [[(Lu)(t)[|2R"?
and thus

d
SRV < (L))l

so that (for t € [0,T7)

lu()]| < RY*(2) < R”Q(O)Jr/o I(Lu)(s)llds = [lu(0)] +/0 [(Lu)(s)llds,

the same estimate as for an ODE. We note however that we do not have a priori
Ay <0 as required above but that Garding’s inequality shows that

Ay < B, (5.1.5)
where [ is a semi-norm of a. Using the above discussion, we get for A > 3,
t
[o@)[| < [v(0)] +/0 |Dsv + A(s)v — idvl|ds,
and setting v(t) = u(t)e™, this gives, since D, — i\ = e 2D e*
lu(®)le™ < [lu(0)]] + /Ot le™*(Ds + A(s))e e ul|ds,

which is the sought result for ¢ = 0. To get the result for arbitrary o, we note that

[u(®) e = [1(D)7u(t)| 2,
and replacing u by (D) in the above inequality for A(t) replaced by (D)7 A(t){D)~°
(which is a first-order operator whose symbol satisfies (5.1.3)) yields for A > A(0),
0<t<T,

lu() ]z~ < [Ju(0) - +/0 ™ (D)~7(Ds + (D)7 A(s)(D) ") (D) ul| = ds

t
=W@Wm+/€“M&+A®MMM&
0

completing the proof of the lemma. O



5.1. FIRST ORDER REAL PRINCIPAL TYPE OPERATORS 119

It might be worthy as well to record the Hilbertian lemma proven above, noting
that we have used only (5.1.5).

Lemma 5.1.2. Let H be a complex Hilbert space, let T > 0 be given and let [0,T] >
t — A(t) € B(H) be a continuous mapping such that

A(t) — A*(t)

vt € [0,T], 5

< B < 4.

Then for X > B and for u € C*([0,T]; H), we have with Dy = —id;,

T
sup e M||u(t)||m < ||u(O)HH+/ e M| Dyu + A(t)ul|gdt. (5.1.6)
0

te[0,T

We can prove now an existence and uniqueness result based upon the inequalities
in Lemma 5.1.1 and the Hahn-Banach Theorem.

Theorem 5.1.3. Let T' > 0 and a satisfying (5.1.2) and (5.1.3). Let 0 € R. Then
for any f € L*([0,T); H°(R™)) and any ug € H°(R™), there exists a unique solution
of (5.1.1) in C°([0,T], H°(R™)) and we have as well for A > \(o),

T
sup e M [u(t) o @n) < [Juoll e @) + / MF @) e et (5.1.7)
te[0,7 0

Proof. We start with the proof of uniqueness. We may thus assume by linearity
that f = 0 and u(0) = 0. We have also a(t,z, D,)u € C°([0,T], H°~') and thus
dyu € C°([0,T), H°~'), implying since u(0) = 0 that

u e CY([0,T], H 1) n C°([0,T), H?),

and we may apply Inequality (5.1.4) for A > (o — 1), entailing that « = 0 on [0, T7].
Let us prove now the existence part of Theorem 5.1.3. Let o, f and ug be given as
in the statement of the theorem. For ¢ € C°([0,7) x R™), we define

=L =D+ A(t)p, At) =alt,z,D,),

and it follows from Lemma 5.1.1 for A > A\(—0),

T
sup e T §(0) o < [ D6+ A0 -t
0

te[0,T

so that .
sup |6(t)|] - W<%/nwmm. (5.1.8)

t€[0,T]
As a result, we have

T

AU@MWﬁHmMWFQAHWWM.
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We consider the anti-linear form
T
£(CE(O.T) X RY) 3 £ T(E0) = [ (0,000}t + (10, 6(0)) € C,

which is well-defined since £*(¢1 — ¢2) = 0 implies ¢; = ¢ from (5.1.8), and is such
that

T
(L) < O /0 1Ll yrdt.

Using the Hahn-Banach theorem, we may extend 7 to a continuous anti-linear form
on LY([0,T]; H°) and thus we can find u € L*([0,T]; H°) such that for every
¢ € C2([0,T) x R"),

[ 450001t + (w0, 000) = T(&0) = [ (o
= [ D+ A0t = (Hu Do+ A O0)
which means that
Dy(Hu) + A(t)Hu = f + %50(7:) @up on (=00, T) x R”,

that is
Diu+ A(t)u=f on (0,7), u(0)= up,

in the distribution sense. If f belongs to .(R""!), we obtain from the equation
that
O € L=((0,T); H™Y),

and thus u € C°([0,T); H°~'). Using again the equation, we find that
Dy € C°([0,T]; H°™%) and thus we C*([0,7); H7?), u(0) = uo.

If f e SR uy € S (R"), replacing in the discussion above o by o + 2, we
may thus apply the inequality (5.1.4). Now for f,up as in the theorem, we may
choose sequences (fi)r>1 and (ugy)r>1 in the relevant Schwartz space with (fi)k>1
converging in L'([0,T]; H°) towards f and (ugy)x>1 converging towards ug in H?
and we are able to find a sequence (uy);>; in C'([0, T]; H?) such that

Dyuy, + A(t)ur, = fre,  urk(0) = ug g,

along with Inequality (5.1.4). As a result we find that for A > A(0),

sup e Jup(t) — w(t)| e ()
te[0,7

T
S ||U07k — UOJHHU(RH) —+ / 6_/\tka — fl”HU(Rn)dt (519)
0
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The Cauchy criterion gives the convergence of the sequence (uy,)x>1 in C°([0,T]; H)
towards u € C°([0,T]; H?) with

1
Di(Huy) + A(t)Huy, = fi. + 250(75) ® ugg, on (—oo,T) x R",
implying directly
1
Di(Hu)+ A(t)Hu = f + ;50(25) ® ug, on (—oo,T) x R",

whereas Inequality (5.1.4) for u entails the same inequality for u. The proof of
Theorem 5.1.3 is complete. O

Corollary 5.1.4. Let T > 0 and a satisfying (5.1.2) and (5.1.3) and let u satisfying
(5.1.1) with f € NyerL>([0,T]; H°(R™)) and ug € HT*°(R") = Nyer H (R™). Then
u € NeerCH([0,T); H7(R™)). In particular, for any t € [0,T], we have u(t, ) €
C>(R™).

Proof. Theorem 5.1.3 implies that u € N,erC°([0,T]; H°(R™)) and the equation
implies that d,u € Nyer L>=([0, T]; H°~*(R™)), which gives the result. O

5.2 Some Hilbertian lemmas

We want to study the wave-front-set of the solution wu(t, -) of (5.1.1), say with f =0,
knowing the wave-front-set of ug and we wish to show that the singularities are
indeed propagating backward along the Hamiltonian flow of the real part of principal
symbol 7 + Reay(t, x, &), providing Im a, (¢, z, &) < 0, where a; stands for principal
symbol of a(t, z, D,): we assume that a; belongs to S* (i.e. satisfies (5.1.2)), a — a;
is bounded in SY, i.e.

sup (0207 (a — a1)) (¢, 2, €) ()] < 400, (5.2.1)
(t,x,£)€[0,T] xR xR"

and that a; is homogeneous of degree 1 for || > 1, i.e. is such that
Vi > 1,V€ such that |£| > 1,  ay(t, z, p&) = paq (t, z,§). (5.2.2)

In order to motivate the backward-forward story above we reformulate Lemma 5.1.2
with the following lemma.

Lemma 5.2.1. Let H be a complex Hilbert space, let I be an interval of R with a

non-empty interior and let I >t — A(t) € B(H) be a continuous mapping such that

there exists B € R with

A(t) — A*(t)
21

Then for X > B and for u € C*(I;H), we have with D; = —i0;, to <t in I,

Vtel, ImA(t) = <8, (5.2.3)

t1
OO < e+ [P At (6520

to
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If we have for some f € R

A(t) — A*(1)

Viel, ImA(t) = 5
i

> 3 (5.2.5)

Then for X > B and for v € CY(I;H), we have with D; = —idy, to <t in I,

t1
e”\(tl’tO)Hu(to)HH < Ju(t) || —i—/ e’)‘(tl’t)HDtu + A(t)ul|gdt. (5.2.6)

to

Proof. The first statement is already proven. To prove the second one, we note that
setting u(t) = w(—t) we find for t € [tg,t1], s = —t,

Dyu+ A(tyu = —(Dyw)(s) + A(=s)w(s) = —(Ds — A(—s))w.

