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Chapter 1

Basic Fourier Analysis

1.1 Preliminaries

The Fourier transform of a function u ∈ L1(Rn) can be defined as

û(ξ) =

∫
Rn
u(x)e−2iπx·ξdx. (1.1.1)

Lemma 1.1.1 (Riemann-Lebesgue Lemma). Let u be in L1(Rn). Then we have

û(ξ) −→
|ξ|→∞

0.

Moreover the function û is uniformly continuous on Rn.

Proof. We note first that (1.1.1) is meaningful as the integral of an L1 function and

we have also

sup
ξ∈Rn
|û(ξ)| ≤ ‖u‖L1(Rn). (1.1.2)

Let ϕ ∈ C∞c (Rn). With α = (α1, . . . , αn) ∈ Nn, we define

Dα = Dα1
1 . . . Dαn

n , Dj =
1

2iπ

∂

∂xj
, ξα = ξα1

1 . . . ξαnn . (1.1.3)

We find the identities

ξ1ϕ̂(ξ) = D̂1ϕ(ξ), D̂αϕ(ξ) = ξαϕ̂(ξ), (1.1.4)

entailing
(
1 + |ξ|2

)
ϕ̂(ξ) = Fourier

(
ϕ+

∑
1≤j≤nD

2
jϕ
)
. We find thus

(
1 + |ξ|2

)
|ϕ̂(ξ)| ≤ ‖ϕ+

∑
1≤j≤n

D2
jϕ‖L1(Rn),

which implies lim|ξ|→+∞ ϕ̂(ξ) = 0. For u ∈ L1(Rn), we have

|û(ξ)| ≤ | ̂(u− ϕ)(ξ)|+ |ϕ̂(ξ)| ≤ ‖u− ϕ‖L1(Rn) + |ϕ̂(ξ)|,

5



6 CHAPTER 1. BASIC FOURIER ANALYSIS

so that for all ϕ ∈ C∞c (Rn),

lim sup
|ξ|→∞

|û(ξ)| ≤ ‖u− ϕ‖L1(Rn) =⇒ lim sup
|ξ|→∞

|û(ξ)| ≤ inf
ϕ∈C∞c (Rn)

‖u− ϕ‖L1(Rn) = 0.

We have also û(ξ + η)− û(ξ) =
∫
Rn e

−2iπx·ξ(e−2iπx·η − 1
)
u(x)dx, so that

|û(ξ + η)− û(ξ)| ≤
∫
Rn
|u(x)| |e−2iπx·η − 1|︸ ︷︷ ︸

≤2

dx,

and Lebesgue’s Dominated Convergence Theorem shows that, for all ξ ∈ Rn,

lim
η→0
|û(ξ + η)− û(ξ)| = 0,

proving continuity. We have also for R > 1, |η| ≤ 1,

|û(ξ + η)− û(ξ)| ≤ sup
|ξ|≤R
|û(ξ + η)− û(ξ)|+ 2 sup

|ξ|≥R−1

|û(ξ)|,

so that for 0 < ε < 1, if ωρ is a modulus of continuity1 of the continuous function û

on the compact set {|x| ≤ ρ},

sup
|η|≤ε,ξ∈Rm

|û(ξ + η)− û(ξ)| ≤ ωR+1(ε) + 2 sup
|ξ|≥R−1

|û(ξ)|,

proving that the lim sup of the lhs when ε goes to 0 is smaller than

2 sup
|ξ|≥R−1

|û(ξ)|, for all R > 1.

Since that quantity is already proven to go to 0 when R goes to +∞, we obtain the

uniform continuity of û.

We need to extend this transformation to various other situations and it turns

out that L. Schwartz’ point of view to define the Fourier transformation on the

very large space of tempered distributions is the simplest. However, the cost of

the distribution point of view is that we have to define these objects, which is not

a completely elementary matter. We have chosen here to limit our presentation

to the tempered distributions, topological dual of the so-called Schwartz space of

rapidly decreasing functions; this space is a Fréchet space, so its topology is defined

by a countable family of semi-norms and is much less difficult to understand than

the space of test functions with compact support on an open set. Proving the

Fourier inversion formula on the Schwartz space is a truly elementary matter, which

yields almost immediately the most general case for tempered distributions, by a

duality abstract nonsense argument. This chapter may also serve to the reader as a

motivation to the explore the more difficult local theory of distributions.

1For a continuous function v defined on a compact subset K of Rm, the modulus of continuity
ω is defined on R+ by ω(ρ) = sup x,y∈K

|x−y|≤ρ
|v(x)− v(y)|. We have limρ→0+

ω(ρ) = 0.
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1.2 Fourier Transform of tempered distributions

The Fourier transformation on S (Rn)

Definition 1.2.1. Let n ≥ 1 be an integer. The Schwartz space S (Rn) is defined

as the vector space of C∞ functions u from Rn to C such that, for all multi-indices.

α, β ∈ Nn,

sup
x∈Rn
|xα∂βxu(x)| < +∞.

Here we have used the multi-index notation: for α = (α1, . . . , αn) ∈ Nn we define

xα = xα1
1 . . . xαnn , ∂αx = ∂α1

x1
. . . ∂αnxn , |α| =

∑
1≤j≤n

αj. (1.2.1)

A simple example of such a function is e−|x|
2
, (|x| is the Euclidean norm of x)

and more generally, if A is a symmetric positive definite n× n matrix, the function

vA(x) = e−π〈Ax,x〉 (1.2.2)

belongs to the Schwartz class. The space S (Rn) is a Fréchet space equipped with

the countable family of semi-norms (pk)k∈N

pk(u) = sup
x∈Rn
|α|,|β|≤k

|xα∂βxu(x)|. (1.2.3)

Lemma 1.2.2. The Fourier transform sends continuously S (Rn) into itself.

Proof. Just notice that

ξα∂βξ û(ξ) =

∫
e−2iπxξ∂αx (xβu)(x)dx(2iπ)|β|−|α|(−1)|β|,

and since supx∈Rn(1 + |x|)n+1|∂αx (xβu)(x)| < +∞, we get the result.

Lemma 1.2.3. For a symmetric positive definite n× n matrix A, we have

v̂A(ξ) = (detA)−1/2e−π〈A
−1ξ,ξ〉, (1.2.4)

where vA is given by (1.2.2).

Proof. In fact, diagonalizing the symmetric matrix A, it is enough to prove the

one-dimensional version of (1.2.4), i.e. to check∫
e−2iπxξe−πx

2

dx =

∫
e−π(x+iξ)2dxe−πξ

2

= e−πξ
2

,

where the second equality is obtained by taking the ξ-derivative of
∫
e−π(x+iξ)2dx :

we have indeed

d

dξ

(∫
e−π(x+iξ)2dx

)
=

∫
e−π(x+iξ)2(−2iπ)(x+ iξ)dx

= i

∫
d

dx

(
e−π(x+iξ)2

)
dx = 0.
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For a > 0, we obtain ∫
R
e−2iπxξe−πax

2

dx = a−1/2e−πa
−1ξ2 ,

which is the sought result in one dimension. If n ≥ 2, and A is a positive definite

symmetric matrix, there exists an orthogonal n × n matrix P (i.e. tPP = Id) such

that

D =tPAP, D = diag(λ1, . . . , λn), all λj > 0.

As a consequence, we have, since | detP | = 1,∫
Rn
e−2iπx·ξe−π〈Ax,x〉dx =

∫
Rn
e−2iπ(Py)·ξe−π〈APy,Py〉dy

=

∫
Rn
e−2iπy·(tPξ)e−π〈Dy,y〉dy

(with η = tPξ) =
∏

1≤j≤n

∫
R
e−2iπyjηje−πλjy

2
j dyj =

∏
1≤j≤n

λ
−1/2
j e−πλ

−1
j η2j

= (detA)−1/2e−π〈D
−1η,η〉 = (detA)−1/2e−π〈

tPA−1P tPξ,tPξ〉

= (detA)−1/2e−π〈A
−1ξ,ξ〉.

Proposition 1.2.4. The Fourier transformation is an isomorphism of the Schwartz

class and for u ∈ S (Rn), we have

u(x) =

∫
e2iπxξû(ξ)dξ. (1.2.5)

Proof. Using (1.2.4) we calculate for u ∈ S (Rn) and ε > 0, dealing with absolutely

converging integrals,

uε(x) =

∫
e2iπxξû(ξ)e−πε

2|ξ|2dξ

=

∫∫
e2iπxξe−πε

2|ξ|2u(y)e−2iπyξdydξ

=

∫
u(y)e−πε

−2|x−y|2ε−ndy

=

∫ (
u(x+ εy)− u(x)

)︸ ︷︷ ︸
with absolute value≤ε|y|‖u′‖L∞

e−π|y|
2

dy + u(x).

Taking the limit when ε goes to zero, we get the Fourier inversion formula

u(x) =

∫
e2iπxξû(ξ)dξ. (1.2.6)

We have also proven for u ∈ S (Rn) and ǔ(x) = u(−x)

u =
ˇ̂
û. (1.2.7)

Since u 7→ û and u 7→ ǔ are continuous homomorphisms of S (Rn), this completes

the proof of the proposition.
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Proposition 1.2.5. Using the notation

Dxj =
1

2iπ

∂

∂xj
, Dα

x =
n∏
j=1

Dαj
xj

with α = (α1, . . . , αn) ∈ Nn, (1.2.8)

we have, for u ∈ S (Rn)

D̂α
xu(ξ) = ξαû(ξ), (Dα

ξ û)(ξ) = (−1)|α|x̂αu(x)(ξ) (1.2.9)

Proof. We have for u ∈ S (Rn), û(ξ) =
∫
e−2iπx·ξu(x)dx and thus

(Dα
ξ û)(ξ) = (−1)|α|

∫
e−2iπx·ξxαu(x)dx,

ξαû(ξ) =

∫
(−2iπ)−|α|∂αx

(
e−2iπx·ξ)u(x)dx =

∫
e−2iπx·ξ(2iπ)−|α|(∂αxu)(x)dx,

proving both formulas.

N.B. The normalization factor 1
2iπ

leads to a simplification in Formula (1.2.9), but

the most important aspect of these formulas is certainly that the Fourier transfor-

mation exchanges the operation of derivation with the operation of multiplication.

For instance with

P (D) =
∑
|α|≤m

aαD
α
x ,

we have for u ∈ S (Rn), P̂ u(ξ) =
∑
|α|≤m aαξ

αû(ξ) = P (ξ)û(ξ), and thus

(Pu)(x) =

∫
Rn
e2iπx·ξP (ξ)û(ξ)dξ. (1.2.10)

Proposition 1.2.6. Let φ, ψ be functions in S (Rn). Then the convolution φ ∗ ψ
belongs to the Schwartz space and the mapping

S (Rn)×S (Rn) 3 (φ, ψ) 7→ φ ∗ ψ ∈ S (Rn)

is continuous. Moreover we have

φ̂ ∗ ψ = φ̂ψ̂. (1.2.11)

Proof. The mapping (x, y) 7→ F (x, y) = φ(x− y)ψ(y) belongs to S (R2n) since x, y

derivatives of the smooth function F are linear combinations of products

(∂αφ)(x− y)(∂βψ)(y)

and moreover

(1 + |x|+ |y|)N |(∂αφ)(x− y)(∂βψ)(y)|
≤ (1 + |x− y|)N |(∂αφ)(x− y)|(1 + 2|y|)N |(∂βψ)(y)| ≤ p(φ)q(ψ),
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where p, q are semi-norms on S (Rn). This proves that the bilinear mapping (φ, ψ) 7→
F (φ, ψ) is continuous from S (Rn) × S (Rn) into S (R2n). We have now directly

∂αx (φ ∗ ψ) = (∂αxφ) ∗ ψ and

(1 + |x|)N |∂αx (φ ∗ ψ)| ≤
∫
|F (∂αφ, ψ)(x, y)|(1 + |x|)Ndy

≤
∫
|F (∂αφ, ψ)(x, y)|(1 + |x|)N(1 + |y|)n+1︸ ︷︷ ︸

≤p(F )

(1 + |y|)−n−1dy,

where p is a semi-norm of F (thus bounded by a product of semi-norms of φ and

ψ), proving the continuity property. Also we obtain from Fubini’s Theorem

(φ̂ ∗ ψ)(ξ) =

∫∫
e−2iπ(x−y)·ξe−2iπy·ξφ(x− y)ψ(y)dydx = φ̂(ξ)ψ̂(ξ),

completing the proof of the proposition.

The Fourier transformation on S ′(Rn)

Definition 1.2.7. Let n be an integer ≥ 1. We define the space S ′(Rn) as the topo-

logical dual of the Fréchet space S (Rn): this space is called the space of tempered

distributions on Rn.

We note that the mapping

S (Rn) 3 φ 7→ ∂φ

∂xj
∈ S (Rn),

is continuous since for all k ∈ N, pk(∂φ/∂xj) ≤ pk+1(φ), where the semi-norms pk
are defined in (1.2.3). This property allows us to define by duality the derivative of

a tempered distribution.

Definition 1.2.8. Let u ∈ S ′(Rn). We define ∂u/∂xj as an element of S ′(Rn) by

〈 ∂u
∂xj

, φ〉S ′,S = −〈u, ∂φ
∂xj
〉S ′,S . (1.2.12)

The mapping u 7→ ∂u/∂xj is a well-defined endomorphism of S ′(Rn) since the

estimates

∀φ ∈ S (Rn), |〈 ∂u
∂xj

, φ〉| ≤ Cupku(
∂φ

∂xj
) ≤ Cupku+1(φ),

ensure the continuity on S (Rn) of the linear form ∂u/∂xj.

Definition 1.2.9. Let u ∈ S ′(Rn) and let P be a polynomial in n variables with

complex coefficients. We define the product Pu as an element of S ′(Rn) by

〈Pu, φ〉S ′,S = 〈u, Pφ〉S ′,S . (1.2.13)
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The mapping u 7→ Pu is a well-defined endomorphism of S ′(Rn) since the

estimates

∀φ ∈ S (Rn), |〈Pu, φ〉| ≤ Cupku(Pφ) ≤ Cupku+D(φ),

where D is the degree of P , ensure the continuity on S (Rn) of the linear form Pu.

Lemma 1.2.10. Let Ω be an open subset of Rn, f ∈ L1
loc(Ω) such that, for all

ϕ ∈ C∞c (Ω),
∫
f(x)ϕ(x)dx = 0. Then we have f = 0.

Proof. Let K be a compact subset of Ω and let χ ∈ C∞c (Ω) equal to 1 on a neighbor-

hood of K (see e.g. Exercise 2.8.7 in [15]). With ρ ∈ C∞c (Rn) such that
∫
ρ(t)dt = 1,

and for ε > 0, ρε(x) = ρ(x/ε)ε−n, we get that

lim
ε→0+

ρε ∗ (χf) = χf in L1(Rn),

since for w ∈ L1(Rn),

‖ρε ∗ w − w‖L1(Rn) =

∫
Rn

∣∣∣∣∫
Rn
ρε(y)

(
w(x− y)− w(x)

)
dy

∣∣∣∣ dx
≤
∫∫
|ρ(z)||w(x− εz)− w(x)|dzdx =

∫
|ρ(z)|‖τεzw − w‖L1(Rn)dz.

We know2 that limh→0 ‖τhw − w‖L1(Rn) = 0 and ‖τhw − w‖L1(Rn) ≤ 2‖w‖L1(Rn) so

that Lebesgue’s dominated convergence theorem provides

lim
ε→0
‖ρε ∗ w − w‖L1(Rn) = 0.

We have
(
ρε ∗ (χf)

)
(x) =

∫
f(y)χ(y)ρ

(
(x− y)ε−1

)
ε−n︸ ︷︷ ︸

=ϕx(y)

dy, with suppϕx ⊂ suppχ,

ϕx ∈ C∞c (Ω), and from the assumption of the lemma, we obtain
(
ρε ∗ (χf)

)
(x) = 0

for all x, implying χf = 0 from the convergence result and thus f = 0, a.e. on K;

the conclusion of the lemma follows since Ω is a countable union of compact sets

(see e.g. Exercise 2.8.10 in [15]).

Definition 1.2.11 (support of a distribution). For u ∈ S ′(Rn), we define the

support of u and we note suppu the closed subset of Rn defined by

(suppu)c = {x ∈ Rn,∃V open ∈ Vx, u|V = 0}, (1.2.14)

where Vx stands for the set of neighborhoods of x and u|V = 0 means that for all

φ ∈ C∞c (V ), 〈u, φ〉 = 0.

2For φ ∈ C0
c (Rn), we have ‖τhw−w‖L1(Rn) ≤ ‖τhw−τhφ‖L1(Rn)+‖τhφ−φ‖L1(Rn)+‖φ−w‖L1(Rn),

so that for |h| ≤ 1,

‖τhw − w‖L1(Rn) ≤ 2‖φ− w‖L1(Rn) +

∫
|φ(x− h)− φ(x)|dx

≤ 2‖φ− w‖L1(Rn) + | suppφ+ Bn| sup |φ(x− h)− φ(x)|

which implies that lim suph→0 ‖τhw − w‖ ≤ 2 infφ∈C0
c (Rn) ‖φ− w‖L1(Rn) = 0.



12 CHAPTER 1. BASIC FOURIER ANALYSIS

Proposition 1.2.12.

(1) We have S ′(Rn) ⊃ ∪1≤p≤+∞L
p(Rn), with a continuous injection of each Lp(Rn)

into S ′(Rn). As a consequence S ′(Rn) contains as well all the derivatives in the

sense (1.2.12) of all the functions in some Lp(Rn).

(2) For u ∈ C1(Rn) such that(
|u(x)|+ |du(x)|

)
(1 + |x|)−N ∈ L1(Rn), (1.2.15)

for some non-negative N , the derivative in the sense (1.2.12) coincides with the

ordinary derivative.

Proof. (1) For u ∈ Lp(Rn) and φ ∈ S (Rn), we can define

〈u, φ〉S ′,S =

∫
Rn
u(x)φ(x)dx, (1.2.16)

which is a continuous linear form on S (Rn):

|〈u, φ〉S ′,S | ≤ ‖u‖Lp(Rn)‖φ‖Lp′ (Rn),

‖φ‖Lp′ (Rn) ≤ sup
x∈Rn

(
(1 + |x|)

n+1
p′ |φ(x)|

)
Cn,p ≤ Cn,ppk(φ), for k ≥ kn,p =

n+ 1

p′
,

with pk given by (1.2.3) (when p = 1, we can take k = 0). We indeed have a

continuous injection of Lp(Rn) into S ′(Rn): in the first place the mapping described

by (1.2.16) is well-defined and continuous from the estimate

|〈u, φ〉| ≤ ‖u‖LpCn,ppkn,p(φ).

Moreover, this mapping is linear and injective from Lemma 1.2.10.

(2) We have for φ ∈ S (Rn), χ0 ∈ C∞c (Rn), χ0 = 1 near the origin,

A = 〈 ∂u
∂xj

, φ〉S ′,S = −〈u, ∂φ
∂xj
〉S ′,S = −

∫
Rn
u(x)

∂φ

∂xj
(x)dx

so that, using Lebesgue’s dominated convergence theorem, we find

A = − lim
ε→0+

∫
Rn
u(x)

∂φ

∂xj
(x)χ0(εx)dx.

Performing an integration by parts on C1 functions with compact support, we get

A = lim
ε→0+

{∫
Rn

(∂ju)(x)φ(x)χ0(εx)dx+ ε

∫
Rn
u(x)φ(x)(∂jχ0)(εx)dx

}
,

with ∂ju standing for the ordinary derivative. We have also∫
Rn
|u(x)φ(x)(∂jχ0)(εx)|dx ≤ ‖∂jχ0)‖L∞(Rn)

∫
|u(x)|(1 + |x|)−Ndx pN(φ) < +∞,

so that

〈 ∂u
∂xj

, φ〉S ′,S = lim
ε→0+

∫
Rn

(∂ju)(x)φ(x)χ0(εx)dx.
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Since the lhs is a continuous linear form on S (Rn) so is the rhs. On the other hand

for φ ∈ C∞c (Rn), the rhs is
∫
Rn(∂ju)(x)φ(x)dx. Since C∞c (Rn) is dense in S (Rn), we

find that

〈 ∂u
∂xj

, φ〉S ′,S =

∫
Rn

(∂ju)(x)φ(x)dx,

since the mapping φ 7→
∫
Rn(∂ju)(x)φ(x)dx belongs to S ′(Rn), thanks to the as-

sumption on du in (1.2.15). This proves that ∂u
∂xj

= ∂ju.

The Fourier transformation can be extended to S ′(Rn). We start with noticing

that for T, φ in the Schwartz class we have, using Fubini Theorem,∫
T̂ (ξ)φ(ξ)dξ =

∫∫
T (x)φ(ξ)e−2iπx·ξdxdξ =

∫
T (x)φ̂(x)dx,

and we can use the latter formula as a definition.

Definition 1.2.13. Let T be a tempered distribution ; the Fourier transform T̂ of

T is the tempered distribution defined by the formula

〈T̂ , ϕ〉S ′,S = 〈T, ϕ̂〉S ′,S . (1.2.17)

The linear form T̂ is obviously a tempered distribution since the Fourier transforma-

tion is continuous on S . Thanks to Lemma 1.2.10, if T ∈ S , the present definition

of T̂ and (1.1.1) coincide.

This definition gives that, with δ0 standing as the Dirac mass at 0, 〈δ0, φ〉S ′,S = φ(0)

(obviously a tempered distribution), we have

δ̂0 = 1, (1.2.18)

since 〈δ̂0, ϕ〉 = 〈δ0, ϕ̂〉 = ϕ̂(0) =
∫
ϕ(x)dx = 〈1, ϕ〉.

Theorem 1.2.14. The Fourier transformation is an isomorphism of S ′(Rn). Let

T be a tempered distribution. Then we have3

T =
ˇ̂
T̂,

ˇ̂
T = ˆ̌T . (1.2.19)

With obvious notations, we have the following extensions of (1.2.9),

D̂α
xT (ξ) = ξαT̂ (ξ), (Dα

ξ T̂ )(ξ) = (−1)|α|x̂αT (x)(ξ). (1.2.20)

Proof. We have for T ∈ S ′

〈
ˇ̂
T̂, ϕ〉S ′,S = 〈 ˆ̂T , ϕ̌〉S ′,S = 〈T̂ , ˆ̌ϕ〉S ′,S = 〈T, ˆ̌̂ϕ〉S ′,S = 〈T, ϕ〉S ′,S ,

3We define Ť as the distribution given by 〈Ť , ϕ〉 = 〈T, ϕ̌〉 and if T ∈ S ′, Ť is also a tempered
distribution since ϕ 7→ ϕ̌ is an involutive isomorphism of S .
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where the last equality is due to the fact that ϕ 7→ ϕ̌ commutes4 with the Fourier

transform and (1.2.6) means
ˇ̂
ϕ̂ = ϕ,

a formula also proven true on S ′ by the previous line of equality. Formula (1.2.9)

is true as well for T ∈ S ′ since, with ϕ ∈ S and ϕα(ξ) = ξαϕ(ξ), we have

〈D̂αT , ϕ〉S ′,S = 〈T, (−1)|α|Dαϕ̂〉S ′,S = 〈T, ϕ̂α〉S ′,S = 〈T̂ , ϕα〉S ′,S ,

and the other part is proven the same way.

The Fourier transformation on L1(Rn)

Theorem 1.2.15. The Fourier transformation is linear continuous from L1(Rn)

into L∞(Rn) and for u ∈ L1(Rn), we have

û(ξ) =

∫
e−2iπx·ξu(x)dx, ‖û‖L∞(Rn) ≤ ‖u‖L1(Rn). (1.2.21)

Proof. Formula (1.1.1) can be used to define directly the Fourier transform of a

function in L1(Rn) and this gives a L∞(Rn) function which coincides with the Fourier

transform: for a test function ϕ ∈ S (Rn), and u ∈ L1(Rn), we have by the definition

(1.2.17) above and Fubini theorem

〈û, ϕ〉S ′,S =

∫
u(x)ϕ̂(x)dx =

∫∫
u(x)ϕ(ξ)e−2iπx·ξdxdξ =

∫
ũ(ξ)ϕ(ξ)dξ

with ũ(ξ) =
∫
e−2iπx·ξu(x)dx which is thus the Fourier transform of u.

The Fourier transformation on L2(Rn)

Theorem 1.2.16 (Plancherel formula).

The Fourier transformation can be extended to a unitary operator of L2(Rn), i.e.

there exists a unique bounded linear operator F : L2(Rn) −→ L2(Rn), such that for

u ∈ S (Rn), Fu = û and we have F ∗F = FF ∗ = IdL2(Rn). Moreover

F ∗ = CF = FC, F 2C = IdL2(Rn), (1.2.22)

where C is the involutive isomorphism of L2(Rn) defined by (Cu)(x) = u(−x). This

gives the Plancherel formula: for u, v ∈ L2(Rn),∫
Rn
û(ξ)v̂(ξ)dξ =

∫
u(x)v(x)dx. (1.2.23)

Proof. For test functions ϕ, ψ ∈ S (Rn), using Fubini theorem and (1.2.6), we get5

(ψ̂, ϕ̂)L2(Rn) =

∫
ψ̂(ξ)ϕ̂(ξ)dξ =

∫∫
ψ̂(ξ)e2iπx·ξϕ(x)dxdξ = (ψ, ϕ)L2(Rn).

4If ϕ ∈ S , we have ̂̌ϕ(ξ) =
∫
e−2iπx·ξϕ(−x)dx =

∫
e2iπx·ξϕ(x)dx = ϕ̂(−ξ) = ˇ̂ϕ(ξ).

5We have to pay attention to the fact that the scalar product (u, v)L2 in the complex Hilbert
space L2(Rn) is linear with respect to u and antilinear with respect to v: for λ, µ ∈ C, (λu, µv)L2 =
λµ̄(u, v)L2 .
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Next, the density of S in L2 shows that there is a unique continuous extension

F of the Fourier transform to L2 and that extension is an isometric operator (i.e.

satisfying for all u ∈ L2(Rn), ‖Fu‖L2 = ‖u‖L2 , i.e. F ∗F = IdL2). We note that the

operator C defined by Cu = ǔ is an involutive isomorphism of L2(Rn) and that for

u ∈ S (Rn),

CF 2u = u = FCFu = F 2Cu.

By the density of S (Rn) in L2(Rn), the bounded operators

CF 2, IdL2(Rn), FCF, F
2C,

are all equal. On the other hand for u, ϕ ∈ S (Rn), we have

(F ∗u, ϕ)L2 = (u, Fϕ)L2 =

∫
u(x)ϕ̂(x)dx

=

∫∫
u(x)ϕ̄(ξ)e2iπx·ξdxdξ = (CFu, ϕ)L2 ,

so that F ∗u = CFu for all u ∈ S and by continuity F ∗ = CF as bounded operators

on L2(Rn), thus FF ∗ = FCF = Id. The proof is complete.

Some standard examples of Fourier transform

Let us consider the Heaviside function defined on R by H(x) = 1 for x > 0, H(x) = 0

for x ≤ 0 ; as a bounded measurable function, it is a tempered distribution, so that

we can compute its Fourier transform. With the notation of this section, we have,

with δ0 the Dirac mass at 0, Ȟ(x) = H(−x),

Ĥ + ̂̌H = 1̂ = δ0, Ĥ − ̂̌H = ŝign,
1

iπ
=

1

2iπ
2δ̂0(ξ) = D̂ sign(ξ) = ξŝignξ.

We note that R 7→ ln |x| belongs to S ′(R) and6 we define the so-called principal

value of 1/x on R by

pv
(1

x

)
=

d

dx
(ln |x|), (1.2.24)

so that, 〈pv
1

x
, φ〉 = −

∫
φ′(x) ln |x|dx = − lim

ε→0+

∫
|x|≥ε

φ′(x) ln |x|dx

= lim
ε→0+

(∫
|x|≥ε

φ(x)
1

x
dx+

(
φ(ε)− φ(−ε)

)
ln ε︸ ︷︷ ︸

→0

)
= lim

ε→0+

∫
|x|≥ε

φ(x)
1

x
dx. (1.2.25)

This entails ξ
(
ŝignξ − 1

iπ
pv(1/ξ)

)
= 0 and from Remark 1.2.17 below, we get

ŝignξ − 1

iπ
pv(1/ξ) = cδ0,

with c = 0 since the lhs is odd7.
6For φ ∈ S (R), we have 〈ln |x|, φ(x)〉S ′(R),S (R) =

∫
R φ(x) ln |x|dx.

7A distribution T on Rn is said to be odd (resp. even) when Ť = −T (resp. T ).
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Remark 1.2.17. Let T ∈ S ′(R) such that xT = 0. Then we have T = cδ0. Let

φ ∈ S (R) and let χ0 ∈ C∞c (Rn) such that χ0(0) = 1. We have

φ(x) = χ0(x)φ(x) + (1− χ0(x))φ(x).

Applying Taylor’s formula with integral remainder, we define the smooth function

ψ by

ψ(x) =
(1− χ0(x))

x
φ(x)

and, applying Leibniz’ formula, we see also that ψ belongs to S (R). As a result

〈T, φ〉S ′(R),S (R) = 〈T, χ0φ〉 = 〈T, χ0

(
φ− φ(0)

)
〉+ φ(0)〈T, χ0〉 = φ(0)〈T, χ0〉,

since the function x 7→ χ0(x)
(
φ(x) − φ(0)

)
/x belongs to C∞c (R). As a result T =

〈T, χ0〉δ0.

We obtain

ŝign(ξ) =
1

iπ
pv

1

ξ
, (1.2.26)

̂
pv(

1

πx
) = −i sign ξ, (1.2.27)

Ĥ =
δ0

2
+

1

2iπ
pv(

1

ξ
) =

1

(x− i0)

1

2iπ
. (1.2.28)

Let us consider now for 0 < α < n the L1
loc(Rn) function uα(x) = |x|α−n (|x| is

the Euclidean norm of x); since uα is also bounded for |x| ≥ 1, it is a tempered

distribution. Let us calculate its Fourier transform vα. Since uα is homogeneous of

degree α − n, we get that vα is a homogeneous distribution of degree −α. On the

other hand, if S ∈ O(Rn) (the orthogonal group), we have in the distribution sense8

since uα is a radial function, i.e. such that

vα(Sξ) = vα(ξ). (1.2.29)

The distribution |ξ|αvα(ξ) is homogeneous of degree 0 on Rn\{0} and is also “radial”,

i.e. satisfies (1.2.29). Moreover on Rn\{0}, the distribution vα is a C1 function which

coincides with9∫
e−2iπx·ξχ0(x)|x|α−ndx+ |ξ|−2N

∫
e−2iπx·ξ|Dx|2N

(
χ1(x)|x|α−n

)
dx,

where χ0 ∈ C∞c (Rn) is 1 near 0 and χ1 = 1 − χ0, N ∈ N, α + 1 < 2N . As a result

|ξ|αvα(ξ) = cα on Rn\{0} and the distribution on Rn (note that α < n)

T = vα(ξ)− cα|ξ|−α

8For M ∈ Gl(n,R), T ∈ S ′(Rn), we define 〈T (Mx), φ(x)〉 = 〈T (y), φ(M−1y)〉|detM |−1.
9 We have ûα = χ̂0uα + χ̂1uα and for φ supported in Rn\{0} we get,

〈χ̂1uα, φ〉 = 〈χ̂1uα|ξ|2N , φ(ξ)|ξ|−2N 〉 = 〈 ̂|Dx|2Nχ1uα, φ(ξ)|ξ|−2N 〉.
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is supported in {0} and homogeneous (on Rn) with degree −α. The condition

0 < α < n gives vα = cα|ξ|−α. To find cα, we compute∫
Rn
|x|α−ne−πx2dx = cα

∫
Rn
|ξ|−αe−πξ2dξ

which yields

2−1Γ(
α

2
)π−

α
2 =

∫ +∞

0

rα−1e−πr
2

dr = cα

∫ +∞

0

rn−α−1e−πr
2

dr

= cα2−1Γ(
n− α

2
)π−(n−α

2
).

We have proven the following lemma.

Lemma 1.2.18. Let n ∈ N∗ and α ∈ (0, n). The function uα(x) = |x|α−n is L1
loc(Rn)

and also a temperate distribution on Rn. Its Fourier transform vα is also L1
loc(Rn)

and given by

vα(ξ) = |ξ|−απ
n
2
−α Γ(α

2
)

Γ(n−α
2

)
.

Fourier transform of Gaussian functions

Proposition 1.2.19. Let A be a symmetric nonsingular n×n matrix with complex

entries such that ReA ≥ 0. We define the Gaussian function vA on Rn by vA(x) =

e−π〈Ax,x〉. The Fourier transform of vA is

v̂A(ξ) = (detA)−1/2e−π〈A
−1ξ,ξ〉. (1.2.30)

In particular, when A = −iB with a symmetric real nonsingular matrix B, we get

Fourier(eiπ〈Bx,x〉)(ξ) = v̂−iB(ξ) = | detB|−1/2ei
π
4

signBe−iπ〈B
−1ξ,ξ〉. (1.2.31)

Proof. Let us define Υ∗+ as the set of symmetric n × n complex matrices with a

positive definite real part (naturally these matrices are nonsingular since Ax = 0 for

x ∈ Cn implies 0 = Re〈Ax, x̄〉 = 〈(ReA)x, x̄〉, so that Υ∗+ ⊂ Υ+).

Let us assume first that A ∈ Υ∗+; then the function vA is in the Schwartz class

(and so is its Fourier transform). The set Υ∗+ is an open convex subset of Cn(n+1)/2

and the function Υ∗+ 3 A 7→ v̂A(ξ) is holomorphic and given on Υ∗+ ∩ Rn(n+1)/2 by

(1.2.30). On the other hand the function

Υ∗+ 3 A 7→ e−
1
2

trace LogAe−π〈A
−1ξ,ξ〉,

is also holomorphic and coincides with previous one on Rn(n+1)/2. By analytic con-

tinuation this proves (1.2.30) for A ∈ Υ∗+.

If A ∈ Υ+ and ϕ ∈ S (Rn), we have 〈v̂A, ϕ〉S ′,S =
∫
vA(x)ϕ̂(x)dx so that

Υ+ 3 A 7→ 〈v̂A, ϕ〉 is continuous and thus (note that the mapping A 7→ A−1 is an

homeomorphism of Υ+), using the previous result on Υ∗+,

〈v̂A, ϕ〉 = lim
ε→0+
〈v̂A+εI , ϕ〉 = lim

ε→0+

∫
e−

1
2

trace Log(A+εI)e−π〈(A+εI)−1ξ,ξ〉ϕ(ξ)dξ,
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and by continuity of Log on Υ+ and dominated convergence,

〈v̂A, ϕ〉 =

∫
e−

1
2

trace LogAe−π〈A
−1ξ,ξ〉ϕ(ξ)dξ,

which is the sought result.

Multipliers of S ′(Rn)

Definition 1.2.20. The space OM(Rn) of multipliers of S (Rn) is the subspace of

the functions f ∈ C∞(Rn) such that,

∀α ∈ Nn,∃Cα > 0,∃Nα ∈ N, ∀x ∈ Rn, |(∂αx f)(x)| ≤ Cα(1 + |x|)Nα . (1.2.32)

It is easy to check that, for f ∈ OM(Rn), the operator u 7→ fu is continuous

from S (Rn) into itself, and by transposition from S ′(Rn) into itself: we define for

T ∈ S ′(Rn), f ∈ OM(Rn),

〈fT, ϕ〉S ′,S = 〈T, fϕ〉S ′,S ,

and if p is a semi-norm of S , the continuity on S of the multiplication by f implies

that there exists a semi-norm q on S such that for all ϕ ∈ S , p(fϕ) ≤ q(ϕ). A

typical example of a function in OM(Rn) is eiP (x) where P is a real-valued polynomial:

in fact the derivatives of eiP (x) are of type Q(x)eiP (x) where Q is a polynomial so

that (1.2.32) holds.

Definition 1.2.21. Let T, S be tempered distributions on Rn such that T̂ belongs

to OM(Rn). We define the convolution T ∗ S by

T̂ ∗ S = T̂ Ŝ. (1.2.33)

Note that this definition makes sense since T̂ is a multiplier so that T̂ Ŝ is indeed

a tempered distribution whose inverse Fourier transform is meaningful. We have

〈T ∗ S, φ〉S ′(Rn),S (Rn) = 〈T̂ ∗ S, ˆ̌φ〉S ′(Rn),S (Rn) = 〈Ŝ, T̂ ˆ̌φ〉S ′(Rn),S (Rn).

Proposition 1.2.22. Let T be a distribution on Rn such that T is compactly sup-

ported. Then T̂ is a multiplier which can be extended to an entire function on Cn

such that if suppT ⊂ B̄(0, R0),

∃C0, N0 ≥ 0,∀ζ ∈ Cn, |T̂ (ζ)| ≤ C0(1 + |ζ|)N0e2πR0| Im ζ|. (1.2.34)

In particular, for S ∈ S ′(Rn), we may define according to (1.2.33) the convolution

T ∗ S.