Assuming for s € —1,

A(=s) = A*(=9)

—A(=s) + A*(—s)
: % )

f>Im—A(-s) = 5;

- (-1)

which amounts to assume (5.2.5) means Im(—A(—s)) < 8 so that with
so = —t1 < 51 = —to,

we get from the (already proven) first part of the lemma for A\ > 3,

S1
(o) < ool [ N D~ Al-syulds, (5:27)

50

1.e.

t1
e X0t | < [Julty) |l + / e D+ A(yulludt,  (5.2.8)

to

which is the sought result. O]

Remark 5.2.2. If § = 01in (5.2.3) (resp. (5.2.5)), we can take A = 0 and obtain for
to S tl n [ lf Dt'U, + A(t)u = 0,

lu()lle < llulto)lla,  (resp. [u(to)lls < [luts)]lwm)-

The first inequality implies that if ||u(to)||m is small (or finite) then |lu(ty)||m is
smaller (or finite) which amounts to a forward propagation of regularity. We can
also see that first inequality as a backward propagation of singularity: if ||u(t1)||m
is large (or infinite) then [|u(ty)||m is larger (or infinite). The second inequality is
reversing the direction of propagation with respect to the first one. Note also that
if both (5.2.3) and (5.2.5) are satisfied, which occurs when A(t) is selfadjoint for all
t, then the propagation goes in both directions, backward and forward.
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5.3 Propagation of singularities

Introductory remarks

To simplify matters with the orientation of the bicharacteristics, we shall assume
that
a; is real-valued, (5.3.1)

but we shall keep in mind that only minor modifications will be necessary to tackle
the case where Ima; < 0 (backward propagation of singularities, forward prop-
agation of regularity) or the case Ima; > 0 (forward propagation of singularities,
backward propagation of regularity). If u satisfies (5.1.1) with f = 0 and if Q(¢, z, D)
is a pseudo-differential operator commuting with the operator £ = D; + a(t, x, D,)
we shall have

EQU = 07 Qu|t:0 = QOUO, QO = Q(OJ X, D:B)
so that with 0 < ¢ < T for 0 € R, A > \(0),

e MQ)u(t) |l < | Quuol e

If we know that Qoug belongs to H?, we shall obtain that it is also the case of
Q(t)u(t) and it is a type of microlocal propagation result. However, the requirement
of exact commutation of Q(¢) with £ is neither realistic nor necessary and we can
implement the same program with some approximate commutation: if ¢(¢,z,€) is a
symbol in S° uniformly in ¢ € [0, 7], Q(¢) = q(t,z, D.), (i.e. (5.1.2) holds true with
(€) 7118l replaced by (€)1P1), we obtain that the commutator

1 dq

_ 9q -1
[£,Q(t)] = 2m'0p(at +{a1(t),q(t)}) + Op(S™).
As a result if we are able to solve the first-order PDE
Jq

S+ {alD). a0} =0,

we will need only to deal with a remainder of order —1.

The vector field 0; + H,,

Let a;(t, z,§) be areal-valued smooth fonction, homogeneous of degree 1 with respect
to & such that

Y(a,f) € N x N, sup (0207 ay) (¢, z, €)| < +o0. (5.3.2)

(t,2,6)€[0,T] xR xSn—1

To find a first integral of the above vector field with initial value go(z, &), we need
to solve the first-order system of ODE

{Wﬂﬁ —%@ﬂMWﬁ@%va@%m_% (5.3.3)

Etyn) =-=-22(tx(t,yn),Ety,n), £0,y,m) =n,
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for y € R™,n € R"\{0}. We note that for u > 0,7 # 0, we have

%{x(t,y, pn)} = (t,y, un)

o 0
- %(tx(t,y,un),&(ty,un)) = aig(tx(t,y,un),/flé“(tay’/vm))’

z(0,y, un) = v,

and

d .
%{u‘lﬁ(t, y, i)} = pE(t, y, pm)

. 0a
= ' (bt g, ), £(t y, ) =

_Ou

oz (t,x(t, y, pm), =" E(t,y, um)),

p (0, y, un) = 1.

Asaresult (z(t,y, un), p &L, y, um)) and (z(t,y,1),&(t, y,n)) solve the same system
of ODE with the same initial data and thus coincide so that z(t, y, n) is homogeneous

with degree 0 in n and £(¢,y,n) is homogeneous with degree 1 in 1. From the
estimates (5.3.2), we find solutions of (5.3.3) for ¢ € [0, T] with |n| =1 and then by
the above homogeneity, we get solutions for ¢ € [0, 7],y € R",n € R"\{0}. We set

(z(t,y,m), E(tym)) = (L, y,m),

and a first integral of the vector field 0; + H,, should satisfy

q(t, (t,y,m)) = qo(y, ). (5.3.4)

Inverting ¥, we can find some first integrals ®(t, z, &) such that

q(t,2,6) = qo(®(t, ,€)) = qo(y(t, 2, 8),n(t, z,€))

where y (resp. 7) is homogeneous with degree 0 (resp. 1) with respect to . As a
result ¢ is an homogenous symbol with degree 0 satisfying (5.3.2) and defining

(j(ta xz, f) = Q(tv xz, 5)&1(6)

where w € C*(R"), w(§) =1 for |{] > 1, w(§) = 0 for [¢| < 1/2, we obtain that ¢
belongs uniformly to S° and is such that

3,5(}—1— {Cll,qN} € S5,

Microlocalized energy estimates

With £ = D; + a(t,z,D,),0 <t < T, ay(t,z,&) € S' uniformly and real-valued
such that a — a; € S® uniformly. Let ¢(¢, z,¢) uniformly in S° such that

q(t, &) +{ar,q} =0, q(0,2,8) = qolz,5),
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where qq is given in S°. We have for 0 € R, A > \(0),

T
s QU ey < Qe + [ e IEQule e,
S )

and since [£, Q] is uniformly in S~ we obtain

sup e~ (| Q(t)u(t) | e ey < [|Qouol| ()
te[0,T7]

T

T
+/ eMHQEuHHU(Rn)dtwLCo/ e [lull o unydt. (5.3.5)
0 0

Let (z9,&) € R" x S" ! 0y € R such that ug € H(”;O €0)’ ie. Qoup € H°(R™) for a

polyhomogeneous symbol ¢y of order 0, non-characteristic at (xg, ). Let us assume
that Lu € LY([0,T]; H(R™)),u € Uyer L' ([0, T], H°(R™)) and Qou(0) € H(R").
Let 01 € R such that u € L'([0,T], H**(R")) with 0g—1 < 01 < 0. Then we obtain
that

sup e M| Q(t)u(t)|| oo @ny < ||Qotio| rreo (rm
te[0,7

T T
—+ / eiAtHQﬁ’U/HHU()(Rn)dt + C[) / eiAt”uHHao—l(Rn)dt,
0 0

so that Vt € [0,T], Q(t)u(t) € H™(R™).

Theorem 5.3.1. Let T > 0 and a € C*°([0,T] x R*") such that (5.1.2) holds true.
Moreover let us assume that there exists ay real-valued in C*([0,T] x R*") such that
(5.2.1) and (5.2.2) are satisfied. Let o9 € R and let uw € L*([0,T], H**(R")) be
such that

Dyu+ a(t,z, Dy)u € L'([0,T); H®(R™)), (w0, %) ¢ WF,u(0). (5.3.6)
Then defining the flow U of the Hamiltonian vector field of ay by
Uty 1) = Hayge) (P Y1), U(0,5.1) = (y,m),
we obtain that fort € [0,T], V(t, xg, &) ¢ W Fyu(t).

Proof. We can find QQy with a polyhomogeneous symbol in S°, non-characteristic at
(w9, &) such that Qou(0) € H°(R™) and if uw € L*([0, T], H*~(R")) we obtain from
the above reasoning that Q(t)u(t) € H?°(R") and from (5.3.4) we see that Q(t) is
non-characteristic at W(t, zq, &), proving that (¢, xg, &) ¢ W Fy,u(t). ]
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Chapter 6

Elements of Spectral Theory

6.1 The Harmonic Oscillator

We use in this section our Appendix, Section 7.2. We have defined the harmonic
oscillator on R" as

1
H = 5( A+ |z, (6.1.1)
and we have proven that
H = Z +E)P, 1d=) Py (6.1.2)
k>0 k>0

where P is the orthogonal projection on &, which has dimension (kZﬁzl) The
eigenvalue n/2 is simple in any dimension and & is generated by
By (z) = 7 Ve lol*/2,

Introducing a small parameter h € (0, 1] (Planck constant), we define

1
Hi =5 (=h*A 4+ |z]?) . (6.1.3)
With the unitary operator U, on L?(R") given by
(Upw)(x) = R *w(h'?x), (6.1.4)

we find that AU} (—A + [z]*) Uy, = —h*A + |z|* and we get that

Hn = Z(g + kWP, 1A= Py,  Pon = UiPpU. (6.1.5)

k>0 k>0

Lemma 6.1.1. Let h € (0,1] and Hj, given by (6.1.3). Let 0 < a < b be given real
numbers. Then with o(Hy) standing for the spectrum of Hy, we have

card(o(Hp) N [a,b])

= {(z,€) € R, a < S(W*A7*[¢]* + [2]*) < b} + Oapn(h™™H). (6.1.6)

l\DI»—t
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Proof. We calculate first with a change of variables © = ay, ¢ = o™ 'n, a = V27h,

o~ [[ 160
SACE

noting that $(h?4mw?¢? + #?) is the symbol of the operator H;. On the other hand,
we have

(hW*4m?|E]? + |2[*) < b)dadg

b — a™
nlhn '

|/\ l\DI»—

b n —n 7 n
1 < —-)dydn = [B2"|(mh) 7" (0" — a") =

fr— TL_ <_ -
card o(Hy) N[0, b] card{ozEN,2+’04|_h} O§b< n—1 )’
<k<g

and also

+ O(k,n—Q)’

(k+n—1) C(Etn-1). (k1) k!

n—1 (n—1)! (n—1)!

so that with A = b/h (note that for A — +o0, Zogkg\ k= M\ O ),

cardo(Hy) N[0, 4] = ﬁ <)\n + O\ 1)) = n['):L" + O(h™"Y),

providing the sought result. O]

Remark 6.1.2. We note that the unbounded self-adjoint operator H; has a compact
resolvent and thus a discrete spectrum made with eigenvalues of finite multiplicities.
The previous lemma gives an interesting asymptotic equality between a quantum
quantity (the number of eigenvalues located in some interval [a,b]) and a classical
quantity (the symbol of the harmonic oscillator). Formula (6.1.6) proves that the
number of eigenvalues between a and b is well-approximated by the volume of the set
where the symbol of the operator lies between these values. In the sequel we shall
try to prove that law, the so-called Weyl’s law, named after the German Mathemati-
cian Hermann WEYL (1885-1955, http://www-history.mcs.st-andrews.ac.uk/
Biographies/Weyl.html) in a more general context.

6.2 Algebra of pseudo-differential operators on R”

Classes of symbols

Definition 6.2.1. Let m € R. We define the symbol class I as the vector space
of functions a € C*°(R*") such that

Vo € N sup |(0%a)(X)(X)~Cm-leD] < 4o, (6.2.1)

XeR2n


http://www-history.mcs.st-andrews.ac.uk/Biographies/Weyl.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Weyl.html
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Using the metrics notation due to L. Hormander we see that

| da|* + |dg |

m __ 2m _
" = S(0™ 9 = G e+ e

)), (6.2.2)

so that the inverse Planck constant function A is defined by

|dX1]*

A= (X)% T = SO 50).

p

As an example, we see that 1+ |z|? + |£]? belongs to I'! and more generally
(L+ [zl + g™ e T™,

and a polynomial in z, £ with degree 2m belongs to I'.

Algebra of operators

Most of the results of Section 3.4 can be transferred, mutatis mutandis to the present
framework. Instead of repeating all the arguments, which are almost essentially the
same as in that section we summarize the situation by the following theorem.

Theorem 6.2.2. Let a; € I, 5 = 1,2. Then we have
a1 ¢ ay = ajas  mod IMitm2—l (6.2.3)

1
10 Q9 — Q9 O a1 = 5 {a1,as} mod I'™*Tm272" (6.2.4)
s

day 0 day 0
where the Poisson bracket {a;, a2} = Z 32- &CZ - 82 822-' (6.2.5)
1<j<n
Fora € S7), a"=a mod rmt, (6.2.6)

6.3 The Wick calculus

Anti-Wick quantization

We recall here some facts on the so-called anti-Wick quantization, as used in [10],

(11, 112,

Definition 6.3.1. Let Y = (y,n) be a point in R” x R™. The operator Xy is defined
as [2"6*2”|"Y|Q]w. Let a be in L>®(R*"). The Wick quantization of a is defined as

a™Vick = / a(Y)SydY. (6.3.1)
R2n

Remark 6.3.2. The operator Xy is a rank-one orthogonal projection: we have

Yyu= Wu)(Y)rypo with (Wu)(Y) = (u, v o) 2(rn), (6.3.2)
where po(z) = 2% ™*” and (Tyme0)(x) = @o(x — y)e2ma=3:m, (6.3.3)
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In fact we get from the definition of ¥y that, for u € .7(R")

ynu // 217rz z 5271 —27I'|I+Z—y\2 —27r|§ 77| dZd§

/ (Z) 2im(z—2)- 772n/2 -2 ztz —y|2 |a:—z|2dz

= /u(z)emﬂ(zg)-n2n/4e7r|zy|2dz 2n/467ﬂ-|xfy|262”(x*%)'77
= (U, TyP0) TynPo-

Proposition 6.3.3.

(1) Let a be in L=®(R*™). Then a"'* = W*a*W and 1" = Id2gny where W is
the isometric mapping from L*(R™) to L?*(R*") given above, and a* the operator of
multiplication by a in L*(R*"). The operator 7y = WW* is the orthogonal projection
on a closed proper subspace H of L*(R*") and has the kernel

(X,Y) = e s XYPeimlXY] (6.3.4)
where [,] is the symplectic form. Moreover, we have

&Y £z < Nlall o (gany,
a(X) >0 for all X implies a"** > 0.

(2) Let m be a real number, and p € S(A™, A7'T), where T is the Euclidean norm

on R?". Then pWick = p¥ + r(p)¥, with r(p) € S(A™1, A~'T") so that the mapping
p+— 1(p) is continuous. More precisely, one has

/ / 0)p" (X + 0Y)Y?2e 2T ongy dp.
R2n

Note that r(p) = 0 if p is affine and r(p) = %tracep” if p is a polynomial with
degree < 2.

(3) For a € L>®(R?"), the Weyl symbol of a"Vik is
a* 2" exp —2nL, which belongs to S(1,T') with k™-seminorm c(k)|al/z~. (6.3.7)

(4) Let R 5 t + a(t, X) € R such that, fort <s, a(t,X) < a(s,X). Then, for
u € CHRy, L*(R™)), assuming a(t,-) € L= (R*™"),

/R Re(Dyu(t), ia(t) Vu(t)) o dt > 0. (6.3.9)

(5) With the operator Xy given in Definition 6.5.1, we have the estimate

ISy 22| cere@ny < 2me 284, (6.3.9)
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(6) More precisely, the Weyl symbol of Xy ¥y is, as a function of the variable X €
R setting T'(T) = |T'|?

e—g|Y—Z|2€—2i7r[x—Y,X—Z]2n6—2n\X—%|2. (6.3.10)

Remark 6.3.4. Part of this proposition is well summarized by the following diagram:

L2 (RZn) a N L2 (R2n)

(multiplication by a)

] [

L2(R") — L2(R")

aWick

Proof. For u,v € .#(R"), we have

@ u0) = [ o)y = [ a0V ITT Y.

2n

which gives

a™Vik = W*aW. (6.3.11)
Also we have from (6.3.1) that 1Vi%k = Id, since

1 Wick :/ YydY has Weyl symbol/ e XYy — 1.
R2n R

2n

This implies that
W*W = 1d,

ie. W is isometric from L?(R™) into L?*(R?*"). The operator WIW* is bounded
selfadjoint and is a projection since WIW*WW* = WW*. Defining H as range W,
we get that WW* is the orthogonal projection onto H, since the range of WIWW* is
included in the range of W, and for ® € H, we have

O =Wu=WW*"Wu € range(WW™).

Moreover range W is closed since W is isometric, that latter property implying also,
using (6.3.11), the property (6.3.5), whereas (6.3.6) follows from (6.3.1) and ¥y > 0
as an orthogonal projection. The kernel of the operator WIWW* is, from (6.3.2),
(6.3.3), with X = (z,£),Y = (y,n),

I(X)Y) = (v 0, Tx o) L2(n)
_ 2n/2 / efﬂ\tfx\Q6*7l'|t*y|2621'77(7&*%)'77@7%”@7%).gdt

_ o~ Bla—ylPgn/2 / o= B l2t—a—y[? 2imt-(0—8) gy pim(-E—y-n)
_ Bl gn/2 / o-2lt]? 2im(t+E58).(n6) gy (€ —ym)

— e 5lr=yl? = FlEnl? gin(@ty)-(n—€) gim(z-E—ym)

= Zle—y|? —Z|e—n|? in(zn—yE) _ —Z|X-Y|? _—ir[X)Y
_ o lomal? = Flemnl? gin(on—v) _ o~ FIX-YP minlX.Y]
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which is (6.3.4). Postponing the proof of H # L?(R?*") until after the proof of (2),
we have proven (1). To obtain (2), we note that (6.3.1) gives directly that

aVik = (a % 2" exp —27T)"

and the second order Taylor expansion gives (2) while (3) is obvious from the
convolution formula. Note also that u € (R") implies Wu € %(R*") since
e~ ™ (Wu)(y,n) is the partial Fourier transform with respect to x of R" x R" 5
(z,y) — u(x)2" e ™"=¥; this gives also another proof of W isometric since

// ’u(x>|22n/26727r|x*y\2dxdy = HUH%?(RW)'

We calculate now, for u € .%(R™) with L? norm 1, using the already proven (2) on
the Wick quantization of linear forms,

2 Re<7T7.[§1Wu, ix1Wu>L2(R2n) =2 Re(W*&Wu, iW*x1Wu>Lz(Rn)

= 2Re(&" ¥ u, i)' u) 2 @ny = 2Re(Dyu, izqu) 2@mny = 1/27.

If H were the whole L?(R*"), the projection 73 would be the identity and we would
have

0=2 Re(&Wu, ix1Wu>L2(R2n) =2 Re(wH&Wu, i$1WU>L2(R2n) = ]./27T

Let us prove (4). We have from the Lebesgue dominated convergence theorem,
o= / Re(Dyu(t), ia(t)Vu(t)) 12 g dt
R

. 1 ic
= - hlga orh Re(u(t +h) —u(t), a(t)™u(t + h)) p2@ndt

= lim L(—/Rlzie@(t),a(t—h)WiCku(t)>L2(Rn)dt

h—04 27Th
+ [ Refult),alt) = ult + 1) e )
R

_ hli%i{ﬁ /R Re(a(t) — alt — 1)) VS u(t), u(t)) 2gandt

J

=B(h)
# [ el (ult+ ) = u(t) o) u()) eyt .

2mhi

7

with limit —a
The previous calculation shows that §(h) has a limit when h — 0, and 2o =
limy,_,o, B(h). Since the function a(t) — a(t — h) is non-negative, the already proven
(6.3.6) implies that the operator (a(t) — a(t — h))Wik is also non-negative, implying
B(h) > 0 which gives o > 0, i.e. (6.3.8)'. Since for the Weyl quantization, one has

! Note that (6.3.8) is simply a way of writing that % (a(t)Vick) > 0, which is a consequence of
(6.3.6) and of the non-decreasing assumption made on t — a(t, X).
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la® ||l ze2@ny) < 2"||al|L1(ren), we get the result (6.3.9) from (6.3.10). Let us finally
prove the latter formula. From the composition formula, we obtain that the Weyl
symbol w of Xy ¥ is
w(X) _ 9 // 6742'7r[X7X1,X7X2]22n6727r|X17Y|26727r\X27Z|2dX1dX2
= 24” // e—4i7r[X—Y,X—X2]6—2i7r(X1,20(X—X2)>e—27r\X1\26—27T|X2—Z\2dX1dX2
— 93n / 6—4i7r[X—Y,X—X2}6—27r\X—X2|2€—2W|X2—Z|2dX2

X _7|2 i X — _ _ _ 2
:23716 w| X—Z| /6 4in[X-Y, X Xg}e | X+Z—-2X>| dXQ

v 212 o iy B ity v _ 2
:23n6 w| X—Z| e 2in[X-Y, X Z]/e 4ir[ X =Y, X2]€ 47| X | dX2

_ 2n677r\X7Z\2efZiﬂ[XfY,XfZ]efﬂXfYP

_ 2n€—21'7r[X—Y,X—Z}e—2w\X—%|2€—g|Y—Z|2‘
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Fock-Bargmann spaces

There are also several links with the so-called Fock-Bargmann spaces (the space H
above), that we can summarize with the following definitions and properties.