Proof. Let us first check the case R0 = 0: then the distribution T is supported at

{0} and thus is a linear combination of derivatives of the Dirac mass at 0. Formulas

(1.2.18), (1.2.20) imply that T̂ is a polynomial, so that the conclusions of Proposition

1.2.22 hold in that case.
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Let us assume that R0 > 0 and let us consider a function χ is equal to 1 in

neighborhood of suppT (this implies χT = T ) and

〈T̂ , φ〉S ′,S = 〈χ̂T , φ〉S ′,S = 〈T, χφ̂〉S ′,S . (1.2.35)

On the other hand, defining for ζ ∈ Cn (with x · ζ =
∑
xjζj for x ∈ Rn),

F (ζ) = 〈T (x), χ(x)e−2iπx·ζ〉S ′,S , (1.2.36)

we see that F is an entire function (i.e. holomorphic on Cn): calculating

F (ζ + h)− F (ζ) = 〈T (x), χ(x)e−2iπx·ζ(e−2iπx·h − 1)〉
= 〈T (x), χ(x)e−2iπx·ζ(−2iπx · h)〉

+ 〈T (x), χ(x)e−2iπx·ζ
∫ 1

0

(1− θ)e−2iθπx·hdθ(−2iπx · h)2〉,

and applying to the last term the continuity properties of the linear form T , we

obtain that the complex differential of F is∑
1≤j≤n

〈T (x), χ(x)e−2iπx·ζ(−2iπxj)〉dζj.

Moreover the derivatives of (1.2.36) are

F (k)(ζ) = 〈T (x), χ(x)e−2iπx·ζ(−2iπx)k〉S ′,S . (1.2.37)

To evaluate the semi-norms of x 7→ χ(x)e−2iπx·ζ(−2iπx)k in the Schwartz space, we

have to deal with a finite sum of products of type∣∣xγ(∂αχ)(x)e−2iπx·ζ(−2iπζ)β
∣∣ ≤ (1 + |ζ|)|β| sup

x∈Rn
|xγ(∂αχ)(x)e2π|x|| Im ζ||.

We may now choose a function χ0 equal to 1 on B(0, 1), supported in B(0, R0+2ε
R0+ε

)

such that ‖∂βχ0‖L∞ ≤ c(β)ε−|β| with ε = R0

1+|ζ| . We find with

χ(x) = χ0(x/(R0 + ε)) (which is 1 on a neighborhood of B(0, R0)),

sup
x∈Rn
|xγ(∂αχ)(x)e2π|x|| Im ζ|| ≤ (R0 + 2ε)|γ| sup

y∈Rn
|(∂αχ0)(y)e2π(R0+2ε)| Im ζ||

≤ (R0 + 2ε)|γ|e2π(R0+2ε)| Im ζ|c(α)ε−|α|

= (R0 + 2
R0

1 + |ζ|
)|γ|e2π(R0+2

R0
1+|ζ| )| Im ζ|c(α)(

1 + |ζ|
R0

)|α|

≤ (3R0)|γ|e2πR0| Im ζ|e4πR0c(α)R
−|α|
0 (1 + |ζ|)|α|

yielding

|F (k)(ζ)| ≤ e2πR0| Im ζ|Ck(1 + |ζ|)Nk ,
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which implies that Rn 3 ξ 7→ F (ξ) is indeed a multiplier. We have also

〈T, χφ̂〉S ′,S = 〈T (x), χ(x)

∫
Rn
φ(ξ)e−2iπxξdξ〉S ′,S .

Since the function F is entire we have for φ ∈ C∞c (Rn), using (1.2.37) and Fubini

Theorem on `1(N)× L1(Rn),∫
Rn
F (ξ)φ(ξ)dξ =

∑
k≥0

〈T (x), χ(x)(−2iπx)k〉
∫

suppφ

ξk

k!
φ(ξ)dξ. (1.2.38)

On the other hand, since φ̂ is also entire (from the discussion on F or directly from

the integral formula for the Fourier transform of φ ∈ C∞c (Rn)), we have

〈T, χφ̂〉 = 〈T (x), χ(x)
∑
k≥0

(φ̂)(k)(0)xk/k!〉

= 〈T (x), χ(x) lim
N→+∞

∑
0≤k≤N

(φ̂)(k)(0)xk/k!︸ ︷︷ ︸
convergence in C∞c (Rn)

〉

= lim
N→+∞

∑
0≤k≤N

〈T (x), χ(x)xk/k!〉
∫
Rn
φ(ξ)(−2iπξ)kdξ.

Thanks to (1.2.38), that quantity is equal to
∫
Rn F (ξ)φ(ξ)dξ. As a result, the tem-

pered distributions T̂ and F coincide on C∞c (Rn), which is dense in S (Rn) and so

T̂ = F , concluding the proof.

1.3 The Poisson summation formula

Wave packets

We define for x ∈ Rn, (y, η) ∈ Rn × Rn

ϕy,η(x) = 2n/4e−π(x−y)2e2iπ(x−y)·η = 2n/4e−π(x−y−iη)2e−πη
2

, (1.3.1)

where for ζ = (ζ1, . . . , ζn) ∈ Cn, ζ2 =
∑

1≤j≤n

ζ2
j . (1.3.2)

We note that the function ϕy,η is in S (Rn) and with L2 norm 1. In fact, ϕy,η appears

as a phase translation of a normalized Gaussian. The following lemma introduces

the wave packets transform as a Gabor wavelet.

Lemma 1.3.1. Let u be a function in the Schwartz class S (Rn). We define

(Wu)(y, η) = (u, ϕy,η)L2(Rn) = 2n/4
∫
u(x)e−π(x−y)2e−2iπ(x−y)·ηdx (1.3.3)

= 2n/4
∫
u(x)e−π(y−iη−x)2dxe−πη

2

. (1.3.4)
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For u ∈ L2(Rn), the function Tu defined by

(Tu)(y + iη) = eπη
2

Wu(y,−η) = 2n/4
∫
u(x)e−π(y+iη−x)2dx (1.3.5)

is an entire function. The mapping u 7→ Wu is continuous from S (Rn) to S (R2n)

and isometric from L2(Rn) to L2(R2n). Moreover, we have the reconstruction for-

mula

u(x) =

∫∫
Rn×Rn

(Wu)(y, η)ϕy,η(x)dydη. (1.3.6)

Proof. For u in S (Rn), we have

(Wu)(y, η) = e2iπyηΩ̂
1

(η, y)

where Ω̂
1

is the Fourier transform with respect to the first variable of the S (R2n)

function Ω(x, y) = u(x)e−π(x−y)22n/4. Thus the function Wu belongs to S (R2n). It

makes sense to compute

2−n/2(Wu,Wu)L2(R2n) =

lim
ε→0+

∫
u(x1)u(x2)e−π[(x1−y)2+(x2−y)2+2i(x1−x2)η+ε2η2]dydηdx1dx2. (1.3.7)

Now the last integral on R4n converges absolutely and we can use the Fubini theorem.

Integrating with respect to η involves the Fourier transform of a Gaussian function

and we get ε−ne−πε
−2(x1−x2)2 . Since

2(x1 − y)2 + 2(x2 − y)2 = (x1 + x2 − 2y)2 + (x1 − x2)2,

integrating with respect to y yields a factor 2−n/2. We are left with

(Wu,Wu)L2(R2n)

= lim
ε→0+

∫
u(x1) u(x2)e−π(x1−x2)2/2ε−ne−πε

−2(x1−x2)2dx1dx2. (1.3.8)

Changing the variables, the integral is

lim
ε→0+

∫
u(s+ εt/2) u(s− εt/2)e−πε

2t2/2e−πt
2

dtds = ‖u‖2
L2(Rn)

by Lebesgue’s dominated convergence theorem: the triangle inequality and the es-

timate |u(x)| ≤ C(1 + |x|)−n−1 imply, with v = u/C,

|v(s+ εt/2) v(s− εt/2)| ≤ (1 + |s+ εt/2|)−n−1(1 + |s+ εt/2|)−n−1

≤ (1 + |s+ εt/2|+ |s− εt/2|)−n−1

≤ (1 + 2|s|)−n−1.

Eventually, this proves that for u ∈ S (Rn),

‖Wu‖2
L2(R2n) = ‖u‖2

L2(Rn) (1.3.9)
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so that by density of S (Rn) in L2(Rn),

W : L2(Rn)→ L2(R2n) with W ∗W = idL2(Rn). (1.3.10)

Noticing first that
∫∫

Wu(y, η)ϕy,ηdydη belongs to L2(Rn) (with a norm smaller

than ‖Wu‖L1(R2n)) and applying Fubini’s theorem, we get from the polarization of

(1.3.9) for u, v ∈ S (Rn),

(u, v)L2(Rn) = (Wu,Wv)L2(R2n) =

∫∫
Wu(y, η)(ϕy,η, v)L2(Rn)dydη

= (

∫∫
Wu(y, η)ϕy,ηdydη, v)L2(Rn),

yielding u =
∫∫

Wu(y, η)ϕy,ηdydη, which is the result of the lemma.

Poisson’s formula

The following lemma is in fact the Poisson summation formula for Gaussian functions

in one dimension.

Lemma 1.3.2. For all complex numbers z, the following series are absolutely con-

verging and ∑
m∈Z

e−π(z+m)2 =
∑
m∈Z

e−πm
2

e2iπmz. (1.3.11)

Proof. We set ω(z) =
∑

m∈Z e
−π(z+m)2 . The function ω is entire and 1-periodic since

for all m ∈ Z, z 7→ e−π(z+m)2 is entire and for R > 0,

sup
|z|≤R

|e−π(z+m)2| ≤ sup
|z|≤R

|e−πz2|e−πm2

e2π|m|R ∈ `1(Z).

Consequently, for z ∈ R, we obtain, expanding ω in Fourier series10,

ω(z) =
∑
k∈Z

e2iπkz

∫ 1

0

ω(x)e−2iπkxdx.

We also check, using Fubini’s theorem on L1(0, 1)× `1(Z)∫ 1

0

ω(x)e−2iπkxdx =
∑
m∈Z

∫ 1

0

e−π(x+m)2e−2iπkxdx

=
∑
m∈Z

∫ m+1

m

e−πt
2

e−2iπktdt

=

∫
R
e−πt

2

e−2iπkt = e−πk
2

.

10 Note that we use this expansion only for a C∞ 1-periodic function. The proof is simple and

requires only to compute 1 + 2 Re
∑

1≤k≤N e
2iπkx = sinπ(2N+1)x

sinπx . Then one has to show that for a
smooth 1-periodic function ω such that ω(0) = 0,

lim
λ→+∞

∫ 1

0

sinλx

sinπx
ω(x)dx = 0,

which is obvious since for a smooth ν (here we take ν(x) = ω(x)/ sinπx), |
∫ 1

0
ν(x)sin(λx)dx| =

O(λ−1) by integration by parts.
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So the lemma is proven for real z and since both sides are entire functions, we

conclude by analytic continuation.

It is now straightforward to get the n-th dimensional version of the previous

lemma: for all z ∈ Cn, using the notation (1.3.2), we have∑
m∈Zn

e−π(z+m)2 =
∑
m∈Zn

e−πm
2

e2iπm·z. (1.3.12)

Theorem 1.3.3 (Poisson summation formula). Let n be a positive integer and let

u be a function in S (Rn). Then we have∑
k∈Zn

u(k) =
∑
k∈Zn

û(k), (1.3.13)

where û stands for the Fourier transform of u. In other words the tempered distri-

bution D0 =
∑

k∈Zn δk is such that D̂0 = D0.

Proof. We write, according to (1.3.6) and to Fubini’s theorem

∑
k∈Zn u(k) =

∑
k∈Zn

∫∫
Wu(y, η)ϕy,η(k)dydη

=

∫∫
Wu(y, η)

∑
k∈Zn

ϕy,η(k)dydη.

Now, (1.3.12), (1.3.1) give ∑
k∈Zn

ϕy,η(k) =
∑
k∈Zn

ϕ̂y,η(k),

so that (1.3.6) and Fubini’s theorem imply the result.

1.4 Periodic distributions

The Dirichlet kernel

For N ∈ N, the Dirichlet kernel DN is defined on R by

DN(x) =
∑

−N≤k≤N

e2iπkx

= 1 + 2 Re
∑

1≤k≤N

e2iπkx =︸︷︷︸
x/∈Z

1 + 2 Re

(
e2iπx e

2iπNx − 1

e2iπx − 1

)
= 1 + 2 Re

(
e2iπx−iπx+iπNx

)sin(πNx)

sin(πx)
= 1 + 2 cos(π(N + 1)x)

sin(πNx)

sin(πx)

= 1 +
1

sin(πx)

(
sin
(
πx(2N + 1)

)
− sin(πx)

)
=

sin
(
πx(2N + 1)

)
sin(πx)

,
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and extending by continuity at x ∈ Z that 1-periodic function, we find that

DN(x) =
sin
(
πx(2N + 1)

)
sin(πx)

. (1.4.1)

Now, for a 1-periodic v ∈ C1(R), with

(DN ? u)(x) =

∫ 1

0

DN(x− t)u(t)dt, (1.4.2)

we have

lim
N→+∞

∫ 1

0

DN(x− t)v(t)dt = v(x) + lim
N→+∞

∫ 1

0

sin(πt(2N + 1))

(
v(x− t)− v(x)

)
sin(πt)

dt,

and the function θx given by θx(t) = v(x−t)−v(x)
sin(πt)

is continuous on [0, 1], and from the

Riemann-Lebesgue Lemma 1.1.1, we obtain

lim
N→+∞

∑
−N≤k≤N

e2iπkx

∫ 1

0

e−2iπktv(t)dt = lim
N→+∞

∫ 1

0

DN(x− t)v(t)dt = v(x).

On the other hand if v is 1-periodic and C1+l, the Fourier coefficient

ck(v) =

∫ 1

0

e−2iπktv(t)dt

for k 6= 0︷︸︸︷
=

1

2iπk
[e−2iπktv(t)]t=0

t=1 +

∫ 1

0

1

2iπk
e−2iπktv′(t)dt,

and iterating the integration by parts, we find ck(v) = O(k−1−l) so that for a 1-

periodic C2 function v, we have∑
k∈Z

e2iπkxck(v) = v(x). (1.4.3)

Pointwise convergence of Fourier series

Lemma 1.4.1. Let u : R −→ R be a 1-periodic L1
loc(R) function and let x0 ∈ [0, 1].

Let us assume that there exists w0 ∈ R such that the Dini condition is satisfied, i.e.∫ 1/2

0

|u(x0 + t) + u(x0 − t)− 2w0|
t

dt < +∞. (1.4.4)

Then, limN→+∞
∑
|k|≤N ck(u)e2iπkx0 = w0 with ck(u) =

∫ 1

0
e−2iπtku(t)dt.

Proof. Using the above calculations, we find

∑
|k|≤N

ck(u)e2iπkx0 = (DN ? u)(x0) = w0 +

∫ 1

0

sin
(
πt(2N + 1)

)
sin(πt)

(
u(x0 − t)− w0

)
dt,
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so that, using the periodicity of u and the fact that DN is an even function , we get

(DN ? u)(x0)− w0 =

∫ 1/2

0

sin
(
πt(2N + 1)

)
sin(πt)

(
u(x0 − t) + u(x0 + t)− 2w0

)
dt.

Thanks to the hypothesis (1.4.4), the function

t 7→ 1[0, 1
2

](t)
u(x0 − t) + u(x0 + t)− 2w0

sin(πt)

belongs to L1(R) and Riemann-Lebesgue Lemma 1.1.1 gives the conclusion.

Theorem 1.4.2. Let u : R −→ R be a 1-periodic L1
loc function.

(1) Let x0 ∈ [0, 1], w0 ∈ R. We define ωx0,w0(t) = |u(x0 + t) + u(x0 − t)− 2w0| and

we assume that ∫ 1/2

0

ωx0,w0(t)
dt

t
< +∞. (1.4.5)

Then the Fourier series (DN ? u)(x0) converges with limit w0. In particular, if

(1.4.5) is satisfied with w0 = u(x0), the Fourier series (DN ? u)(x0) converges with

limit u(x0). If u has a left and right limit at x0 and is such that (1.4.5) is satisfied

with w0 = 1
2

(
u(x0 + 0) + u(x0 − 0)

)
, the Fourier series (DN ? u)(x0) converges with

limit 1
2

(
u(x0 − 0) + u(x0 + 0)

)
.

(2) If the function u is Hölder-continuous11, the Fourier series (DN ?u)(x) converges

for all x ∈ R with limit u(x).

(3) If u has a left and right limit at each point and a left and right derivative at each

point, the Fourier series (DN ? u)(x) converges for all x ∈ R with limit

1

2

(
u(x− 0) + u(x+ 0)

)
.

Proof. (1) follows from Lemma 1.4.1; to obtain (2), we note that for a Hölder con-

tinuous function of index θ ∈]0, 1], we have for t ∈]0, 1/2]

t−1ωx,u(x)(t) ≤ Ctθ−1 ∈ L1([0, 1/2]).

(3) If u has a right-derivative at x0, it means that

u(x0 + t) = u(x0 + 0) + u′r(x0)t+ tε0(t), lim
t→0+

ε0(t) = 0.

As a consequence, for t ∈]0, 1/2], t−1|u(x0 + t)− u(x0 + 0)| ≤ |u′r(x0) + ε0(t)|. Since

limt→0+ ε0(t) = 0, there exists T0 ∈]0, 1/2] such that |ε0(t)| ≤ 1 for t ∈ [0, T0]. As a

result, we have∫ 1/2

0

t−1|u(x0 + t)− u(x0 + 0)|dt

≤
∫ T0

0

(|u′r(x0)|+ 1)dt+

∫ 1/2

T0

|u(x0 + t)− u(x0 + 0)|dtT−1
0 < +∞,

since u is also L1
loc. The integral

∫ 1/2

0
t−1|u(x0 − t) − u(x0 − 0)|dt is also finite and

the condition (1.4.5) holds with w0 = 1
2

(
u(x0 − 0) + u(x0 + 0)

)
. The proof of the

lemma is complete.

11 Hölder-continuity of index θ ∈]0, 1] means that ∃C > 0,∀t, s, |u(t)− u(s)| ≤ C|t− s|θ.
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Periodic distributions

We consider now a distribution u on Rn which is periodic with periods Zn. Let

χ ∈ C∞c (Rn;R+) such that χ = 1 on [0, 1]n. Then the function χ1 defined by

χ1(x) =
∑
k∈Zn

χ(x− k)

is C∞ periodic12 with periods Zn. Moreover since

Rn 3 x ∈
∏

1≤j≤n

[E(xj), E(xj) + 1[,

the bounded function χ1 is also bounded from below and such that 1 ≤ χ1(x). With

χ0 = χ/χ1, we have ∑
k∈Zn

χ0(x− k) = 1, χ0 ∈ C∞c (Rn).

For ϕ ∈ C∞c (Rn), we have from the periodicity of u

〈u, ϕ〉 =
∑
k∈Zn
〈u(x), ϕ(x)χ0(x− k)〉 =

∑
k∈Zn
〈u(x), ϕ(x+ k)χ0(x)〉,

where the sums are finite. Now if ϕ ∈ S (Rn), we have, since χ0 is compactly

supported (say in |x| ≤ R0),

|〈u(x), ϕ(x+ k)χ0(x)〉| ≤ C0 sup
|α|≤N0,|x|≤R0

|ϕ(α)(x+ k)|

≤ C0 sup
|α|≤N0,|x|≤R0

|(1 +R0 + |x+ k|)n+1ϕ(α)(x+ k)|(1 + |k|)−n−1

≤ p0(ϕ)(1 + |k|)−n−1,

where p0 is a semi-norm of ϕ (independent of k). As a result u is a tempered

distribution and we have for ϕ ∈ S (Rn), using Poisson’s summation formula,

〈u, ϕ〉 = 〈u(x),
∑
k∈Zn

ϕ(x+ k)χ0(x)︸ ︷︷ ︸
ψx(k)

〉 = 〈u(x),
∑
k∈Zn

ψ̂x(k)〉.

Now we see that ψ̂x(k) =
∫
Rn ϕ(x+ t)χ0(x)e−2iπktdt = χ0(x)e2iπkxϕ̂(k), so that

〈u, ϕ〉 =
∑
k∈Zn
〈u(x), χ0(x)e2iπkx〉ϕ̂(k),

which means

u(x) =
∑
k∈Zn
〈u(t), χ0(t)e2iπkt〉e−2iπkx =

∑
k∈Zn
〈u(t), χ0(t)e−2iπkt〉e2iπkx.

12Note that the sum is locally finite since for K compact subset of Rn, (K − k) ∩ suppχ0 = ∅
except for a finite subset of k ∈ Zn.
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Theorem 1.4.3. Let u be a periodic distribution on Rn with periods Zn. Then u is a

tempered distribution and if χ0 is a C∞c (Rn) function such that
∑

k∈Zn χ0(x−k) = 1,

we have

u =
∑
k∈Zn

ck(u)e2iπkx, (1.4.6)

û =
∑
k∈Zn

ck(u)δk, with ck(u) = 〈u(t), χ0(t)e−2iπkt〉, (1.4.7)

and convergence in S ′(Rn). If u is in Cm(Rn) with m > n, the previous formulas

hold with uniform convergence for (1.4.6) and

ck(u) =

∫
[0,1]n

u(t)e−2iπktdt. (1.4.8)

Proof. The first statements are already proven and the calculation of û is immediate.

If u belongs to L1
loc we can redo the calculations above choosing χ0 = 1[0,1]n and get

(1.4.6) with ck given by (1.4.8). Moreover, if u is in Cm with m > n, we get by

integration by parts that ck(u) is O(|k|−m) so that the series (1.4.6) is uniformly

converging.

Theorem 1.4.4. Let u be a periodic distribution on Rn with periods Zn. If u ∈ L2
loc

(i.e. u ∈ L2(Tn) with Tn = (R/Z)n), then

u(x) =
∑
k∈Zn

ck(u)e2iπkx, with ck(u) =

∫
[0,1]n

u(t)e−2iπktdt, (1.4.9)

and convergence in L2(Tn). Moreover ‖u‖2
L2(Tn) =

∑
k∈Zn |ck(u)|2. Conversely, if the

coefficients ck(u) defined by (1.4.7) are in `2(Zn), the distribution u is L2(Tn)

Proof. As said above the formula for the ck(u) follows from changing the choice of

χ0 to 1[0,1]n in the discussion preceding Theorem 1.4.3. Formula (1.4.6) gives the

convergence in S ′(Rn) to u. Now, since∫
[0,1]n

e2iπ(k−l)tdt = δk,l

we see from Theorem 1.4.3 that for u ∈ Cn+1(Tn),

〈u, u〉L2(Tn) =
∑
k∈Zn
|ck(u)|2.

As a consequence the mapping L2(Tn) 3 u 7→ (ck(u))k∈Zn ∈ `2(Zn) is isometric

with a range containing the dense subset `1(Zn) (if (ck(u))k∈Zn ∈ `1(Zn), u is a

continuous function); since the range is closed13, the mapping is onto and is an

isometric isomorphism from the open mapping theorem (see e.g. Theorem 2.1.10 in

[14]).

13If A : H1 → H2 is an isometric linear mapping between Hilbert spaces and (Auk) is a converging
sequence in H2, then by linearity and isometry, the sequence (uk) is a Cauchy sequence in H1, thus
converges. The continuity of A implies that if u = limk uk, we have

v = lim
k
Auk = Au, proving that the range of A is closed.
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1.5 Convolution of L2 functions

Let u, v ∈ L2(Rn). We consider
∫
u(y)v(x − y)dy = ω(u, v)(x), which makes sense

since
∫
|u(y)v(x− y)|dy ≤ ‖u‖L2‖v‖L2 < +∞, so that ω(u, v) ∈ L∞(Rn). Moreover

ω(u, v) ∈ C0(Rn) since, with (τhw)(x) = w(x− h), we have

ω(u, v)(x+ h)− ω(u, v)(x) =

∫
u(y)

(
(τ−hv)(x− y)− v(x− y)

)
dy,

and thus

|ω(u, v)(x+ h)− ω(u, v)(x)| ≤ ‖u‖L2(Rn)‖τ−hv − v‖L2(Rn),

and since14 limh→0 ‖τhv − v‖L2(Rn) = 0, we get the uniform continuity of ω(u, v).

The reader may check the chapter 6 in [15] to see that ω(u, v) is the convolution

of u with v and that ω(u, v) = ω(v, u) by a change of variables. However, we

have to pay attention to the fact that we have given earlier (Definition 1.2.21)

another definition of the convolution when u ∈ E ′(Rn), v ∈ D′(Rn), and we have to

verify that these definitions coincide when u ∈ L2
comp(Rn), v ∈ L2(Rn). In fact, for

u, v ∈ L2(Rn), ϕ ∈ C0
c (Rn) we have from the Fubini theorem∫
ω(u, v)(x)ϕ(x)dx =

∫∫
u(x)v(y)ϕ(x+ y)dxdy, (1.5.1)

since with w(x) =
∫
|v(y)||ϕ(x+ y)|dy = ω(|ϕ|, |v̌|)(x), we have15

‖ω(|ϕ|, |v̌|)‖L2 ≤ ‖v‖L2‖ϕ‖L1 ,∫∫
|u(x)||v(y)||ϕ(x+ y)|dxdy ≤ ‖u‖L2‖w‖L2 ≤ ‖u‖L2‖v‖L2‖ϕ‖L1 < +∞,

and (1.5.1) gives ω(u, v) = u ∗ v, where the convolution is taken in the distribution

sense. We have proven the first part of the following lemma.

Lemma 1.5.1.

(1) The mapping L2(Rn) × L2(Rn) 3 (u, v) 7→ u ∗ v ∈ C0(Rn) ∩ L∞(Rn) as defined

above is symmetric and

‖u ∗ v‖L∞(Rn) ≤ ‖u‖L2(Rn)‖v‖L2(Rn) (1.5.2)

14For v ∈ L2(Rn), ϕ ∈ C0
c (Rn), τhv − v = τh(v − ϕ) + τh(ϕ)− ϕ+ ϕ− v, and thus

‖τhv − v‖L2 ≤ 2‖v − ϕ‖L2 + ‖τh(ϕ)− ϕ‖L2 =⇒ lim sup
h→0

‖τhv − v‖L2 ≤ 2‖v − ϕ‖L2 ,

and since C0
c (Rn) is dense in L2(Rn) this implies limh→0 ‖τhv − v‖L2 = 0.

15This follows from Young’s inequality (see e.g. the Théorème 6.2.1 in [15]) but there is a simpler
argument: for w1 ∈ L1, w2 ∈ L2, then w1 ∗ w2 ∈ L2 with ‖w1 ∗ w2‖L2 ≤ ‖w1‖L1‖w2‖L2 : we have∫ ∣∣∣∣∫ w1(y)w2(x− y)dy

∣∣∣∣2 dx ≤ ∫ ‖|w1|1/2‖2L2

∫
|w1(y)||w2(x− y)|2dydx = ‖w1‖2L1‖w2‖2L2 .



1.6. SOBOLEV SPACES 29

and coincides with the convolution in the distribution sense when u (or v) is com-

pactly supported.

(2) For u, v ∈ L2(Rn), we have û ∗ v = ûv̂.

N.B. The formula (2) is already proven for u ∈ E ′(Rn), v ∈ D ′(Rn); here, we know

that both sides of the equality makes sense, since u ∗ v ∈ L∞(Rn) and thus is a

tempered distribution whose Fourier transform has a meaning. On the other hand,

ûv̂ is a product of L2 functions and thus is a L1 function.

Proof. We shall see that an approximation argument, the continuity property ex-

pressed by the inequality (1.5.2) will imply the result. For ϕ ∈ S (Rn), we have

with χ ∈ C∞c (Rn), equal to 1 near 0 and χk(x) = χ(x/k),

〈û ∗ v, ϕ〉S ′,S = 〈u ∗ v, ϕ̂〉S ′,S =

∫
(u ∗ v)(x)ϕ̂(x)dx = lim

k→+∞

∫
(χku ∗ v)(x)ϕ̂(x)dx,

since χku tends to u in L2(Rn) and thus∫
|
(
(χku− u) ∗ v

)
(x)ϕ̂(x)|dx ≤

∫
|ϕ̂(x)|dx‖χku− u‖L2‖v‖L2 .

On the other hand, we get, since χku, v ∈ L2(Rn),∫
(χku ∗ v)(x)ϕ̂(x)dx = 〈χ̂ku ∗ v, ϕ〉S ′,S = 〈χ̂kuv̂, ϕ〉S ′,S

=

∫
(Fχku)(x)(Fv)(x)ϕ(x)dx = 〈F (χku), ϕFv〉L2 −→

k→+∞

〈Fu, ϕFv〉L2 ,

a limit which is equal to
∫

(Fu)(x)(Fv)(x)ϕ(x)dx. This completes the proof of (2)

in the lemma.

1.6 Sobolev spaces

Definitions, Injections

For ξ ∈ Rn, we define

〈ξ〉 =
√

1 + |ξ|2. (1.6.1)

It is easy to see that this function as well as all functions ξ 7→ 〈ξ〉s when s ∈ R
are elements of the space of multipliers OM as given by the definition 1.2.20. In

particular, it means that for u ∈ S ′(Rn), the product 〈ξ〉sû(ξ) makes sense and

belongs to S ′(Rn).

Definition 1.6.1. Let s ∈ R. We define the Sobolev space Hs(Rn) as

Hs(Rn) = {u ∈ S ′(Rn), 〈ξ〉sû(ξ) ∈ L2(Rn)}. (1.6.2)



30 CHAPTER 1. BASIC FOURIER ANALYSIS

Proposition 1.6.2. Let s ∈ R. The space Hs(Rn) equipped with the scalar product

〈u, v〉Hs(Rn) =

∫
〈ξ〉2sû(ξ)v̂(ξ)dξ = 〈û(ξ)〈ξ〉s, v̂(ξ)〈ξ〉s〉L2(Rn), (1.6.3)

is a Hilbert space. The space S (Rn) is dense in Hs(Rn).

Proof. It is obvious that 〈u, v〉Hs(Rn) is a sesquilinear Hermitian and positive-definite

form: note in particular that 0 = 〈u, u〉Hs(Rn) = ‖û(ξ)〈ξ〉s‖2
L2(Rn) implies û(ξ)〈ξ〉s = 0

in L2(Rn) and thus in S ′(Rn), so that we can muliply that identity by the multiplier

〈ξ〉−s, get û = 0 and thus u = 0. On the other hand, if (uk)k≥1 is a Cauchy sequence

in Hs(Rn), the sequence (vk)k≥1, vk(ξ) = ûk(ξ)〈ξ〉s converges in L2(Rn). Let v ∈ L2

be its limit; the tempered distribution w defined by the product w(ξ) = 〈ξ〉−sv(ξ) is

such that u = ˇ̂w ∈ Hs(Rn) since 〈ξ〉sw(ξ) ∈ L2: we have

‖uk − u‖Hs = ‖〈ξ〉sûk(ξ)− 〈ξ〉sw(ξ)‖L2 = ‖vk − v‖L2 −→ 0,

and the result that Hs is complete. Next we see that, since ξ 7→ 〈ξ〉sû(ξ) is in

S (Rn) ⊂ L2(Rn), when u ∈ S (Rn), each Hs(Rn) contains S (Rn). To prove the

density of S (Rn), we note that if u ∈ (S (Rn))⊥s , i.e.

u ∈ Hs(Rn),∀ϕ ∈ S (Rn),

∫
〈ξ〉2sû(ξ)ϕ̂(ξ)dξ = 0,

this16 implies ∀ψ ∈ S (Rn), 〈û, ψ〉S ′(Rn),S (Rn) = 0, i.e. û = 0 as a tempered distri-

bution, thus u = 0.

Theorem 1.6.3. . Let s1 ≤ s2 be real numbers. Then Hs2(Rn) ⊂ Hs1(Rn) with a

continuous injection: for u ∈ Hs2(Rn) we have

‖u‖Hs1 (Rn) ≤ ‖u‖Hs2 (Rn). (1.6.4)

For a multi-index α ∈ Nn with |α| = m, the operator ∂αx is continuous from Hs(Rn)

into Hs−m(Rn).

Proof. The inequality (1.6.4) holds true for u ∈ S (Rn). Now if u ∈ Hs2 , u = limk uk
in Hs2 with uk ∈ S (Rn); from (1.6.4) on S (Rn), we see that (uk) is a Cauchy

sequence in Hs1 , thus converges to v ∈ Hs1 . Now the convergence in Hs implies the

weak-dual convergence in S ′(Rn), since for ϕ ∈ S (Rn), ∃ψ ∈ S (Rn) with

〈uk, ϕ〉S ′(Rn),S (Rn) = 〈ûk, ˇ̂ϕ〉S ′(Rn),S (Rn) = 〈〈ξ〉sûk(ξ), 〈ξ〉−s ˇ̂ϕ(ξ)︸ ︷︷ ︸
ψ̂(ξ)〈ξ〉s

〉L2 = 〈uk, ψ〉Hs .

As a result, the sequence (uk) converges in the weak-dual topology on S ′(Rn) with

limit u (convergence in Hs2) and limit v (convergence in Hs1), thus u = v and the

injection property. The inequality (1.6.4) follows from its version with u ∈ S (Rn)

and the density, and it implies the continuity. The last property follows from (1.2.9),

the density of S (Rn) in Hs(Rn) and the inequality for m ≥ 0, |ξ|m〈ξ〉s−m ≤ 〈ξ〉s.
16The mapping χ 7→ χ̃ given by χ̃(ξ) = 〈ξ〉sχ(ξ) is an isomorphism of S (Rn).
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Identification of (Hs)∗ with H−s

Let s ∈ R. We consider now the following pairing

Hs(Rn)×H−s(Rn) −→ C
(u, v) 7→ 〈〈ξ〉sû(ξ), 〈ξ〉−sv̂(ξ)〉L2(Rn) = T (u, v)

(1.6.5)

so that

|T (u, v)| ≤ ‖u‖Hs‖v‖H−s . (1.6.6)

We see that it gives a mapping

Φ : H−s(Rn) −→ (Hs(Rn))∗ (1.6.7)

defined by

〈Φ(v), u〉(Hs)∗,Hs = T (u, v), with ‖Φ(v)‖(Hs)∗ = sup
‖u‖Hs=1

|T (u, v)| = ‖v‖H−s ,

since the inequality sup‖u‖Hs=1 |T (u, v)| ≤ ‖v‖H−s follows from (1.6.6) and, for v 6= 0,

taking u such that û(ξ) = 〈ξ〉−2sv̂(ξ)‖v‖−1
H−s , we see that u ∈ Hs with ‖u‖Hs = 1

so that T (u, v) = ‖v‖H−s , providing the equality. The mapping Φ is isometric (thus

injective) and to prove that it is an isometric isomorphism, using the open mapping

theorem, it is enough to prove that Φ is onto. Let us take L0 ∈ (Hs)∗: according to

the Riesz representation theorem, there exists u0 ∈ Hs such that

〈L0, u〉(Hs)∗,Hs = 〈u, u0〉Hs = 〈〈ξ〉sû(ξ), 〈ξ〉sû0(ξ)〉L2 = 〈〈ξ〉sû(ξ), 〈ξ〉−s 〈ξ〉2sû0(ξ)︸ ︷︷ ︸
v̂0(ξ)

〉L2 ,

with v0 ∈ H−s since 〈ξ〉−sv̂0(ξ) = 〈ξ〉sû0(ξ) ∈ L2, and this gives

〈L0, u〉(Hs)∗,Hs = T (u, v0) = Φ(v0),

and the surjectivity of Φ0. We have proven the following theorem

Theorem 1.6.4. The pairing (1.6.5) gives a canonical isometric isomorphism Φ

(1.6.7) from H−s(Rn) onto the dual of Hs(Rn).

Continuous functions and Sobolev spaces

Theorem 1.6.5. Let m ∈ N. Then

Hm(Rn) = {u ∈ D ′(Rn),∀α ∈ Nn such that |α| ≤ m, ∂αxu ∈ L2(Rn)}. (1.6.8)

Moreover, Hm(Rn) is the completion of C∞c (Rn) for the norm( ∑
|α|≤m

‖∂αxu‖2
L2(Rn)

)1/2
. (1.6.9)
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Proof. Taking u ∈ Hm(Rn) in the sense of the definition 1.6.1, we get that u ∈
S ′(Rn), 〈ξ〉mû(ξ) ∈ L2(Rn) and as a consequence û ∈ L2

loc, D̂
α
xu = ξαû(ξ) belongs

to L2(Rn) if |α| ≤ m since∫
|ξαû(ξ)|2dξ ≤

∫
〈ξ〉2m|û(ξ)|2dξ < +∞.

Conversely, if u satisfies (1.6.8), u belongs to L2(Rn) ⊂ S ′(Rn), and ξαû(ξ) is in

L2(Rn) for |α| ≤ m. We have also from Hölder’s inequality

〈ξ〉2m = (1 +
∑

1≤j≤n

ξ2
j )
m ≤

(
1 +

∑
1≤j≤n

ξ2m
j

)
(n+ 1)m−1, (1.6.10)

so that
∫
〈ξ〉2m|û(ξ)|2dξ ≤

(
‖u‖2

L2(Rn) +
∑

1≤j≤n ‖Dm
j u‖2

L2(Rn)

)
(n + 1)m−1 < +∞.