Proposition 6.3.5. With ‘H defined in Proposition 6.5.5 we have
. 7T . .
H ={® e L*(R};), @=f(2) exp—§|z]2, z=mn+iy, [ entire}, (6.3.12)
i.e. H =ranW = L*(R*) Nker(d + Z2).
Proof. For v € L*(R"), we have, with the notation 2* = 37, 27 for z € C",
(W) ) = [ ofa)p/temrtevt et gy

:/ v(x)2M e @Y e~ s W) S (6.3.13)

and we see that Wo € L*(R*")Nker(0+2z). Conversely, if ® € L*(R*")Nker(0+3z),
we have ®(z, &) = e~ 2@+ f(€ +ix) with & € L2(R?") and f entire. This gives

(WW*e)(z,¢) = / / o5 (€ stepPeiso—2ine) gy gy
— o5 (&%) / / e—g(n2—zgn+y2—2xy+2i£y—2infv)@(y,n)dydn
e 5(+27) // (n2+y2+2iy (¢ +iz) - 2’7(§+i$))c1>(y,n)dyd77
— o 5(+a? )// e W’ +’72)67f(77—iy)(§+ir)f(n + 1y)dydn

_ €—§|Z\2 // 6_ﬂ|<‘26n§zf(odydn (C =n+iy, 2=E&+ m)

N

1<j<n

1 _
= H(Q) i(—) KEE) gany
€ = , € (& S1(R21),.7 (R27)
1§jl_£n 9 \m (G — )
=21 f(2),
since f is entire. This implies WW*® = & and ® € range W, completing the proof
of the proposition. O

Proposition 6.3.6. Defining
H = ker(D + gz) n.7 (R™), (6.3.14)

the operator W given by (6.3.2) can be extended as a continuous mapping from
' (R™) onto S (the L*(R™) dot-product is replaced by a bracket of (anti)duality).
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The operator I with kernel I1 given by (6.3.4) defines a continuous mapping from
S (R?") into itself and can be extended as a continuous mapping from ' (R*") onto
JC. It verifies

M2 =T, Tu=Idy. (6.3.15)

Proof. As above we use that e=™7(Wv)(y, n) is the partial Fourier transform w.r.t.
x of the tempered distribution on R?fy

v(2) 2" e @Y,

Since ™7 are in the space €)(R?") of multipliers of .%(R?"), that transformation
is continuous and injective from .#/(R™) into ./(R*"). Replacing in (6.3.13) the
integrals by brackets of duality, we see that W ('(R")) C . Conversely, if ¢ €
A, the same calculations as above give (6.3.15) and (6.3.14). O

Theorem 6.3.7. Let A € Op(I'"™) with m < 0. Then A is a compact operator on
L*(R™).
Proof. Let a,, € I'". Then, we may consider the symbol
A1 = Ay, — (am * 2" exp —27| - |2)
which belongs to I"~!. We may then consider
Ay = Ay — (am_l * 2" exp =27 - |2) eIm2
so that

2) + Q-1

Ay, = (am * 2" exp —27| - |
= (am * 2" exp —27| - |*) + (am—1 * 2" exp =27 - |*) + @2,

= (am * 2" exp —27| - \2) +- 4+ (am_N * 2" exp —27| - \2) + U N—1,

with a; € T7. As a result, if N is large enough, the symbol a,,_n_1 belongs to
L*(R?") and thus the kernel of its Weyl quantization is also in L?(R?"), so is a
Hilbert-Schmidt operator, thus a compact operator. We need now to look at the
operator with anti-Wick symbol @ = a,, + -+ + ap_ny € '™ with m < 0. Let
X € C*(R?™;]0,1]), equal to 1 on the unit Euclidean ball B**. For A > 0, we define

br(X) = (X)X (X/).
Since m < 0, we have lim_, o ||bx — G| L (r2ny = 0 : in fact we have
’b)\(X) — CNZ(X)‘ S ‘Sl|1p ’d(X)’ S Co)\zm — Hb,\ — CNLHLoo(]RQn) S Co)\Zm.
X[>A

This implies from (6.3.5) that limy (EL — b,\)WiCk = 0, in operator-norm. Now

the operator b}"ick
in L?(R*") since by belongs to L*(R?"), proving the compactness of the operator
with Weyl symbol ay,. O]

is obviously compact since its symbol is by * 2" exp —27| - |2, thus
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6.4 Ellipticity and Sobolev spaces

Ellipticity

Definition 6.4.1. Let m € R and let a € I'. The symbol «a is said to be elliptic in
'™ whenever

JR > 0,3c > 0,VX with |X| > R we have |a(X)| > c¢(X)*".

Lemma 6.4.2. Let m € R and let a € I'™ be elliptic in I'™. Then there exists b in
I'™™ such that

boa=14r, aob=1+ry, r; € '™ = Ngerl™.

Proof. Let x € C>(R**;[0,1]), equal to 1 on the unit Euclidean ball B**, supported
in 2B*" and let Y = 1 — . We define

UX/R) _ Ra(X)
a(X) (X))

bon(X) =

Since a is bounded below by ¢(X)?™ for | X| > R, that is on the support of y(-/R),
then b_,, is a smooth function on R?”. Moreover an application of the Fad de Bruno
formula shows that b_,, € '"™. As a result, we have

aob_m=Xr+p1=1-xr+p1, pa,rael™"
———

rT—1

We can find b_,,,_; € I~™! such that
a0 (b + b)) €1+T72
since it is enough to get
147 14+a0b €l +072
and we may choose b_,,_; = —r_;yra *. Following the proof of Lemma 3.4.13, we

obtain the result. O

Sobolev spaces
The Sobolev spaces ° are defined in (7.2.53).
Theorem 6.4.3. Let a € I'". Then the operator a® with domain . (R™) is closable.

Proof. Let us assume that (uy)i>; is a sequence of .(R"), converging in L*(R"),
with limit u such that the sequence (v = a“uy,)i>1 converges in L*(R™) with limit
v. For ¢ € Z(R"), we have

(v — ad"u,P) oy = lilgn(a“’uk — a"u,P) gy = lil£n<uk — u,a"Py: = 0,

so that a%u = v. O
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Theorem 6.4.4. Let a € I'™ with m > 0 be a real-valued globally elliptic symbol.
Then the operator a® with domain F€™ is self-adjoint.

Proof. In the first place we know that a" is a continuous linear operator from 5™
into #° = L? so that we can consider the operator A = a* with domain Dy = ™.
Let us now check A* and its domain

Dy ={v e #° 3uc H#°Ywec ™, (v, Aw) o = (u,w) o}
In particular, we note that for v € D4+, ¢ € ., we have, since a is real-valued,
(A", @) 7 7 = (A", 9) o = (v, AP) o = (v,0"P) 7+ » = (a"V, ) 7+ 7,

which implies that A*v = a“v, so that for v € Dy, a®v € L% Since a is elliptic,
there exists b € '™ such that

a’b’ =1+7r", ba" =145, r,sel ™.

Let v € Dy-: we have

e ey
w W w m
v=>5b"a"v — s¥v € A,
eL?

and thus Dy. C ™, with A* = a¥ on Dy-. On the other hand if v € J#™ C L?
(since m > 0), we have

Yw € Dy =", (v, Aw) o = (v, a"w) o = (v, w) 40,

since the latter identity is true for w € .¥ and thus if w = limy, wy, in F™, wy, € &,
we find by continuity of a* from S#™ into L?

(v, W) o = li]£n<v, awy) o = li]£n<awv,wk)y*7y
%
= liin(awv,wk)%oo = (a"v,w) yo.
This implies that 7™ C D4« and thus ™ = D 4« with
A*=a" =Aon Dy = Dy,

and the self-adjointness of A. m



138 CHAPTER 6. ELEMENTS OF SPECTRAL THEORY



Chapter 7

Appendix

7.1 On the Faa di Bruno formula

That formula' is dealing with the iterated derivative of a composition of functions.
First of all, let us consider (smooth) functions of one real variable

ULVLH/V, U,V,W open sets of R.

With ¢(") always evaluated at f(z), we have

(gof)
(go )" =g"1"+4'1"

(g o f)/// — g///f/3 + g/lgf//f/ + g/f///

(g0 /) =g () + 697 f7 "+ g (4" +31") + g f

41
ﬁ i/ 4+3£ f_// L/ 2+£[ f_// 2_|_2: ’}_Fﬁﬁ
41 \ 1! 31\ 2! 1! 21 2! 3! 14

More generally we have the remarkably simple

(go )™ _ 9o f I fka) (7.11)

- There is only one multi-index (1,1,1,1) € N** such that Dicjeaky =4

- There are 3 multi-indices (1,1,2),(1,2,1),(2,1,1) € N with 7,4 k; = 4.

- There is 1 multi-index (2,2) € N*? with > i<j<o kj = 4 and 2 multiindices
(1,3),(3,1) such that 3 ;. k; = 4.

Francesco Faa di Bruno (1825-1888) was an italian mathematician and priest, born at Alessan-
dria. He was beatified in 1988, probably the only mathematician to reach sainthood so far. The
“Chevalier Frangois Faa di Bruno, Capitaine honoraire d’Etat—Major dans I’armée Sarde”, defended
his thesis in 1856, in the Faculté des Sciences de Paris in front of the following jury: Cauchy (chair),
Lamé and Delaunay.

139
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- There is 1 index 4 € N* with >°, ., k; = 4.
Usually the formula is written in a different way with the more complicated

o £ (k) G\ Y
go /) k;}? _ 3 I <f—) . (7.1.2)

|
li42lo+Fklp=k ¢ oy 1<j<k J
r=l1++lg P

Let us show that the two formulas coincide. We start from (7.1.1)

(go f)(k) _ Z g(r) of H f(kj)

k! rl k.
1<r<k ki4-the=k 7
k;>1
If we consider a multi-index
(i, k)= (1, . 10,2002 0 gy gy koK)
—— —— —— ——
l1times lotimes ljtimes lktimes

. lj
%) with I + 2Ly + - + kI, =

k, 14 +---+1; = r and since we can permute the (ki, ..., k) above, we get indeed

we get in factor of ¢)/r! the term H1§j§k<

The proof above can easily be generalized to a multidimensional setting with
v-Lv 4 W, U,V,W open sets of R™ R" RP, f, g of class C*.

Since the derivatives are multilinear symmetric mappings, they are completely de-
termined by their values on the “diagonal” T'® --- ® T": the symmetrized products
of T ® --- ® T}, noted as T7...T}, can be written as a linear combination of k-th
powers. In fact, in a commutative algebra on a field with characteristic 0, using the
polarization formula, the products T} ...T}, are linear combination of k-th powers

1
T1T2 c Tk = Qk_]{;' Z €1... Ek(ElTl + -+ Gka)k (713)
T ej==*1

For T' € T,(U), we have

(gof)(k) ko g(T) of f(kj) k‘j
D Dl 11 PRI

1<r<k k1+--tkr=k
kj>1

which is consistent with the fact that f®s)(z)T% belongs to the tangent space
Ty (V) of V at f(z) and ®i<j<, f*)(2)T* is a tensor product in T"(T})(V)) on
which ¢™(f(z)) acts to send it on Ty () (W).
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7.2 The Harmonic Oscillator

Polynomes d’Hermite
Présentation a ’aide d’une fonction génératrice
Soit 2 € C. La fonction C 3 ¢ — e 2% = G(x,t) est entiére et par suite

Gz, t) = e VHe = Z EHn(a:), H,(x) = %tf(x 0), (7.2.1)
n>0

avec un rayon de convergence infini pour tout x € C. Notons que

oG
ot

—— (@, ) j4=0 = —et L2t + 22)° 2}‘t o = 4z? -2,

H0($) = G(ZL’,O) = 1, H1< )
0*°G
ot?

Lemma 7.2.1. Pourn € N, H, est un polynome de degré n, de méme parité que n,

“(x,0) = e H2I (2t 4 2) oo = 27,

Hy(z) =

dont le monome de plus haut degré est 2" X™. On a également, pour n € N*, m € N,

Hpt(X) = 2X H,(X) — 2nH,_1(X), (7.2.2)
H,,(X) = 2nH,1(X),
(2m)!

Hop(0) = (—1)™ (7.2.4)

m)!
N.B. On dira que la fonction G est une fonction génératrice pour la suite des
polynomes d’Hermite H,.

Proof. On a pour n € N, avec g(y) = e v, I'identité G(z,t) = g(x — t)eZQ, et donc

oG 2

) d
in (®:0) =

H,(z) = (—1)71(%)”{@—%2}. (7.2.5)

(-1 (@) = ¢

Démontrons par récurrence sur n € N que H, est un polynome de degré n, de
méme parité que n, dont le monome de plus haut degré est 2" X". C’est vérifié pour
n = 0,1,2. Supposons que cette propriété est vérifiée pour un entier n > 0. On a

Hpia(z) = 69&2(—1)”+1%{6_g£26x2(%)n{e_IQ}}
= (=™ (% N 2‘”) {(_1)an($)} = —H(z) + 20 H,(x), (7.2.6)

et l'on trouve que H,; est un polynéme de monome de plus haut degré 2X2" X" =
21X En outre comme H,, est de la parité de n, H et X H, sont de la parité
de n + 1 ainsi donc que H,, .1, ce qui acheve notre raisonnement par récurrence. On

a en outre
aG tn+1 tk
o (@ 1) = 20G(x, 1) = 2 > (n+ 1)mHn(x) =D i2kHia (@), (7.27)
=~ ! !
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avec un rayon de convergence infini pour tout z € C. On a également (cf. (7.2.1))

ak—f—lG
= ware & 0)
et comme la fonction ¢ +— (O0G/0x)(x,t) est entiere pour tout z, il vient

oG th

k>0

Hy (x)

qui donne avec (7.2.7), Hj(x) = 2kHj_1(z) pour k& > 1. Comme nous avons
démontré en (7.2.7) que pour n > 0, H,1(z) = 2xH,(z) — H] (z), il vient pour
n>1,

Hpy1(z) =22H,(x) — 2nH,_1(x), H,(z)=2nH, 1(z),
ce qui donne (7.2.2), (7.2.3). La propriété (7.2.4) est vraie pour m = 0 et si on la
suppose vérifiée pour un entier m > 0, il vient de (7.2.2) (déja démontré!) pour
2m +1,

H2m+2<0) = —(4m -+ Q)Hgm(())
2m + 2)! m+1 B ma1 (2m + 2)!
(m+1)! (2m+1)(2m+2)<4m+2)_<_1) (m+1)!’

soit le résultat cherché. O

— (_1)m+1 (

Une présentation plus explicite

En utilisant la formule de Faa di Bruno sur la dérivation des fonctions composées,
on peut obtenir une expression plus explicite des polynomes d’Hermite. Rappelons
que pour g, f € C*(R), on a pour n > 1

o f) ) o (n)
(go )™ n":) -y ! !f I - (7.2.8)

r n;!
1<r<n ni+-+n,=n
TL]'ZI
On définit H,, par la formule
562 n d n 7502
H,(z) =¢e" (—1) (%) {e=*"}. (7.2.9)
On se propose maintenant de calculer explicitement H,, en utilisant la formule (7.2.8)
. il vient avec g(y) = €Y, f(z) = —2?, pour n > 1
(r) (n5)
22 1\ g o f f
H,(z) =e" (=1)"n! Y . 11 —
1<r<n ni+--+n-=n J

n;>1

Les valeurs possibles de n; dans la formule ci-dessus sont 1,2 : il faut choisir un
sous-ensemble de {1,...,r} a s éléments, 1 < s < r sur lequel n; = 1. Il vient par
conséquent
2
x2 n e—m s (_2) =S8 ~s
H,(x) =¢€""(—1)"n! Z . (—2x) (T) Cs.
1<r<n
s+2(r—s)=n
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On remarque que n — s = 2k (un entier pair > 0) et pour n > 1,
r—s=k1<k+s<n,2k<n, ie 1<k+n-—2k<n2k<n,
soit 0 < 2k < n, pour n > 2. Il vient, pour n > 2

Hio) =i Y e (G

r! 2! r—s)s!
1<r<n
s+2(r—s)=n

(=20 (=1)"
> (n— 2k)1kL

0<k<n/2
formule également valable pour n = 0,1 car de (7.2.9) vient
Ho(x) =1, H(x)=2z.

On a donc pour tout n € N,

(22)" 2 (—1)"
Hy(z)=nl Y TR (7.2.10)
0<k<E(n/2)

ce qui montre immédiatement que H, est un polynome de degré n, de méme parité
que n, dont le monome de plus haut degré est 2" X™. De plus si n = 2m est pair on
redémontre (7.2.4). En outre pour n > 1, on peut calculer directement

, 20)"=%=12(n — 2k)(—1)*
Hw=n 3 2 (n—(Qk)!k! =

0<k<n/2

=2n (n—1)! Z (22)" T (—1)"

0<k<n/2 (n —1—2F)!k!
20y (1)
=2n (n—1)!
o<2;.cz<:n_1 (n—1 — 2k)!k!

=2nH, 1(z). (7.2.11)
De plus, la formule (7.2.6) est prouvée directement par récurrence, et l'on a donc
H,1(x) = —H)] (x) +22H,(z),

de sorte qu’avec le calcul (7.2.11), on obtient le Lemme 7.2.1 sans utiliser la fonction
génératrice, avec en outre Iexpression explicite (7.2.10).