We have thus proven the first statement of the theorem and also that the Hilbertian

norms of Hm(Rn) and (1.6.9) are equivalent. We have already seen in the proposition

1.6.2 that S (Rn) is dense in Hm(Rn), with a continuous injection since for ϕ ∈
S (Rn),

‖ϕ‖2
Hs =

∫
〈ξ〉2s+n+1|ϕ̂(ξ)|2〈ξ〉−n−1dξ ≤ C(n)ps(ϕ), (1.6.11)

where ps is a semi-norm on S (Rn).

Lemma 1.6.6. C∞c (Rn) is dense in S (Rn).

Proof of the lemma. Let ϕ ∈ S (Rn) and χ ∈ C∞c (Rn; [0, 1]) equal to 1 on the unit

ball of Rn, the sequence of functions ϕk ∈ C∞c (Rn) defined by ϕk(x) = χ(x/k)ϕ(x)

has limit ϕ in S (Rn): we calculate with the standard Leibniz formula

1

α!
(∂αxϕk)(x) =

∑
β+γ=α

1

β!γ!
k−|β|(∂βxχ)(x/k)(∂γxϕ)(x)

so that

|xλ
(
∂αx (ϕk − ϕ)

)
(x)|

≤ |xλ
∑

β+γ=α
|β|≥1

α!

β!γ!
k−|β|(∂βxχ)(x/k)(∂γxϕ)(x)|+ |xλ (χ(x/k)− 1)︸ ︷︷ ︸

|x|≥k
on its support

(∂αxϕ)(x)|

and

sup
x∈Rn
|xλ
(
∂αx (ϕk − ϕ)

)
(x)| ≤ k−1p(ϕ)C(χ, α) +

2

k + 1
sup
|x|≥k
|(1 + |x|)xλ(∂αxϕ)(x)|,

proving that the sequence (ϕk) converges to ϕ in S (Rn) and the lemma.

The inequality (1.6.11) and the lemma give the density of C∞c (Rn) in Hs(Rn): for

ε > 0 and u ∈ Hs, there exists ϕ ∈ S (Rn) such that ‖u−ϕ‖Hs < ε/2 and for that ϕ

there exists ψ ∈ C∞c (Rn) such that ps(ϕ− ψ) < ε
2C(n)+1

, implying ‖ϕ− ψ‖Hs < ε/2

and then ‖u− ψ‖Hs < ε.
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If f ∈ OM(Rn) (see the definition 1.2.20), we define the operator, called a Fourier

multiplier, f(D) on S ′(Rn) by f̂(D)u = f(ξ)û(ξ) and we note that f(D) is an endo-

morphism of S (Rn). The notation is consistent with the fact that for a polynomial

P on Rn, the differential operator P (D) is indeed the Fourier multiplier P (D).

Lemma 1.6.7. Let s, t ∈ R. Then the Fourier multiplier 〈D〉s is an isomorphism

from Hs+t(Rn) onto H t(Rn) whose inverse is 〈D〉−s. If f ∈ OM is bounded, then

f(D) is an endomorphism of Hs(Rn). If m ∈ N, H−m(Rn) is the set of linear

combinations of derivatives of order ≤ m of functions of L2(Rn).

Proof. We assume first t = 0; we have indeed for u ∈ Hs, ‖u‖Hs = ‖〈D〉su‖L2 , and

for u ∈ L2, ‖u‖L2 = ‖〈D〉−su‖Hs , with 〈D〉s〈D〉−s = 〈D〉−s〈D〉s = IdS ′(Rn) . If t 6= 0,

we use the identity 〈D〉s = 〈D〉−t〈D〉s+t, (valid on S ′(Rn)), so that

Hs+t 〈D〉
s+t

−−−−→
≈

H0 〈D〉
−t

−−−→
≈

H t.

Now if f ∈ OM is bounded, f(D) is bounded on H0 and the identity f(D) =

〈D〉−sf(D)〈D〉s (valid on S ′(Rn)) proves the boundedness on Hs. For the second

part, we consider for a multi-index α with |α| ≤ m, the Fourier multiplier Dα is

bounded from L2 into H−m from the theorem 1.6.3. With χj(ξ) = ξj〈ξ〉−1, the

Fourier multiplier

(1 +
∑

1≤j≤n

χj(D)Dj)
m

is an isomorphism from H0 onto H−m. This implies that for u ∈ H−m,∃v ∈ L2 such

that

u = (1 +
∑

1≤j≤n

χj(D)Dj)
mv =

∑
|α|≤m

Dαψα(D)v

with each ψα(D) bounded on L2 as a product of χj(D).

Theorem 1.6.8. Let s > n/2. Then Hs(Rn) ⊂ C0
(0)(Rn) with continuous injection.

Proof. For u ∈ Hs(Rn), we have û ∈ L2(Rn) and û(ξ) = 〈ξ〉−s〈ξ〉sû(ξ) with 〈ξ〉−s ∈
L2(Rn), 〈ξ〉sû(ξ) ∈ L2(Rn) so that û ∈ L1(Rn) and we can apply the Riemann-

Lebesgue Lemma . The injection is continuous since (1.2.21) applied to the L1

function û gives

‖u‖L∞ ≤ ‖û‖L1 ≤
(∫
〈ξ〉−2sdξ

)1/2(∫
〈ξ〉2s|û(ξ)|2dξ

)1/2

= c(s, n)‖u‖Hs . (1.6.12)



34 CHAPTER 1. BASIC FOURIER ANALYSIS



Chapter 2

Littlewood-Paley decomposition,
Oscillatory integrals

2.1 The Littlewood-Paley decomposition

Let ϕ0 ∈ C∞c (Rn), 1 ≥ ϕ0(ξ) ≥ 0 such that

ϕ0(ξ) = 1 if |ξ| ≤ 1 and ϕ0(ξ) = 0 if |ξ| ≥ 2, ϕ0 radial decreasing of |ξ|.

We set

ϕ(ξ) = ϕ0(ξ)− ϕ0(2ξ).

The function ϕ is supported in the ring 1/2 ≤ |ξ| ≤ 2 : if |ξ| ≥ 2, ϕ(ξ) = 0 and if

|ξ| ≤ 1/2, ϕ0(ξ) = 1 = ϕ0(2ξ) so that ϕ(ξ) = 0. We have also 0 ≤ ϕ(ξ) ≤ 1. We

define, for a positive integer ν, ϕν to be

ϕν(ξ) = ϕ(ξ/2ν)

which is supported in the ring {2ν−1 ≤ |ξ| ≤ 2ν+1}. We have then

ϕν(ξ)ϕµ(ξ) = 0 if |ν − µ| ≥ 2.

We set, for ν ∈ N,

Sν(ξ) =
∑

0≤µ≤ν

ϕµ(ξ).

and we have

Sν(ξ) = ϕ0(ξ) +
∑

1≤µ≤ν

ϕ0(ξ/2µ)− ϕ0(ξ/2µ−1),

so that

Sν(ξ) = ϕ0(ξ/2ν) = 1 if |ξ| ≤ 2ν and 0 if |ξ| ≥ 2ν+1.

Consequently, we obtain

1 =
+∞∑
µ=0

ϕµ(ξ).

35
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Moreover, we get (with ϕ−1 ≡ 0)

1 =
∑
µ,ν

ϕµ(ξ)ϕν(ξ) =
∑
µ≥0

ϕµϕµ−1 + ϕ2
µ + ϕµϕµ+1

and thus

1/3 ≤
+∞∑
µ=0

ϕµ(ξ)2 ≤ 1,

the last inequality follows from 0 ≤ ϕµ(ξ) ≤ 1. We’ll use that ϕν(Dx) is the

convolution with ϕ̂(2νx)2νn.

Theorem 2.1.1. Let s ∈ R. Then there exists Cs > cs > 0 such that

∀u ∈ Hs(Rn), cs‖u‖2
Hs ≤

+∞∑
µ=0

‖ϕµ(Dx)u‖2
L2(Rn)2

2µs ≤ Cs‖u‖2
Hs .

Let ρ ∈ (0, 1). We define the space

Cρ(Rn) = {u ∈ L∞(Rn), sup
x′ 6=x′′

|u(x′)− u(x′′)|
|x′ − x′′|ρ

< +∞}, (2.1.1)

‖u‖Cρ(Rn) = ‖u‖L∞(Rn) + sup
x′ 6=x′′

|u(x′)− u(x′′)|
|x′ − x′′|ρ

. (2.1.2)

For ρ ∈ (0, 1), Cρ(Rn) equipped with the above norm is a Banach space; moreover,

there exists C > c > 0 such that

∀u ∈ Cρ(Rn), c‖u‖Cρ(Rn) ≤ sup
µ≥0
‖ϕµ(Dx)u‖L∞(Rn)2

µρ ≤ C‖u‖Cρ(Rn).

Proof. Defining the Besov space Bs
p,q(Rn) for s ∈ R, p, q ≥ 1 by

Bs
p,q(Rn) = {u ∈ S ′(Rn),

(
2νs‖ϕν(D)u‖Lp(Rn)

)
ν≥0
∈ `q(N)}, (2.1.3)

the theorem is stating that

∀s ∈ R, Bs
2,2(Rn) = Hs(Rn), ∀ρ ∈ (0, 1), Bρ

∞,∞(Rn) = Cρ(Rn).

The first statement is quite obvious since for ξ ∈ suppϕ0, we have 1 ≤ 〈ξ〉 ≤ 51/2,

and for

ξ ∈ suppϕν , ν ≥ 1, 2−1 ≤ 2−ν(1 + 22ν−2)1/2 ≤ 〈ξ〉
2ν
≤ 2−ν(1 + 22ν+2)1/2 ≤ 51/2,

so that

1

23|s|3
〈ξ〉2s ≤ 2−3|s|

∑
ν≥0

〈ξ〉2sϕν(ξ)2

≤
∑
ν≥0

22νsϕν(ξ)
2 ≤ 23|s|

∑
ν≥0

〈ξ〉2sϕν(ξ)2 ≤ 23|s|〈ξ〉2s.
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Let us now assume that u ∈ Cρ(Rn), i.e. u is a continuous bounded function on Rn

such that ‖u‖Λρ < +∞. Then, with ‖u‖Cρ = ‖u‖L∞ + ‖u‖Λρ , we have

‖ϕν(D)u‖L∞(Rn) = ‖ϕ̂(2ν ·)2νn ∗ u‖L∞(Rn) ≤ 2−νρ‖u‖CρC(ϕ0),

since it is obvious for ν = 0 and for ν ≥ 1, since ϕ(0) = 0 (thus
∫
ϕ̂ = 0), we have

(ϕ̂(2ν ·)2νn ∗ u)(x) =

∫
ϕ̂(2νy)2νn

(
u(x− y)− u(x)

)
dy,

which implies ‖ϕν(D)u‖L∞(Rn) ≤
∫
|ϕ̂(2νy)|2νn‖u‖Λρ|y|ρdy = C(ϕ0)‖u‖Λρ2

−νρ. Con-

versely if u ∈ Bρ
∞,∞, then u =

∑
ν≥0 ϕν(D)u and

‖u‖L∞ ≤
∑
ν≥0

‖ϕν(D)u‖L∞ ≤
∑
ν≥0

2−νρ‖u‖Bρ∞,∞ ,

so that u ∈ L∞. Moreover for x, h ∈ Rn, we have

|u(x+ h)− u(x)| ≤
∑
ν

|h|≤2−ν

|(ϕν(D)u)(x+ h)− (ϕν(D)u)(x)|

︸ ︷︷ ︸
=A(h)

+2
∑
ν

|h|>2−ν

2−νρ

︸ ︷︷ ︸
≤C|h|ρ

‖u‖Bρ∞,∞ .

On the other hand, with ψ ∈ C∞c (Rn), ψ = 1 on the support of ϕ, ψ = 0 near 0, so

that with ν ≥ 1, ϕν(ξ) = ϕν(ξ)ψν(ξ) with ψν(ξ) = ψ(ξ2−ν), ψ0 ∈ C∞c (Rn), ψ0 = 1

on the support of ϕ0, we have

A(h) ≤
∑
ν

|h|≤2−ν

2π|h|‖Dϕν(D)ψν(D)u‖L∞

≤ 2π|h|
∑
ν

|h|≤2−ν

2ν‖2−νDψν(D)ϕν(D)u‖L∞

≤ 2π|h|
∑
1≤ν
|h|≤2−ν

2ν‖ϕν(D)u‖L∞

≤ 2π|h|
∑
1≤ν
|h|≤2−ν

2ν(1−ρ)‖u‖Bρ∞,∞

≤ C‖u‖Bρ∞,∞|h|
(
|h|−1

)1−ρ
,

so that |u(x+ h)− u(x)| ≤ C ′|h|ρ‖u‖Bρ∞,∞ and the sought result u ∈ Cρ.

Theorem 2.1.2. The space B1
∞,∞(Rn) given by (2.1.3) has the following character-

ization: u ∈ B1
∞,∞(Rn) if and only if u ∈ L∞(Rn) and

|||u|||1 = sup
x∈Rn,06=h∈Rn

|u(x+ h) + u(x− h)− 2u(x)||h|−1 < +∞. (2.1.4)

There exists C > c > 0 such that, ∀u ∈ B1
∞,∞(Rn),

c‖u‖B1
∞,∞(Rn) ≤ ‖u‖L∞(Rn) + |||u|||1 ≤ C‖u‖B1

∞,∞(Rn). (2.1.5)
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Moreover, if u ∈ B1
∞,∞(Rn), ∃C > 0 such that

∀x ∈ Rn, ∀h ∈ Rn, |u(x+ h)− u(x)| ≤ C|h|
(
1 + ln(|h|−1)

)
. (2.1.6)

We define Lip(Rn) = {u ∈ L∞(Rn),∇u ∈ L∞(Rn)}; this is a Banach space for the

norm ‖u‖L∞(Rn) + ‖∇u‖L∞(Rn). The inclusion Lip(Rn) ⊂ B1
∞,∞ is continuous and

strict.

Proof. Let us consider u ∈ L∞(Rn) such that |||u|||1 < +∞. Then we have

‖ϕν(D)u‖L∞(Rn) = ‖ϕ̂(2ν ·)2νn ∗ u‖L∞(Rn) ≤ 2−ν(‖u‖L∞ + |||u|||1)C(ϕ0),

since it is obvious for ν = 0 and for ν ≥ 1, since ϕ(0) = 0 (thus
∫
ϕ̂ = 0), we have,

using that ϕ is even,

2(ϕ̂(2ν ·)2νn ∗ u)(x) =

∫
ϕ̂(2νy)2νn

(
u(x− y) + u(x+ y)− 2u(x)

)
dy,

which implies

2‖ϕν(D)u‖L∞(Rn) ≤
∫
|ϕ̂(2νy)|2νn|||u|||1|y|dy = 2C(ϕ0)|||u|||12−ν ,

and the first inequality in (2.1.5). Conversely if u ∈ B1
∞,∞, then u =

∑
ν≥0 ϕν(D)u

and

‖u‖L∞ ≤
∑
ν≥0

‖ϕν(D)u‖L∞ ≤
∑
ν≥0

2−ν‖u‖B1
∞,∞ = 2‖u‖B1

∞,∞ ,

so that u ∈ L∞. Moreover for x, h ∈ Rn, we have

|u(x+ h) + u(x− h)− 2u(x)| ≤∑
ν

|h|≤2−ν

|(ϕν(D)u)(x+ h) + (ϕν(D)u)(x− h)− 2(ϕν(D)u)(x)|

︸ ︷︷ ︸
=A(h)

+ 4
∑
ν

|h|>2−ν

2−ν

︸ ︷︷ ︸
≤C|h|

‖u‖B1
∞,∞ .

We set vν(x) = (ϕν(D))u(x) and we note that vν is a C∞ function; we have

vν(x+ h) = vν(x) + v′ν(x)h+

∫ 1

0

(1− θ)v′′ν(x+ θh)dθh2

and thus vν(x + h) + vν(x− h)− 2vν(x) =
∫ 1

−1
(1− |θ|)v′′ν(x + θh)dθh2. As a result,

we have

A(h) ≤ |h|24π2
∑
ν

|h|≤2−ν

‖D2ϕν(D)u‖L∞ .
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We consider ψ ∈ C∞c (Rn), ψ = 1 on the support of ϕ, ψ = 0 near 0, and ψ even,

so that with ν ≥ 1, ϕν(ξ) = ϕν(ξ)ψν(ξ) with ψν(ξ) = ψ(ξ2−ν) and ψ0 ∈ C∞c (Rn),

ψ0 = 1 on the support of ϕ0. We have

A(h) ≤ |h|24π2
∑
ν

|h|≤2−ν

‖D2ϕν(D)u‖L∞ = |h|24π2
∑
ν

|h|≤2−ν

‖D2ϕν(D)ψν(D)u‖L∞

= |h|24π2
∑
ν

|h|≤2−ν

22ν‖2−2νD2ψν(D)ϕν(D)u‖L∞

≤ C|h|24π2
∑
ν

|h|≤2−ν

22ν‖ϕν(D)u‖L∞

≤ C|h|24π2‖u‖B1
∞,∞

∑
ν

|h|≤2−ν

2ν ≤ C1|h|2‖u‖B1
∞,∞|h|

−1,

so that

|u(x+ h) + u(x− h)− 2u(x)| ≤ C ′|h|‖u‖B1
∞,∞ ,

and the second inequality in (2.1.5). Let us consider now u ∈ B1
∞,∞. Moreover for

x, h ∈ Rn, with h 6= 0, we have

|u(x+ h)− u(x)| ≤
∑
ν

|h|≤2−ν

|(ϕν(D)u)(x+ h)− (ϕν(D)u)(x)|+ 2
∑
ν

|h|>2−ν

2−ν

︸ ︷︷ ︸
≤C|h|

‖u‖B1
∞,∞ .

With the same ψ as above, we have

|u(x+ h)− u(x)| ≤ |h|C1‖u‖B1
∞,∞ +

∑
ν

|h|≤2−ν

|h|2π‖Dψν(D)ϕν(D)u‖L∞

≤ |h|C1‖u‖B1
∞,∞ +

∑
ν

|h|≤2−ν

|h|2π2ν‖2−νDψν(D)ϕν(D)u‖L∞

≤ |h|C1‖u‖B1
∞,∞ + |h|C2

∑
ν

|h|≤2−ν

2ν‖ϕν(D)u‖L∞

≤ |h|C1‖u‖B1
∞,∞ + |h|C2‖u‖B1

∞,∞ Card{ν ∈ N, 2ν ≤ |h|−1}︸ ︷︷ ︸
≤Log2(|h|−1)

,

which gives (2.1.6). We consider now u ∈ Lip(Rn). We have ‖ϕ0(D)u‖L∞ ≤ C‖u‖L∞
and for ν ≥ 1,

(ϕν(D)u)(x) = (ϕ̂(2ν ·)2νn ∗ u)(x) =

∫
ϕ̂(2νy)2νn

(
u(x− y)− u(x)

)
dy.

We have also in the distribution sense

u(x− y)− u(x) =

∫ 1

0

u′(x− θy)dθy =⇒ |u(x− y)− u(x)| ≤ ‖u′‖L∞|y|,
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so that ‖ϕν(D)u‖L∞ ≤
∫
|ϕ(2νy)|2νn|y|dy‖u′‖L∞ ≤ C‖u′‖L∞2−ν , proving the con-

tinuous inclusion Lip(Rn) ⊂ B1
∞,∞(Rn). Let us prove finally that this inclusion is

strict: we consider

T (x) =

∫ +∞

1

e2iπxξξ−2dξ.

The Fourier transform of T belongs to L1(R) and thus T is a continuous bounded

function. We have also

(ϕν(D)T )(x) =

∫ +∞

1

e2iπxξξ−2ϕν(ξ)dξ.

and for ν ≥ 1,

(ϕν(D)T )(x) =

∫ +∞

1

e2iπxξξ−2ϕ(2−νξ)dξ = 2−2ν

∫ +∞

2−ν
e2iπx2νξξ−2ϕ(ξ)dξ2ν .

Since the function ϕ is (non-negative and) supported in 1/2 ≤ |ξ| ≤ 2, we get for

ν ≥ 1 that

2ν(ϕν(D)T )(x) =

∫ 2

1/2

e2iπx2νξξ−2ϕ(ξ)dξ

=⇒ ‖2νϕν(D)T‖L∞(R) ≤
∫ 2

1/2

ξ−2ϕ(ξ)dξ < +∞.

On the other hand

(ϕ0(D)T )(x) =

∫ +∞

1

e2iπxξξ−2ϕ0(ξ)dξ,

is a bounded function ; we have proven that T ∈ B1
∞,∞(R). Let us prove that T is

not in Lip(Rn). We calculate for ε > 0,

〈T ′, ε−1e−πε
−2x2〉S ′(R),S (R)

= 2iπ〈ξT̂ , e−πε2ξ2〉S ′(R),S (R) = 2iπ

∫ +∞

1

ξ−1e−πε
2ξ2dξ−→

ε→0+

+∞,

say from the Fatou theorem, and if T ′ were a bounded function, we would have

|〈T ′, ε−1e−πε
−2x2〉| ≤ ‖T ′‖L∞(R)‖ε−1e−πε

−2x2‖L1(R) = ‖T ′‖L∞(R) < +∞.

The proof of the theorem is complete.

2.2 Paley – Wiener’s theorem

Lemma 2.2.1. For u ∈ S ′(Rn) the following properties are equivalent.

(i) u ∈ C∞c (Rn), suppu ⊂ {x ∈ Rn, |x| ≤ R}.
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(ii) û can be extended to Cn as an entire function such that

∀N ∈ N,∃CN > 0, |û(ζ)| ≤ CN(1 + |ζ|)−Ne2πR| Im ζ|. (2.2.1)

Proof. Let us assume (i). Using the notation Cn 3 ζ = ξ+ iη, ξ, η ∈ Rn, the Fourier

transform of u can be extended to Cn as an entire function, simply with the formula

û(ξ + iη) =

∫
e−2iπx·(ξ+iη)u(x)dx (note x · (ξ + iη) = x · ξ + ix · η).

As a result, for a polynomial P on Rn, we have (P̂ (D)u)(ζ) = P (ζ)û(ζ) and thus

|P (ζ)û(ζ)| ≤ ‖P (D)u‖L1(Rn)e
2πR| Im ζ|,

implying for all multi-indices α ∈ Nn, |ζαû(ζ)| ≤ ‖Dαu‖L1(Rn)e
2πR| Im ζ|, i.e.

|ζ1|α1 . . . |ζn|αn|û(ζ)| ≤ ‖Dαu‖L1(Rn)e
2πR| Im ζ|.

As a consequence, for m ∈ 2N, we have with ‖u‖Wm,1 =
∑
|α|≤m ‖Dαu‖L1(Rn),

(1 + |ζ|2)m/2|û(ζ)| ≤ Cm‖u‖Wm,1e2πR| Im ζ| =⇒ (ii).

Conversely, if (ii) holds, the function û is C∞ on Rn and for all N ∈ N, |û(ξ)| ≤
CN〈ξ〉−N . Thus û ∈ L1(Rn) and one can apply the theorem 1.2.15, so that u(x) =∫
Rn e

2iπx·ξû(ξ)dξ. Now we have also for all η ∈ Rn and x ∈ Rn,∫
Rn
e2iπx·ξû(ξ)dξ =

∫
Rn
e2iπx·(ξ+iη)û(ξ + iη)dξ,

where both sides make sense thanks to the estimate (2.2.1), which also allow to shift

integration of the entire function ζ 7→ û(ζ)e2iπx·ζ from Rn to Rn+iη. Now if |x| > R,

we obtain for all η ∈ Rn,

|u(x)| ≤ CNe
2π(R|η|−x·η)

∫
Rn

(1 + |ξ|)−Ndξ

and in particular choosing η = λx/|x|, N = n + 1, we get for all λ > 0, |u(x)| ≤
C ′ne

2π(Rλ−λ|x|), so that for |x| > R we obtain u(x) = 0 and (i).

Lemma 2.2.2. Let Ω be an open set of Rn, x0 ∈ Ω and u ∈ D ′(Ω). The following

properties are equivalent.

(i) x0 /∈ singsuppu,

(ii) ∃V0 ∈ Vx0 such that for all χ ∈ C∞c (V0), for all N ∈ N, ∃C such that

|χ̂u(ξ)| ≤ C(1 + |ξ|)−N .

(iii) ∃V0 ∈ Vx0, ∃χ0 ∈ C∞c (V0), such that χ0(x0) 6= 0, for all N ∈ N, ∃C such that

|χ̂0u(ξ)| ≤ C(1 + |ξ|)−N .
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Proof. If (i) holds, ∃V0 ∈ Vx0 such that for all χ ∈ C∞c (V0), χu ∈ C∞c (Rn) ⊂ S (Rn)

and thus χ̂u ∈ S (Rn), implying (ii). If (ii) holds, then it is the case of the weaker

(iii); we take χ0 ∈ C∞c (V0), different from 0 on a compact neighborhood V1 of x0,

and we get χ̂0u ∈ L1(Rn), so that

(χ0u)(x) =

∫
e2iπx·ξχ̂0u(ξ)dξ

and the estimate of (iii) gives χ0u ∈ C∞c (Rn) and u|V1 = 1
χ0|V1

(χ0u)|V1 ∈ C∞(V1),

implying (i).

Lemma 2.2.3. Let Ω be an open set of Rn, x0 ∈ Ω and u ∈ D ′(Ω). The following

properties are equivalent.

(i) x0 /∈ singsuppu,

(ii) ∃V0 ∈ Vx0 such that for all χ ∈ C∞c (V0), for all N ∈ N, ∃C such that

|χ̂u(ξ)| ≤ C(1 + |ξ|)−N .

(iii) ∃V0 ∈ Vx0, ∃χ0 ∈ C∞c (V0), such that χ0(x0) 6= 0, for all N ∈ N, ∃C such that

|χ̂0u(ξ)| ≤ C(1 + |ξ|)−N .

Proof. If (i) holds, ∃V0 ∈ Vx0 such that for all χ ∈ C∞c (V0), χu ∈ C∞c (Rn) ⊂ S (Rn)

and thus χ̂u ∈ S (Rn), implying (ii). If (ii) holds, then it is the case of the weaker

(iii); we take χ0 ∈ C∞c (V0), different from 0 on a compact neighborhood V1 of x0,

and we get χ̂0u ∈ L1(Rn), so that

(χ0u)(x) =

∫
e2iπx·ξχ̂0u(ξ)dξ

and the estimate of (iii) gives χ0u ∈ C∞c (Rn) and u|V1 = 1
χ0|V1

(χ0u)|V1 ∈ C∞(V1),

implying (i).

Lemma 2.2.4. For u ∈ S ′(Rn) the following properties are equivalent.

(i) u ∈ E ′(Rn), suppu ⊂ {x ∈ Rn, |x| ≤ R0}.

(ii) û can be extended to Cn as an entire function such that

|û(ζ)| ≤ C0(1 + |ζ|)N0e2πR0| Im ζ|. (2.2.2)

Proof. If (i) holds, we get that û is the entire function û(ζ) = 〈u(x), e−2iπx·ζ〉E ′,E .
Moreover, since u is compactly supported in B̄(0, R0), we have for all ε > 0 and

χ0 ∈ C∞c (Rn) equal to 1 on B(0, 1), supported in B(0, R0+2ε
R0+ε

), such that ‖χ(β)
0 ‖L∞ ≤

c(β)ε−|β|,

û(ζ) = 〈u(x), χ0

( x

R0 + ε

)
e−2iπx·ζ〉E ′,E .
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This implies

|û(ζ)| ≤ C0 sup
|x|≤R0+2ε
|α|+|β|≤N0

|e−2iπx·ζζα(∂βχ0)
( x

R0 + ε

)
(R0 + ε)−|β||c(β)

and thus

∀ε > 0, |û(ζ)| ≤ C0e
2π(R0+2ε)| Im ζ| sup

|α|+|β|≤N0

|ζα(R0 + ε)−|β||ε−|β|c(β).

We choose now, assuming R0 > 0 (otherwise the distribution u is supported at the

origin and is a linear combination of derivatives of the Dirac mass) ε = R0

1+|ζ| . We get

then

|û(ζ)| ≤ C0e
2πR0| Im ζ|e4π

R0| Im ζ|
1+|ζ| (1 + |ζ|)N0 max

|β|≤N0

c(β)R
−2|β|
0 =⇒ (ii).

Conversely, if (ii) holds, we consider a standard mollifier ρε given with ε > 0 by

ρε(x) = ε−nρ(x/ε), ρ ∈ C∞c (Rn),
∫
ρ = 1, ρ supported in the unit ball. We have

û ∗ ρε = ûρ̂(ε·) and the function ûρ̂(ε·) is entire with

|û(ζ)ρ̂(εζ)| ≤ CN,ε(1 + |ζ|)−Ne2π(R0+ε)| Im ζ|.

From the first lemma 2.2.1, we have supp(u ∗ ρε) ⊂ B̄(0, R0 + ε). For ϕ ∈ C∞c (Rn)

we have

〈u ∗ ρε, ϕ〉 = 〈u, ρ̌ε ∗ ϕ〉−→
ε→0+

〈u, ϕ〉,

and thus if suppϕ ⊂
(
B̄(0, R0 + ε)

)c
, we get 〈u ∗ ρε, ϕ〉 = 0 = 〈u, ϕ〉, so that

suppu ⊂ B̄(0, R0 + ε) for all ε > 0 and eventually

suppu ⊂ ∩ε>0B̄(0, R0 + ε) = B̄(0, R0),

yielding the conclusion.

Remark 2.2.5. Let us recall the expression of E+, fundamental solution of the wave

equation:

Ê+

x
(t, ξ) = cH(t)

sin
(
2πct|ξ|

)
2π|ξ|

= c2H(t)

∫ t

0

cos(2πcs|ξ|)ds. (2.2.3)

Since cos(2πcs|ξ|) =
∑

k≥0
(−1)k(2πcs)2k

(2k)!
(
∑

1≤j≤d ξ
2
j )
k the function Ê(t, ·) is entire on

Cd and we have for ζ ∈ Cd, using the notation ζ2 =
∑

1≤j≤d ζ
2
j ,

Ê+

x
(t, ζ) = c2H(t)

∫ t

0

∑
k≥0

(−1)k(2πcs)2k

(2k)!
(ζ2)kds = c2H(t)

∫ t

0

cos(2πcs(ζ2)1/2)ds.

We have also for z ∈ C

2| cos z|2 = 2(cos z)(cos z̄) = cos(2 Re z) + cos(2i Im z) ≤ 1 + e2| Im z| ≤ 2e2| Im z|,
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and as a consequence

for 0 ≤ s ≤ t, | cos(2πcs(ζ2)1/2)| ≤ exp 2πct| Im
(
(ζ2)1/2

)
|. (2.2.4)

We note that with ζ = ξ + iη, ξ, η ∈ Rn,

ζ2 = |ξ|2 − |η|2 + 2i〈ξ, η〉 = |ξ|2 − |η|2 + 2iσ|ξ||η|, with σ ∈ R, |σ| ≤ 1.

So if z = a+ ib ∈ C, a, b ∈ R is such that z2 = ζ2, we have

a2 − b2 = |ξ|2 − |η|2, |ab| ≤ |ξ||η|.

If we had |b| > |η|, that would imply from the first equation that |a| > |ξ| and

|ab| > |ξ||η|, which contradicts the second equation; as a result we have |b| ≤ |η| and

| Im
(
(ζ2)1/2

)
| ≤ | Im ζ|, implying

|Ê+

x
(t, ζ)| ≤ ctH(t) exp 2πct| Im ζ|,

which gives from the Paley-Wiener theorem 2.2.4 that

suppE+(t, ·) ⊂ {x ∈ Rn, |x| ≤ ct}. (2.2.5)

2.3 Stationary phase method

Preliminary remarks

It is well-known that∫
R

sinx

x
dx = π, although

∫
R

∣∣∣∣sinxx
∣∣∣∣ dx = +∞. (2.3.1)

To get this, we integrate the function eiz/z on the following path: the segment [ε, R],

the half-circle (R, iR,−R), the segment [−R,−ε], the half-circle (−ε, iε, ε). We get

0 = 2i

∫ R

ε

sinx

x
dx+

∫ π

0

eiRe
iθ

Reiθ
iReiθdθ −

∫ π

0

eiεe
iθ

εeiθ
iεeiθdθ.

The third integral has limit iπ for ε→ 0. The absolute value of the second integral is

bounded above by
∫ π

0
e−R sin θdθ which goes to zero when R goes1 to infinity, yielding

the value π in (2.3.1). On the other hand, for n ∈ N∗, we have∫ (2n+1)π

2nπ

∣∣∣∣sinxx
∣∣∣∣ dx ≥ 1

(2n+ 1)π

∫ (2n+1)π

2nπ

sinxdx =
2

(2n+ 1)π
,

1 One may apply Lebesgue’s dominated convergence theorem, but it is way too much: it is
enough to note that 0 ≤ 2θ

π ≤ sin θ for θ ∈ [0, π/2] and∫ π

0

e−R sin θdθ = 2

∫ π/2

0

e−R sin θdθ ≤ 2

∫ π/2

0

e−2Rθ/πdθ ≤ π/R.
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the general term of a diverging series, so that (2.3.1) is proven. In the integral∫
R

sinx
x
dx, the amplitude 1/x is too large at infinity to guarantee the absolute conver-

gence of the integral, although the oscillations of the term sinx = Im eix compensate

the size of the amplitude and lead to some cancellation phenomena. We want to

study this phenomenon more closely and in more geometrical terms. Although the

function sin x/x does not belong to L1(Rn), we still2 have in the sense of weak-dual

convergence

lim
λ→+∞

1

π

sin(λx)

x
= δ0. (2.3.2)

In fact for ϕ ∈ C1
c (R), suppϕ ⊂ [−M0,M0], the function ψ defined by

ψ(x) = x−1
(
ϕ(x)− ϕ(0)

)
=

∫ 1

0

ϕ′(θx)dθ

is continuous and equal to −ϕ(0)x−1 for |x| ≥M0(> 0). As a consequence, we have∫
sin(λx)

x
ϕ(x)dx =

∫
ψ(x)1[−M0,M0](x)︸ ︷︷ ︸

∈L1(R)

sin(λx)dx+ ϕ(0)

∫
|x|≤M0

x−1 sin(λx)dx.

The Riemann-Lebesgue Lemma implies that the first term in the rhs tends to 0 with

1/λ, whereas ∫
|x|≤M0

x−1 sin(λx)dx =

∫
|y|≤λM0

x−1 sinxdx −→
λ→+∞

π,

proving 2.3.2.

Non-stationary phase

Theorem 2.3.1. Let a ∈ C∞c (Rn) and φ be a real-valued C∞ function defined on

Rn such that dφ 6= 0 on the support of a. We define for λ ∈ R,

I(λ) =

∫
Rn
eiλφ(x)a(x)dx. (2.3.3)

Then for all N ≥ 0, supλ∈R |λNI(λ)| < +∞.

Proof. Since the support of a is compact, we know that infx∈supp a |dφ(x)| = c0 > 0.

We define then the differential operator L on the open set Ω = {x ∈ Rn, dφ(x) 6=
0} ⊃ supp a by

L =
1

i

∑
1≤j≤n

|dφ|−2 ∂φ

∂xj

∂

∂xj
. (2.3.4)

2 If u ∈ L1(Rn), ϕ ∈ C0(Rn) ∩ L∞(Rn), then with λ > 0, we have
∫
u(λx)λnϕ(x)dx =∫

u(x)ϕ(λ−1x)dx, and using the Lebesgue dominated convergence theorem, this gives

lim
λ→+∞

∫
u(λx)λnϕ(x)dx = ϕ(0)

∫
u(x)dx.
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On Ω, we have L(eiλφ) = λeiλφ
∑

1≤j≤n |dφ|−2 ∂φ
∂xj

∂φ
∂xj

= λeiλφ, as well as for all N ∈ N,

eiλφ = (λ−NLN)(eiλφ), implying that, for λ 6= 0,

I(λ) = λ−N
∫

Ω

LN(eiλφ)a(x)dx = λ−N
∫

supp a

eiλφ(x)(tLNa)(x)dx.

As a result we get for λ ∈ R, |λNI(λ)| ≤ ‖tLNa‖L1(Rn) < +∞, since

tL = i
∑

1≤j≤n

∂

∂xj
|dφ|−2 ∂φ

∂xj
, tLN =

∑
|α|≤N

cα(x)∂αx , cα ∈ C∞(Ω).

This theorem means that the integral (2.3.3) is rapidly decreasing with respect

to the large parameter λ, provided the real phase φ does not have stationary points

on the support of the amplitude a. We shall now concentrate our attention on the

case where the phase does have stationary points ; a first simple model is concerned

with (real) quadratic phases.

Quadratic phase

We recall part of the proposition 1.2.19 as a lemma.