Quelques calculs explicites

La commande Mathematica HermiteH[n, x] permet d’obtenir le nieme polynome
d’Hermite. En écrivant HermiteH[n, x] // TraditionalForm, on obtient
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Hao(z) = 10485762%° — 996147202'® + 381026304026 — 762052608002
+ 866834841600x'% — 572110995456020 4 214541623296002°
— 429083246592005 + 40226554368000* — 134088514560002:
+ 670442572800
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Equation différentielle

Lemma 7.2.2. Soit n € N. Alors le polynome d’Hermite H, vérifie
H!(X)—-2XH(X)+2nH,(X)=0. (7.2.12)
Proof. Démontrons par récurrence pour n > 2 que
2nH,(X) —4XnH, 1(X)+4n(n — 1)H,_2(X) = 0. (7.2.13)
Cela est vérifié pour n = 2 car
AHo(X) — 8X H (X) + 8Ho(X) = 4(4X? —2) —8X 2X +8 = 0.
En supposant (7.2.13) vérifié pour un entier n > 2, on calcule, en utilisant (7.2.2),

(2n 4 2)Hp 1 (X) — 4X (n + 1) H,(X) + 4(n + 1)nH,_,(X)
= (2n+2)(2X H,(X) — 2nH,_1(X)) — 4X (n + 1)H,(X) + 4(n + 1)nH,_(X)
= H,(X)((4n+49)X —4(n+1)X) + H,1(X)(—2n(2n+ 2) + 4(n + 1)n) =0,

ce qui acheve la récurrence. Utilisant le Lemme 7.2.1, il vient pour n > 2

H!(X)—2XH(X)+2nH,(X)
=2n2(n —1)H, o(X) —2X2nH,_1(X) + 2nH,(X) = 0,

d’apres (7.2.13), ce qui démontre le résultat cherché pour n > 2. Pour n = 0,

on a Hy = 1 et I'équation (7.2.12) est trivialement vérifiée. Pour n = 1, on a
H; = 2X et le membre de gauche de (7.2.12) vaut —4X 4 2 x 2X = 0, terminant la
démonstration. O

Fonctions d’Hermite

Proposition 7.2.3. Pourn,m € N, on a

/ Hy(2)Hy(2)e ™ da = 8,,,n!2"/7. (7.2.14)
R

Proof. On a en effet pour n > m,

/R Ho(2) Hop(2)e—=dr = (—1)" /R (%)”{M}Hm@)dx _ / e HO) (1),

qui vaut 0 si n > m (H,, est un polynome de degré m) et pour m = n, on obtient

/Hn(x)Qe_xde = / e " n12"dr = nl2"/7,
R R

soit le résultat cherché. ]
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Les polynomes d’Hermite sont a coefficients réels (cf. e.g. (7.2.10)), de sorte que
les fonctions ¢,,, dites fonctions d’Hermite définies sur R par

On(x) = Hy(x)e ™ 2(20n)) = 201/ (7.2.15)
- (—1)"(2"n!)_1/27r_1/4e’”2/2(%)H{G_IQ}, (7.2.16)
vérifient <¢na ¢m>L2(R) = 5n,m' (7217)

Theorem 7.2.4. La suite des fonctions d’Hermite {¢,}nen forme une base hilber-

tienne de L*(R). Chaque fonction d’Hermite ¢, appartient a la classe de Schwartz
Z(R).

Proof. La derniere assertion est triviale car
on(z) = Hn(:v)e_mzm(2”n!)‘1/27r_1/4
et donc ¢, € C*(R) et, par récurrence sur k € N,
Ilﬁbgf) (z) = Pn,k,l(x)6_$2/2, P, k; polynome,

ce qui implique que sup,cp |xl¢£lk)(x)] = Cp1 < +00. Au vu de (7.2.17), il suffit de
démontrer que l'orthogonal de I'espace engendré par {¢, }nen est réduit a {0}. Soit
f une fonction de L*(R) telle que,

pour tout n € N, /Rf(x)gén(x)dx = 0.

Comme chaque H, est un polyndéme de degré n, ’espace vectoriel engendré par
{H,}o<n<n est Uespace des polynomes de degré < N (récurrence sur N). Par suite
on a

pour tout n € N, / flx)z"e " Pdx = 0.
R

Considérons la fonction F', donnée pour z € C par

F(2) :/f(x)e_xZ/Zezxdm.
R
On a pour K compact de C, My = sup,cx | Re 2|, I'estimation

sup |f(x)e” " /%¢*| < |f(a)| /2 € YR,
L2 L2

et comme z +— f (x)e_“”2/ 2e** est entiere, la fonction F' est entiere. En outre, pour

n € N, il vient

FM(0) = / Flx)e ™ Pande =0,
R

ce qui implique que F' est identiquement nulle. La fonction R 3 z +— h(z) =
f(x)e "/ appartient & L'(R) comme produit de deux fonctions de L2(R) (inégalité
de Cauchy-Schwarz). On a de plus

h(€) = F(—2ir¢) =0,
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de sorte que la transformée de Fourier de h est nulle, et donc h = 0. On a donc,

pour presque tout x € R,
fla)e/* =0,

ce qui implique f(x) = 0 presque partout et f = 0 comme fonction de L*(R). O

Oscillateur harmonique
Equation différentielle
Lemma 7.2.5. Soit n € N. Alors la fonction d’Hermite ¢,, définie par (7.2.15)
vérifie I'équation différentielle
— ¢! (x) + 22, () = (2n + 1)gn(2). (7.2.18)
Proof. En utilisant (7.2.15) et (7.2.12), il vient
}e—z2/2(2nn!)—1/2ﬂ.—1/4’
— H,(z) — z(H,(z) — vH,(z)) }e_z2/2(2”n!)_1/27r_1/4
= {H!(z) — 2zH.,(z) + (2? — 1) H, () }e ="/2(2"n!) "/ 27~ 1/
= {—2nH,(x) + (2% — \)H,(x) }e = /> (2"nl) " 2n~1/4
= —(2n+ 1)u(x) + 2%du(@),

ce qui donne le résultat cherché. O

Création, annihilation

Definition 7.2.6. L’opérateur de création (resp. annihilation) Ay (resp. A_) est
I'opérateur différentiel de .(R) dans lui-méme donné par

e () as L (AG) e

L’oscillateur harmonique H est 'opérateur différentiel de .(R) dans lui-méme donné

par
1 d? 9
=—|—-—— ) 2.2
H 2(d$2—|—:€> (7.2.20)
Remark 7.2.7. Du lemme 7.2.5, il vient pour n € N,
1
Hopy, = (5 +n)pn. (7.2.21)

Lemma 7.2.8. Sur .#(R), on a

1
H=A A+, (7.2.22)

A A=A A, — A A =1. (7.2.23)
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Proof. Pour ¢ € (R), on a

244 A)(a) = (o + D)W@) + 29(0)}
= —(V"(x) + 29/ (2) + ¢ (x)) + 29’ (2) + 2*)(2),
ce qui donne 2A, A =2H — [ et (7.2.22). De plus, on a
2(A_AL — ALAL Y

= (4 +0) 0@ +auta) - (5 +0) (o) +av(a)
= Z(e) + () + 2 (1) — 2 () + 2P()
+ 0" (2) + (@) + 2 (x) — 2y’ (2) — 2*P(x) = 2¢(),

soit le résultat cherché. O]

Lemma 7.2.9. Soitn € N. On a

1
Pn = ﬁf‘m% (7.2.24)
ALy =vVn+ 1onia, (7.2.25)
A_¢n+1 =vn-+ 1@5”, A_gbo = 0. (7226)

Proof. En utilisant (7.2.16), calculons

(Asdn)(w) = 27 (1)l i — () e
Comme (sur .#(R)), on a

d 2,9 d 2
e e’ /256_”3 2, (7.2.27)
il vient
n n - — x2 d \n+1 —z2
(A @) = (1)) 2n Ve 2 () e} = T6,

soit (7.2.25). La propriété (7.2.24) est vérifiée pour n = 0, et si on la suppose vraie
pour un entier n > 0, il vient

An+1
Prt1 = (n+1)"Y2A, ¢, = (n+ 1)_1/2(n!)_1/2A+A1¢0 _ O+ Po

(7.2.25) v (n+1)!
et donc (7.2.24). En outre, en utilisant (7.2.25), il vient

A pir=n+1)PA A, = (n+ 1)V ALA- +1)0,

(7.2.23)
1
= (n+ 1) (H+ 5)% = (n+1D2(n+1)p, = (n+1)"%¢,.
(7.2.22) (7.2.21)

De plus, on a
d 2
mVAV2A_¢y = (d— +x)(e /%) =0,
x

ce qui termine la démonstration du lemme. O
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Opérateurs sur (*(N)
Grace au Théoreme 7.2.4, 'application
AN) —  L*R)
(an)nen  + ZneN A On,
est un isomorphisme isométrique d’espaces de Hilbert d’application réciproque
v LX(R) — *(N)

u = () mert (7.2.28)

On peut donc identifier L?(R) & ¢*(N) via ces applications. Considérons le sous-
espace vectoriel £ de L*(R) défini par

E={> aubn}(ay), e (7.2.29)

neN

avec le sous-espace E de ¢%(N) défini par

E = {(an)nen € (N), Y _n’la,[* < o0} (7.2.30)

neN

L’oscillateur harmonique H s'identifie & Popérateur H : E — ¢2(N) défini par

H((an)neN) = ((TL + 1)a”>neN’

2
donné par la matrice diagonale infinie
1
5 0 ...
0 % 0
0 0 g 0
0 0 3+n 0

L’opérateur de création A, vérifie

ALgn =Vn+ 1onq1,

et avec ¥ donné par (7.2.28), il vient avec A, = WA, ¥,

Ay ((an>n€N) =WVA, (Z an¢n)
= \I/(Z anV'n + 1gbn+1) = (O, ag, a1V2, asV/'3, . . )

= (bn)neNy bO =0, bn = a'n—l\/ﬁ pour n > L,
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avec un résultat dans ¢*(N) si > nla,|? < +oo. Notons que l'opérateur borné de
(*(N) dans lui-méme donné par

S((an)neN) = (bp)nen, bo=0, b, =a,_1 pourn > 1, (7.2.31)

est isométrique, injectif et non surjectif avec une image de codimension 1. Si (e,,)nen
est la base hilbertienne standard de ¢*(N), on a

Se, = ent1, rangeS = S(*(N))=ey.

L’opérateur d’annihilation A_ vérifie A_¢, = v/ng,—1 pour n > 1 et A_¢y =0,
et avec ¥ donné par (7.2.28), il vient avec A_ = WA _¥~!