Lemma 2.3.2. Let A be a real symmetric nonsingular n × n matrix. Then x 7→
eiπ〈Ax,x〉 is a bounded measurable function, thus a tempered distribution and we have

Fourier(eiπ〈Ax,x〉)(ξ) = | detA|−1/2ei
π
4

signAe−iπ〈A
−1ξ,ξ〉. (2.3.5)

Theorem 2.3.3. Let a ∈ S (Rn) and A be a real symmetric nonsingular n × n

matrix. Defining I(λ) =
∫
Rn e

iλ〈Ax,x〉a(x)dx, we have for λ > 0,

I(λ) =
πn/2e

iπ
4

signA

λ
n
2 | detA|1/2

( ∑
0≤k<N

λ−k
π2k

ikk!

(
〈A−1D,D〉ka

)
(0) + rN(λ)

)
, (2.3.6)

|rN(λ)| ≤ λ−N
π2N

N !
‖〈A−1D,D〉Na‖FL1 , (2.3.7)

where ‖u‖FL1 = ‖û‖L1(Rn), so that ‖〈A−1D,D〉Na‖FL1 = ‖〈A−1ξ, ξ〉N â‖L1(Rn) (see

also the notation (1.2.8)).

Proof. We write with λ = πµ that

I(λ) = 〈eiπ〈µAx,x〉, a(x)〉S ′,S = 〈Fourier(eiπ〈µAx,x〉), ˇ̂a〉S ′,S

= µ−n/2| detA|−1/2ei
π
4

signA

∫
e−iπµ

−1〈A−1ξ,ξ〉â(ξ)dξ,
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and since∫
e−iπµ

−1〈A−1ξ,ξ〉â(ξ)dξ =
∑

0≤k<N

(−iπµ−1)k

k!

∫
〈A−1ξ, ξ〉kâ(ξ)dξ

+

∫ 1

0

∫
e−iθπµ

−1〈A−1ξ,ξ〉〈A−1ξ, ξ〉N â(ξ)dξ
(1− θ)N−1

(N − 1)!
dθ

(
−iπ
µ

)N
,

we get (2.3.6) with |rN(λ)| ≤ ‖〈A−1ξ, ξ〉N â(ξ)‖L1
π2N

N !λN
.

Remark 2.3.4. In particular, under the assumptions of the theorem, we have, if

a(0) 6= 0, ∫
Rn
eiλ〈Ax,x〉a(x)dx = I(λ) ∼

λ→ +∞

π
n
2 e

iπ
4

signA

λ
n
2 | detA|1/2

a(0), (2.3.8)

a sharp contrast with the results of the previous subsection 2.3. Naturally, in this

case, the phase has a (unique) stationary point at the origin. Note also that in one

dimension, we can recover3 the so-called Fresnel integrals∫
R
eix

2

dx = π1/2eiπ/4, i.e.

∫
R

cos(x2)dx =

∫
R

sin(x2)dx =

√
π

2
. (2.3.9)

The Morse lemma

The most important step in the proof is the following lemma.

Lemma 2.3.5. Let U be a neighborhood of 0 in Rn, and f : U → R be a C∞

function such that df(0) = 0, ∂
2f
∂x21

(0) 6= 0. Then there exists a local diffeomorphism ν

of neighborhoods of 0 such that

(f ◦ ν)(y1, y
′) = g(y′) +

1

2

∂2f

∂x2
1

(0)y2
1.

Proof. We may assume that f(0) = 0. Thanks to the implicit function theorem,

we note that the equation ∂f
∂x1

(x1, x
′) = 0 has a unique solution x1 = α(x′) near

the origin: there exists r0 > 0, a neighborhood W of 0 in Rn−1 and a C∞ function

α : W → R such that α(0) = 0 and for |x1| < r0, x
′ ∈ W ,

∂f

∂x1

(x1, x
′) = 0⇐⇒ x1 = α(x′).

3We have with χ ∈ C∞c (R) even, equal to 1 on [−1, 1], supported in [−2, 2],

2

∫ T

0

eix
2

dx =

∫
eix

2

χ(
x

T
)dx− 2

∫
x≥T

eix
2

χ(
x

T
)dx

=

∫
eiT

2x2

χ(x)dxT − 2

∫
x≥T

2ixeix
2

χ(
x

T
)(2ix)−1dx.

From (2.3.8), limT→+∞
∫
eiT

2x2

χ(x)dxT = π1/2eiπ/4 and an integration by parts yields that the
last term is O(T−1).
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As a result, we have for |x1| < r0, x
′ ∈ W ,

f(x1, x
′) = f

(
α(x′), x′

)
+

∫ 1

0

(1− θ)∂
2f

∂x2
1

(
α(x′) + θ(x1 − α(x′)), x′

)
dθ
(
x1 − α(x′)

)2
,

i.e. with a C∞ function e defined in ]− r0, r0[×W , a C∞ function g defined in W ,

f(x1, x
′) = g(x′) +

1

2

∂2f

∂x2
1

(0)e(x)
(
x1 − α(x′)

)2
, e(0) = 1.

Shrinking if necessary the neighborhoods, we define near 0 the local diffeomorphism

κ by

κ(x1, x
′) =

(
e(x)1/2(x1 − α(x′)), x′

)
= (y1, y

′)

and we have with ν = κ−1

(f ◦ ν)(y1, y
′) = f(x1, x

′) = g(y′) +
1

2

∂2f

∂x2
1

(0)y2
1,

yielding the conclusion.

Theorem 2.3.6. Let x0 ∈ Rn, U ∈ Vx0 and f : U → R be a C∞ function such that

df(x0) = 0, det f ′′(x0) 6= 0. Then there exists an open neighborhood U0 of x0, an

open neighborhood V0 of 0 and a C∞ diffeomorphism ν : V0 → U0 such that U0 ⊂ U ,

det ν ′(0) = 1, and for y ∈ V0,

(f ◦ ν)(y)− (f ◦ ν)(0) =
1

2

∑
1≤j≤n

µjy
2
j , (2.3.10)

where (µ1, . . . , µn) are the eigenvalues of the symmetric matrix f ′′(x0).

Proof. We may assume for notational simplicity that x0 = 0 and f(0) = 0. After

composing f with a rotation, we may assume that e1 is an eigenvector of f ′′(0), so

that in particular, the assumptions of the previous lemma are satisfied. Then we are

reduced to tackle a function g(x′) + 1
2
µ1x

2
1. We have dg(0) = 0, the eigenvalues of

f ′′(0) are {µ1} ∪ spectrum(g′′(0)). We get the conclusion by an induction on n.

Stationary phase formula

We consider now, for λ > 0 and

I(λ) =

∫
eiλφ(x)a(x)dx, (2.3.11)

where the amplitude a ∈ C∞c (Rn) and the phase function φ is a Morse function, i.e.

a real-valued smooth function such that

∀x ∈ supp a, dφ(x) = 0 =⇒ detφ′′(x) 6= 0. (2.3.12)
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Using the Borel-Lebesgue property, we get that

supp a ⊂ {x ∈ Rn, dφ(x) 6= 0}︸ ︷︷ ︸
=Ω0

∪1≤j≤NΩj

where Ωj for 1 ≤ j ≤ N is an open set such that there exists a C∞ diffeomorphism

νj : Vj → Ωj, where Vj is a neighborhood of 0 in Rn with

(φ ◦ νj)(y) = (φ ◦ νj)(0) +
1

2
φ′′(νj(0))y2.

We are able to find (ψj)0≤j≤N with ψj ∈ C∞c (Ωj), such that
∑

0≤j≤N ψj is 1 near

supp a. We obtain then that

I(λ) =

∫
eiλφ(x)ψ0(x)a(x)dx︸ ︷︷ ︸

=O(λ−∞) from Theorem 2.3.1

+
∑

1≤j≤N

∫
eiλφ(x)ψj(x)a(x)dx,

i.e. I(λ) =
∑

1≤j≤N
∫
Vj
eiλ(φ◦νj)(y)(ψja)(νj(y))| det ν ′j(y)|dy +O(λ−∞). We note that,

according to the theorem 2.3.3∫
Vj

eiλ(φ◦νj)(y)(ψja)(νj(y))| det ν ′j(y)|dy

= eiλφ(νj(0))

∫
Vj

eiλ
1
2
φ′′(νj(0))y2(ψja)(νj(y))| det ν ′j(y)|dy

= λ−
n
2 eiλφ(νj(0)) (2π)n/2ei

π
4

signφ′′(νj(0))

| detφ′′(νj(0))|1/2
(ψja)(νj(0))| det ν ′j(0)|+O(λ−

n
2
−1).

We note also that the stationary points of a Morse function are isolated, since for

an invertible symmetric matrix Q, the only singular point of y 7→ 〈Qy, y〉 is 0. In

particular, there are only finitely many singular points of a Morse function in a

compact set.

Theorem 2.3.7. Let a be a C∞c (Rn) function and φ be a Morse function (see

(2.3.12)). We define I(λ) by (2.3.11). We have for λ→ +∞

I(λ) = λ−
n
2 (2π)n/2

∑
x,dφ(x)=0
x∈supp a

eiλφ(x) e
iπ
4

sign(φ′′(x))

| detφ′′(x)|1/2
a(x) +O(λ−

n
2
−1). (2.3.13)

Proof. We note that the determinant of ν ′(0) is 1 in the theorem 2.3.6 and the

formula of Theorem 2.3.3 gives the result if we replace ψja by a; it is indeed harmless

to do this since we can assume that x1, . . . , xN are the distinct singular points of φ

in supp a and write, with C∞c (Rn) 3 ψ̃j = 1 near xj, ψ̃jψ̃k = 0 if 1 ≤ j 6= k ≤ N

a =
∑

1≤j≤N

ψ̃ja+ a−
∑

1≤j≤N

ψ̃ja︸ ︷︷ ︸
supported in Ω0

.
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2.4 The Wave-Front set of a distribution, the Hs

wave-front set

Let Ω be an open subset of Rn and u ∈ D ′(Ω). Let us recall that the support and

the singular support of u are defined by

suppu = {x ∈ Ω, there is no open V 3 x with u|V = 0}, (2.4.1)

singsuppu = {x ∈ Ω, there is no open V 3 x with u|V ∈ C∞(V )}. (2.4.2)

Both sets are closed and we have obviously singsuppu ⊂ suppu. The Fourier

transform allows a more refined analysis of singularities: first we notice that x0 /∈
singsuppu iff there exists a neighborhood U of x0 such that for all χ ∈ C∞c (U),

∀N ∈ N, sup
ξ∈Rn
|(χ̂u)(ξ)||ξ|N <∞. (†)

This is obvious when we assume x0 /∈ singsuppu since there exists a neighborhood

U of x0 such that χu ∈ C∞c (Rn) and thus χ̂u ∈ S (Rn). Conversely, since χ̂u is the

Fourier transform of a compactly supported distribution, it is an entire function on

Cn, and assuming (†), we see that (χu)(x) =
∫
e2iπx·ξχ̂u(ξ)dξ, and the rhs is a C∞

function, qed.

We use the notation Ω×Rn\{0} = Ṫ ∗(Ω), the cotangent bundle minus the zero

section.

Definition 2.4.1. Let Ω be an open set of Rn and let u ∈ D ′(Ω). The wave-front-set

of u, denoted by WFu, is defined as the complement in Ṫ ∗(Ω) of the set of points

(x0, ξ0) such that there exist some neighborhoods U, V respectively of x0, ξ0 (with

U × V ⊂ Ṫ ∗(Ω)) such that for all χ ∈ C∞c (U),

∀N ∈ N, sup
ξ∈Ṽ
|(χ̂u)(ξ)||ξ|N <∞, with Ṽ = ∪τ>0τV. (2.4.3)

Remark 2.4.2. Note that the wave-front-set is a closed (its complement is open) conic

subset of Ṫ ∗(Ω): conic means here that for all τ > 0, (x, ξ) ∈ WFu =⇒ (x, τξ) ∈
WFu. On the other hand, with pr : Ṫ ∗(Ω) → Ω defined by pr((x, ξ)) = x, we get

that

prWFu = singsuppu. (2.4.4)

Let x0 /∈ singsuppu. Then from (†), we see that for all ξ ∈ Sn−1, (x0, ξ) /∈ WFu, so

that x0 /∈ prWFu. Conversely, if x0 /∈ prWFu, for all η ∈ Sn−1, there exists some

neighborhoods Uη, Vη of x0, η such that for all χ ∈ C∞c (Uη),

∀N ∈ N, sup
ξ∈Ṽη
|(χ̂u)(ξ)||ξ|N <∞.

By compactness, we get Sn−1 ⊂ ∪1≤j≤νVηj and defining U = ∩1≤j≤νUηj , we get that

for all χ ∈ C∞c (U),

∀j ∈ {1, . . . , ν},∀N ∈ N, sup
ξ∈Ṽηj

|(χ̂u)(ξ)||ξ|N <∞,

which gives the result (†) since ∪1≤j≤νṼηj = Rn\{0} and χ̂u is a smooth function.
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Examples. It is easy to see that

(1) WF (δ0) = {0} × Rn\{0}, δ0 is the Dirac mass at zero in Rn,

(2) WF ( 1
x+i0

) = {0} × (0,+∞), 1
x+i0

= d
dx

(ln |x|)− iπδ0, distribution on R,
(3) and with H = 1R+ , considering the distribution on R2,

WF
(
H(x1)H(x2)

)
= {(0, x2, ξ1, 0)}x2>0,ξ1 6=0 ∪ {(x1, 0, 0, ξ2)}x1>0,ξ2 6=0

∪ {(0, 0)} × R2\{(0, 0)}.

(4) If u is a distribution, one can easily define the complex conjugate by duality4

and we have

WFū = ˇWFu = {(x, ξ) such that(x,−ξ) ∈ WFu}

and in particular, a real-valued distribution (i.e. such that ū = u) has a projective

wave-front-set, i.e. (x, ξ) ∈ WFu ⇐⇒ (x,−ξ) ∈ WFu, so that, instead of being

included in the sphere fiber S∗(Ω) image of the fiber bundle Ṫ ∗(Ω) by the mapping

(x, ξ) 7→ (x, ξ/|ξ|), the wave-front-set of a real-valued distribution can be seen as a

part of the projective bundle for which the fibers are the quotient of the sphere Sn−1

by {−1, 1}, that is Pn−1(R). In particular for a real-valued distribution u on an open

set Ω of the real line, then the wave-front-set does not carry more information than

the singular support since WFu = singsuppu× R∗.

The following lemma provides a characterization of the wave-front-set which is

closer of the pseudo-differential approach.

Lemma 2.4.3. Let θ0 ∈ C∞c (Rn; [0, 1]), supp θ0 ⊂ B(0, 1), θ0 = 1 on B(0, 1/2). Let

Ω be an open set of Rn and u ∈ D ′(Ω). The complement of WFu in Ṫ ∗(Ω) is the

set of (x, ξ) such that there exists r > 0 such that

Tr(D)tru belongs to S (Rn),

where Tr(ξ) = θ0

(
ξ
r|ξ| −

ξ0
r|ξ0|

) (
1− θ0

)
( rξ

2
), tr(x) = θ0

(
x−x0
r

)
.

Proof. Let us assume first that Ṫ ∗(Ω) 3 (x0, ξ0) /∈ WFu. Using the definition 2.4.1,

we get that for some positive r, for all N , Tr(ξ)t̂ru(ξ) = O(〈ξ〉−N) and since the

functions Dα
ξ

(
t̂ru
)

= (−1)|α|x̂αtru are also rapidly decreasing on the support of Tr

(from the definition 2.4.1), we get that ξ 7→ Tr(ξ)t̂ru(ξ) is in the Schwartz class as

well as its inverse Fourier transform Tr(D)tru.

Conversely, if for (x0, ξ0) ∈ Ṫ ∗(Ω) (we may assume |ξ0| = 1) and some positive

r, Tr(D)tru ∈ S (Rn), we get indeed as in (2.4.3)

∀N ∈ N, sup
ξ∈Ṽ
|t̂ru(ξ)||ξ|N <∞, with V neighborhood of ξ0.

4We define ≺ ū, ϕ �D′(Ω),D(Ω)= ≺ u, ϕ̄ �D′(Ω),D(Ω).
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Now if χ ∈ C∞c (B(x0, r/2), we have χ = χtr and

Tr/4(ξ)χ̂u(ξ) = Tr/4(ξ)χ̂tru(ξ) = Tr/4(ξ)

∫
χ̂(ξ − η)︸ ︷︷ ︸
O(〈ξ−η〉−N )

Tr(η)t̂ru(η)︸ ︷︷ ︸
O(〈η〉−2N )

dη

+ Tr/4(ξ)

∫
χ̂(ξ − η) (1− Tr(η))t̂ru(η)︸ ︷︷ ︸

O(〈η〉M0 )

dη.

Using the Peetre inequality5, we get that the first term is O(〈ξ〉−N). To handle the

next term we note that, on the support of Tr/4, we have

|ξ| ≥ 4/r,

∣∣∣∣ ξ|ξ| − ξ0

|ξ0|

∣∣∣∣ ≤ r/4

and on the integrand we have either |η| ≤ 1/r (harmless term since χ̂ ∈ S ) or

|η| ≥ 1/r and

∣∣∣∣ η|η| − ξ0

|ξ0|

∣∣∣∣ ≥ r/2 =⇒
∣∣∣∣ η|η| − ξ

|ξ|

∣∣∣∣ ≥ r/4. (?)

Using the inequality6 ∣∣|η|ξ − |ξ|η∣∣(|ξ|+ |η|) ≤ 4|ξ||η||ξ − η|, (2.4.6)

we obtain here (for the nonzero vectors ξ, η satisfying (?) ), 4|ξ − η| ≥ r
4

(
|ξ|+ |η|

)
,

so that the rapid decay of χ̂(ξ − η) gives the result of the lemma.

The wave-front-set of a distribution depends only on the manifold structure of

the open set Ω.

Theorem 2.4.4. let κ : Ω2 −→ Ω1 a C∞ diffeomorphism of open subsets of Rn and

let u1 ∈ D ′(Ω1). Then we have

WF
(
κ∗(u1)

)
= κ∗

(
WFu1

)
=
{(
κ−1(x1),tκ′

(
κ−1(x1)

)
ξ1

)}
(x1,ξ1)∈WFu1

.

Proof. Let us define u2 = κ∗(u1), so that for χ2 ∈ C∞c (Ω2), we have, for ϕ2 ∈
C∞c (Ω2), with brackets of duality and ν = κ−1, χ1(x1) = χ2(ν(x1))| det ν ′(x1)| (note

5We use 〈ξ + η〉 ≤ 21/2〈ξ〉〈η〉 so that, for all s ∈ R,

〈ξ + η〉s ≤ 2|s|/2〈ξ〉s〈η〉|s|, (2.4.5)

a convenient inequality (to get it for s ≥ 0, raise the first inequality to the power s, and for s < 0,
replace ξ by −ξ − η) a.k.a. Peetre’s inequality.

6The proof of (2.4.6) is the following: we have
∣∣|η|ξ−|ξ|η∣∣ ≤ |η||ξ−η|+ |η|∣∣|ξ|−|η|∣∣ ≤ 2|η||ξ−η|

and thus
∣∣|η|ξ − |ξ|η∣∣ ≤ 2|ξ − η|min(|ξ|, |η|) which gives∣∣|η|ξ − |ξ|η∣∣(|ξ|+ |η|) ≤ 2|ξ − η|min(|ξ|, |η|)2 max(|ξ|, |η|) = 4|ξ||η||ξ − η|.
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that χ1 belongs to C∞c (Ω1) and χ1|dx1| is the κ-push-forward of the density χ2|dx2|),
ψ1 ∈ C∞c (Ω1) equal to 1 on the support of χ1,

χ̂2u2(ξ2) =

∫
χ1(x1)u1(x1)e−2iπν(x1)·ξ2dx1

=

∫
χ̂1u1(ξ1)

(∫
e2iπ(ξ1x1−ξ2ν(x1))ψ1(x1)dx1

)
dξ1

where the integral with respect to ξ1 is in fact a bracket of duality. We may thus

consider the identity(
1 +

(
ξ1−tν ′(x1)ξ2

)
·Dx1

)(
e2iπ(ξ1x1−ξ2ν(x1))

)
= e2iπ(ξ1x1−ξ2ν(x1))

(
1 + ‖ξ1−tν ′(x1)ξ2‖2

)
which gives with L =

(
1 + ‖ξ1 −tν ′(x1)ξ2‖2

)−1
(

1 +
(
ξ1 −tν ′(x1)ξ2

)
·Dx1

)
,

∀N ∈ N, LN(e2iπ(ξ1x1−ξ2ν(x1))) = e2iπ(ξ1x1−ξ2ν(x1))

so that χ̂2u2(ξ2) =
∫
χ̂1u1(ξ1)

(∫
e2iπ(ξ1x1−ξ2ν(x1))(tL)N(ψ1)(x1)dx1

)
dξ1 and

|χ̂2u2(ξ2)| ≤ CN

∫∫
|χ̂1u1(ξ1)|〈ξ1 −tν ′(x1)ξ2〉−N1suppψ(x1)dx1dξ1. (?)

Let us assume that Ṫ ∗(Ω1) 3 (x01, ξ01) /∈ WFu1; the point (x02, ξ02) is defined as

(ν(x01),tν ′(x01)−1ξ01). We assume that ξ2 belongs to a conic neighborhood Γ2 of ξ02.

We consider first for r > 0 the conic subset of Rn defined by

Γ1(r) = {ξ1 ∈ Rn,∀ξ2 ∈ Γ2, inf
x1∈suppψ1

|ξ1 −tν ′(x1)ξ2| < r(|ξ1|+ |ξ2|)}.

The set Γ1(r) is also open and contains ξ01. If r is small enough and the support

of χ2 is included in a small enough ball around x02, we have from our assumption

|χ̂1u1(ξ1)| = O(〈ξ1〉−2N) on Γ1(r). When the integration in (?) takes place in Γ1(r),

we estimate that part of the integral, using the footnote on page 52 by

C ′N

∫∫
〈ξ1〉−2N+N〈tν ′(x1)ξ2〉−N1suppψ(x1)dx1dξ1 = O(〈ξ2〉−N).

When the integration in (?) takes place outside Γ1(r), we know that for some r > 0

and all x1 ∈ suppψ, |ξ1−tν ′(x1)ξ2| ≥ r(|ξ1|+ |ξ2|). We have thus the estimate, with

a fixed M0,

C ′′N

∫∫
〈ξ1〉M0(〈ξ1〉+ 〈ξ2〉)−2N1suppψ(x1)dx1dξ1 = O(〈ξ2〉−N), for N > M0 + n.

The proof of the theorem is complete.

Definition 2.4.5. Let Ω be an open set of Rn, let u ∈ D ′(Ω) and s ∈ R. The

Hs-wave-front-set of u, denoted by WFsu, is defined as the complement in Ṫ ∗(Ω) of

the set of points (x0, ξ0) such that there exist some neighborhoods U, V respectively

of x0, ξ0 (with U × V ⊂ Ṫ ∗(Ω)) such that for all χ ∈ C∞c (U),∫
Ṽ ∩{|ξ|≥1}

|(χ̂u)(ξ)|2|ξ|2sdξ <∞, with Ṽ = ∪τ>0τV.
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2.5 Oscillatory Integrals

Definition 2.5.1. Let Ω be an open subset of Rn, m ∈ R, N ∈ N∗. The space

Sm(Ω×RN) is defined as the set of functions a ∈ C∞(Ω×RN ;C) such that, for all

K compact subset of Ω, for all α ∈ Nn, β ∈ NN , there exists CK,α,β such that

∀x ∈ K, ∀θ ∈ RN , |(∂αx∂
β
θ a)(x, θ)| ≤ CK,α,β〈θ〉m−|β|. (2.5.1)

It is a easy exercise left to the reader, consequence of the Leibniz formula, to

prove that the space Sm(Ω× RN) is a Fréchet space and that the mappings

Sm1(Ω× RN)× Sm2(Ω× RN) 3 (a1, a2) 7→ a1a2 ∈ Sm1+m2(Ω× RN)

are continuous. Moreover for any multi-indices α, β ∈ Nn × NN , the mapping

Sm(Ω× RN) 3 a 7→ ∂αx∂
β
θ a ∈ S

m−|β|(Ω× RN)

is continuous.

Definition 2.5.2. Let Ω be an open subset of Rn, N ∈ N∗, φ ∈ S1(Ω × RN). The

function φ is called a standard phase function on Ω×RN whenever φ ∈ S1(Ω×RN)

is real-valued and such that, for all K compact subset of Ω, there exists cK > 0 such

that

∀x ∈ K, ∀θ ∈ RN with |θ| ≥ 1,

∣∣∣∣∂φ∂x(x, θ)

∣∣∣∣2 + |θ|2
∣∣∣∣∂φ∂θ (x, θ)

∣∣∣∣2 ≥ cK |θ|2. (2.5.2)

For a ∈ Sm(Ω× RN) with m < −N and φ a standard phase function, we define

Ta,φ(x) =

∫
eiφ(x,θ)a(x, θ)dθ (2.5.3)

which is a continuous function on Ω ; note also that if m < −N − k with k ∈ N,

Ta,φ belongs to Ck(Ω).

Theorem 2.5.3. Let Ω be an open subset of Rn, m ∈ R, N ∈ N∗, a ∈ Sm(Ω× RN)

and φ be a standard phase function on Ω × RN . Then Ta,φ is a distribution on Ω

with order > m+N in the following sense. The mapping

C∞c (Ω)× Sm(Ω× RN) −→ C
(u, a) 7→

∫∫
eiφ(x,θ)a(x, θ)u(x)dxdθ

(2.5.4)

extends the formula (2.5.3) defined for m < −N in a unique way and continuously.

2.6 Singular integrals, examples

The Hilbert transform

A basic object in the classical theory of harmonic analysis is the Hilbert transform,

given by the one-dimensional convolution with pv(1/πx) = d
πdx

(ln |x|), where we
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consider here the distribution derivative of the L1
loc(R) function ln |x|. We can also

compute the Fourier transform of pv(1/πx), which is given by −i sign ξ. As a result

the Hilbert transform H is a unitary operator on L2(R) defined by

Ĥ u(ξ) = −i sign ξû(ξ). (2.6.1)

It is also given by the formula

(H u)(x) = lim
ε→0+

1

π

∫
|x−y|≥ε

u(y)

x− y
dy.

The Hilbert transform is certainly the first known example of a Fourier multiplier

(H u = F−1(aû) with a bounded a).

The Riesz operators, the Leray-Hopf projection

The Riesz operators are the natural multidimensional generalization of the Hilbert

transform. We define for u ∈ L2(Rn),

R̂ju(ξ) =
ξj
|ξ|
û(ξ), so that Rj = Dj/|D| = (−∆)−1/2 ∂

i∂xj
. (2.6.2)

The Rj are selfadjoint bounded operators on L2(Rn) with norm 1.

We can also consider the n × n matrix of operators given by Q = R ⊗ R =

(RjRk)1≤j,k≤n sending the vector space of L2(Rn) vector fields into itself. The

operator Q is selfadjoint and is a projection since
∑

lR
2
l = Id so that Q2 =

(
∑

lRjRlRlRk)j,k = Q. As a result the operator

P = Id−R⊗R = Id−|D|−2(D ⊗D) = Id−∆−1(∇⊗∇) (2.6.3)

is also an orthogonal projection, the Leray-Hopf projector (a.k.a. the Helmholtz-

Weyl projector); the operator P is in fact the orthogonal projection onto the closed

subspace of L2 vector fields with null divergence. We have for a vector field u =∑
j uj∂j, the identities grad div u = ∇(∇ · u), grad div = ∇⊗∇ = (−∆)(iR⊗ iR),

so that

Q = R⊗R = ∆−1 grad div, divR⊗R = div,

which implies divPu = div u − div(R ⊗ R)u = 0, and if div u = 0, Pu = u. The

Leray-Hopf projector is in fact the (n×n)-matrix-valued Fourier multiplier given by

Id−|ξ|−2(ξ ⊗ ξ). This operator plays an important role in fluid mechanics since the

Navier-Stokes system for incompressible fluids can be written for a given divergence-

free v0, 
∂tv − ν4v = −P∇(v ⊗ v),
Pv = v,
v|t=0 = v0.

As already said for the Riesz operators, P is not a classical pseudo-differential opera-

tor, because of the singularity at the origin: however it is indeed a Fourier multiplier

with the same functional properties as those of R.
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In three dimensions the curl operator is given by the matrix

curl =

 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0

 = curl∗ (2.6.4)

so that curl2 = −∆ Id + grad div and (the Biot-Savard law)

Id = (−∆)−1 curl2 +∆−1 grad div, also equal to (−∆)−1 curl2 + Id−P,

which gives curl2 = −∆P, so that

[P, curl] = ∆−1
(
∆P curl−∆ curlP

)
= ∆−1

(
− curl3 + curl(−∆P)

)
= 0,

P curl = curlP = curl(−∆)−1 curl2 = curl
(
Id−∆−1 grad div

)
= curl

since curl grad = 0 (note also that div curl = 0).

Theorem 2.6.1. Let Ω be a function in L1(Sn−1) such that
∫
Sn−1 Ω(ω)dσ(ω) = 0.

Then the following formula defines a tempered distribution T :

〈T, ϕ〉 = lim
ε→0+

∫
|x|≥ε

Ω
( x
|x|
)
|x|−nϕ(x)dx = −

∫
(x · ∂xϕ(x))Ω

( x
|x|
)
|x|−n ln |x|dx.

The distribution T is homogeneous of degree −n on Rn and, if Ω is odd, the Fourier

transform of T is a bounded function.

N.B. We shall use the principal-value notation

T = pv
(
|x|−nΩ

( x
|x|
))
.

When n = 1 and Ω = sign, we recover the principal value pv(1/x) = d
dx

(ln |x|) which

is odd, homogeneous of degree -1, and whose Fourier transform is −iπ sign ξ.

Proof. Let ϕ be in S (Rn) and ε > 0. Using polar coordinates, we check∫
Sn−1

Ω(ω)

∫ +∞

ε

ϕ(rω)
dr

r
dσ(ω)

=

∫
Sn−1

Ω(ω)
[
ϕ(εω) ln(ε−1)−

∫ +∞

ε

ω · dϕ(rω) ln rdr
]
dσ(ω).

Since the mean value of Ω is 0, we get the first statement of the theorem, noticing

that the function x 7→ Ω(x/|x|)|x|−n+1 ln(|x|)(1 + |x|)−2 is in L1(Rn). We have

〈x · ∂xT, ϕ〉 = −〈T, x · ∂xϕ〉 − n〈T, ϕ〉 (~)

and we see that

〈T, x · ∂xϕ〉 = lim
ε→0+

∫
Sn−1

Ω(ω)

∫ +∞

ε

rω · (dϕ)(rω)
dr

r
dσ(ω)

=

∫
Sn−1

Ω(ω)

∫ +∞

0

ω · (dϕ)(rω)drdσ(ω)

=

∫
Sn−1

Ω(ω)

∫ +∞

0

d

dr

(
ϕ(rω)

)
drdσ(ω) = −ϕ(0)

∫
Sn−1

Ω(ω)dσ(ω) = 0
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so that (~) implies that x ·∂xT = −nT which is the homogeneity of degree −n of T .

As a result the Fourier transform of T is an homogeneous distribution with degree

0.

N.B. Note that the formula

−
∫

(x · ∂xϕ(x))Ω
( x
|x|
)
|x|−n ln |x|dx

makes sense for Ω ∈ L1(Sn−1), ϕ ∈ S (Rn) and defines a tempered distribution. For

instance, if n = 1 and Ω = 1, we get the distribution derivative d
dx

(
signx ln |x|

)
.

However, the condition of mean value 0 for Ω on the sphere is necessary to obtain T

as a principal value, since in the discussion above, the term factored out by ln(1/ε)

is
∫
Sn−1 Ω(ω)ϕ(εω)dσ(ω) which has the limit ϕ(0)

∫
Sn−1 Ω(ω)dσ(ω). On the other

hand, from the defining formula of T , we get with Ωj(ω) = 1
2
(Ω(ω) + (−1)jΩ(−ω))

(Ω1(resp.Ω2) is the odd (resp. even) part of Ω)

〈T, ϕ〉 =

∫
Sn−1

Ω1(ω)〈pv(
1

2t
), ϕ(tω)〉S ′(Rt),S (Rt)dσ(ω)

+

∫
Sn−1

Ω2(ω)〈 d
dt

(
H(t) ln t

)
, ϕ(tω)〉S ′(Rt),S (Rt)dσ(ω). (2.6.5)

Let us show that, when Ω is odd, the Fourier transform of T is bounded. We get

〈T̂ , ψ〉 =

∫
Sn−1

Ω(ω)〈pv(
1

2t
), ψ̂(tω)〉dσ(ω)

= −iπ
2

∫
Rn

∫
Sn−1

Ω(ω) sign(ω · ξ)ϕ(ξ)dξdσ(ω)

proving that

T̂ (ξ) = −iπ
2

∫
Sn−1

Ω(ω) sign(ω · ξ)dσ(ω) (2.6.6)

which is indeed a bounded function.
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Chapter 3

Pseudo-differential operators

3.1 Prolegomena

To illustrate the power of pseudo-differential methods, we begin with a simple and

classical regularity result for the Laplace equation.

Theorem 3.1.1. Let Ω be an open subset of Rn, let s ∈ R and let f ∈ Hs
loc(Ω). If

u is a distribution on Ω such that

∆u = f, (3.1.1)

then u belongs to Hs+2
loc (Ω). If f belongs to C∞(Ω) and if u is a distribution solution

of (3.1.1) in Ω, then u belongs to C∞(Ω).

Proof. Let Ω0 be a relatively compact open subset of Ω. Let χ ∈ C∞c (Ω0): we have

χ∆u = χf ∈ Hs(Rn).

The Fourier multiplier (1−∆)−1 sends Hs(Rn) into Hs+2(Rn), and we have

(1−∆)−1χ∆u = g ∈ Hs+2(Rn).

This implies

g = (1−∆)−1χ(∆− 1)u+ (1−∆)−1χu

= (1−∆)−1[χ, (∆− 1)]u− χu+ (1−∆)−1χu

= (1−∆)−1[χ,∆]u−
(
1− (1−∆)−1

)
χu.

We note that the operator R1 = [χ,∆] is a first-order differential operator with

smooth coefficients supported in the support of ∇χ and thus compactly supported

in Ω0. As a result, we have(
1− (1−∆)−1

)
χu = (1−∆)−1R1u+ g. (3.1.2)

The Fourier multiplier 1− (1−∆)−1 has the symbol

ω(ξ) = 1− (1 + 4π2|ξ|2)−1 =

{
∈ [1

2
, 1) for |ξ| ≥ 1

2π
,

∈ [0, 1/2) for |ξ| < 1
2π
.

59
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Let ψ0 be a function in C∞c ({|ξ| < 1/π}; [0, 1]) equal to 1 on |ξ| ≤ 1
2π
. Then the

function

ω0(ξ) = ω(ξ) + ψ0(ξ) is valued in [1/2, 2],

so that the Fourier multiplier ω0(D) is an isomorphism of Hs(Rn) for all s ∈ R. We

have thus from (3.1.2)

χu = ω0(D)−1
(
(1−∆)−1R1u+ g + ψ0(D)χu

)
. (3.1.3)

From the Paley-Wiener Theorem, since Ω0 is relatively compact in Ω, we may as-

sume that u ∈ Hs0
loc(Ω0), i.e. χu ∈ Hs0(Rn) for all χ ∈ C∞c (Ω0). From (3.1.3),

we get that ω0(D)−1(1 − ∆)−1R1u belongs to Hs0+1(Rn), ω0(D)−1g ∈ Hs+2(Rn),

ω0(D)−1ψ0(D)χu ∈ H+∞(Rn) = ∩σ∈RHσ(Rn). We obtain thus that

∀χ ∈ C∞c (Ω0), χu ∈ Hmin(s+2,s0+1)(Rn), i.e. u ∈ Hmin(s+2,s0+1)
loc (Ω0),

which gives the sought result whenever s0 ≥ s + 1. If s0 < s + 1, we have proven

that u ∈ Hs0+1
loc (Ω0).

Claim: u ∈ Hs+2
loc (Ω0). To prove that claim, we consider

I = {σ ∈ R, u ∈ Hσ
loc(Ω0)}.

We know that I is not empty (it contains s0) and also that

s0 ∈ I =⇒ min(s+ 2, s0 + 1) ∈ I, (−∞, s0] ∈ I.

Let s1 = sup I. If s1 < +∞, then s1 − 1
2
∈ I and thus since s1 + 1

2
/∈ I,

min(s+ 2, s1 −
1

2
+ 1) = min(s+ 2, s1 +

1

2
) ∈ I =⇒ s+ 2 ∈ I.

If s1 = +∞, then s + 2 ∈ I. We have proven that u belongs to Hs+2
loc (Ω0) for any

relatively compact open subset Ω0 of Rn, which implies that Hs+2
loc (Ω), since Ω is

locally compact.