A,((an)neN) =WVA_ (Z an¢n) = \IJ(Z an\/ﬁén,l) = (al, ag\/i CL3\/§7 . )

n>1 n>1

= (bn)nen, b, = api1Vn+ 1 pour n >0,

avec un résultat dans ¢*(N) si > nla,|* < +oo. Notons que l'opérateur borné de
¢*(N) dans lui-méme donné par

S’((an)neN) = (bp)nen, by = any1 pour n >0, (7.2.32)

est surjectif, non injectif avec un noyau de dimension 1 égal a Cey. Si (e,,)nen est la
base hilbertienne standard de ¢*(N), on a

S'eg =0, Se, =e,_1, pour n >1, kerS = Ce.
On peut remarquer que S* = S’ car
<S*€ma en)KZ(N) = <6m756n>€2(N) = <emaen+1>€2(N) = Omn+1,

soit S*eg =0, S*e,, = e,,_1 pour m > 1. On peut résumer une partie des résultats
précédents par le résultat suivant.

Theorem 7.2.10. L’oscillateur harmonique H défini par (7.2.20) vérifie

1
H = 2(5 +n)P,, Id=>"P, (7.2.33)
n>0 n>0
ou P, est la projection orthogonale sur C¢,,, se prolonge en un opérateur continu de
Uespace E (défini en (7.2.29)) dans L*(R).

La dimension supérieure

Soit d > 1. On définit pour a = (o)1<j<q € N%, 2 € RY,
d
Oo(2) = [ bo,(x),  En = Vect{®a }oene,jafon: (7.2.34)
j=1

avec |a| = ay + -+ + ag. On dira que les fonctions @, sont les fonctions d’Hermite
en dimension d.
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Lemma 7.2.11. La dimension de &, est Cor§_;.

Proof. Démontrons que card{a € N, |a| = I} = C/ ;. Commencons par prouver
par récurrence sur [ que

C’lder1 1 Z C]dJrc? 29 (7235)

0<5<l
ce qui est vérifié pour [ = 0, et comme Cl+d = C’Hd 1 C’l+d 1> on obtient

d—1 d—1 d—2 d—2
Ciitrar = Oa + O, = § : Cla2

0<5<i+1

ce qui démontre (7.2.35). On a par ailleurs

card{a € N |a| =1} = Z card{8 € N*" ' |8| = j}, (7.2.36)

0<j<
ce qui permet de démontrer par récurrence sur d que

card{a € N |a| =1} =

H—d 1

car cette propriété est vraie pour d = 1 et si elle est vérifiée pour un entier d > 1, il
vient de (7.2.36), (7.2.35),

card{a € N*** |a| = [} = Z card{B8 € N* || = j} = Z Chd, =Chy

0<j<l 0<j<l

Montrons par récurrence sur d que les ZO§k<n C’,‘;é , fonctions {®q }jaj=k,0<k<n soNt

indépendantes. C’est vrai pour d = 1. Supposons que cette propriété est vérifiée
pour un entier d > 1. Supposons que

Z ca®o = 0.

aeNdtHL |o|<m
On obtient alors l'identité

Z { Z C(B.k) (Hﬁ% T >}¢k Tar1) =0,

0<k<m ~ geNd
|B|=m—k

et de 'indépendance des fonctions {¢y(z411) bo<k<m, il vient I'identité sur R?

> w05, (x) =0

,BENd 7=1
|Bl=m—k

L’hypothese de récurrence démontre que tous les cgy, sont nuls. O
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Remark 7.2.12. En posant pour 1 < 75 <d,
LS 0
V2 (9:153

il vient de (7.2.24), avec a! =[] ;04!

= Lon o) = o TT (42500

al 5

1,0

Avy = \/_(3%

+x;), A= + ), (7.2.37)

Theorem 7.2.13. Les (Py)acne forment une base hilbertienne de L?(R?) composée
par les vecteurs propres de l'oscillateur harmonique en dimension d:

H= ( A+ |zf?) = Z(%Jrn)]}bn, Id=> P, (7.2.38)

n>0 n>0

ot P, est la projection orthogonale sur &,, espace de dimension Cs 3 ;. La valeur
propre d/2 est simple en toute dimension et & est engendré par

Do (z) = 7~ Y4e#1P/2,

Proof. Remarquons tout d’abord que pour «, 3 € N &, &5 appartiennent a la
classe de Schwartz .7 (R%) et que

<<I)om (I)B>L2(Rd) = / H ¢aj (l’]) H ¢Bj ($])d$
RY 52 j=1
= H QSOCJ ) ¢6] L2 H 604] B]

Démontrons que l'orthogonal de l'espace engendré par {®,},enae est réduit a {0}.
Soit f une fonction de L?(RY) telle que,

pour tout a € N%, / f(2)Py(x)dz = 0.
R

Comme chaque H,, est un polynome de degré n, ’espace vectoriel engendré par
{H,}o<n<n est 'espace des polynomes de degré < N (récurrence sur N). Par suite
on a

pour tout a € N%, / flx)z®e P2z = 0,
R

Considérons la fonction F', donnée pour z € C? par
2) = / Fa)e o 2eSasicamim g,
R

On a pour K compact de C?, My = sup,. | Re z|, estimation

—|z|2/2 2 —|z|2/2 x| MK 1/md
sup [ f(z)e” " e < [ f(x)| T e € LR,

eK
z he 12
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et comme 2z — f (:c)e"“”P/ 2e* est entiere, la fonction F est entiere. En outre, pour
a € N? il vient

F9(0) = / flx)e 1P de = 0,
R
ce qui implique que F' est identiquement nulle. La fonction
R? 5 2 h(z) = f(x)e *°/2

appartient & L!'(R?) comme produit de deux fonctions de L?*(R?) (inégalité de
Cauchy-Schwarz). On a de plus

~

h(§) = F(=2im§) =0,

de sorte que la transformée de Fourier de h est nulle, et donc h = 0. On a donc,
pour presque tout & € R%,
fx)e 2 =,

ce qui implique f(z) = 0 presque partout et f = 0 comme fonction de L?(R?). Nous

Id= Z]P’n.

n>0

avons donc démontré que

En outre de (7.2.37), il vient

1
H= ) M Hj:§(—@+$§)>

1<5<d J

et donc pour o € N9,

1 d
H(I)a = Z (5 + Oéj)q)a = (_ + |Oé|)q)a7

, 2
1<j<d
ce qui démontre H =", (4 +n)P,. O

Remark 7.2.14. Bien entendu, I'opérateur H n’est pas borné sur L?(R%), mais peut
se définir sur ’espace

E= {Z Z aa@Q}(aa)aeNd€E7 (7.2.39)

n20 qeNd
|a|=n

avec E = {(aa)aens € *(N?), Y~ |af*|aqs|* < +00}. (7.2.40)

a€Nd

La restriction de H a E est completement déterminée par les restrictions de H a
range P, = &, et 'on vient de voir que

Hie, = (g +n)1d. (7.2.41)
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Harmonic oscillator, another normalization

The Harmonic oscillator H,, in n dimensions is defined as the operator with Weyl
symbol 7(|z|* + |£|?) and thus we find that

1 w * 1 *
H=Us 5(|:c|2 +4m?E]) U = U gy 5(—A +|2?) Ul

We shall define in one dimension the Hermite function of level k € N, by

_ (_1)k 1/46m;2 d ; 6—27rz2
(o) = L2 (—ﬁ dx) (), (7.2.42)

and we find that (i)rey is a Hilbertian orthonormal basis on L?(R). The one-
dimensional harmonic oscillator can be written as

H=3"(5+ M, (7.2.43)

k>0
where Py, is the orthogonal projection onto .

In n dimensions, we consider a multi-index (aq,...,a,) = a« € N” and we define
on R", using the one-dimensional (7.2.42),

Uo(x) = [] o, (), = Veet{Wa}, o lal = > a; (7244)

1<j<n 1<j<n

We note that the the dimension of & is (k:le) and that (7.2.43) holds with Py
standing for the orthogonal projection onto &; the lowest eigenvalue of H is n/2
and the corresponding eigenspace is one-dimensional in all dimensions, although
in two and more dimensions, the eigenspaces corresponding to the eigenvalue 4 +
k,k > 1 are multi-dimensional with dimension (k+"_1). The n-dimensional harmonic

n—1
oscillator can be written as

n
Hy = 2(5 + k)P, (7.2.45)

k>0

where PP, ,, stands for the orthogonal projection onto & defined above.

Mehler’s formula

Lemma 7.2.15. For Ret > 0, we have in n dimensions,
(cosh(t/2))" exp —tm(|z|* + [¢]*)" = (e_%anh(%)’r(x?Jer)) . (7.2.46)

Proof. By tensorisation, it is enough to prove that formula for n = 1, which we
assume from now on. To prove that formula, we need only to consider the one-
dimensional case. We define

L=¢+in, L=¢—iz, M(t)=p(t)(e*O™*)",
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where «, 5 are smooth functions of ¢ to be determined. Assuming 3(0) = 1, «(0) = 0,
we find that M (0) = Id and

M + m(|L])* M = (,6’ —omlLl® _ ey | LI2emomIEP +7T(1L|2)ﬁ56—aw\u2>
We have

=0

A\

1 g )
|L|2ﬂefcwr|L|2 _ |L|2€7047r|L|2 + ﬂ {|L‘2, e*aﬂL‘Q}

1 1
T AL LT A (I Tty
i
— |L|2€—a7r|L|2
’ (4w )22 _M|L|2( —2amz)’ — 2am) + 2((—2am¢)” — 2a7r)>
2 Ao’ 12 le%ie 2
12e—rlL] (1 _ ) QT oL
= |4 1672 + 47r26 ’
so that
N+ (L) M
2,2 w
— Be—omr‘LP N 6@7‘(‘|L|26_0m—|[’|2 i WB|L|2@_O‘W‘L‘2 (1 . 404 e > i Oéﬂ-ﬁe_o‘ﬂ"LF
1672 47
L2 2 . o? - aB )Y
We solve now )
d=1- QZ a(0) = 0 <= a(t) = 2tanh(t/2),
and ,
43 =0,00)=1<=f[(t) = ————.
f+ab=050) b cosh(t/2)

We obtain that M + «(|L[>)*M =0, M(0) = Id, and this implies
B(t) (e EYY = M(t) = exp —tm(|L[*)",

which proves (7.2.46). O
In particular, for t = —2is, s € R, we have in n dimensions
(COS S)n exp(2i7rs(|x|2 + |€|2)w) — <€2i7rtans(\m|2+|§|2)> ‘ (7'2'47>

Lemma 7.2.16. For any z € C, Rez > 0, we have
w 1 1 —2\Fk
) e M (=) LS
k>0

where Py, is defined in (7.2.43) and the equality holds between L*(R™)-bounded oper-
ators.
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Proof. Starting from (7.2.47), we get for 7 € R, in n dimensions,
(cos(arctan 7))" exp(2im arctan 7(|z|* + |£]*)") = <62””(‘x|2+‘5|2)>

so that using the spectral decomposition of the (n-dimensional) Harmonic Oscillator,
we get

(1472) "2 3 piteretan )4 )y <e2ifrr<\x|2+|s\2>>’”
k>0

which implies

2k+n w
n/zz (1 +i7) P, — <e2w<|x|2+\§|2>)

2 k+5
k>0 (1+7 ’
entailing
. k w
3 (A4 Calatn)
(1 —ir)ktn ’

k>0

proving the lemma by analytic continuation. O

Sobolev spaces based upon the Harmonic Oscillator

For § € (0,1) and a € C,Rea > 0, we have

0 T a0 1
a’ = ae” VAt ——,
/0 I'(1-9)

since o oo
/ ae” 04t = / e %5170 1% ds = a’T(1 — 0),
0 0
so that . ”
0 —tH,—0
= t0dt

w=[ i-0)

and thus

+o0 B . w H
0 _ h(t/2 n —2tanh(§)7r($2+£2)t—9dt
H </0 (cosh(t/2)) e T —0)’

entailing that H? = pg with

+o00
po(x, &) = / cosh(t/2)™" (e’%anh(%)’\ﬁ)\)t’edt;, A =m(2® + &%).
0 INOR)
The Weyl composition formula is
-1
(afb)(x,&) = > 27F - ( '6)' Dgd%a DLO%b+ 1, (a,b), (7.2.49)
0<k<v ||+ 8=k
with  7,(a,b)(X) = R, (a(X) ® b(Y))|Xzy, (7.2.50)
1 v—1
Cfaeet 6 :
R,,_/O e 4m[8x,8y]d9< ox,v1)" (7.2.51)



7.2. THE HARMONIC OSCILLATOR 157

and defining

— (_1)|B| @ fe
w(a,b) =27 >~ el Dgdla D{ogb, (7.2.52)
o +|Bl=F
we get that
=ab b
Wo ao, 4271_ {CL }

so that the beginning of this expansion is thus
b+ ! {a, b}
ab+ —/a
o~

where the Poisson bracket {a,b} is given by (3.4.12). The wy(a,b) with k even are
symmetric in a,b and skew-symmetric for £ odd: this is obvious from the above
expression coming from [dy, dy|*. Also, when a,b are real-valued the wy(a,b) with
k even are real and purely imaginary for k£ odd.

We see that

eI LT CLESRY

— ﬁ Z (%a?] (6—2)\tanht/2)2 + %aﬁ] (6—2)\tanht/2)2)

1<j<n

Ly TeAatan —1 —2\tan
= 167 dlvx,f Ve 2Atanht/2 F div, c€ At ht/2(—2 tanht/Q)V/\
= _1_61 e’”tanht/Q{(—Ztanht/Z) VA2 + (=2 tanht/Q)A)\}

T

-1

=1 6—2/\tanht/2{4(tanht/2)24ﬂ'>\ + (—2tanh t/2)47rn},
T

that is
eI = ¢ (A (1~ (tanh1/2)°) + —ntanzh t/2>
and thus

puler6) = /O+°° cosh(t/2) e MM (A1 - (tanh1/2)?) + nt%w)
1

—0 -
t dtr(l ot

that is

+oo . Wbt ]
= h(#/2)~"2 72tanh(7))\( n s ) _o '
po(z, &) /0 cosh(t/2) e DA\ + i " dt{‘(l 5

We have .
(1 —0)|ue| < / e MO A Tdt + O(e™*Y), g4 > 0,
0
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and a change of variables shows that the first term in the rhs of the above inequality
1s

A
/ e s N\ ds = O()\e).
0

An easy calculation of derivatives shows that we have in fact

2

X
o € S\, dT)’ lpg| = X for large A (elliptic symbol).

We have similarly
+oo
H = / e Mt
0

and Mehler’s formula provides a symbol in S(A ™!, df\<—2) for that operator and for any

integer m € Z, we get that H™ is a pseudo-differential operator with an (elliptic)

symbol in S(\™, %) As a result, for any s € R, H? is a pseudo-differential operator

. o . s dx2
with an (elliptic) symbol in S(A*, ).
We define for s € R the Sobolev spaces based upon the harmonic oscillator
T = H*S(L2(R”)), |||l s = [H | 2. (7.2.53)

The Hilbertian structure and duality properties are obvious, we have explicit pseudo-
differential isomorphisms with L? for all 7%, and we get now for free the fact that a
pseudo-differential operator with symbol in S(\, d)/\(—{z) sends continuously 777° into
5. We have indeed for a € S(\, %), u e (R,

la*ullps-e = | H 0 HZ Houlle S 1 H ull 2 = [l
—_—

order 0

This means that the algebraic computations with these Sobolev spaces can be made
completely similar to what happens for the standard Sobolev spaces in R", replacing
the Fourier multiplier (D)® by #H?*.

7.3 Elements of operator theory

Let H be a Hilbert space, let D be a dense subspace of H and let A: D — H be a
linear operator. The pair (A, D) will be called the operator A with domain D and
D will be denoted by D,. We define

D*={veH Fue HVwe D, (v,Aw)y = (u,w)g}. (7.3.1)
Note that u is uniquely determined by v since if u, u satisfy for all w € D,
(v, Aw)g = (u,w)g, (v, Aw)y = (4, w)y,

we obtain (i — u,w)y = 0 so that & —u € D+ = {0}. We define then the adjoint
operator A* : D* — H; by A*v = u where u is the unique vector in H; such that

Yw € D, (v, Aw)yg = (u, w)q.
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As a result, for v € D*, the vector A*v is uniquely determined by the identity
Ywe D, (A%, w)y = (v, Aw)y. (7.3.2)
Note also that D* is a vector space since v, v € D* imply that
Vwe D, (A%v,w)g = (v, Aw)y, (A*0,w)g = (0, Aw)y,
and thus for a,a € C, we get
Yw € D, {(av + av, Aw)y, = (aA*v + aA*0, w) g, ,
entailing from (7.3.1) that av 4+ av € D* and from (7.3.2)
aA*v + aA*v = A*(av + av).
The pair (A*, D*) will be called the adjoint of A.

Definition 7.3.1. Let H, A, D be as above. The operator A with domain D is said
to be symmetric whenever

Vu,v € D, (Au,vyy = (u, Av)g. (7.3.3)

The operator A with domain D is said to be self-adjoint whenever A = A* on
D = D*.

Note that a self-adjoint operator is obviously symmetric, whereas the converse is
not always true. In particular if an operator A with dense domain D is symmetric,
we have D C D*: in fact if v € D, we do have for all w € D

(v, Aw) = (Av, w),
so that from (7.3.1), we get v € D* with A*v = Awv.

Definition 7.3.2. Let H, A, D be as above. The operator A is said to be closed
whenever the graph

Ga = {(u, Au)}uep,
is closed in H; @ Hs.

Remark 7.3.3. Let H, D, A be as above. Then the operator (A*, D*) is closed. In
fact the graph of A* is
{U @ A*U}UED* C H® H,

and if (vg)r>1, (A*vk)k>1 are converging sequences in H, with
v = h]gnvk, Yy = hlgnA Uk,
we have for all w € D, (A*vg, w) = (v, Aw), and thus
(y,w) = li]£n<A*Uk,w> = (v, Aw),

so that by definition y = A*v, proving the closedness of the graph.
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Remark 7.3.4. Let H be a Hilbert space. The Closed Graph Theorem says that an
operator A with domain H is bounded iff its graph is closed. Let us consider an
operator (A, D) which is bounded, i.e. such that

sup  ||Au||lg < 4o0. (7.3.4)

u€D, ||u|lg=1

Then the operator A is closed iff D is a closed subspace of H. The condition is
sufficient since if D is closed, A appears as a bounded operator from the Hilbert space
D into the Hilbert space H and thus is closed. Conversely, if (7.3.4) is satisfied and
A is closed, the graph {u @ Au},ep is closed, entailing that if (uy)g>1 is a sequence
of D converging in H, the sequence (Aug)x>1 is a Cauchy sequence in H since from
(7.3.4)

[Aug — Awlln < Clluk — wllu,

and thus limy u, = u, limy, Au, = v, so that the closeness of the graph of A implies
u € D with v = Au, thus the closedness of D.
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