If f is C∞ on Ω, we find that it is Hs
loc(Ω) for any s ∈ R and thus from the

previous result that u is Hs+2
loc (Ω) for any s ∈ R, so that u ∈ C∞(Ω), thanks to the

next lemma.

Lemma 3.1.2. Let Ω be an open subset of Rn. Then ,

C∞(Ω) = H+∞
loc (Ω) = ∩s∈RHs

loc(Ω).

Proof of the lemma. If u is a smooth function on Ω and χ belongs to C∞c (Ω), then

χu ∈ C∞c (Rn), so that χ̂u belongs to S (Rn) and thus for any s ∈ R,

(1 + |ξ|2)s/2χ̂u(ξ) ∈ L2(Rn),

implying u ∈ H+∞
loc (Ω). Conversely, if u ∈ H+∞

loc (Ω) and χ ∈ C∞c (Ω), we find that

for all s ∈ R,

(1 + |ξ|2)s/2χ̂u(ξ) ∈ L2(Rn),
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so that

(
Dα
x (χu)

)
(x) =

∫
e2iπx·ξ

∈L1(Rn)︷ ︸︸ ︷
ξα(1 + |ξ|2)−s/2︸ ︷︷ ︸

∈L2(Rn)
if |α| − s < −n/2

(1 + |ξ|2)s/2χ̂u(ξ)︸ ︷︷ ︸
∈L2(Rn)

dξ,

so that Dα
x (χu) is a continuous function for any α and thus that u is a smooth

function on Ω.

The proof of Theorem 3.1.1 is complete.

If we look back at the proof of this theorem, we note that the key point was to

invert the symbol of −∆, which is 4π2|ξ|2, away from 0. We introduced the Fourier

multiplier (1−∆)−1 and we got from (3.1.3) a representation of χu in terms of χ∆u,

up to some unimportant terms. This should serve as a motivation to study more

general Fourier multiplier as well as more general operators of this type.

3.2 Introduction

A differential operator of order m on Rn can be written as

a(x,D) =
∑
|α|≤m

aα(x)Dα
x ,

where we have used the notation (1.2.8) for the multi-indices. Its symbol is a poly-

nomial in the variable ξ and is defined as

a(x, ξ) =
∑
|α|≤m

aα(x)ξα, ξα = ξα1
1 . . . ξαnn .

We have the formula

(a(x,D)u)(x) =

∫
Rn
e2iπx·ξa(x, ξ)û(ξ)dξ, (3.2.1)

where û is the Fourier transform. It is possible to generalize the previous formula

to the case where a is a tempered distribution on R2n.

Let u, v be in the Schwartz class S (Rn). Then the function

Rn × Rn 3 (x, ξ) 7→ û(ξ)v̄(x)e2iπx·ξ = Ωu,v(x, ξ) (3.2.2)

belongs to S (R2n) and the mapping (u, v) 7→ Ωu,v is sesquilinear continuous. Using

these notations, we can provide the following definition.

Definition 3.2.1. Let a ∈ S ′(R2n) be a tempered distribution. We define the

operator a(x,D) : S (Rn) −→ S ∗(Rn) by the formula

〈a(x,D)u, v〉S ∗(Rn),S (Rn) =≺ a,Ωu,v �S ′ (R2n),S (R2n),

where S ∗(Rn) is the antidual of S (Rn) (continuous antilinear forms). The distri-

bution a is called the symbol of the operator a(x,D).
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N.B. The duality product 〈u, v〉S ∗(R2n),S (R2n), is linear in the variable u and anti-

linear in the variable v. We shall use the same notation for the dot product in the

complex Hilbert space L2 with the notation

〈u, v〉L2 =

∫
u(x)v(x)dx.

The general rule that we shall follow is to always use the sesquilinear duality as

above, except if specified otherwise. For the real duality, as in the left-hand-side of

the formula in Definition 3.2.1, we shall use the notation ≺ u, v �=
∫
u(x)v(x)dx,

e.g. for u, v ∈ S (Rn).

Although the previous formula is quite general, since it allows us to quantize1

any tempered distribution on R2n, it is not very useful, since we cannot compose

this type of operators. We are in fact looking for an algebra of operators and the

following theorem is providing a simple example.

In the sequel we shall denote by C∞b (R2n) the (Fréchet) space of C∞ functions

on R2n which are bounded as well as all their derivatives.

Theorem 3.2.2. Let a ∈ C∞b (R2n). Then the operator a(x,D) is continuous from

S (Rn) into itself.

Proof. Using Definition 3.2.1, we have for u, v ∈ S (Rn), a ∈ C∞b (R2n),

〈a(x,D)u, v〉S ∗(Rn),S (Rn) =

∫∫
e2iπx·ξa(x, ξ)û(ξ)v̄(x)dxdξ.

On the other hand the function U(x) =
∫
e2iπx·ξa(x, ξ)û(ξ)dξ is smooth and such

that, for any multi-indices α, β,

xβDα
xU(x) = (−1)|β|

∑
α′+α′′=α

α!

α′!α′′!

∫
e2iπx·ξDβ

ξ

(
ξα
′
(Dα′′

x a)(x, ξ)û(ξ)
)
dξ

= (−1)|β|
∑

α′+α′′=α

α!

α′!α′′!

∫
e2iπx·ξDβ

ξ

(
(Dα′′

x a)(x, ξ)D̂α′u(ξ)
)
dξ

and thus

sup
x∈Rn
|xβDα

xU(x)| ≤
∑

α′+α′′=α
β′+β′′=β

α!

α′!α′′!

β!

β′!β′′!
‖Dβ′

ξ D
α′′

x a‖L∞(R2n)‖Dβ′′D̂αu‖L1(Rn).

Since the Fourier transform and ∂xj are continuous on S (Rn), we get that the

mapping u 7→ U is continuous from S (Rn) into itself. The above defining formula

for a(x,D) ensures that a(x,D)u = U .

1We mean simply here that we are able to define a linear mapping from S ′(R2n) to the set of
continuous operators from S (Rn) to S ′(Rn).
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The Schwartz space S (R2n) is not dense in the Fréchet space C∞b (R2n) (e.g.

∀ϕ ∈ S (R2n), supx∈R2n |1 − ϕ(x)| ≥ 1) but, in somewhat pedantic terms, one may

say that this density is true for the bornology on C∞b (R2n); in simpler terms, let a

be a function in C∞b (R2n) and take for instance

ak(x, ξ) = a(x, ξ)e−(|x|2+|ξ|2)k−2

.

It is easy to see that each ak belongs to S (R2n), that the sequence (ak) is bounded

in C∞b (R2n) and converges in C∞(R2n) to a. This type of density will be enough for

the next lemma.

Lemma 3.2.3. Let (ak) be a sequence in S (R2n) such that (ak) is bounded in the

Fréchet space C∞b (R2n) and (ak) is converging in C∞(R2n) to a function a. Then a

belongs to C∞b (R2n) and for any u ∈ S (Rn), the sequence (ak(x,D)u) converges to

a(x,D)u in S (Rn).

Proof. The fact that a belongs to C∞b (R2n) is obvious. Using the identities in the

proof of Theorem 3.2.2 we see that

xβDα
x

(
ak(x,D)u− a(x,D)u

)
= xβDα

x

(
(ak − a)(x,D)u

)
= (−1)|β|

∑
α′+α′′=α
β′+β′′=β

α!

α′!α′′!

β!

β′!β′′!

∫
e2iπx·ξ(Dβ′

ξ D
α′′

x (ak − a)
)
(x, ξ)Dβ′′

ξ D̂
α′u(ξ)dξ

=
∑

α′+α′′=α
β′+β′′=β

α!

α′!α′′!

β!

β′!β′′!
(1 + |x|2)−1

×
∫

(1 + |Dξ|2)
(
e2iπx·ξ)(Dβ′

ξ D
α′′

x (ak − a)
)
(x, ξ)Dβ′′

ξ D̂
α′u(ξ)dξ,

that is a (finite) sum of terms of type Vk(x) = (1 + |x|2)−1
∫
e2iπx·ξbk(x, ξ)wu(ξ)dξ

with the sequence (bk) bounded in C∞b (R2n) and converging to 0 in C∞(R2n), u 7→ wu
linear continuous from S (Rn) into itself. As a consequence we get that, with R1, R2

positive parameters,

|Vk(x)| ≤ sup
|x|≤R1

|ξ|≤R2

|bk(x, ξ)|
∫
|ξ|≤R2

|wu(ξ)|dξ1|x|≤R1

+

∫
|ξ|≥R2

|wu(ξ)|dξ sup
k∈N
‖bk‖L∞(R2n)1|x|≤R1

+R−2
1 1|x|≥R1 sup

k∈N
‖bk‖L∞(R2n)

∫
|wu(ξ)|dξ,

implying

|Vk(x)| ≤ εk(R1, R2)

∫
|wu(ξ)|dξ + η(R2) sup

k∈N
‖bk‖L∞(R2n)

+ θ(R1) sup
k∈N
‖bk‖L∞(R2n)

∫
|wu(ξ)|dξ,
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with limk→+∞ εk(R1, R2) = 0, limR→+∞ η(R) = limR→+∞ θ(R) = 0. Thus we have

for all positive R1, R2,

lim sup
k→+∞

‖Vk‖L∞ ≤ η(R2) sup
k∈N
‖bk‖L∞(R2n) + θ(R1) sup

k∈N
‖bk‖L∞(R2n)

∫
|wu(ξ)|dξ,

entailing (by taking the limit when R1, R2 go to infinity) that limk→+∞ ‖Vk‖L∞ = 0

which gives the result of the lemma.

Theorem 3.2.4. Let a ∈ C∞b (R2n): the operator a(x,D) is bounded on L2(Rn).

Proof. Since S (Rn) is dense in L2(Rn), it is enough to prove that there exists a

constant C such that for all u, v ∈ S (Rn),

|〈a(x,D)u, v〉S ∗(Rn),S (Rn)| ≤ C‖u‖L2(Rn)‖v‖L2(Rn).

We introduce the polynomial on Rn defined by Pk(t) = (1 + |t|2)k/2, where k ∈ 2N,

and the function

Wu(x, ξ) =

∫
u(y)Pk(x− y)−1e−2iπy·ξdy.

The function Wu is the partial Fourier transform of the function Rn×Rn 3 (x, y) 7→
u(y)Pk(x − y)−1 and if k > n/2 (we assume this in the sequel), we obtain that

‖Wu‖L2(R2n) = ck‖u‖L2(Rn). Moreover, since u ∈ S (Rn), the function Wu belongs to

C∞(R2n) and satisfies for all multi-indices α, β, γ

sup
(x,ξ)∈R2n

Pk(x)ξγ|(∂αx∂
β
ξWu)(x, ξ)| <∞.

In fact we have

ξγ(∂αx∂
β
ξWu)(x, ξ) =

∫ ∈S (Rn)︷ ︸︸ ︷
u(y)(−2iπy)β ∂α(1/Pk)(x− y)(−1)|γ|Dγ

y (e−2iπy·ξ)dy

=
∑

γ′+γ′′=γ

γ!

γ′!γ′′!

∫
Dγ′

y

(
u(y)(−2iπy)β

)
(−2iπ)−|γ

′′|

∂γ
′′+α(1/Pk)(x− y)(e−2iπy·ξ)dy

and

|∂α(1/Pk)(x− y)| ≤ Cα,k(1 + |x− y|)−k ≤ Cα,k(1 + |x|)−k(1 + |y|)k.

From Definition 3.2.1, we have

〈a(x,D)u, v〉S ∗(Rn),S (Rn) =

∫∫
Rn×Rn

e2iπx·ξa(x, ξ)û(ξ)v̄(x)dxdξ,

and we obtain, using an integration by parts justified by the regularity and decay of

the functions W above,

〈a(x,D)u, v〉

=

∫∫
a(x, ξ)Pk(Dξ)

(∫
u(y)Pk(x− y)−1e2iπ(x−y)·ξdy

)
v̄(x)dxdξ

=

∫∫
a(x, ξ)Pk(Dξ)

(
e2iπx·ξWu(x, ξ)v̄(x)︸ ︷︷ ︸

∈S (R2n)

)
dxdξ
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=

∫∫
(Pk(Dξ)a)(x, ξ)Wu(x, ξ)Pk(Dx)

(∫
e2iπx·(ξ−η)Pk(ξ − η)−1v̂(η)dη

)
dxdξ

=

∫∫
(Pk(Dξ)a)(x, ξ)Wu(x, ξ)Pk(Dx)

(
W¯̂v(ξ, x)e2iπx·ξ) dxdξ

=
∑

0≤l≤k/2

C l
k/2

∫∫
|Dx|2l

(
(Pk(Dξ)a)(x, ξ)Wu(x, ξ)

)
W¯̂v(ξ, x)e2iπx·ξdxdξ

=
∑
|α|≤k
|β|+|γ|≤k

cαβγ

∫∫
(Dα

ξD
β
xa)(x, ξ)︸ ︷︷ ︸

bounded

Dγ
x(Wu)(x, ξ) W¯̂v(ξ, x)︸ ︷︷ ︸

∈ L2(R2n) with norm

ck‖v‖L2(Rn)

e2iπx·ξdxdξ.

Checking now the x-derivatives of Wu, we see that

Dγ
x(Wu)(x, ξ) =

∫
u(y)Dγ(1/Pk)(x− y)e−2iπy·ξdy,

and since Dγ(1/Pk) belongs to L2(Rn) (since k > n/2), we get that the L2(R2n) norm

of Dγ
x(Wu) is bounded above by cγ‖u‖L2(Rn). Using the Cauchy-Schwarz inequality,

we obtain that

|〈a(x,D)u, v〉| ≤
∑
|α|≤k
|β|+|γ|≤k

cαβγ‖∂αξ ∂βxa‖L∞(R2n)‖Dγ
xWu‖L2(R2n)‖W¯̂v‖L2(R2n)

≤ Cn‖u‖L2(Rn)‖v‖L2(Rn) sup
|α|≤k
|β|≤k

‖∂αξ ∂βxa‖L∞(R2n),

where Cn depends only on n and 2N 3 k > n/2, which is the sought result.

The next theorem gives us our first algebra of pseudo-differential operators.

Theorem 3.2.5. Let a, b be in C∞b (R2n). Then the composition a(x,D)b(x,D)

makes sense as a bounded operator on L2(Rn) (also as a continuous operator from

S (Rn) into itself), and a(x,D)b(x,D) = (a�b)(x,D) where a�b belongs to C∞b (R2n)

and is given by the formula

(a � b)(x, ξ) = (exp 2iπDy ·Dη)(a(x, ξ + η)b(y + x, ξ))|y=0,η=0, (3.2.3)

(a � b)(x, ξ) =

∫∫
e−2iπy·ηa(x, ξ + η)b(y + x, ξ)dydη, (3.2.4)

when a and b belong to S (R2n). The mapping a, b 7→ a � b is continuous for the

topology of Fréchet space of C∞b (R2n). Also if (ak), (bk) are sequences of functions

in S (R2n), bounded in C∞b (R2n), converging in C∞(R2n) respectively to a, b, then a

and b belong to C∞b (R2n), the sequence (ak�bk) is bounded in C∞b (R2n) and converges

in C∞(R2n) to a � b.

Remark 3.2.6. From Lemma 4.1.2 in [13], we know that the operator e2iπDy ·Dη is an

isomorphism of C∞b (R2n), which gives a meaning to the formula (3.2.3), since for

a, b ∈ C∞b (R2n), (x, ξ) given in R2n, the function (y, η) 7→ a(x, ξ + η)b(y + x, ξ) =

Cx,ξ(y, η) belongs to C∞b (R2n) as well as JCx,ξ and we can take the value of the

latter at (y, η) = (0, 0).
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Proof. Let us first assume that a, b ∈ S (R2n). The kernels ka, kb of the operators

a(x,D), b(x,D) belong also to S (R2n) and the kernel kc of a(x,D)b(x,D) is given

by (we use Fubini’s theorem)

k(x, y) =

∫
ka(x, z)kb(z, y)dz =

∫∫∫
a(x, ξ)e2iπ(x−z)·ξb(z, ζ)e2iπ(z−y)·ζdζdξdz.

The function k belongs also to S (R2n) and we get, for u, v ∈ S (Rn),

〈a(x,D)b(x,D)u, v〉L2(Rn)

=

∫∫∫∫∫
a(x, ξ)e2iπ(x−z)·ξb(z, ζ)e2iπ(z−y)·ζu(y)v̄(x)dζdξdzdydx.

=

∫∫∫∫
a(x, ξ)e2iπ(x−z)·ξb(z, ζ)e2iπz·ζ û(ζ)dζdξdzv̄(x)dx.

=

∫∫∫∫
a(x, ξ)e2iπ(x−z)·ξb(z, ζ)e2iπ(z−x)·ζdξdze2iπx·ζ û(ζ)dζv̄(x)dx.

=

∫∫
c(x, ζ)e2iπx·ζ û(ζ)dζv̄(x)dx,

with

c(x, ζ) =

∫∫
a(x, ξ)e2iπ(x−z)·(ξ−ζ)b(z, ζ)dξdz

=

∫∫
a(x, ξ + ζ)e−2iπz·ξb(z + x, ζ)dξdz, (3.2.5)

which is indeed (3.2.4). With c = a � b given by (3.2.4), using that a, b ∈ S (R2n)

we get, using the notation (1.2.8) and Pk(t) = (1 + |t|2)1/2, k ∈ 2N,

c(x, ξ) =

∫∫
Pk(Dη)

(
e−2iπy·η

)
Pk(y)−1a(x, ξ + η)b(y + x, ξ)dydη

=

∫∫
e−2iπy·ηPk(y)−1(Pk(D2)a)(x, ξ + η)b(y + x, ξ)dydη

=

∫∫
Pk(Dy)

(
e−2iπy·η

)
Pk(η)−1Pk(y)−1(Pk(D2)a)(x, ξ + η)b(y + x, ξ)dydη

=
∑

0≤l≤k/2

C l
k/2

∫∫
e−2iπy·η|Dy|2l

(
Pk(y)−1b(y + x, ξ)

)
Pk(η)−1(Pk(D2)a)(x, ξ + η)dydη. (3.2.6)

We denote by a�̃b the right-hand-side of the previous formula and we note that, when

k > n, it makes sense as well for a, b ∈ C∞b (R2n), since |∂αt (1/Pk)(t)| ≤ Cα,k(1+|t|)−k.
We already know that a� b = a�̃b for a, b in the Schwartz class and we want to prove

that it is also true for a, b ∈ C∞b (R2n). Choosing an even k > n (take k = n + 1 or

n+ 2), we also get

‖a�̃b‖L∞(R2n) ≤ Cn sup
|α|≤n+2

‖∂αξ a‖L∞(R2n) sup
|β|≤n+2

‖∂βx b‖L∞(R2n).
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Moreover, we note from (3.2.6) that

∂ξj(a�̃b) = (∂ξja)�̃b+ a�̃(∂ξjb), ∂xj(a�̃b) = (∂xja)�̃b+ a�̃(∂xjb)

and as a result

‖∂αξ ∂βx (a�̃b)‖L∞(R2n)

≤ Cn,α,β sup
|α′|≤n+2,|β′|≤n+2

α′′+α′′′=α, β′′+β′′′=β

‖∂α′+α′′ξ ∂β
′′

x a‖L∞(R2n)‖∂β
′+β′′′

x ∂α
′′′

ξ b‖L∞(R2n), (3.2.7)

which gives also the continuity of the bilinear mapping C∞b (R2n) × C∞b (R2n) 3
(a, b) 7→ a�̃b ∈ C∞b (R2n). We have for u, v ∈ S (Rn), a, b ∈ C∞b (R2n),

ak(x, ξ) = e−(|x|2+|ξ|2)/k2a(x, ξ), bk(x, ξ) = e−(|x|2+|ξ|2)/k2b(x, ξ),

from Lemma 3.2.3 and Theorem 3.2.2, with limits in S (Rn),

a(x,D)b(x,D)u = lim
k
ak(x,D)b(x,D)u = lim

k

(
lim
l
ak(x,D)bl(x,D)u

)
,

and thus, with Ωu,v(x, ξ) = e2iπx·ξû(ξ)v̄(x) (which belongs to S (R2n)),

〈a(x,D)b(x,D)u, v〉L2 = lim
k

(
lim
l
〈(ak � bl)(x,D)u, v〉

)
= lim

k

(
lim
l

∫∫
(ak � bl)(x, ξ)Ωu,v(x, ξ)dxdξ

)
=

∫∫
(a�̃b)(x, ξ)Ωu,v(x, ξ)dxdξ,

which gives indeed a(x,D)b(x,D) = (a�̃b)(x,D). This property gives at once the

continuity properties stated at the end of the theorem, since the weak continuity

property follows immediately from (3.2.6) and the Lebesgue dominated convergence

theorem, whereas the Fréchet continuity follows from (3.2.7). Moreover, with the

same notations as above, we have with

C
(a,b)
x,ξ (y, η) = a(x, ξ + η)b(y + x, ξ)

(see Remark 3.2.6) for each (x, ξ) ∈ R2n,

(JC
(a,b)
x,ξ )(0, 0) = lim

k
(JC

(ak,bk)
x,ξ )(0, 0) = lim

k

(
(ak � bk)(x, ξ)

)
= (a�̃b)(x, ξ)

which proves (3.2.3). The proof of the theorem is complete.

Definition 3.2.7. Let A : S (Rn) −→ S ′(Rn) be a linear operator. The adjoint

operator A∗ : S (Rn) −→ S ′(Rn) is defined by

〈A∗u, v〉S ∗(Rn),S (Rn) = 〈Av, u〉S ∗(Rn),S (Rn),

where S ∗(Rn) is the antidual of S (Rn) (continuous antilinear forms).
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Lemma 3.2.8. Let n ≥ 1 be an integer and t ∈ R∗. We define the operator

J t = exp 2iπtDx ·Dξ (3.2.8)

on S ′(Rn
x×Rn

ξ ) by (FJ ta)(ξ, x) = e2iπtξ·xâ(ξ, x), where F stands here for the Fourier

transform in 2n dimensions. The operator J t sends also S (Rn
x × Rn

ξ ) into itself

continuously, satisfies (for s, t ∈ R) Js+t = JsJ t and is given by

(J ta)(x, ξ) = |t|−n
∫∫

e−2iπt−1y·ηa(x+ y, ξ + η)dydη. (3.2.9)

We have

J ta = eiπt〈BD,D〉a = |t|−ne−iπt−1〈B·,·〉 ∗ a, (3.2.10)

with the 2n×2n matrix B =

(
0 In
In 0

)
. The operator J t sends continuously C∞b (R2n)

into itself.

Proof. We have indeed (FJ ta)(ξ, x) = e2iπtξ·xâ(ξ, x) = eiπt〈BΞ,Ξ〉â(Ξ). Note that B

is a 2n × 2n symmetric matrix with null signature, determinant (−1)n and that

B−1 = B. According to the proposition 1.2.19, the inverse Fourier transform of

eiπt〈BΞ,Ξ〉 is |t|−ne−iπt−1〈BX,X〉 so that J ta = |t|−ne−iπt−1〈B·,·〉 ∗ a. Since the Fourier

multiplier eiπt〈BΞ,Ξ〉 is smooth bounded with derivatives polynomially bounded, it

defines a continuous operator from S (R2n) into itself.

In the sequel of the proof, we take t = 1, which will simplify the notations without

corrupting the arguments. Let us consider a ∈ S (R2n): we have with k ∈ 2N and

the polynomial on Rn defined by Pk(y) = (1 + |y|2)k/2

(Ja)(x, ξ) =

∫∫
e−2iπy·ηPk(y)−1Pk(Dη)

(
Pk(η)−1(Pk(Dy)a)(x+ y, ξ + η)

)
dydη,

so that, with |Tαβ(η)| ≤ Pk(η)−1 and constants cαβ, we obtain

(Ja)(x, ξ) =
∑
|β|≤k
|α|≤k

cαβ

∫∫
e−2iπy·ηPk(y)−1Tαβ(η)(Dα

ξD
β
xa)(x+y, ξ+η)dydη. (3.2.11)

Let us denote by J̃a the right-hand-side of (3.2.11). We already know that J̃a = Ja

for a ∈ S (R2n). We also note that, using an even integer k > n, the previous

integral converges absolutely whenever a ∈ C∞b (R2n); moreover we have

‖J̃a‖L∞ ≤ Cn sup
|α|≤n+2
|β|≤n+2

‖Dα
ξD

β
xa‖L∞ ,

and since the derivations are commuting with J and J̃ , we also get that

‖∂γJ̃a‖L∞ ≤ Cn sup
|α|≤n+2
|β|≤n+2

‖Dα
ξD

β
x∂

γa‖L∞ . (3.2.12)
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It implies that J̃ is continuous from C∞b (R2n) to itself. Let us now consider a ∈
C∞b (R2n × Rm); we define the sequence (ak) in S (R2n) by

ak(x, ξ) = e−(|x|2+|ξ|2)/k2a(x, ξ).

We have 〈Ja,Φ〉S ∗(R2n),S (R2n) =∫∫
a(x, ξ)(J−1Φ)(x, ξ)dxdξ = lim

k→+∞

∫∫
ak(x, ξ)(J−1Φ)(x, ξ)dxdξ

= lim
k→+∞

∫∫
(Jak)(x, ξ)Φ̄(x, ξ)dxdξ =

∫∫
(J̃a)(x, ξ)Φ̄(x, ξ)dxdξ,

so that we indeed have J̃a = Ja and from (3.2.12) the continuity property of the

lemma whose proof is now complete.

Theorem 3.2.9. Let a ∈ S ′(R2n) and A = a(x,D) be given by Definition 3.2.1.

Then the operator A∗ is equal to a∗(x,D), where a∗ = Jā (J is given in Lemma

3.2.8 above). If a belongs to C∞b (R2n), a∗ = Jā ∈ C∞b (R2n) and the mapping a 7→ a∗

is continuous from C∞b (R2n) into itself.

Proof. According to the definitions 3.2.7 and 3.2.1, we have for u, v ∈ S (Rn), with

Ωv,u(x, ξ) = e2iπx·ξv̂(ξ)ū(x),

〈A∗u, v〉S ∗(Rn),S (Rn) = 〈Av, u〉S ∗(Rn),S (Rn) = ≺ a,Ωv,u �S ′(R2n),S (R2n)

=≺ ā,Ωv,u �S ′(R2n),S (R2n) .

On the other hand, we have(
J−1(Ωv,u)

)
(x, ξ) =

∫∫
e2iπ(x−y)·(ξ−η)e−2iπy·η ¯̂v(η)u(y)dydη

= v̄(x)e2iπx·ξû(ξ) = Ωu,v(x, ξ),

so that, using (3.2.10), we get

〈A∗u, v〉S ∗(Rn),S (Rn) =≺ ā, JΩu,v �S ′(R2n),S (R2n)=≺ Jā,Ωu,v �S ′(R2n),S (R2n)

and finally A∗ = (Jā)(x,D). The last statement in the theorem follows from Lemma

3.2.8.

N.B. In this introductory section, we have seen a very general definition of quanti-

zation (Definition 3.2.1), an easy S continuity theorem (Theorem 3.2.2), a trickier

L2-boundedness result (Theorem 3.2.4), a composition formula (Theorem 3.2.5) and

an expression for the adjoint (Theorem 3.2.7). These five steps are somewhat typical

of the construction of a pseudo-differential calculus and we shall see many different

examples of this situation. The above prolegomena provide a quite explicit and ele-

mentary approach to the construction of an algebra of pseudo-differential operators

in a rather difficult framework, since we did not use any asymptotic calculus and

did not have at our disposal a “small parameter”. The proofs and simple methods

that we used here will be useful later as well as many of the results.
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3.3 Quantization formulas

We have already seen in Definition 3.2.1 and in the formula (3.2.1) a way to associate

to a tempered distribution a ∈ S ′(R2n) an operator from S (Rn) to S ′(Rn). This

question of quantization has of course many links with quantum mechanics and we

want here to study some properties of various quantizations formulas, such as the

Weyl quantization and the Feynman formula along with several variations around

these examples. We are given a function a defined on the phase space Rn×Rn (a is a

“Hamiltonian”) and we wish to associate to this function an operator. For instance,

we may introduce the one-parameter formulas, for t ∈ R,

(opt a)u(x) =

∫∫
e2iπ(x−y)·ξa

(
(1− t)x+ ty, ξ

)
u(y)dydξ. (3.3.1)

When t = 0, we recognize the standard quantization introduced in Definition 3.2.1,

quantizing a(x)ξj in a(x)Dxj (see (1.2.8)). However, one may wish to multiply first

and take the derivatives afterwards: this is what the choice t = 1 does, quantizing

a(x)ξj in Dxja(x). The more symmetrical choice t = 1/2 was done by Hermann

Weyl [27]: we have

(op 1
2
a)u(x) =

∫∫
e2iπ(x−y)·ξa

(x+ y

2
, ξ
)
u(y)dydξ, (3.3.2)

and thus op 1
2
(a(x)ξj) = 1

2

(
a(x)Dxj +Dxja(x)

)
. This quantization is widely used

in quantum mechanics, because a real-valued Hamiltonian gets quantized by a (for-

mally) selfadjoint operator. We shall see that the most important property of that

quantization remains its symplectic invariance, which will be studied in details in

Chapter 2; a different symmetrical choice was made by Richard Feynman who used

the formula ∫∫
e2iπ(x−y)·ξ (a(x, ξ) + a(y, ξ))

1

2
u(y)dydξ, (3.3.3)

keeping the selfadjointness of real Hamiltonians, but loosing the symplectic invari-

ance. The reader may be embarrassed by the fact that we did not bother about the

convergence of the integrals above. Before providing a definition, we may assume

that a ∈ S (R2n), u, v ∈ S (Rn), t ∈ R and compute

〈(opta)u, v〉 =

∫∫∫
a
(
(1− t)x+ ty, ξ

)
e2iπ(x−y)·ξu(y)v̄(x)dydξdx

=

∫∫∫
a(z, ξ)e−2iπs·ξu(z + (1− t)s)v̄(z − ts)dzdξds

=

∫∫∫
a(x, ξ)e−2iπz·ξu(x+ (1− t)z)v̄(x− tz)dxdξdz,

so that with

Ωu,v(t)(x, ξ) =

∫
e−2iπz·ξu(x+ (1− t)z)v̄(x− tz)dz, (3.3.4)
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which is easily seen2 to be in S (R2n) when u, v ∈ S (Rn), we can give the following

definition.3

Definition 3.3.1. Let a ∈ S ′(R2n) be a tempered distribution and t ∈ R. We

define the operator opta : S (Rn) −→ S ∗(Rn) by the formula

〈(opta)u, v〉S ∗(Rn),S (Rn) =≺ a,Ωu,v(t) �S ′ (R2n),S (R2n),

where S ∗(Rn) is the antidual of S (Rn) (continuous antilinear forms).

Proposition 3.3.2. Let a ∈ S ′(R2n) be a tempered distribution and t ∈ R. We

have

opt a = op0(J ta) = (J ta)(x,D),

with J t defined in Lemma 3.2.8.

Proof. Let u, v ∈ S (Rn). With the S (R2n) function Ωu,v(t) given above, we have

for t 6= 0, (
J tΩu,v(0)

)
(x, ξ) = |t|−n

∫∫
e−2iπt−1(x−y)·(ξ−η)Ωu,v(0)(y, η)dydη

= |t|−n
∫∫

e−2iπt−1(x−y)·(ξ−η)û(η)v̄(y)e2iπy·ηdydη

=

∫∫
e−2iπz·(ξ−η)û(η)v̄(x− tz)e2iπ(x−tz)·ηdzdη

=

∫
e−2iπz·ξu(x+ (1− t)z)v̄(x− tz)dz = Ωu,v(t)(x, ξ), (3.3.5)

so that

〈(opta)u, v〉S ∗(Rn),S (Rn) =≺ a,Ωu,v(t) �S ′(R2n),S (R2n) (definition 3.3.1)

=≺ a, J tΩu,v(0) �S ′(R2n),S (R2n) (property (3.3.5))

=≺ J ta,Ωu,v(0) �S ′(R2n),S (R2n) (easy identity for J t)

= 〈(J ta)(x,D)u, v〉S ∗(Rn),S (Rn) (definition 3.2.1),

completing the proof.

Remark 3.3.3. The theorem 3.2.9 and the previous proposition give in particular

that a(x,D)∗ = op1(ā) = (Jā)(x,D), a formula which in fact motivates the study of

the group J t. On the other hand, using the Weyl quantization simplifies somewhat

the matter of taking adjoints since we have(
op1/2(a)

)∗
=
(
op0(J1/2a)

)∗
= op0(J(J1/2a)) = op0(J1/2ā) = op1/2(ā)

2In fact the linear mapping Rn×Rn 3 (x, z) 7→ (x−tz, x+(1−t)z) has determinant 1 and Ωu,v(t)
appears as the partial Fourier transform of the function Rn×Rn 3 (x, z) 7→ v̄(x−tz)u(x+(1−t)z),
which is in the Schwartz class.

3The reader can check that this is consistent with Definition 3.2.1.
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and in particular if a is real-valued, op1/2(a) is formally selfadjoint. The Feynman

formula as displayed in (3.3.3) amounts to quantize the Hamiltonian a by

1

2
op0(a+ Ja)

and we see that
(
op0(a+Ja)

)∗
= op0(Jā+J(Ja)) = op0(Jā+ā), which also provides

selfadjointness for real-valued Hamiltonians.

Lemma 3.3.4. Let a ∈ S (R2n). Then for all t ∈ R, opt(a) is a continuous mapping

from S ′(Rn) in S (Rn).

Proof. Let a ∈ S (R2n): we have for u ∈ S ′(Rn), A = a(x,D),

xβ(Dα
xAu)(x) =

∑
α′+α′′=α

1

α′!α′′!
〈û(ξ), e2iπx·ξξα

′
xβ(Dα′′

x a)(x, ξ)〉S ′(Rnξ ),S (Rnξ ),

so that Au ∈ S (Rn) and the same property holds for opt(a) since J t is an isomor-

phism of S ′(R2n).

3.4 The Sm1,0class of symbols

Differential operators on Rn with smooth coefficients are given by a formula (see

(3.2.1))

a(x,D)u =
∑
|α|≤m

aα(x)Dα
x

where the aα are smooth functions. Assuming some behaviour at infinity for the aα,

we may require that they are C∞b (Rn) (see page 62) and a natural generalization is

to consider operators a(x,D) with a symbol a of type Sm1,0, i.e. smooth functions on

R2n satisfying

|(∂αξ ∂βxa)(x, ξ)| ≤ Cαβ〈ξ〉m−|α|, 〈ξ〉 = (1 + |ξ|2)1/2. (3.4.1)

The best constants Cαβ in (3.4.1) are the semi-norms of a in the Fréchet space Sm1,0.

We can define, for a ∈ Sm1,0, k ∈ N,

γk,m(a) = sup
(x,ξ)∈R2n,|α|+|β|≤k

|(∂αξ ∂βxa)(x, ξ)|〈ξ〉−m+|α|. (3.4.2)

Example. The function 〈ξ〉m belongs to Sm1,0: the function

R× Rn 3 (τ, ξ) 7→ (τ 2 + |ξ|2)m/2

is (positively) homogeneous of degree m on Rn+1\{0}, and thus ∂αξ
(
(τ 2 + |ξ|2)m/2

)
is homogeneous of degree m− |α| and bounded above by

Cα(τ 2 + |ξ|2)
m−|α|

2 .

Since the restriction to τ = 1 and the derivation with respect to ξ commute, it gives

the answer.
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We shall see that the class of operators Op(Sm1,0) is suitable (Op(b) is op0b, see

Proposition 3.3.2) to invert elliptic operators, and useful for the study of singularities

of solutions of PDE. We see that the elements of Sm1,0 are temperate distributions, so

that the operator a(x,D) makes sense, according to Definition 3.2.1. We have also

the following result.

Theorem 3.4.1. Let m ∈ R and a ∈ Sm1,0. Then the operator a(x,D) is continuous

from S (Rn) into itself.

Proof. With 〈D〉 = Op(〈ξ〉), we have a(x,D) = Op(a(x, ξ)〈ξ〉−m)〈D〉m. The func-

tion a(x, ξ)〈ξ〉−m belongs to C∞b (R2n) so that we can use Theorem 3.2.2 and the fact

that 〈D〉m is continuous on S (Rn) to get the result.

Theorem 3.4.2. Let a ∈ S0
1,0. Then the operator a(x,D) is bounded on L2(Rn).

Proof. Since S0
1,0 ⊂ C∞b (R2n), it follows from Theorem 3.2.4.

Theorem 3.4.3. Let m1,m2 be real numbers and a1 ∈ Sm1
1,0 , a2 ∈ Sm2

1,0 . Then the

composition a1(x,D)a2(x,D) makes sense as a continuous operator from S (Rn)

into itself and a1(x,D)a2(x,D) = (a1 � a2)(x,D) where a1 � a2 belongs to Sm1+m2
1,0

and is given by the formula

(a1 � a2)(x, ξ) = (exp 2iπDy ·Dη)
(
a1(x, ξ + η)a2(y + x, ξ)

)
|y=0,η=0

. (3.4.3)

N.B. From Lemma 4.1.5 in [13], we know that the operator e2iπDy ·Dη is an iso-

morphism of Sm1,0(R2n), which gives a meaning to the formula (3.4.3), since for

aj ∈ S
mj
1,0 (R2n), (x, ξ) given in R2n, the function (y, η) 7→ a1(x, ξ + η)a2(y + x, ξ) =

Cx,ξ(y, η) belongs to Sm1
1,0 (R2n) as well as JCx,ξ and we can take the value of the

latter at (y, η) = (0, 0).

Proof. We assume first that both aj belong to S (R2n). The formula (3.2.4) provides

the answer. Now, rewriting the formula (3.2.6) for an even integer k, we get

(a1 � a2)(x, ξ) =
∑

0≤l≤k/2

C l
k/2

∫∫
e−2iπy·η|Dy|2l

(
〈y〉−ka2(y + x, ξ)

)
〈η〉−k(〈Dη〉ka1)(x, ξ + η)dydη. (3.4.4)

We denote by a1�̃a2 the right-hand-side of (3.4.4) and we note that, when k >

n+ |m1|, it makes sense (and it does not depend on k) as well for aj ∈ S
mj
1,0 , since

|∂αy 〈y〉−k| ≤ Cα,k〈y〉−k, |∂βy a2(y + x, ξ)| ≤ Cβ〈ξ〉m2 , |∂γηa1(x, ξ + η)| ≤ Cγ〈ξ + η〉m1

so that the absolute value of the integrand above is4 5

. 〈y〉−k〈η〉−k〈ξ〉m2〈ξ + η〉m1 . 〈y〉−k〈η〉−k+|m1|〈ξ〉m1+m2 .

4We use 〈ξ + η〉 ≤ 21/2〈ξ〉〈η〉 so that,

∀s ∈ R,∀ξ, η ∈ Rn, 〈ξ + η〉s ≤ 2|s|/2〈ξ〉s〈η〉|s|, (3.4.5)

a convenient inequality (to get it for s ≥ 0, raise the first inequality to the power s, and for s < 0,
replace ξ by −ξ − η) a.k.a. Peetre’s inequality.

5We use here the notation a . b for the inequality a ≤ Cb, where C is a “controlled” constant
(here C depends only on k,m1,m2).
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Remark 3.4.4. Note that this proves that the mapping

Sm1
1,0 × Sm2

1,0 3 (a1, a2) 7→ a1�̃a2 ∈ Sm1+m2
1,0

is bilinear continuous. In fact, we have already proven that

|(a1�̃a2)(x, ξ)| ≤ C〈ξ〉m1+m2 ,

and we can check directly that a1�̃a2 is smooth and satisfies

∂ξj
(
a1�̃a2

)
= (∂ξja1)�̃a2 + a1�̃(∂ξja2)

so that |∂ξj(a1�̃a2)(x, ξ)| ≤ C〈ξ〉m1+m2−1, and similar formulas for higher order

derivatives.

Remark 3.4.5. Let (ck) be a bounded sequence in the Fréchet space Sm1,0 converging

in C∞(R2n) to c. Then c belongs to Sm1,0 and for all u ∈ S (Rn), the sequence

(ck(x,D)u) converges to c(x,D)u in S (Rn). In fact, the sequence of functions

(ck(x, ξ)〈ξ〉−m) is bounded in C∞b (R2n) and we can apply Lemma 3.2.3 to get that

limk Op(ck(x, ξ)〈ξ〉−m)〈D〉mu = Op(c(x, ξ)〈ξ〉−m)〈D〉mu = Op(c)u in S (Rn).

The remaining part of the argument is the same than in the proof of Theorem

3.2.5, after (3.2.7).

Theorem 3.4.6. Let s,m be real numbers and a ∈ Sm1,0. Then the operator a(x,D)

is bounded from Hs+m(Rn) to Hs(Rn).

Proof. Let us recall that Hs(Rn) = {u ∈ S ′(Rn), 〈ξ〉sû(ξ) ∈ L2(Rn)}. From the

theorem 3.4.3, the operator 〈D〉sa(x,D)〈D〉−m−s can be written as b(x,D) with

b ∈ S0
1,0 and so from the theorem 3.4.2, it is a bounded operator on L2(Rn). Since

〈D〉σ is an isomorphism of Hσ(Rn) onto L2(Rn) with inverse 〈D〉−σ, it gives the

result.

Corollary 3.4.7. Let r be a symbol in S−∞1,0 = ∩mSm1,0. Then r(x,D) sends E ′(Rn)

into S (Rn).

Proof. We have for v ∈ E ′ and ψ ∈ C∞c (Rn) equal to 1 on a neighborhood of the

support of v, iterating

xjD
βr(x,D)v = [xj, D

βr(x,D)]ψv +Dβr(x,D)ψxjv = rj(x,D)v, rj ∈ S−∞1,0 ,

that xαDβr(x,D)v = rαβ(x,D)v, rαβ ∈ S−∞1,0 , and thus

xαDβr(x,D)v ∈ ∩sHs(Rn) ⊂ C∞b (Rn),

completing the proof.
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Theorem 3.4.8. Let m1,m2 be real numbers and a1 ∈ Sm1
1,0 , a2 ∈ Sm2

1,0 . Then

a1(x,D)a2(x,D) = (a1 � a2)(x,D), the symbol a1 � a2 belongs to Sm1+m2
1,0 and we

have the asymptotic expansion, for all N ∈ N,

a1 � a2 =
∑
|α|<N

1

α!
Dα
ξ a1∂

α
xa2 + rN(a1, a2), (3.4.6)

with rN(a1, a2) ∈ Sm1+m2−N
1,0 . Note that Dα

ξ a1∂
α
xa2 belong to S

m1+m2−|α|
1,0 .

Proof. We can use the formula (3.4.3) and apply that lemma to get the desired

formula with

rN(a1, a2)(x, ξ)

=

∫ 1

0

(1− θ)N−1

(N − 1)!
e2iπθDz ·Dζ(2iπDz ·Dζ)

N
(
a1(x, ζ)a2(z, ξ)

)
dθ|z=x,ζ=ξ . (3.4.7)

The function (z, ζ) 7→ bx,ξ(z, ζ) = 〈ξ〉−m2(2iπDz ·Dζ)
Na1(x, ζ)a2(z, ξ) belongs to

Sm1−N
1,0 (R2n

z,ζ) uniformly with respect to the parameters (x, ξ) ∈ R2n: it satisfies, using

the notation (3.4.2), for max(|α|, |β|) ≤ k,

|∂αζ ∂βz bx,ξ(z, ζ)| ≤ γk,m1(a1)γk,m2(a2)〈ζ〉m1−N−|α|.

Lemma 3.4.9. Let n ≥ 1 be an integer and m, t ∈ R. The operator J t sends

continuously Sm1,0(R2n) into itself and for all integers N ≥ 0,

(J ta)(x, ξ) =
∑
|α|<N

t|α|

α!
(Dα

ξ ∂
α
xa)(x, ξ) + rN(t)(x, ξ), rN(t) ∈ Sm−N1,0 ,

rN(t)(x, ξ) = tN
∫ 1

0

(1− θ)N−1

(N − 1)!

(
Jθt(Dξ · ∂x)Na

)
(x, ξ)dθ.

Proof. We apply Taylor’s formula on J t = exp 2iπtDx · Dξ to get for operators on

S ′(R2n),

J t =
∑

0≤k<N

tk

k!
(Dξ · ∂x)k +

∫ 1

0

(1− θ)N−1

(N − 1)!
Jθt(tDξ · ∂x)Ndθ, (3.4.8)

and since
1

k!
(Dξ · ∂x)k =

∑
α1+···+αn=k

αj∈N

(Dξ1∂x1)
α1

α1!
· · · (Dξn∂xn)αn

αn!
,

we obtain the above formulas for a ∈ S ′(R2n). On the other hand, we get from

(3.4.1) that the term Dα
ξ ∂

α
xa belongs to S

m−|α|
1,0 . It is thus enough that we show

that J t sends continuously Sm1,0 into itself. For that purpose, we can use the formula

(3.2.11) (and assume that t = 1) in the proof of the lemma 3.2.8; also the same

reasoning as in the proof of this lemma shows that the right-hand-side of (3.2.11) is
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meaningful for a ∈ Sm1,0 if k > n + |m| and is indeed the expression of Ja. We get,

for all k ∈ N,

|Ja(x, ξ)| ≤ Ck,n

∫∫
〈y〉−k〈η〉−k〈ξ + η〉mdξdη

so that Peetre’s inequality (3.4.5) yields, for k > n + |m|, |Ja(x, ξ)| ≤ C ′k,n〈ξ〉m.
The estimates for the derivatives are obtained similarly since they commute with J .

The terms involving integrals of J t can be handled via Remark 4.1.4 in [13], which

provides a polynomial control with respect to t.

Applying Lemma 3.4.9, we obtain that the function

ρx,ξ(z, ζ) =

∫ 1

0

(1− θ)N−1

(N − 1)!
(Jθbx,ξ)(z, ζ)dθ

belongs to Sm1−N
1,0 (R2n

z,ζ) uniformly with respect to x, ξ, so that in particular

sup
(x,ξ,z,ζ)∈R4n

|ρx,ξ(z, ζ)〈ζ〉−m1+N | = C0 < +∞.

Since rN(a1, a2)(x, ξ)〈ξ〉−m2 = ρx,ξ(x, ξ), we obtain

|rN(a1, a2)(x, ξ)| ≤ C0〈ξ〉m1+m2−N . (3.4.9)

Using the formula (3.4.7) above gives as well the smoothness of rN(a1, a2) and with

the identities (consequences of ∂xj(a1 � a2) = (∂xja1) � a2 + a1 � (∂xja2))

∂xj
(
rN(a1, a2)

)
= rN(∂xja1, a2) + rN(a1, ∂xja2)

∂ξj
(
rN(a1, a2)

)
= rN(∂ξja1, a2) + rN(a1, ∂ξja2),

it is enough to reapply (3.4.9) to get the result rN ∈ Sm1+m2−N
1,0 .

We have already seen in Theorem 3.2.9 that the adjoint (in the sense of Definition

3.2.7) of the operator a(x,D) is equal to a∗(x,D), where a∗ = Jā (J is given in

Lemma 3.2.8). Lemma 3.4.9 gives the following result.

Theorem 3.4.10. Let a ∈ Sm1,0. Then a∗ = Jā and the mapping a 7→ a∗ is continu-

ous from Sm1,0 into itself. Moreover, for all integers N , we have

a∗ =
∑
|α|<N

1

α!
Dα
ξ ∂

α
x ā+ rN(a), rN(a) ∈ Sm−N1,0 .

A consequence of the above results is the following.

Corollary 3.4.11. Let aj ∈ S
mj
1,0 , j = 1, 2. Then we have

a1 � a2 ≡ a1a2 mod Sm1+m2−1
1,0 , (3.4.10)

a1 � a2 − a2 � a1 ≡
1

2iπ
{a1, a2} mod Sm1+m2−2

1,0 , (3.4.11)

where the Poisson bracket {a1, a2} =
∑

1≤j≤n

∂a1

∂ξj

∂a2

∂xj
− ∂a1

∂xj

∂a2

∂ξj
. (3.4.12)

For a ∈ Sm1,0, a∗ ≡ ā mod Sm−1
1,0 . (3.4.13)
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Theorem 3.4.12. Let a be a symbol in Sm1,0 such that inf(x,ξ)∈R2n |a(x, ξ)|〈ξ〉−m > 0.

Then there exists b ∈ S−m1,0 such that

b(x,D)a(x,D) = Id +l(x,D),
a(x,D)b(x,D) = Id +r(x,D),

r, l ∈ S−∞1,0 = ∩νSν1,0.

Proof. We remark first that the smooth function 1/a belongs to S−m1,0 : it follows from

the Faà de Bruno formula or more elementarily, from the fact that, for |α|+ |β| ≥ 1,

∂αξ ∂
β
x ( 1

a
a) = 0, entailing with the Leibniz formula

a∂αξ ∂
β
x (1/a) =

∑
α′+α′′=α,β′+β′′=β
|α′|+|β′|<|α|+|β|

∂α
′

ξ ∂
β′

x (1/a)∂α
′′

ξ ∂β
′′

x (a)c(α′, β′),

with constants c(α′, β′). Arguing by induction on |α|+ |β|, we get

|a∂αξ ∂βx (1/a)| .
∑

α′+α′′=α

〈ξ〉−m−|α′|〈ξ〉m−|α′′| . 〈ξ〉−|α|

and from |a| & 〈ξ〉m, we get 1/a ∈ S−m1,0 . Now, we can compute, using Theorem

3.4.8,
1

a
� a = 1 + l1, l1 ∈ S−1

1,0 .

Inductively, we can assume that there exist (b0, · · · , bN) with bj ∈ S−m−j such that

(b0 + · · ·+ bN) � a = 1 + lN+1, lN+1 ∈ S−N−1
1,0 . (3.4.14)

We can now take bN+1 = −lN+1/a which belongs to S−m−N−1 and this gives

(b0 + · · ·+ bN + bN+1) � a = 1 + lN+1 − lN+1 + lN+2, lN+2 ∈ S−N−2
1,0 .

Lemma 3.4.13. Let µ ∈ R and (cj)j∈N be a sequence of symbols such that cj ∈ Sµ−j1,0 .

Then there exists c ∈ Sµ1,0 such that

c ∼
∑
j

cj, i.e. ∀N ∈ N, c−
∑

0≤j<N

cj ∈ Sµ−N1,0 .

Proof. The proof is based on a Borel-type argument similar to the one used to

construct a C∞ function with an arbitrary Taylor expansion. Let ω ∈ C∞b (Rn) such

that ω(ξ) = 0 for |ξ| ≤ 1 and ω(ξ) = 1 for |ξ| ≥ 2. Let (λj)j∈N be a sequence of

numbers ≥ 1. We want to define

c(x, ξ) =
∑
j≥0

cj(x, ξ)ω(ξλ−1
j ), (3.4.15)

and we shall show that a suitable choice of λj will provide the answer. We note that,

since λj ≥ 1, the functions ξ 7→ ω(ξλ−1
j ) make a bounded set in the Fréchet space

S0
1,0. Multiplying the cj by 〈ξ〉−µ, we may assume that µ = 0. We have then, using

the notation (3.4.2) (in which we drop the second index),

|cj(x, ξ)|ω(ξλ−1
j ) ≤ γ0(cj)〈ξ〉−j1|ξ|≥λj ≤ γ0(cj)λ

−j/2
j 〈ξ〉−j/2,
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so that,

∀j ≥ 1, λj ≥ 22γ0(cj)
2
j = µ

(0)
j =⇒ ∀j ≥ 1, |cj(x, ξ)|ω(ξλ−1

j ) ≤ 2−j〈ξ〉−j/2,

showing that the function c can be defined as above in (3.4.15) and is a continuous

bounded function. Let 1 ≤ k ∈ N be given. Calculating (with ωj(ξ) = ω(ξλ−1
j )) the

derivatives ∂αξ ∂
β
x (cjωj) for |α|+ |β| = k, we get

|∂αξ ∂βx (cjωj)| ≤ γk(cjωj)〈ξ〉−j−|α|1|ξ|≥λj ≤ γ̃k(cj)λ
−j/2
j 〈ξ〉−|α|−

j
2 ,

so that

∀j ≥ k, λj ≥ 22
(
γ̃k(cj)

) 2
j = µ

(k)
j =⇒ ∀j ≥ k, |∂αξ ∂βx (cjωj)| ≤ 2−j〈ξ〉−|α|−

j
2 , (3.4.16)

showing that the function c can be defined as above in (3.4.15) and is a Ck function

such that

|(∂αξ ∂βx c)(x, ξ)| ≤
∑

0≤j<k

γ̃k(cj)〈ξ〉−j−|α| +
∑
j≥k

2−j〈ξ〉−|α| ≤ Ck〈ξ〉−|α|.

It is possible to fulfill the conditions on the λj above for all k ∈ N: just take

λj ≥ sup
0≤k≤j

µ
(k)
j .

The function c belongs to S0
1,0 and

rN = c−
∑

0≤j<N

cj =
∑

0≤j<N

(ωj − 1)cj︸ ︷︷ ︸
∈S−∞1,0

+
∑
j≥N

cjωj,

and for |α|+ |β| = k, using the estimates (3.4.16), we obtain

∑
j≥N

|∂αξ ∂βx (cjωj)(x, ξ)| ≤
∑

N≤j<max(2N,k)

.〈ξ〉−|α|−j.〈ξ〉−|α|−N︷ ︸︸ ︷
|∂αξ ∂βx (cjωj)(x, ξ)|

+
∑

j≥max(2N,k)

|∂αξ ∂βx (cjωj)(x, ξ)|︸ ︷︷ ︸
.2−j〈ξ〉−|α|−

j
2.2−j〈ξ〉−|α|−N

,

proving that rN ∈ S−N1,0 . The proof of the lemma is complete.

Going back to the proof of the theorem, we can take, using Lemma 3.4.13,

S−m1,0 3 b ∼
∑

j≥0 bj, and for all N ∈ N,

b � a ∈
∑

0≤j<N

bj � a+ S−N−m1,0 � a = 1 + S−N1,0 ,

providing the first equality in Theorem 3.4.12. To construct a right approximate

inverse, i.e. to obtain the second equality in this theorem with an a priori different b
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follows the same lines (or can be seen as a direct consequence of the previous identity

by applying it to the adjoint a∗); however we are left with the proof that the right

and the left approximate inverse could be taken as the same. We have proven that

there exists b(1), b(2) ∈ S−m1,0 such that

b(1) � a ∈ 1 + S−∞1,0 , a � b(2) ∈ 1 + S−∞1,0 .

Now we calculate, using6 the theorem 3.2.5, (b(1) � a) � b(2) = b(2) mod S−∞1,0 which

is also b(1) � (a � b(2)) = b(1) mod S−∞1,0 so that b(1)− b(2) ∈ S−∞1,0 , providing the result

and completing the proof of the theorem.

Remark 3.4.14. The mapping S ′(R2n) 3 a 7→ a(x,D) is (obviously) linear and one-

to-one: if a(x,D) = 0, choosing v(x) = e−π|x−x0|
2
, û(ξ) = e−π|ξ−ξ0|

2
, we get that the

convolution of the distribution ã(x, ξ) = a(x, ξ)e2iπx·ξ with the Gaussian function

e−π(|x|2+|ξ|2) is zero, so that, taking the Fourier transform shows that the product of

the same Gaussian function with ̂̃a is zero, implying that ã and thus a is zero. It is

a consequence of a version of the Schwartz kernel theorem that the same mapping

S ′(R2n) 3 a 7→ a(x,D) ∈ continuous linear operators from S (Rn) to S ′(Rn) is

indeed onto. However the “onto” part of our statement is highly non trivial and a

version of this theorem can be found in the theorem 5.2.1 of [5].

An important consequence of the proof of the previous theorem is the possible

microlocalization of this result.

Theorem 3.4.15. Let χ be a symbol in S0
1,0 and let a be a symbol in Sm1,0 such

that inf(x,ξ)∈suppχ |a(x, ξ)|〈ξ〉−m > 0. Let ψ be a symbol in S0
1,0 such that suppψ ⊂

{χ = 1}◦. Then there exists b ∈ S−m1,0 such that

b(x,D)a(x,D) = ψ(x,D) + l(x,D), l ∈ S−∞1,0 .

Proof. We consider the symbol b0 = χ/a, which belongs obviously to S−m1,0 . We have

b0 � a = χ+ l1, l1 ∈ S−1
1,0 ,

(
−χl1
a

+
χ

a

)
� a = χ+ l1(1− χ) + l2, l2 ∈ S−2

1,0 .

Inductively, we may assume that there exists (b0, . . . , bN) with bj ∈ S−m−j such that

(b0 + b1 + · · ·+ bN) � a = χ+
∑

1≤j≤N

lj(1− χ) + lN+1, lN+1 ∈ S−1−N
1,0 .

Choosing bN+1 = −χlN+1/a, we get

(b0 + b1 + · · ·+ bN + bN+1) � a = χ+
∑

1≤j≤N+1

lj(1− χ) + lN+2, lN+2 ∈ S−2−N
1,0 .

6A consequence of Theorem 3.2.5 is the associativity of the “law” � since

Op(a � (b � c)) = Op(a)
(
Op(b)Op(c)

)
=
(
Op(a)Op(b)

)
Op(c) = Op((a � b) � c)

so that the injectivity property of Remark 3.4.14 gives the answer.
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Taking now a symbol ψ ∈ S0
1,0 such that suppψ ⊂ χ−1({1}), we obtain for all N ∈ N,

the existence of symbols b0, · · · , bN with bj ∈ S−m−j such that

ψ�(b0 +b1 + · · ·+bN)�a = ψ�χ+ψ�
∑

1≤j≤N

lj(1−χ)+ψ� lN+1 (lN+1 ∈ S−1−N
1,0 )

= ψ + rN+1, rN+1 ∈ S−1−N
1,0 .

Using now Lemma 3.4.13, we find a symbol b ∈ S−m1,0 such that, for all N ∈ N,

ψ � b � a ∈ ψ + S−1−N
1,0 , i.e. we find b̃ ∈ S−m1,0 such that b̃ � a ≡ ψ (mod S−∞1,0 ).

3.5 G̊arding’s inequality

We end this introduction with the so-called Sharp G̊arding inequality, a result proven

in 1966 by L. Hörmander [3] and extended to systems the same year by P. Lax and

L. Nirenberg [9].

Theorem 3.5.1. Let a be a nonnegative symbol in Sm1,0. Then there exists a constant

C such that, for all u ∈ S (Rn),

Re〈a(x,D)u, u〉+ C‖u‖2

H
m−1

2 (Rn)
≥ 0. (3.5.1)

Proof. First reductions. We may assume that m = 1: in fact, the statement for

m = 1 implies the result by considering, for a nonnegative a ∈ Sm1,0, the opera-

tor 〈D〉 1−m2 a(x,D)〈D〉 1−m2 which, according to Theorem 3.4.8 has a symbol in S1
1,0,

which belongs to 〈ξ〉1−ma(x, ξ) + S0
1,0. Applying the result for m = 1, and the L2-

boundedeness of operators with symbols in S0
1,0, we get for all u ∈ S (Rn),

Re〈〈D〉
1−m

2 a(x,D)〈D〉
1−m

2 u, u〉+ C‖u‖2
L2(Rn) ≥ 0,

which gives the sought result when applied to u = 〈D〉m−1
2 v. We may also replace

a(x,D) by aw, where aw is the operator with Weyl symbol a . In fact, according to

Lemma 3.2.8, J1/2a− a ∈ S0
1,0 and Op(S0

1,0) is L2-bounded.

Main step: a result with a small parameter. We consider a nonnegative a ∈ S1
1,0 and

ϕ ∈ C∞c ((0,+∞);R+) such that

∫ +∞

0

ϕ(h)
dh

h
= 1. (3.5.2)

This implies

a(x, ξ) =

∫ +∞

0

ϕ(〈ξ〉h)a(x, ξ)︸ ︷︷ ︸
=ah(x,ξ)

dh

h
. (3.5.3)

We have, with Γh(x, ξ) = 2n exp−2π(h−1|x|2 + h|ξ|2) and X = (x, ξ),

(ah ∗ Γh)(X) = ah(X) +

∫ 1

0

(1− θ)a′′h(X + θY )Y 2Γh(Y )dY dθ

= ah(X) + rh(X). (3.5.4)
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The main step of the proof is that (ah ∗ Γh)
w ≥ 0, a result following from the next

calculation (for u ∈ S (Rn)), due to Definition 3.3.1. We have, with Ωu,u defined in

(3.3.4),

〈(ah ∗ Γh)
wu, u〉 =

∫∫
(ah ∗ Γh)(x, ξ)

(∫
e−2iπz·ξu(x+

z

2
)ū(x− z

2
)dz

)
dxdξ

=

∫∫
a(y, η)(Ωu,u(1/2) ∗ Γh)(y, η)dydη,

and since (Ωu,u(1/2) ∗ Γh)(x, ξ) =∫∫∫
e−2iπz·(ξ−η)u(x− y +

z

2
)ū(x− y − z

2
)2n exp−2π(h−1|y|2 + h|η|2)dzdydη

=

∫∫
e−2iπz·ξu(x− y +

z

2
)ū(x− y − z

2
)2n/2e−2πh−1|y|2h−n/2e−

π
2h
|z|2dzdy

=

∫∫
u(x− y1)ū(x− y2)e−2iπ(y2−y1)·ξ2n/2h−n/2e−

π
2h
|y1+y2|2e−

π
2h
|y1−y2|2dy1dy2

= 2n/2h−n/2
∣∣∣∣∫ u(x− y1)e2iπy1·ξe−πh

−1|y1|2dy1

∣∣∣∣2 ≥ 0,

we get indeed (ah ∗ Γh)
w ≥ 0. From (3.5.3) and (3.5.4), we get

aw =

∫ +∞

0

awhh
−1dh =

∫ +∞

0

(ah ∗ Γh)
wh−1dh−

∫ +∞

0

rwh h
−1dh ≥

−
∫ +∞

0

rwh h
−1dh.

Last step:
∫ +∞

0
rwh h

−1dh is L2-bounded. This is a technical point, where the main

difficulty is coming from the integration in h. We have from (3.5.4) and the fact

that Γh is an even function,

rh(X) =
1

8π
traceh a

′′
h(X) +

1

3!

∫∫ 1

0

(1− θ)3a
(4)
h (X + θY )Y 4Γh(Y )dY dθ,

with traceh a
′′
h(X) = h trace ∂2

xah + h−1 trace ∂2
ξah. Since ϕ ∈ C∞c ((0,+∞)), we have∫ +∞

0

h trace ∂2
xahh

−1dh = trace ∂2
xa(x, ξ)

∫ +∞

0

ϕ(〈ξ〉h)dh = c trace ∂2
xa〈ξ〉−1,

with c =
∫ +∞

0
ϕ(t)dt. The symbol c trace ∂2

xa〈ξ〉−1 belongs to S0
1,0 as well as the

other term
∫ +∞

0
h−1 trace ∂2

ξah(x, ξ)h
−1dh: we have

(∂ξah)(x, ξ) = (∂ξa)(x, ξ)ϕ(h〈ξ〉) + a(x, ξ)ϕ′(h〈ξ〉)h〈ξ〉−1ξ

(∂2
ξah)(x, ξ) = (∂2

ξa)(x, ξ)ϕ(h〈ξ〉) + 2∂ξa(x, ξ)ϕ′(h〈ξ〉)h
+ a(x, ξ)ϕ′′(h〈ξ〉)h2〈ξ〉−2ξ2 + a(x, ξ)ϕ′(h〈ξ〉)h∂ξ

(
ξ〈ξ〉−1

)
,
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and checking for instance the term
∫ +∞

0
h−1(∂2

ξa)(x, ξ)ϕ(h〈ξ〉)dh
h

, we see that it is

equal to

(∂2
ξa)(x, ξ)

∫ +∞

0

h−1ϕ(h〈ξ〉)dh
h

= (∂2
ξa)(x, ξ)〈ξ〉

∫ +∞

0

h−1ϕ(h)
dh

h

= c1(∂2
ξa)(x, ξ)〈ξ〉 ∈ S0

1,0,

whereas the other terms are analogous. We are finally left with the term

ρ(X) =
1

3!

∫∫∫ 1

0

(1− θ)3a
(4)
h (X + θY )Y 4Γh(Y )dY h−1dhdθ,

and we note that on the integrand of (3.5.3), the product h〈ξ〉 is bounded above

and below by fixed constants and that integral can in fact be written as

a(x, ξ) =

∫ κ1〈ξ〉−1

κ0〈ξ〉−1

ϕ(〈ξ〉h)a(x, ξ)dh/h

with 0 < κ0 = min suppϕ < κ1 = max suppϕ. Consequently the symbol ah satisfies

the following estimates:

|∂αξ ∂βxah| ≤ Cαβh
−1+|α|

where the Cαβ are some semi-norms of a (and thus independent of h). As a result,

the above estimates can be written in a more concise and convenient way, using the

multilinear forms defined by the derivatives. We have, with T = (t, τ) ∈ Rn × Rn,

|a(l)
h (X)T l| ≤ Clh

−1gh(T )l/2, with gh(t, τ) = |t|2 + h2|τ |2.

We calculate

ρ(k)(X)T k =
1

3!

∫∫∫ 1

0

(1− θ)3a
(4+k)
h (X + θY )Y 4T kΓh(Y )dY h−1dhdθ,

which satisfies with ωh(t, τ) = h−1gh(t, τ),

|ρ(k)(X)T k|

≤ C4+k

4!

∫∫
1{h ≤ κ1}h−1gh(T )k/2 gh(Y )2︸ ︷︷ ︸

=h2ωh(Y )2

2ne−2πωh(Y )dY h−1dh

≤ C4+k

4!
gh(T )k/2

∫∫
ωh(Y )21{h ≤ κ1}2ne−2πωh(Y )dY dh ≤ C̃k(|t|+ |τ |)k

and this proves that the function ρ belongs to C∞b (R2n), as well as J1/2ρ (Lemma

3.2.8) and thus ρw = (J1/2ρ)(x,D) is bounded on L2 (Theorem 3.2.4). The proof is

complete.

Remark 3.5.2. Theorem 3.5.1 remains valid for systems, even in infinite dimension.

For definiteness, let us assume simply that a(x, ξ) is a N×N Hermitian non-negative

matrix of symbols in S1
1,0. Then for all u ∈ S (Rn;CN), the inequality (3.5.1)

holds. The vector space CN can be replaced in the above statement by an infinite-

dimensional complex Hilbert space H with a valued in L (H) and the proof above

requires essentially no change.
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3.6 The semi-classical calculus

A semiclassical symbol of order m is defined as a family of smooth functions a(·, ·, h)

defined on the phase space R2n, depending on a parameter h ∈ (0, 1], such that, for

all multi-indices α, β

sup
(x,ξ,h)∈Rn×Rn×(0,1]

|(∂αξ ∂βxa)(x, ξ, h)|hm−|α| < +∞. (3.6.1)

The set of semi-classical symbols of order m will be denoted by Smscl. A typical

example of such a symbol of order 0 is a function a1(x, hξ) where a1 belongs to

C∞b (R2n): we have indeed ∂αξ ∂
β
x

(
a1(x, hξ)

)
= (∂αξ ∂

β
xa1)(x, hξ)h|α|. It turns out that

this version of the semi-classical calculus is certainly the easiest to understand and

that Theorem 3.2.4 is implying the main continuity result for these symbols. The

reader has also to keep in mind that we are not dealing here with a single function

defined on the phase space, but with a family of symbols depending on a (small) pa-

rameter h, a way to express that the constants occurring in (3.6.1) are “independent

of h”. We shall review the results of the section on the Sm1,0 class of symbols and

show how they can be transferred to the semi-classical framework, mutatis mutandis

and almost without any new argument. To understand the correspondence between

symbols in Sm1,0 and semi-classical symbols, it is essentially enough to think of the

S1,0 calculus as a semi-classical calculus with small parameter 〈ξ〉−1.

We can define, for a ∈ Smscl, k ∈ N,

γk,m(a) = sup
(x,ξ,h)∈R2n×(0,1],|α|+|β|≤k

|(∂αξ ∂βxa)(x, ξ, h)|hm−|α|. (3.6.2)

Theorem 3.6.1. Let a ∈ Smscl. Then the operator a(x,D, h)hm is continuous from

S (Rn) into itself with constants independent of h ∈ (0, 1].

Proof. We have a(x,D, h) = Op(a(x, ξ, h)). The set
{
a(x, ξ, h)hm

}
h∈(0,1]

is bounded

in C∞b (R2n), so that we can use Theorem 3.2.2 to get the result.

Theorem 3.6.2. Let a ∈ Smscl. Then the operator a(x,D, h)hm is bounded on L2(Rn)

with a norm bounded above independently of h ∈ (0, 1].

Proof. The set
{
a(x, ξ, h)hm

}
h∈(0,1]

being bounded in C∞b (R2n), it follows from The-

orem 3.2.4.

Theorem 3.6.3. Let m1,m2 be real numbers and a1 ∈ Sm1
scl , a2 ∈ Sm2

scl . Then the

composition a1(x,D, h)a2(x,D, h) makes sense as a continuous operator from S (Rn)

into itself, as well as a bounded operator on L2(Rn) and

a1(x,D, h)a2(x,D, h) = (a1 � a2)(x,D, h)

where a1 � a2 belongs to Sm1+m2
scl and is given by the formula

(a1 � a2)(x, ξ, h) = (exp 2iπDy ·Dη)
(
a1(x, ξ + η, h)a2(y + x, ξ, h)

)
|y=0,η=0

. (3.6.3)
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Proof. This is a direct consequence of Theorem 3.2.5 since

∪j=1,2{hmjaj(x, ξ, h)}h∈(0,1] is bounded in C∞b (R2n).

Theorem 3.6.4. Let m1,m2 be real numbers and a1 ∈ Sm1
scl , a2 ∈ Sm2

scl . Then

a1(x,D, h)a2(x,D, h) = (a1 � a2)(x,D, h), the symbol a1 � a2 belongs to Sm1+m2
scl

and we have the asymptotic expansion, for all N ∈ N,

a1 � a2 =
∑
|α|<N

1

α!
Dα
ξ a1∂

α
xa2 + rN(a1, a2), (3.6.4)

with rN(a1, a2) ∈ Sm1+m2−N
scl . Note that Dα

ξ a1∂
α
xa2 belongs to S

m1+m2−|α|
scl .

Proof. Since hmjaj(x, ξ, h), j = 1, 2, belongs to S0
scl, we may assume that m1 = m2 =

0. We can use the formula (3.4.3) and apply the formula (3.4.8) to get the desired

formula with

rN(a1, a2)(x, ξ, h) =

∫ 1

0

(1− θ)N−1

(N − 1)!
e2iπθDz ·Dζ

(2iπDz ·Dζ)
N
(
a1(x, ζ, h)a2(z, ξ, h)

)
dθ|z=x,ζ=ξ . (3.6.5)

The function (z, ζ) 7→ bx,ξ,h(z, ζ) = (2iπDz · Dζ)
Na1(x, ζ, h)a2(z, ξ, h) belongs to

S−Nscl (R2n
z,ζ) uniformly with respect to the parameters (x, ξ) ∈ R2n: it satisfies, using

the notation (3.6.2), for max(|α|, |β|) ≤ k,

|∂αζ ∂βz bx,ξ,h(z, ζ)| ≤ γk,m1(a1)γk,m2(a2)hN+|α|.

Applying Lemma 3.2.8, we obtain that the function

ρx,ξ,h(z, ζ) =

∫ 1

0

(1− θ)N−1

(N − 1)!
(Jθbx,ξ,h)(z, ζ)dθ

belongs to S−Nscl (R2n
z,ζ) uniformly with respect to x, ξ, h, so that in particular

sup
(x,ξ,z,ζ)∈R4n,h∈(0,1]

|ρx,ξ,h(z, ζ)h−N | = C0 < +∞.

Since rN(a1, a2)(x, ξ) = ρx,ξ,h(x, ξ), we obtain

|rN(a1, a2)(x, ξ)| ≤ C0h
N . (3.6.6)

Using the formula (3.6.5) above gives as well the smoothness of rN(a1, a2) and with

the identities (consequences of ∂xj(a1 � a2) = (∂xja1) � a2 + a1 � (∂xja2))

∂xj
(
rN(a1, a2)

)
= rN(∂xja1, a2) + rN(a1, ∂xja2)

∂ξj
(
rN(a1, a2)

)
= rN(∂ξja1, a2) + rN(a1, ∂ξja2),

it is enough to reapply (3.6.6) to get the result rN ∈ S−Nscl .
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Lemma 3.2.8 and Taylor’s expansion (3.6.5) give the following result.

Theorem 3.6.5. Let a ∈ Smscl. Then a∗ = Jā and the mapping a 7→ a∗ is continuous

from Smscl into itself. Moreover, for all integers N , we have

a∗ =
∑
|α|<N

1

α!
Dα
ξ ∂

α
x ā+ rN(a), rN(a) ∈ Sm−Nscl .

Corollary 3.6.6. Let aj ∈ S
mj
scl , j = 1, 2. Then we have

a1 � a2 ≡ a1a2 mod Sm1+m2−1
scl , (3.6.7)

a1 � a2 − a2 � a1 ≡
1

2iπ
{a1, a2} mod Sm1+m2−2

scl , (3.6.8)

For a ∈ Smscl, a∗ ≡ ā mod Sm−1
scl . (3.6.9)

Lemma 3.6.7. Let µ ∈ R and (cj)j∈N be a sequence of symbols such that cj ∈ Sµ−jscl .

Then there exists c ∈ Sµscl such that

c ∼
∑
j

cj, i.e. ∀N ∈ N, c−
∑

0≤j<N

cj ∈ Sµ−Nscl .

Proof. The proof is almost identical to the proof of Lemma 3.4.13.

Let ω ∈ C∞b (R;R+) such that ω(t) = 0 for t ≤ 1 and ω(t) = 1 for t ≥ 2. Let

(λj)j∈N be a sequence of numbers ≥ 1. We want to define

c(x, ξ, h) =
∑
j≥0

cj(x, ξ, h)ω(h−1λ−1
j ), (3.6.10)

and we shall show that a suitable choice of λj will provide the answer. Multiplying

the cj by hµ, we may assume that µ = 0. We have then

|cj(x, ξ, h)|ω(h−1λ−1
j ) ≤ γ0(cj)h

j11≥hλj ≤ γ0(cj)λ
−j
j ,

so that,

∀j ≥ 1, λj ≥ 2γ0(cj)
1
j = µ

(0)
j =⇒ ∀j ≥ 1, |cj(x, ξ, h)|ω(h−1λ−1

j ) ≤ 2−j,

showing that the function c can be defined as above in (3.6.10) and is a continuous

bounded function. Let 1 ≤ k ∈ N be given. Calculating (with ωj = ω(h−1λ−1
j )) the

derivatives ωj∂
α
ξ ∂

β
x (cj) for |α|+ |β| = k, we get

ωj|∂αξ ∂βx (cj)| ≤ γk(cj)h
j+|α|11≥hλj ≤ γk(cj)λ

−j/2
j h|α|+

j
2 ,

so that

∀j ≥ k, λj ≥ 22
(
γk(cj)

) 2
j = µ

(k)
j =⇒ ∀j ≥ k, |∂αξ ∂βx (cjωj)| ≤ 2−jh|α|+

j
2 , (3.6.11)

showing that the function c can be defined as above in (3.6.10) and is a Ck function

such that

|(∂αξ ∂βx c)(x, ξ, h)| ≤
∑

0≤j<k

γk(cj)h
j+|α| +

∑
j≥k

2−jh|α| ≤ Ckh
|α|.
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It is possible to fulfill the conditions on the λj above for all k ∈ N: just take

λj ≥ sup0≤k≤j µ
(k)
j . The function c belongs to S0

scl and, with S−∞scl = ∩m∈RSmscl,

rN = c−
∑

0≤j<N

cj =
∑

0≤j<N

(ωj − 1)cj︸ ︷︷ ︸
∈S−∞scl

+
∑
j≥N

cjωj,

and for |α|+ |β| = k, using the estimates (3.6.11), we obtain

∑
j≥N

|∂αξ ∂βx (cjωj)(x, ξ, h)| ≤
∑

N≤j<max(2N,k)

.h|α|+j.h|α|+N︷ ︸︸ ︷
|∂αξ ∂βx (cjωj)(x, ξ, h)|

+
∑

j≥max(2N,k)

|∂αξ ∂βx (cjωj)(x, ξ, h)|︸ ︷︷ ︸
.2−jh|α|+

j
2.2−jh|α|+N

,

proving that rN ∈ S−Nscl . The proof of the lemma is complete.

Remark 3.6.8. These asymptotic results (as well as the example a1(x, hξ) with a1 ∈
C∞b (R2n) see page 83) led many authors to set a slightly different framework for

the semiclassical calculus; instead of dealing with a family of symbols a(x, ξ, h)

satisfying the estimates (3.6.1), one deals with a function a ∈ C∞b (R2n) and consider

the operator a(x, hDx) or the operator a(x, hξ)w; another way to express this is to

modify the quantization formula and to define for instance

(awhu)(x)=

∫∫
e

2iπ
h
〈x−y,ξ〉a(

x+ y

2
, ξ)u(y)dydξh−n, i.e. awh = a(x, hξ)w. (3.6.12)

Then, using Lemma 3.6.7, given a sequence (aj)j≥0 in C∞b (R2n), it is possible to

consider a(x, ξ, h) ∈ S0
scl with

a(x, ξ, h) ∼
∑
j≥0

hjaj(x, hξ), i.e. ∀N, a(x, ξ, h)−
∑

0≤j<N

hjaj(x, hξ) ∈ S−Nscl .

The symbol a0 is the principal symbol and

a(x, ξ, h)w ∼
∑
j≥0

hjawhj , i.e. ∀N, a(x, ξ, h)w −
∑

0≤j<N

hjawhj = hNrwhN,h,

where {rN,h}0<h≤1 is bounded in C∞b (R2n): in fact we have from Theorem 3.6.4,

hNrN,h(x, hξ) = sN(x, ξ, h), sN ∈ S−Nscl , i.e. rN,h(x, ξ) = h−NsN(x, h−1ξ, h),

and thus

|(∂αξ ∂βxrN,h)(x, ξ) = h−N−|α|(∂αξ ∂
β
xsN)(x, h−1ξ, h)| ≤ h−N−|α|γα,β,Nh

N+|α|.

If a, b ∈ S0
scl and a ∼

∑
j≥0 h

jaj(x, hξ), b ∼
∑

j≥0 h
jbj(x, hξ) as above, then one can

prove, using Corollary 3.6.6 and Lemma 3.2.8

awbw ≡ (a0b0)wh mod h(S0
scl)

w, (3.6.13)

[aw, bw] ≡ h

2iπ
{a0, b0}wh mod h2(S0

scl)
w. (3.6.14)
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There are many variations on this theme, and in particular, one can replace the

space C∞b (R2n) by a more general one, involving some weight functions, for instance

with polynomial growth at infinity. At this point, we are leaving an introduction

to the pseudo-differential calculus and can use our more general approach of Chap-

ter 2, involving metrics on the phase space, which incorporate all these variations.

Expecting these generalizations, we shall not use the wh quantization in this book,

except for the present remark.

Theorem 3.6.9. Let a be a symbol in S0
scl such that

inf
(x,ξ)∈R2n,h∈(0,1]

|a(x, ξ, h)| > 0.

Then there exists b ∈ S0
scl such that

b(x,D, h)a(x,D, h) = Id +l(x,D, h),
a(x,D, h)b(x,D, h) = Id +r(x,D, h),

r, l ∈ S−∞scl = ∩νSνscl.

Proof. The only change to perform in the proof of Theorem 3.4.12 to get this result

is to replace everywhere S1,0 by Sscl.

Theorem 3.6.10. Let χ be a symbol in S0
scl and let a be a symbol in S0

scl such

that infh∈(0,1],(x,ξ)∈suppχ(·,·,h) |a(x, ξ, h)| > 0. Let ψ be a symbol in S0
scl such that

suppψ(·, ·, h) ⊂ {(x, ξ), χ(x, ξ, h) = 1}. Then there exists b ∈ S0
scl such that

b(x,D, h)a(x,D, h) = ψ(x,D, h) + l(x,D, h), l ∈ S−∞scl .

Proof. Here also we have only to follow the proof of Theorem 3.4.15 and use Lemma

3.6.7 instead of Lemma 3.4.13 in the course of the proof.

Theorem 3.6.11. Let a be a nonnegative symbol in S0
scl. Then there exists a con-

stant C such that, for all u ∈ S (Rn),

Re〈a(x,D, h)u, u〉+ hC‖u‖2
L2(Rn) ≥ 0. (3.6.15)

Equivalently, there exists C ≥ 0 such that aw + Ch ≥ 0.

Proof. The proof of Theorem 3.5.1 is containing a proof of this result: noticing that

it is harmless to replace the standard quantization by the Weyl quantization for this

result, since J1/2a−a belongs to S−1
scl (see the formula (3.4.8) and Lemma 3.4.9), we

use the formula (3.5.4) to obtain than (a ∗ Γh)
w ≥ 0. The difference a ∗ Γh − a is∫ 1

0
(1− θ)

∫
R2n a

′′(X + θY, h)Y 2Γh(Y )dY dθ, which belongs to S0
scl.



88 CHAPTER 3. PSEUDO-DIFFERENTIAL OPERATORS



Chapter 4

Local versions of
pseudo-differential operators

4.1 Pseudo-differential operators on

an open subset of Rn

Introduction

The main reason for studying the class Sm1,0 of pseudo-differential operators as intro-

duced in the second subsection of the section 3.4 is that the parametrix of an elliptic

differential operator of order m has a symbol in the class S−m1,0 . More specifically, we

have the following result.

Proposition 4.1.1. Let m be a nonnegative integer, Ω an open set of Rn and let

A =
∑
|α|≤m aα(x)Dα

x be a differential 1operator with C∞ coefficients on Ω (i.e.

aα ∈ C∞(Ω)). We assume that A is elliptic, i.e.

∀(x, ξ) ∈ Ω× (Rn\{0}),
∑
|α|=m

aα(x)ξα 6= 0.

Then, if u is a distribution on Ω such that Au belongs to Hs
loc(Ω), we obtain that u

belongs to Hs+m
loc (Ω), implying that singsuppu = singsuppAu (for the C∞ singular

supports2).

This result will be proven in the next subsection in a far greater generality; first

we shall use the notion of wave-front-set which microlocalizes the notion of singular

support and also we shall prove this result for a microelliptic pseudo-differential

operator. In fact, the proof relies essentially on Theorem 3.4.12 which allows the

invertibility of an operator of the same type as A above. Nevertheless, one should

note that the function (x, ξ) 7→
∑
|α|≤m aα(x)ξα does not belongs to Sm1,0 since in

the first place it is not defined on R2n when Ω 6= Rn, and even if Ω were equal to

Rn, we do not have any control on the growth of the aα at infinity. Also we see

1We use the notation (1.2.8) for the Dα
x .

2For v ∈ D ′(Ω), (singsupp v)c is the union of the open subsets ω of Ω such that v|ω ∈ C∞(ω).

89
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that the ellipticity condition concerns only the principal symbol, i.e. the function∑
|α|=m aα(x)ξα. To get a good understanding (and a simple proof) of the previous

result, we have to introduce the notion of pseudo-differential operator on an open set

of Rn, as well as the proper notion of ellipticity. The elliptic regularity theorem will

be a simple consequence of the calculus of pseudo-differential operators on an open

set of Rn. One of the most important result of this theory is that pseudo-differential

operators are geometrical objects that can be defined on a smooth manifold without

reference to a coordinate chart; this invariance by change of coordinates has had a

tremendous influence on the success of microlocal methods in geometrical problems

such as the index theorem.

Definition 4.1.2. Let Ω be an open subset of Rn and m ∈ R. Smloc(Ω×Rn) is defined

as the set of a ∈ C∞(Ω × R2n) such that for any compact subset K of Ω, for all

multi-indices α, β ∈ Nn, there exists CKαβ such that, for (x, ξ) ∈ K × Rn,

|(∂αξ ∂βxa)(x, ξ)| ≤ CKαβ〈ξ〉m−|α|. (4.1.1)

We note in particular that the differential operators of order m with C∞ coeffi-

cients in Ω have a symbol in Smloc(Ω× Rn), i.e. can be written as

(Au)(x) =

∫
e2iπx·ξa(x, ξ)û(ξ)dξ, for u ∈ C∞c (Ω), (4.1.2)

with a(x, ξ) =
∑
|α|≤m aα(x)ξα, aα ∈ C∞(Ω).

Theorem 4.1.3. Let Ω be an open set of Rn and let a be a symbol in Smloc(Ω ×
Rn). Then the formula (4.1.2) defines a continuous linear operator (denoted also by

a(x,D)) from C∞c (Ω) into C∞(Ω), from E ′(Ω) into D ′(Ω), and from Hs+m
comp(Ω) to

Hs
loc(Ω) for all s ∈ R.

Proof. To obtain the last result, we note that for χ ∈ C∞c (Ω), the operator

χ(x)a(x,D),

has the symbol χ(x)a(x, ξ) which belongs to Sm1,0 and thus, from Theorem 3.4.6,

χ(x)a(x,D) sends continuously Hs+m(Rn) into Hs(Rn), which gives that a(x,D)

sends continuously Hs+m
comp(Ω) into Hs

loc(Ω). This implies also that the formula (4.1.2)

defines an operator from S (Rn) into C∞(Ω). Moreover the formula (4.1.2) defines

a mapping from E ′(Ω) into D ′(Ω), via the identity3

≺ a(x,D)u, ϕ �D ′(Ω),D(Ω)=≺ û(ξ),

∫
ϕ(x)a(x, ξ)e2iπx·ξdx �S ′(Rn),S (Rn) .

3 Using Theorem 3.2.2, we see that for ϕ ∈ C∞c (Ω), the function

ξ 7→ Vϕ(ξ) =

∫
Rn

a(x, ξ)ϕ(x)e2iπx·ξdx

belongs to S (Rn): for χ ∈ C∞c (Ω) equal to 1 on the support of ϕ, we consider the symbol
b(x, ξ) = χ(ξ)a(ξ, x)〈x〉−m which belongs to C∞b (R2n) and we have

Vϕ(ξ) = 〈ξ〉m
∫
Rn

χ(x)a(x, ξ)〈ξ〉−mϕ(x)e2iπx·ξdx = 〈ξ〉m(Op(b) ˆ̌ϕ)(ξ).
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Definition 4.1.4. Let Ω be an open set of Rn and m ∈ R. The set of operators

{a(x,D)}a∈Smloc(Ω×Rn) as given by the formula (4.1.2) is defined as Ψm(Ω), the set of

pseudo-differential operators of order m on Ω.

We have to modify slightly the quantization of our symbols to get an algebra

of operators, sending for instance C∞c (Ω) into itself. Let us consider a locally finite

partition of unity in Ω, 1Ω(x) =
∑

j∈N ϕj(x) where each ϕj belongs to C∞c (Ω). Let

a be a symbol in Smloc(Ω×Rn) and A be the operator defined by the formula (4.1.2).

We consider the operator

Ã =
∑
j,k

suppϕj∩suppϕk 6=∅

ϕjAϕk. (4.1.3)

The operator ϕjAϕk has a symbol in Sm1,0 which is given by ϕja � ϕk. We consider

the finite sets

Jj = {k ∈ N, suppϕj ∩ suppϕk 6= ∅} (4.1.4)

and the function

Φj =
∑
k∈Jj

ϕk ∈ C∞c (Ω), Φj = 1 on a neighborhood of suppϕj, (4.1.5)

so that for all multi-indices α

ϕj(x)∂αx (1− Φj)(x) = 0. (4.1.6)

We check now the symbol ã =
∑

j ϕja � Φj of Ã. Given a compact subset of Ω it

meets only finitely many suppϕj and thus ã belongs to Smloc(Ω×Rn). On the other

hand, we have on Ω× Rn,

a− ã =
∑
j

ϕja− ϕja � Φj =
∑
j

ϕja � (1− Φj)

and we get from Theorem 3.4.8 and (4.1.6) that that each ϕja � (1−Φj) belongs to

S−∞1,0 ; moreover the sum is locally finite, so that a−ã ∈ S−∞loc (Ω×Rn) = ∩m∈RSmloc(Ω×
Rn).

Proposition 4.1.5. Let Ω be an open set of Rn, let a be a symbol in Smloc(Rn). There

exists a symbol ã ∈ Smloc(Ω× Rn) such that

(i) a− ã ∈ S−∞loc (Ω× Rn), a(x,D)− ã(x,D) sends E ′(Ω) into C∞(Ω),

(ii) the operator ã(x,D) is properly supported4, and sends continuously C∞c (Ω)

into itself, C∞(Ω) into itself, E ′(Ω) into itself, D ′(Ω) into itself,

4A continuous linear operator A : D(V ) −→ D ′(U) is said to be properly supported when both
projections of the support of the kernel k from supp k in U, V are proper, i.e. for every compact
L ⊂ V , there exists a compact K ⊂ U such that supp v ⊂ L =⇒ suppAv ⊂ K and for every
compact K ⊂ U , there exists a compact L ⊂ V such that supp v ⊂ Lc =⇒ suppAv ⊂ Kc.
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(iii) ã(x,D) defines a continuous linear operator from Hs+m
comp(Ω) to Hs

comp(Ω), from

Hs+m
loc (Ω) to Hs

loc(Ω).

Proof. We have already proven (i), using E ′(Ω) = ∪sHs
comp(Ω) and Theorem 4.1.3.

Using the above notations, we get for u ∈ C∞c (Ω),

ã(x,D)u =
∑
j

ϕja(x,D)Φju (4.1.7)

with a finite sum of C∞c (Ω) functions since suppu meets only finitely many supp Φj.

If u ∈ C∞(Ω), we have Φju ∈ C∞c (Ω) ⊂ C∞c (Rn) and
∑

j ϕja(x,D)Φju is a locally

finite sum of C∞c (Ω) functions, thus a C∞(Ω) function. For u ∈ E ′(Ω) with a

(compact) support K ⊂ Ω, the Φju are all zero, except for a finite set of indices

JK and then
∑

j∈JK ϕja(x,D)Φju belongs to E ′(Ω). If u ∈ D ′(Ω), we have Φju ∈
E ′(Ω) and

∑
j ϕja(x,D)Φju is a locally finite sum of distributions in Ω and thus a

distribution on Ω, proving (ii). The assertion (iii) and the continuity properties are

direct consequences of (ii) and of Theorem 4.1.3.

Remark 4.1.6. Let us now consider a symbol a belonging to Smloc(Ω × Rn). We can

quantify this symbol into a properly supported operator, say OpΩ(a), given by the

formula (4.1.7), which has the properties of the operator ã(x,D) in the proposition

4.1.5. This quantization defines a linear mapping from Smloc(Ω×Rn) to the quotient

Ψm
ps(Ω)/Ψ−∞ps (Ω), where Ψm

ps(Ω) stands for the properly supported pseudo-differential

operators of order m on Ω, and Ψ−∞ps (Ω) = ∩m∈RΨm
ps(Ω). A change in the choice of

the partition of unity (ϕj) will not change this mapping. From the proposition

4.1.5, we see that the operators of Ψm
ps(Ω) are continuous from C∞c (Ω) into itself,

from C∞(Ω) into itself, from E ′(Ω) into itself, from D ′(Ω) into itself, from Hs+m
comp(Ω)

into Hs
comp(Ω) from Hs+m

loc (Ω) into Hs
loc(Ω). Note also that if A ∈ Ψ−∞ps (Ω) and

u ∈ D ′(Ω), if ω is a relatively compact open subset of Ω, u belongs to Hs
loc(ω) for

some s and thus Au ∈ H+∞
loc (ω) so that Au ∈ C∞(ω), proving that Ψ−∞ps (Ω) sends

D ′(Ω) into C∞(Ω).

Theorem 4.1.7. Let Ω be an open set of Rn, m1,m2 ∈ R. Let aj ∈ S
mj
loc (Ω × Rn).

Then the operator OpΩ(a1)OpΩ(a2) belongs to Ψm1+m2
ps (Ω) and is such that,

OpΩ(a1)OpΩ(a2) = OpΩ(a1a2) mod Ψm1+m2−1
ps (Ω),

OpΩ(a1)OpΩ(a2) = OpΩ(a1a2 +Dξa1 · ∂xa2) mod Ψm1+m2−2
ps (Ω),

and more generally, for all N ∈ N,

OpΩ(a1)OpΩ(a2) = OpΩ(
∑
|α|<N

1

α!
Dα
ξ a1∂

α
xa2) mod Ψm1+m2−N

ps (Ω).

Proof. Let ψ1, ψ2 ∈ C∞c (Ω) with ψ2 = 1 on a neighborhood of the support of ψ1.
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From Theorem 3.4.8, the proposition 4.1.5 and Remark 4.1.6, we have

ψ1OpΩ(a1)ψ2OpΩ(a2) = (ψ1a1)(x,D)(ψ2a2)(x,D) mod Ψ−∞(Ω),

= ψ1(
∑
|α|<N

1

α!
Dα
ξ a1∂

α
xa2)(x,D) mod Ψm1+m2−N(Ω),

= ψ1OpΩ(
∑
|α|<N

1

α!
Dα
ξ a1∂

α
xa2) mod Ψm1+m2−N(Ω),

and since the lhs and the first term in the rhs are both properly supported, the

equality takes place mod Ψm1+m2−N
ps (Ω). It means that for all ψ1 ∈ C∞c (Ω), we

have

ψ1OpΩ(a1)OpΩ(a2) = ψ1OpΩ(
∑
|α|<N

1

α!
Dα
ξ a1∂

α
xa2) mod Ψm1+m2−N

ps (Ω).

Since the operator OpΩ(a) is properly supported and completely determined modulo

Ψ−∞ps (Ω) by its definition on C∞c (Ω), it concludes the proof.

Let a ∈ Smloc(Ω × Rn) and let us consider as above the operator OpΩ(a) =∑
j∼k ϕja(x,D)ϕk, j ∼ k meaning suppϕj ∩ suppϕk 6= ∅. With Φj given by (4.1.5),

we have OpΩ(a) =
∑

j∼k ϕjΦja(x,D)ϕk and thus the adjoint operator is∑
j∼k

ϕkJ(Φja)(x,D)ϕj.

Since J(Φja) =
∑
|α|<N

1
α!
Dα
ξ ∂

α
x (Φj ā) + rN,j with rN,j ∈ Sm−N1,0 , we get

(OpΩ(a))∗ =
∑
j∼k

ϕk
∑
|α|<N

1

α!
Dα
ξ ∂

α
x (Φj ā)(x,D)ϕj +

∑
j∼k

ϕkrN,j(x,D)ϕj.

Let a∗ ∈ Smloc(Ω× Rn) such that for all N ,

a∗ −
∑
|α|<N

1

α!
Dα
ξ ∂

α
x ā ∈ Sm−Nloc (Ω× Rn).

Since Φj is 1 near the support of ϕj, we obtain (OpΩ(a))∗ = (OpΩ(a∗)) modulo

Ψ−∞ps (Ω).

4.2 Inversion of (micro)elliptic operators

Definitions

Let Ω be an open subset of Rn and (x0, ξ0) ∈ Ω × (Rn\{0}) = Ṫ ∗(Ω); a conic-

neighborhood of (x0, ξ0) is defined as a subset of Ω × Rn\{0} containing for some

positive r the set

Wx0,ξ0(r) = {(x, ξ) ∈ Rn × Rn\{0}, |x− x0| < r,

∣∣∣∣ ξ|ξ| − ξ0

|ξ0|

∣∣∣∣ < r, |ξ| > 1

r
}. (4.2.1)
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Definition 4.2.1. Let a ∈ Smloc(Ω×Rn) and (x0, ξ0) ∈ Ω×Rn\{0}. The symbol a is

said to be elliptic at (x0, ξ0), when there exists a conic-neighborhood W of (x0, ξ0)

such that

inf
(x,ξ)∈W

|a(x, ξ)||ξ|−m > 0. (4.2.2)

The points of Ṫ ∗(Ω) where a is not elliptic are called characteristic points.

Let us give an example of an elliptic symbol of order 0 at (x0, ξ0). Considering a

function χ0 ∈ C∞c (R), χ0(t) = 1 for t ≤ 1, χ0(t) = 0 for t ≥ 2, we define on R2n for

r > 0

θr,x0,ξ0(x, ξ) = χ0(r−2|x− x0|2)χ0

(
r−2
∣∣ ξ
|ξ|
− ξ0

|ξ0|
∣∣2)(1− χ0(2r2|ξ|2)

)
. (4.2.3)

It is easy to check that θr,x0,ξ0 belongs to S0
1,0, is elliptic at (x0, ξ0) (note that θr,x0,ξ0 ≡

1 on Wx0,ξ0(r) and supp θr,x0,ξ0 ⊂ Wx0,ξ0(2r)).

Definition 4.2.2. A function a defined on Ω × Rn will be said positively-homoge-

neous of degree m when for all ξ ∈ Rn with |ξ| ≥ 1 and all t ≥ 1, am(x, tξ) =

tmam(x, ξ). A function a defined on Ω×Rn\{0} will be said positively homogeneous

of degree m when for all ξ ∈ Rn\{0} and all t > 0, am(x, tξ) = tmam(x, ξ).

Lemma 4.2.3. Let a ∈ Smloc(Ω × Rn) and (x0, ξ0) ∈ Ω × Rn\{0} such that the

symbol a is elliptic at (x0, ξ0). Then for b ∈ Sm′loc(Ω × Rn) with m′ < m, the symbol

a+ b is elliptic at (x0, ξ0). In particular, if there exists am ∈ C∞(Ω×Rn) positively-

homogeneous of degree m such that

am(x0, ξ0/|ξ0|) 6= 0, a− am ∈ Sm−1
loc (Ω× Rn),

then the symbol a is elliptic at (x0, ξ0). This is the case in particular of a differential

operator with C∞(Ω) coefficients
∑
|α|≤m aα(x)Dα

x such that

0 6= am(x0, ξ0)(=
∑
|α|=m

aα(x0)ξα0 ).

Proof. The first part of the lemma is obvious since for K compact subset of Ω,

lim|ξ|→+∞
(
supx∈K |b(x, ξ)|

)
|ξ|−m = 0. The second part is due to the fact that the

property of homogeneity and the smoothness of a imply5 that am ∈ Smloc(Ω×Rn).

Remark 4.2.4. Note that if OpΩ(a1) = OpΩ(a2) with aj ∈ Smloc(Ω × Rn), then

OpΩ(a1 − a2) ∈ Ψ−∞ps (Ω) and thus

(a1 − a2)(x,D) = r(x,D) with r ∈ S−∞loc (Ω× Rn).

5 For ω ∈ C∞b (Rn) vanishing for |ξ| ≤ 1/2 and equal to 1 for |ξ| ≥ 1, we have in fact

am(x, ξ) = ω(ξ)am(x, ξ/|ξ|)|ξ|m + (1− ω(ξ))am(x, ξ) ∈ Smloc(Ω× Rn) + S−∞loc (Ω× Rn).
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A consequence of Remark 3.4.14 is that, for all χ ∈ C∞c (Ω), χ(x)(a1 − a2)(x, ξ) =

χ(x)r(x, ξ) which gives a1 − a2 = r(as functions of S−∞loc (Ω× Rn)). As a result, the

characteristic points of a1 and a2 are the same, and one may define char OpΩ(a) as

the characteristic points of a.

Lemma 4.2.5. Let a ∈ Smloc(Ω×Rn) and (x0, ξ0) ∈ Ω×Rn\{0} such that the symbol

a is elliptic at (x0, ξ0). Then there exists r > 0 and b ∈ S−mloc (Ω × Rn), elliptic at

(x0, ξ0) such that

OpΩ(b)OpΩ(a) = OpΩ(θr,x0,ξ0) + OpΩ(ρ),

with ρ ∈ S−∞loc (Ω× Rn) and θr,x0,ξ0 is given by (4.2.3).

Proof. Since a is elliptic at (x0, ξ0), we may assume that (4.2.2) holds for some conic-

neighborhood Wx0,ξ0(r0). Let us consider the symbol θr1,x0,ξ0 ∈ S0
1,0 with r1 = r0/2

so that supp θr1,x0,ξ0 ⊂ Wx0,ξ0(r0). The assumption of Theorem 3.4.15 is verified with

χ = θr1,x0,ξ0 . Considering r2 = r0/4 so that supp θr2,x0,ξ0 ⊂ Wx0,ξ0(r1) ⊂ {θr1,x0,ξ0 =

1} we can find b1 ∈ S−m1,0 such that, omitting the subscripts x0, ξ0,

b1(x,D)
(
θr1a

)
(x,D) = θr2(x,D) + ρ(x,D), ρ ∈ S−∞1,0 ,

implying with r = r0/8,

θr(x,D)b1(x,D)
(
θr1a

)
(x,D) = θr(x,D) + ρ̃(x,D), ρ̃ ∈ S−∞1,0 ,

and thus, with b = θr � b1, which belongs to Sm1,0, we have modulo Ψ−∞ps (Ω)

OpΩ(b)OpΩ(a) ≡ OpΩ(b)OpΩ(θr1a) + OpΩ(θr � b1)OpΩ((1− θr1)a)

≡ OpΩ(b)OpΩ(θr1a)

≡ OpΩ(θr).

Definition 4.2.6. Let Ω be an open set of Rn, a ∈ Smloc(Ω × Rn), A = OpΩ(a).

We define the essential support of A, denoted by essuppA as the complement in

Ω×Rn\{0} of the points (x0, ξ0) for which there exists a conic-neighborhood W so

that a is of order −∞ in W , i.e.

∀(N,α, β) ∈ N× Nn × Nn, sup
(x,ξ)∈W

|(∂αξ ∂βxa)(x, ξ)||ξ|N <∞.

Note that from Remark 4.2.4, this definition depends only on A and the essential sup-

port is a closed conic subset of Ṫ ∗(Ω). Thanks to Lemma 4.2.3, if A = OpΩ(am + b)

with am ∈ C∞(Ω×Rn) positively-homogeneous of degree m and b ∈ Sm−1
loc (Ω×Rn),

then charA = {(x, ξ) ∈ Ṫ ∗(Ω), am(x, ξ) = 0}

Remark 4.2.7. Let Ω be an open set of Rn and (A,B) ∈ Ψm1
ps (Ω) × Ψm2

ps (Ω). Then

we have

essupp(AB) ⊂ essuppA ∩ essuppB. (4.2.4)

In fact if Ṫ ∗(Ω) 3 (x0, ξ0) belongs to (essuppA)c ∪ (essuppB)c, the composition

formula of Theorem 4.1.7 shows that (x0, ξ0) is in (essuppAB)c.
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Theorem 4.2.8. Let Ω be an open set of Rn, A ∈ Ψm
ps(Ω). Let (x0, ξ0) be an elliptic

point for A, i.e. (x0, ξ0) /∈ charA. Then there exist B ∈ Ψ−mps (Ω), R, S ∈ Ψ0
ps(Ω),

such that

BA = Id +R, AB = Id +S, (x0, ξ0) /∈ essuppR, (x0, ξ0) /∈ essuppS. (4.2.5)

Proof. Lemma 4.2.5 implies the first result. On the other hand we can prove similarly

that there exists B1 ∈ Ψ−mps (Ω) such that AB1 = Id +S1, (x0, ξ0) /∈ essuppS1. Now

we see that

B = B(AB1 − S1) = (Id +R)B1 −BS1 = B1 +RB1 −BS1,

so that AB = Id +S, (x0, ξ0) /∈ essuppS, (using (4.2.4)). The proof is complete.

The wave-front-set of a distribution

Definition 4.2.9. Let Ω be an open set of Rn and u ∈ D ′(Ω). The wave-front-set

of u, denoted by WFu, is the subset of Ṫ ∗(Ω) whose complement is given by

(WFu)c =

{(x, ξ) ∈ Ṫ ∗(Ω),∃W conic-neighborhood of (x, ξ) s.t. ∀a ∈ Smloc(Ω× Rn)

with supp a ⊂ W,we have OpΩ(a)u ∈ C∞(Ω)}. (4.2.6)

Proposition 4.2.10. Let Ω be an open set of Rn and u ∈ D ′(Ω). The wave-front-set

of u is a closed conic subset of Ṫ ∗(Ω) whose canonical projection6on Ω is singsuppu.

Moreover, we have

(WFu)c = {(x, ξ) ∈ Ṫ ∗(Ω),∃a ∈ S0
loc(Ω× Rn) elliptic at (x, ξ)

with OpΩ(a)u ∈ C∞(Ω)}. (4.2.7)

Proof. The first assertion (closed conic) follows immediately from the definition.

Now if x0 /∈ singsuppu, there exists r0 > 0 such that u|B(x0,r0) is C∞, (B(x, r)

stands for the open Euclidean ball of Rn with center x and radius r). As a result if

ξ0 ∈ Sn−1, a ∈ Smloc(Ω×Rn) with supp a ⊂ Wx0,ξ0(r1), r1 = r0/2, χ0 ∈ C∞c (B(x0, r0)),

χ0 = 1 on B(x0, r1)

OpΩ(a)u =

∈C∞c (Ω)︷ ︸︸ ︷
OpΩ(a) χ0u︸︷︷︸

∈C∞c (Ω)

+

∈C∞(Ω)︷ ︸︸ ︷
OpΩ(a)(1− χ0)︸ ︷︷ ︸

∈Ψ−∞ps (Ω)

u

since A ∈ Ψ−∞ps (Ω) sends D ′(Ω) into C∞(Ω), proving that {x0} × Sn−1 ⊂ (WFu)c.

Conversely, if x0 ∈ singsuppu, there must exists some ξ0 ∈ Sn−1 such that (x0, ξ0) ∈
WFu, otherwise {x0} × Sn−1 ⊂ (WFu)c and using the compactness of Sn−1, we

could find an open neighborhood ω of x0 in Ω, such that for all a ∈ S0
loc(Ω ×

6This is the mapping Ṫ ∗(Ω) 3 (x, ξ) 7→ x ∈ Ω.
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Rn), supp a ⊂ ω × Rn, OpΩ(a)u ∈ C∞(Ω); taking a(x, ξ) = χ(x) where χ ∈ C∞c (ω)

would give u ∈ C∞(ω), contradicting x0 ∈ singsuppu. Calling Nu the complement

of the set defined by (4.2.7), we see immediately that (WFu)c ⊂ N c
u; conversely, if

(x0, ξ0) ∈ N c
u, we can find A such that

A ∈ Ψ0
ps(Ω), Au ∈ C∞(Ω), (x0, ξ0) /∈ charA.

Applying Theorem 4.2.8, we find B ∈ Ψ0
ps(Ω) so that (4.2.5) holds and this implies

for c ∈ Smloc(Ω× Rn),

BAu = u+Ru =⇒ OpΩ(c)u = OpΩ(c)BAu︸ ︷︷ ︸
∈C∞(Ω)

−OpΩ(c)Ru

and since (x0, ξ0) /∈ essuppR, there exists a conic-neighborhood W of (x0, ξ0) such

that R is of order −∞ in W so that, taking c supported in W will imply OpΩ(c)R ∈
Ψ−∞ps (Ω) and OpΩ(c)Ru ∈ C∞(Ω), proving that (x0, ξ0) /∈ WFu. The proof of the

proposition is complete.

Lemma 4.2.11. Let Ω be an open set of Rn and u ∈ D ′(Ω). Then

(WFu)c ={(x, ξ) ∈ Ṫ ∗(Ω),∃W conic-neighborhood of (x, ξ) s.t. ∀A ∈ Ψm
ps(Ω),

with essuppA ⊂ W,we have Au ∈ C∞(Ω)}. (4.2.8)

Proof. Calling Mu the complement of the set defined by (4.2.8), we have obviously

M c
u ⊂ (WFu)c and conversely if (x0, ξ0) /∈ WFu, there exists r0 > 0 such that for all

a ∈ Smloc(Ω × Rn) supported in Wx0,ξ0(r0), OpΩ(a)u ∈ C∞(Ω). Now if B ∈ Ψm
ps(Ω),

with essuppB ⊂ Wx0,ξ0(r0/2), we have

B = OpΩ(b) = OpΩ( bθr0/2︸ ︷︷ ︸
supported
in W (r0)

) mod ψ−∞ps (Ω)

and thus Bu ∈ C∞(Ω), completing the proof of the lemma.

The elliptic regularity theorem

Theorem 4.2.12. Let Ω be an open set of Rn and A ∈ Ψm
ps(Ω). Then for u ∈ D ′(Ω),

WF (Au) ⊂ WFu ⊂ charA ∪WF (Au).

Proof. If (x0, ξ0) /∈ WFu, there exists a conic-neighborhood W of (x0, ξ0) such that

(4.2.8) holds and taking C ∈ Ψm
ps(Ω) with essuppC ⊂ W , we get from (4.2.4)

that essuppCA ⊂ W , and Lemma 4.2.11 implies that (x0, ξ0) /∈ WF (Au). On the

other hand, if (x0, ξ0) /∈ charA and (x0, ξ0) /∈ WF (Au), Theorem 4.2.8 provides

B ∈ Ψ−mps (Ω) satisfying (4.2.5): we get

u = BAu−Ru, (x0, ξ0) /∈ essuppR i.e. R of order −∞ on W ,



98 CHAPTER 4. PSEUDO-DIFFERENTIAL CALCULUS ON OPEN SETS

where W is a conic-neighborhood of (x0, ξ0). Taking C ∈ Ψm
ps(Ω) with essuppC ⊂ W

we have

Cu = CBAu− CR︸︷︷︸
∈Ψ−∞ps (Ω)

u,

so that CRu ∈ C∞(Ω). On the other hand, since (x0, ξ0) /∈ WF (Au), thanks

to Lemma 4.2.11, there exists a conic-neighborhood W1 of (x0, ξ0) such that, for

all P ∈ Ψm
ps(Ω) with essuppP ⊂ W1, we have PAu ∈ C∞(Ω). This proves that

CBAu ∈ C∞(Ω), provided essuppC ⊂ W1 and with essuppC ⊂ W1 ∩W we get

Cu ∈ C∞(Ω), which implies (x0, ξ0) /∈ WFu, using Lemma 4.2.11.

Corollary 4.2.13. Let Ω be an open set of Rn, A ∈ Ψm
ps(Ω). Then for u ∈ D ′(Ω),

singsupp(Au) ⊂ singsuppu ⊂ singsupp(Au) ∪ pr(charA) and in particular, if A is

elliptic on Ω, i.e. charA = ∅, we obtain that singsuppu = singsupp(Au).

Definition 4.2.14 (Hs wave-front-set). Let Ω be an open set of Rn, s ∈ R and

u ∈ D ′(Ω). The Hs wave-front-set of u, denoted by WFsu is the subset of Ṫ ∗(Ω)

whose complement is given by

(WFsu)c = {(x, ξ) ∈ Ṫ ∗(Ω),∃W conic-neighborhood of (x, ξ) s.t.

∀A ∈ ψ0(Ω) with essuppA ⊂ W,we have Au ∈ Hs
loc(Ω)}. (4.2.9)

When (x, ξ) /∈ WFsu, we shall say that u is Hs at (x, ξ) and write u ∈ Hs
(x,ξ).

The proof of the following theorem is a simple adaptation of the proof of Theorem

4.2.12.

Theorem 4.2.15. Let Ω be an open set of Rn, s,m ∈ R and A ∈ Ψm
ps(Ω). Then for

u ∈ D ′(Ω),

WFs(Au) ⊂ WFs+mu ⊂ charA ∪WFs(Au). (4.2.10)

4.3 Propagation of singularities

Let Ω be an open subset of Rn, m ∈ R and P ∈ Ψm
ps(Ω) a pseudo-differential operator

with symbol p such that

p(x, ξ) = pm(x, ξ)ω(ξ) + pm−1(x, ξ), (4.3.1)

with pm positively homogeneous of degree m and pm−1 ∈ Sm−1
loc (Ω× Rn) and

ω ∈ C∞(Rn),

{
ω(ξ) = 0 for |ξ| ≤ 1/2,

ω(ξ) = 1 for |ξ| ≥ 1.
(4.3.2)

We shall say that pm is the7 principal symbol of P . Note also that the function

pm(x, ξ)ω(ξ) is positively-homogeneous with degree m, according to the terminology

of Definition 4.2.2. In the sequel, we shall mainly consider operators of that type.

7If pm, qm are positively homogeneous of degree m on Ω × Rn\{0} such that for |ξ| ≥ R > 0
|pm(x, ξ)−qm(x, ξ)| ≤ C|ξ|m−1, this implies |pm(x, ξ/|ξ|)−qm(x, ξ/|ξ|)| ≤ C|ξ|−1 and thus pm = qm
on Ω× Rn\{0}.
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Theorem 4.3.1. Let P as above, t0 < t1 ∈ R and I = [t0, t1] 3 t 7→ γ(t) ∈ Ṫ ∗(Ω) be

a null bicharacteristic8 curve of Re pm. Let us assume that Im pm ≥ 0 on a conic-

neighborhood of γ(I). Let s ∈ R and u ∈ D ′(Ω) such that Pu ∈ Hs at γ(I) (i.e.

WFsPu ∩ γ(I) = ∅). Then

γ(t0) ∈ WFs+m−1u =⇒ γ(t1) ∈ WFs+m−1u. (4.3.3)

Remark 4.3.2. The property (4.3.3) means that the singularities are propagating

forward when the imaginary part of pm is nonnegative A statement equivalent to

(4.3.3) is

γ(t1) /∈ WFs+m−1u =⇒ γ(t0) /∈ WFs+m−1u, (4.3.4)

meaning that the regularity is propagating backward in that case. If we change

the sign condition on Im pm, we have to reverse the direction of propagation of

singularities and we have under Im pm ≤ 0 near γ(I),

γ(t1) ∈ WFs+m−1u =⇒ γ(t0) ∈ WFs+m−1u. (4.3.5)

When the imaginary part of pm is identically 0, the propagation takes place in both

directions and WFs+m−1u\WFs(Pu) is invariant by the Hamiltonian flow of pm; this

implies in particular for a real-valued pm that WFu\WF (Pu) is invariant by the

Hamiltonian flow of pm.

Proof of Theorem 4.3.1. Multiplying by an elliptic operator of order 1−m, we are

reduced to the case m = 1. We have to prove that

u ∈ Hs
γ(t1), Pu ∈ Hs

γ(I) =⇒ u ∈ Hs
γ(t0). (4.3.6)

It is enough to prove that

u ∈ Hs
γ(t1), Pu ∈ Hs

γ(I), u ∈ H
s− 1

2

γ(I) =⇒ u ∈ Hs
γ(t0). (4.3.7)

In fact, since γ(I) is compact, we may assume that u ∈ H
s0− 1

2

γ(I) for some s0. The

property (4.3.7)s0 is identical to (4.3.6)s0 . Assume now that u ∈ H
s0+ 1

2

γ(t1) , Pu ∈

H
s0+ 1

2

γ(I) : this implies that u ∈ Hs0
γ(t1), Pu ∈ H

s0
γ(I) and since u ∈ Hs0− 1

2

γ(I) , the property

(4.3.7)s0 gives eventually u ∈ Hs0
γ(I) so that the property (4.3.7)s0+ 1

2
gives u ∈ Hs0+ 1

2

γ(I) .

Inductively, we assume that for some k ∈ N∗,

u ∈ Hs0+ k
2

γ(t1) , Pu ∈ H
s0+ k

2

γ(I) =⇒ u ∈ Hs0+ k
2

γ(I) . (4.3.8)

8For a C1 on Ω× Rn, the Hamiltonian vector field of a is

Ha =
∑

1≤j≤n

( ∂a
∂ξj

∂

∂xj
− ∂a

∂xj

∂

∂ξj

)
.

The integral curves of Ha are called the bicharacteristic curves of a. Since Ha(a) = 0, a is constant
along its bicharacteristic curves; the null bicharacteristic curves are those on which a vanishes.
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Then if u ∈ H
s0+ k+1

2

γ(t1) , Pu ∈ H
s0+ k+1

2

γ(I) , (4.3.8) gives u ∈ H
s0+ k

2

γ(I) and the property

(4.3.7)s0+ k+1
2

gives u ∈ Hs0+ k+1
2

γ(I) , so that (4.3.7) implies (4.3.8) for all k ∈ N and all

s0 such that u ∈ Hs0− 1
2

γ(I) , meaning that(4.3.7) implies (4.3.6). Now to prove (4.3.7),

it is enough to get it for s = 0: assuming (4.3.7) for s = 0 and considering properly

supported pseudo-differential operator Es, E−s of order s,−s, elliptic on a neigh-

borhood of γ(I), whose symbols have an asymptotic expansion
∑

j∈N c±s−j, c±s−j
positively-homogeneous of degree ±s− j and such that

E−sEs = Id +R, γ(I) ⊂ (essuppR)c

we get under the hypothesis of (4.3.7) that

Esu ∈ H0
γ(t1), EsPE−sEsu ∈ H0

γ(I), Esu ∈ H
−1/2
γ(I) ,

and since the operator EsPE−s is of order 1 with the same principal symbol as P ,

we can then apply (4.3.7) for s = 0, entailing Esu ∈ H0
γ(t0) which gives u ∈ Hs

γ(t0)

using the ellipticity of Es. The remaining part of the proof is devoted to establishing

(4.3.7) for s = 0. As a last preliminary remark we note that

J = {t ∈ [t0, t1], u ∈ H0
γ(s) for s ∈ [t, t1]}

is a nonempty open interval of [t0, t1]; if inf J belongs to J it is also closed and thus

equal to [t0, t1]; as a result, we may assume that J =]t0, t1]. Of course there is no

loss of generality setting t0 = 0, t1 = 1. Summing-up, we have to prove

u ∈ H0
γ(t) for t ∈]0, 1], Pu ∈ H0

γ([0,1]), u ∈ H
−1/2
γ([0,1]) =⇒ u ∈ H0

γ(0). (4.3.9)

We may also assume that u is compactly supported: if ϕ ∈ C∞c (Ω) is 1 near the first

projection of γ([0, 1]), we have Pϕu = [P, ϕ]u+ ϕPu and since

(essupp[P, ϕ])c ⊃ γ([0, 1])

we get that ϕu satisfies as well the assumptions of (4.3.9). On the other hand,

if p1 is the real part of the principal symbol of P , we may assume that at γ(0),

dp1 ∧ ξ · dx 6= 0, otherwise ∂ξp1(γ(0)) = 0, ∂xp1(γ(0)) = λξ(0) and the solution

γ(t) = (x(t), ξ(t)) of

ẋ(t) = ∂ξp1(x(t), ξ(t)), ξ̇(t) = −∂xp1(x(t), ξ(t)), (x(0), ξ(0)) = γ(0),

is x(t) = x(0), ξ(t) = e−λtξ(0); since the wave-front-set is conic, (4.3.9) is obvious.

Let us consider W0 a conic neighborhood of γ([0, 1]) such that in W0 Pu ∈ H0, u ∈
H−1/2. Let m0 ∈ S0 real-valued. The symbol of P is p1+iq1+p0+iq0 with pj, qj ∈ Sj
real-valued, p1, q1 positively-homogeneous of degree 1 and q1 ≥ 0. We calculate with

M = m0(x,D), A = 1
2
(P + P ∗), B = 1

2i
(P − P ∗), for v ∈ C∞c (Ω),

2 Re〈Pv, iM∗Mv〉
= 〈[A, iM∗M ]v, v〉+ 2 Re〈M∗[M,B]v, v〉+ 2 Re〈BMv,Mv〉. (4.3.10)
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From the G̊arding inequality (Theorem 3.5.1) we have

2 Re〈BMv,Mv〉+ α0‖Mv‖2
0 ≥ 0, α0 a semi-norm of q1. (4.3.11)

On the other hand, the principal symbol of M∗[M,B] is purely imaginary, belongs

to S0, and so that

2 Re〈M∗[M,B]v, v〉+ C1‖v‖2
−1/2 ≥ 0. (4.3.12)

We have also

〈[A, iM∗M ]v, v〉+ C2‖v‖2
−1/2 ≥ 〈

{
p1,m

2
}

(x,D)v, v〉 1

2π
. (4.3.13)

As a result, we have

‖MPv‖2
0 + (1 + α0)‖Mv‖2

0 + (C1 +C2)‖v‖2
−1/2 ≥ 〈

{
p1,m

2
}

(x,D)v, v〉 1

2π
. (4.3.14)

We can find (t, y, τ, η) ∈ R × Rn−1 × R × Rn−1 as C∞ local symplectic coordinates

near γ(0), (x, ξ) 7→ (t, y) homogeneous functions of degree 0 with respect to ξ,

(x, ξ) 7→ (τ, η) homogeneous functions of degree 1 with respect to ξ, so that ∂t = Hp1 .

We choose θ0 ∈ C∞c (R) supported on [−ε0, ε0] with ε0 > 0, positive on (−ε0, ε0),

with L2-norm 1 and consider θ1(t) = θ0(t− 3ε0): with

κ(t) =

∫ t

−ε0

(
θ0(s)2 − θ1(s)2

)
ds =

∫ t

t−3ε0

θ0(s)2ds,

we have for the C∞ function κ supported in [−ε0, 4ε0],

0 ≤ κ ≤ 1, κ̇ = θ2
0 − θ2

1, [−ε0, 2ε0] ⊂ {κ̇ ≥ 0}, suppκ ⊂ [−ε0, 4ε0],

and the following variation table.

t −ε0 0 ε0 2ε0 3ε0 4ε0

κ̇(t) 0 + κ̇(0) > 0 + 0 0 0 − κ̇(3ε0) < 0 − 0
κ(t) 0 ↗ κ(0) > 0 ↗ 1 1 1 ↘ κ(3ε0) > 0 ↘ 0

We multiply now the function κ by ν2 with ν ∈ C∞(R2n−1
y,τ,η ; [0, 1]), ν(0) = 1, ν

homogeneous with degree 0 with respect to τ, η, and we get that

0 ≤ κ(t)ν2(Y ) ≤ 1, ∂t
(
κ(t)ν2(Y )

)
=
(
θ2

0(t)− θ2
1(t)
)
ν2(Y ),

[−ε0, 2ε0]× supp ν ⊂ {κ̇⊗ ν2 ≥ 0}, suppκ⊗ ν2 ⊂ [−ε0, 4ε0]× supp ν,

κ(0)ν2(0) > 0, κ̇(0)ν2(0) > 0, {κ̇⊗ ν2 < 0} ⊂ [2ε0, 4ε0]× supp ν.

The mapping

R× Rn−1 × R× Rn−1 3 (t, y, τ, η) 7→ x(t, y, τ, η), ξ(t, y, τ, η) ∈ Rn × Rn
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is a local symplectomorphism Θ, with x homogeneous of degree 0, ξ homogeneous

of degree 1, and the push-forward µ of κ ⊗ ν2 by Θ given by µ ◦ Θ = κ ⊗ ν2 is

homogeneous of degree 0 with respect to τ, η and satisfies

µ ∈ C∞c (Ṫ ∗(Ω); [0, 1]), suppµ ⊂ Θ([−ε0, 4ε0]× supp ν), µ(γ(0)) > 0,

Hp1(µ) = χ2
0 − χ2

1, χ0, χ1 ∈ C∞c (Ṫ ∗(Ω)), χ0(γ(0)) > 0,

suppχ0 = Θ([−ε0, ε0]× supp ν), suppχ1 = Θ([2ε0, 4ε0]× supp ν),

and thus suppχ0 ∩ suppχ1 = ∅.

The function µ is homogeneous of degree 0 such that

suppµ ⊂ W, conic neighborhood of γ([−ε0, 4ε0]) ⊂ W0

Hp1(µ) = χ2
0 − χ2

1, suppχ1 ⊂ W1,

where W1 ⊂ W0 is a conic neighborhood of γ(3ε0) with u ∈ H0 on W1.

We consider now, with T = t ◦Θ−1 so that Hp1(T ) = 1, and T is homogeneous with

degree 0, the symbol

m = µeλT

where λ is so that λ ≥ (1 + α0)2π and α0 is given in (4.3.11). Checking

Hp1(m
2)− 2π(1 + α0)m2 = 2µeλT

(
Hp1(µ)eλT + λeλTµ

)
− 2π(1 + α0)µ2e2λT

= 2µe2λTHp1(µ) + µ2e2λT
(
2λ− 2π(1 + α0)

)
≥ 2µe2λTHp1(µ).

Since µe2λTHp1(µ) is supported in W , positive at γ(0) and non-negative except on

a neighborhood of γ(3ε0), in fact such that

µe2λTHp1(µ) = µ(eλTχ0)2 − µ(eλTχ1)2,

the inequality (4.3.14) gives with A0, A1 ∈ Ψ0
ps(Ω), A0 elliptic at γ(0), essuppA1 ⊂

W1,

‖A0v‖2
0 ≤ ‖A1v‖2

0 + ‖MPv‖2
0 + (C1 + C2)‖v‖2

−1/2. (4.3.15)

Replacing in that inequality v by Nv where N ∈ ψ0
ps(Ω), essuppN ⊂ W0, with a

symbol equal to 1 on W gives with R ∈ ψ−∞ps (Ω)

‖A0v‖2
0 ≤ ‖A1v‖2

0 + ‖MPv‖2
0 + (C1 + C2)‖Nv‖2

−1/2 + ‖Rv‖2
0. (4.3.16)

Since u ∈ E ′(Ω), we can apply (4.3.16) to vε = u ∗ ρε where ρε(x) = ρ(x/ε)ε−n, with

ρ ∈ C∞c (Rn) of integral 1 and ε small enough so that vε ∈ C∞c (Ω). Since u is H0 on

W1 and also H−1/2 on W0, Pu is H0 on W0, we get that the ‖A0vε‖2
0 is bounded for

ε → 0+, implying that the weak limit A0u in E ′(Ω) belongs to H0, proving that u

is H0 at γ(0). The proof of Theorem 4.3.1 is complete.
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4.4 Local solvability

Functional analysis arguments

Definition 4.4.1. Let Ω be an open subset of Rn, x0 ∈ Ω, m ∈ R and P ∈ Ψm
ps(Ω)

a properly supported pseudo-differential operator. We shall say that P is locally

solvable at x0 if there exists an open neighborhood V ⊂ Ω of x0 such that

∀f ∈ C∞(Ω), ∃u ∈ D ′(Ω) with Pu = f in V . (4.4.1)

Note that this definition makes sense since P is properly supported (in particular

P is an endomorphism of D ′(Ω)) and we can actually restrict a distribution to an

open set. Moreover the set of points x ∈ Ω such that P is locally solvable at x is

open.

Definition 4.4.2. Let Ω, x0, P be as above and let µ ≥ 0. We shall say that P is

locally solvable at x0 with loss of µ derivatives if, for every s ∈ R, there exists an

open neighborhood V ⊂ Ω of x0 such that

∀f ∈ Hs
loc(Ω), ∃u ∈ Hs+m−µ

loc (Ω) with Pu = f in V . (4.4.2)

Remark 4.4.3. Note that the neighborhood V above may depend on s.

Lemma 4.4.4. Let Ω be an open subset of Rn, x0 ∈ Ω, m ∈ R and let P ∈ Ψm
ps(Ω)

be a pseudo-differential operator solvable at x0. Then there exists a neighborhood

V ⊂ Ω of x0, N ∈ N, C > 0 such that

∀v ∈ C∞c (V ), C‖P ∗v‖N ≥ ‖v‖−N . (4.4.3)

Proof. The solvability of P at x0 gives the existence of a neighborhood V of x0 such

that (4.4.1) holds. We consider now v0 ∈ C∞c (V ) such that P ∗v0 = 0: Then, for all

ϕ ∈ C∞c (V ) the solvability property implies the existence of u ∈ D ′(Ω) with Pu = ϕ

in V . As a result, we have for all ϕ ∈ C∞c (V )∫
ϕ(x)v0(x)dx = 〈(Pu)|V , v0〉D∗(V ),D(V ) = 〈Pu, v0〉D∗(Ω),D(Ω)

= 〈u, P ∗v0〉D∗(Ω),D(Ω) = 0, (4.4.4)

which gives v0 = 0. Then for any compact subset K of V , the space C∞K (V ) is a

metrizable topological space for the topology given by the countable family of norms

{‖P ∗v‖Hr}r∈N. Let K̃ be a compact subset of V , neighborhood of a given compact

subset K of V and consider the space C∞
K̃

(V ), equipped with its standard Fréchet

topology, where the semi-norms may be given by the family {‖ϕ‖Hs}s∈N. For a fixed

v ∈ C∞K (V ), the mapping

C∞
K̃

(V ) 3 ϕ 7→
∫
ϕ(x)v(x)dx
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is obviously continuous since C∞
K̃

(V ) is equipped with its standard Fréchet topology.

For a fixed ϕ ∈ C∞
K̃

(V ), the mapping

C∞K (V ) 3 v 7→
∫
ϕ(x)v(x)dx

is continuous for the topology on C∞K (V ) given by the family {‖P ∗v‖Hr}r∈N since

ϕ = Pu on V with u ∈ D ′(Ω) and thus, as in (4.4.4),∣∣∣∣∫ ϕ(x)v(x)dx = 〈u, P ∗v〉D∗(Ω),D(Ω)

∣∣∣∣ ≤ Cu‖P ∗v‖r.

A separately continuous bilinear form on the product of a Fréchet space with a

metrizable space is in fact continous so that

∃C > 0,∃N ∈ N, ∀v ∈ C∞K (V ),∀ϕ ∈ C∞
K̃

(V ),∣∣∣∣∫ ϕ(x)v(x)dx

∣∣∣∣ ≤ C‖P ∗v‖N‖ϕ‖N ,

and since K̃ is a neighborhood of K, it gives the lemma.

Lemma 4.4.5. Let Ω be an open subset of Rn, x0 ∈ Ω, m, s, µ ∈ R and let P ∈
Ψm
ps(Ω) be a pseudo-differential operator such that there exists an open neighborhood

V of x0 such that

∀f ∈ Hs
loc(Ω), ∃u ∈ Hs+m−µ

loc (Ω) with Pu = f in V . (4.4.5)

Then there exists a neighborhood W ⊂ Ω of x0, C > 0 such that

∀v ∈ C∞c (W ), C‖P ∗v‖−s−m+µ ≥ ‖v‖−s. (4.4.6)

Proof. We consider v0 ∈ C∞c (V ) such that P ∗v0 = 0: Then, for all ϕ ∈ C∞c (V )

the solvability property (4.4.5) implies (4.4.1) and the proof of Lemma 4.4.4 gives

v0 = 0. Then for any compact subset K of V , the space C∞K (V ) is a normed

space with the norm ‖P ∗v‖−s−m+µ. Let K̃ be a compact subset of V , neighborhood

of a given compact subset K of V and consider the Hilbert space Hs
K̃

(V ). For a

fixed v ∈ C∞K (V ), the mapping Hs
K̃

(V ) 3 ϕ 7→ 〈ϕ, v〉 is obviously continuous since

|〈ϕ, v〉| ≤ ‖ϕ‖s‖v‖−s. For a fixed ϕ ∈ Hs
K̃

(V ), the mapping

C∞K (V ) 3 v 7→ 〈ϕ, v〉

is continuous for the topology on C∞K (V ) given by the norm ‖P ∗v‖−s−m+µ since

ϕ = Pu on V with u ∈ Hs+m−µ
loc (Ω) and thus, as in (4.4.4), with χ ∈ C∞c (Ω), χ = 1

near the support of P ∗(C∞K (V )),∣∣〈ϕ, v〉 = 〈u, P ∗v〉D∗(Ω),D(Ω) = 〈χu, P ∗v〉Hs+m−µ,D(Ω)

∣∣
≤ ‖χu‖s+m−µ‖P ∗v‖−s−m+µ.
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As before, this bilinear form is continuous,

∃C > 0,∀v ∈ C∞K (V ),∀ϕ ∈ Hs
K̃

(V ), |〈ϕ, v〉| ≤ C‖P ∗v‖−s−m+µ‖ϕ‖s,

and since K̃ is a neighborhood of K, it gives ‖v‖−s ≤ C‖P ∗v‖−s−m+µ, for all v ∈
C∞K (V ). Choosing K as a compact neighborhood of x0 included in V , we can take

W = K
◦

to obtain the lemma.

Lemma 4.4.6. Let Ω be an open subset of Rn, x0 ∈ Ω, m ∈ R and P ∈ Ψm
ps(Ω) a

properly supported pseudo-differential operator. Let s ∈ R. Assume that there exists

µ ≥ 0 and an open neighborhood V ⊂ Ω of x0 such that,

∃C > 0,∀v ∈ C∞c (V ), ‖v‖−s ≤ C‖P ∗v‖−s−m+µ. (4.4.7)

Then, for all f ∈ Hs
loc(Ω), there exists u ∈ Hs+m−µ(Ω) such that Pu = f in V .

Proof. Let f0 ∈ Hs
loc(Ω). The inequality (4.4.7) implies the injectivity of P ∗ on

C∞c (V ). Assuming as we may that V b Ω, we get that the space P ∗(C∞c (V )) is a

subspace of C∞K (Ω), where K is a compact subset of Ω. We consider P ∗(C∞c (V )) as

a subspace of H−s−m+µ
0 (Ω) and we can define the linear form

P ∗(C∞c (V )) 3 P ∗v 7→ 〈v, f0〉

which satisfies the following estimate: with χ ∈ C∞c (Ω) equal to 1 on V , we have

|〈v, f0〉| ≤ ‖v‖−s‖χf0‖s ≤ C‖P ∗v‖−s−m+µ‖χf0‖s.

We can extend this linear form to the whole H−s−m+µ
0 (Ω) to a linear form ξ with

norm ≤ C‖χf0‖s by the Hahn-Banach theorem. This means that there exists u0 ∈
Hs+m−µ(Ω) such that

∀g ∈ H−s−m+µ
0 (Ω), 〈g, u0〉 = ξ(g), ‖u0‖Hs+m−µ(Ω) ≤ C‖χf0‖s,

and in particular for all v ∈ C∞c (V ),

〈v, f0〉 = ξ(P ∗v) = 〈P ∗v, u0〉 = 〈v, Pu0〉

and thus Pu0 = f0 on V .

Remark 4.4.7. Note in particular that if the estimate

‖v‖σ+m−µ ≤ C‖P ∗v‖σ

is proven true for any σ ∈ R, for v ∈ C∞c (Vσ), where Vσ is a neighborhood of x0

(which may depend on σ), then the result of the lemma holds and P is locally

solvable at x0 with loss of µ derivatives (see Remark 4.4.3). The estimate above

can be true for µ = 0 if and only if P is elliptic at x0. Moreover the two previous

lemmas show that the local solvability questions for a properly supported operator

are equivalent to proving an a priori estimate of the type (4.4.3), (4.4.7).
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Lemma 4.4.8. Let Ω be an open subset of Rn, x0 ∈ Ω, m ∈ R and P ∈ Ψm
ps(Ω)

a properly supported pseudo-differential operator. If P is solvable at x0, then there

exists a neighborhood V of x0 and an integer N such that

∀f ∈ CN(Ω), ∃u ∈ E ′
N

(Ω), with Pu = f in V. (4.4.8)

Proof. In fact, from (4.4.3), the estimate

C‖P ∗v‖N ≥ ‖v‖−N (4.4.9)

holds for all v ∈ C∞c (V ) for some neighborhood V of x0 and some N ∈ N. We may

assume V b Ω. Let f0 ∈ CN(Ω). The inequality (4.4.9) implies the injectivity of P ∗

on C∞c (V ). We consider the space P ∗(C∞c (V )) as a subspace of CN
K (Ω), where K is

a compact subset of Ω and we can define the linear form

P ∗(C∞c (V )) 3 P ∗v 7→ 〈v, f0〉

which satisfies the following estimate: with χ ∈ C∞c (Ω), χ = 1 near V , we have

|〈v, f0〉| ≤ ‖v‖−N‖χf0‖N ≤ C‖P ∗v‖N‖χf0‖N ≤ C1‖χf0‖N sup
|α|≤N
x∈K

|∂α(P ∗v)(x)|.

By the Hahn-Banach theorem, we can extend this linear form to a linear form ξ

defined on CN(Ω) such that

∀g ∈ CN(Ω), |ξ(g)| ≤ C1‖χf0‖N sup
|α|≤N
x∈K

|∂αg(x)|.

This means that there exists u0 ∈ E ′N(Ω) such that ∀g ∈ CN(Ω), 〈g, u0〉 = ξ(g)

and in particular for all v ∈ C∞c (V ),

〈v, f0〉 = ξ(P ∗v) = 〈P ∗v, u0〉 = 〈v, Pu0〉

and thus Pu0 = f0 on V .

Remarks on solvability with loss of µ derivative(s)

To establish local solvability at x0 with loss of µ derivatives, it is enough to prove

(see Lemma 4.4.6 and Remark 4.4.7) that for every s ∈ R, there exists r > 0 and

C > 0 such that

∀v ∈ C∞c (B(x0, r)), C‖P ∗v‖−s−m+µ ≥ ‖v‖−s. (4.4.10)

However, we may be able to prove a weaker estimate only for some s. The next

lemma establishes local solvability as a consequence of a weak estimate.
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Lemma 4.4.9. Let Ω be an open subset of Rn, x0 ∈ Ω,m ∈ R, µ ≥ 0, s < n/2 and

P ∈ Ψm
ps(Ω) a properly supported pseudo-differential operator. Let us assume that

there exists r > 0, C > 0 such that

∀v ∈ C∞c (B(x0, r)), C‖v‖−s−1 + C‖P ∗v‖−s−m+µ ≥ ‖v‖−s. (4.4.11)

Then, there exists r > 0, C > 0 such that (4.4.10) holds and for all f ∈ Hs
loc(Ω),

there exists u ∈ Hs+m−µ(Ω) such that Pu = f in V , where V is some neighborhood

of x0. In particular P is locally solvable at x0.

Proof. We get that ‖u‖−s−1 ≤ φ(r)‖u‖−s with limr→0 φ(r) = 0, provided −s >

−n/2 and this proves that shrinking r leads to (4.4.10) which implies the lemma by

applying Lemma 4.4.6.

On the other hand, we may also want to stick on our definition 4.4.2 of solvability

with loss of µ derivatives for which we need to prove an estimate for every s ∈ R.

Lemma 4.4.10. Let Ω be an open subset of Rn, x0 ∈ Ω, m ∈ R, µ ≥ 0 and

P ∈ Ψm
ps(Ω) a properly supported pseudo-differential operator, with homogeneous

principal symbol pm such that

Sn−1 3 ξ 7→ pm(x0, ξ) is not identically 0. (4.4.12)

Let us assume that for every s ∈ R, there exists r > 0, C1, C2 such that

∀v ∈ C∞c (B(x0, r)), C2‖v‖−s−1 + C1‖P ∗v‖−s−m+µ ≥ ‖v‖−s. (4.4.13)

Then, for every s ∈ R, there exists r > 0, C > 0 such that (4.4.10) holds.

Proof. If (4.4.10) were not true, we could find a sequence (vk)k≥1 such that vk ∈
C∞c (B(x0, k

−1)) with ‖vk‖−s = 1 and limk ‖P ∗vk‖−s−m+µ = 0. The estimate (4.4.13)

implies that C2‖vk‖−s−1 ≥ 1/2 for k large enough and since the sequence (vk) is

compact in H−s−1, it has a subsequence strongly convergent in H−s−1 towards v0 6=
0, which is a weak limit in H−s. We have

P ∗v0 = 0, supp v0 = {x0}, so that v0 = Q(D)δx0

where Q is a non-zero polynomial. As a consequence, we have for u ∈ C∞c (Ω)

〈Q̄(D)Pu, δx0〉 = 〈u, P ∗v0〉 = 0 =⇒ (Q̄(D)Pu)(x0) = 0, for all u ∈ C∞c (Ω),

and that, for all ξ ∈ Rn\{0}, q̄(ξ)p(x0, ξ) = 0, where q is the principal part of Q

(homogeneous with degree ν) and p the principal symbol of P , since

q̄(ξ)p(x0, ξ)u(x) = lim
t→+∞

(
(Q̄(D)P )(e2iπt〈·,ξ〉u(·))

)
(x0)t−m−νe−2iπt〈x0,ξ〉.

Since q is a non-zero polynomial9, this implies that ξ 7→ p(x0, ξ) is identically zero,

contradicting the assumption. The proof of the lemma is complete.

9The open set {ξ ∈ Rn, q(ξ) 6= 0} is dense since the closed set {ξ ∈ Rn, q(ξ) = 0} cannot have
interior points because q is a non-zero polynomial.
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Lemma 4.4.11. Let Ω be an open subset of Rn, x0 ∈ Ω,m ∈ R and P ∈ Ψm
ps(Ω) a

properly supported pseudo-differential operator. To get (4.4.11)s it suffices to prove

that for every ξ0 ∈ Sn−1, there exists some ϕ ∈ S0
1,0 non-characteristic at (x0, ξ0),

such that

∃C, ∃r0 > 0,∀r ∈]0, r0],∃A(r),∃ε(r)with lim
r→0

ε(r) = 0,∀v ∈ C∞c (B(x0, r)),

ε(r)‖v‖σ+m−µ + A(r)‖v‖σ+m−µ−1 + C‖P ∗v‖σ ≥ ‖ϕwv‖σ+m−µ, (4.4.14)

with σ = −s−m+ µ.

Proof. To get (4.4.11)s with s = −σ −m + µ, it is enough to prove that, for every

ξ0 ∈ Sn−1, there exists some ϕ ∈ S0
1,0 non-characteristic at (x0, ξ0), r > 0, C > 0,

such that

∀v ∈ C∞c (B(x0, r)), C‖v‖σ+m−µ−1 + C‖P ∗v‖σ ≥ ‖ϕwv‖σ+m−µ. (4.4.15)

In fact, if (4.4.15) holds, one can find finitely many ϕ1, . . . , ϕν such that∑
1≤j≤ν

|ϕj|2 is elliptic at x0

and for all v ∈ C∞c (B(x0, r0)) (r0 is the minimum of the rj > 0 corresponding to

each ϕj),

‖v‖2
σ+m−µ ≤ C1

∑
1≤j≤ν

‖ϕwj v‖2
σ+m−µ + C2‖v‖2

σ+m−µ−1

≤ C1ν2C2‖P ∗v‖2
σ + (C2 + C1ν2C2)‖v‖2

σ+m−µ−1,

which gives C‖v‖σ+m−µ−1 + C‖P ∗v‖σ ≥ ‖v‖σ+m−µ. The same argument as above

gives the implication (4.4.14)σ =⇒ (4.4.11)s.

Remark 4.4.12. Assume in particular that m = 1 and that, on a conic neighborhood

of (0; en) the principal symbol of p is

ξ1 + q(x1, x
′, ξ′), q complex-valued. (4.4.16)

Considering a positively-homogeneous function of n variables χ0 supported in

{ξ ∈ Rn, |ξ1| ≤ C1|ξ′|},

equal to 1 on {ξ ∈ Rn, |ξ1| ≤ C0|ξ′|, |ξ| ≥ 1}, and ψ0 a positively-homogeneous

function of n− 1 variables supported in a conic-neigborhood of ξ′0 = (0, . . . , 0, 1) ∈
Rn−1 and equal to one on a conic-neighborhood of ξ′0, the symbol

l1(x, ξ) = ξ1 + q(x1, x
′, ξ′)ψ0(ξ′)χ0(ξ) ∈ S1

1,0

coincides with p on some conic-neighborhood of (0, en) and we have

lw1 = D1+
(
q(x1, x

′, ξ′)ψ0(ξ′)︸ ︷︷ ︸
q1

)w−(q(x1, x
′, ξ′)ψ0(ξ′)(1− χ0(ξ))

)w
.
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The symbol q1 does not belong to S1
1,0(R2n), but only to S1

1,0(R2n−2
x′,ξ′ ), uniformly with

respect to x1. Let us assume that for v ∈ S (Rn), supp v ⊂ {|x1| ≤ T},

C‖D1v + qw1 v‖0 ≥ T−1‖v‖0. (4.4.17)

We consider χ1 positively-homogeneous function of n variables supported in {ξ ∈
Rn, |ξ1| ≤ C0|ξ′|}, and we apply (4.4.17) to ρ(x1T

−1)χw1 u where u ∈ S (Rn), sup-

ported in |x1| ≤ T/2 and ρ1 ∈ C∞[−2,2](R), equal to 1 on [−1, 1]: we get

2C‖lw1 ρ(x1T
−1)χw1 u+

(
(1− χ0)q1

)w
ρ(x1T

−1)χw1 u‖
≥ T−1‖ρ(x1T

−1)χw1 u‖0.

The term
(
(1−χ0)q1

)w
ρ(x1T

−1)χw1 has a symbol in S−∞1,0 (R2n) (to be checked directly

by the composition formula whose expansion is 0). The term

[lw1 , ρ(x1T
−1)]χw1 u = (2iπT )−1ρ′(x1T

−1)︸ ︷︷ ︸
= 0 on [−T, T ]

χw1 ρ(2x1T
−1)︸ ︷︷ ︸

supported in
[−T,T ]

u = rwT u

rT ∈ S−∞1,0 (R2n). The term [lw1 , χ
w
1 ] is L2-bounded and we have thus

‖χw1 lw1 u‖0 + ‖u‖0 + α(T )‖u‖−1 ≥
c0

T
‖χw1 u‖

which gives (4.4.14) for m = 1, σ = 0, µ = 1. Staying with the case µ = 1 (loss

1), the argument is not different for other values of m,σ. We can of course replace

the assumption (4.4.16) by e(x, ξ)(ξ1 + q(x1, x
′, ξ′)) where e is elliptic on a conic-

neighborhood of (0; en).

Remark 4.4.13. On the other hand, when µ > 1, the rhs in the estimate (4.4.17)

has to be replaced by ‖v‖1−µ and the fact that this suffices to prove local solvability

requires some particular care.

Operators of real principal type

Theorem 4.4.14. Let Ω be an open subset of Rn, m ∈ R and P ∈ Ψm
ps(Ω) a pseudo-

differential operator with symbol p such that (4.3.1) holds with pm real-valued and

positively-homogeneous of degree m. We assume that P is of principal type, i.e.

∀(x, ξ) ∈ Ṫ ∗(Ω), pm(x, ξ) = 0 =⇒ ∂ξpm(x, ξ) 6= 0. (4.4.18)

Then the operator P is locally solvable at every point of Ω with loss of one derivative.

Proof. One could of course use the estimate (4.3.16), but the argument for solvability

alone is so simple in that case that it may be worthy to look at it. We consider a

point x0 ∈ Ω. If pm is elliptic at x0, the estimate

C‖v‖σ+m−1 + C‖P ∗v‖σ ≥ ‖v‖σ+m
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follows from Theorem 4.2.8 for v supported in B(x0, r0) with r0 > 0 small enough.

If there exists ξ0 6= 0 such that pm(x0, ξ0) = 0, we may choose the coordinates so

that x0 = 0, ξ0 = en and

pm(x, ξ) = (ξ1 + a(x1, x
′, ξ′))e(x, ξ)

with a homogeneous of degree 1 with respect to ξ′, e elliptic with degree m− 1 on a

conic-neighborhood of (0, en). According to Remark 4.4.12 the question reduces to

proving an estimate for the operator L = Dx1+a(x1, x
′, ξ′)w where a ∈ C∞(R2n−1;R)

such that, for all α, β,

sup
(x,ξ′)∈Rn×Rn−1

|(∂αξ′∂βxa)(x, ξ′)|〈ξ′〉−1+|α| <∞.

We find

2 Re〈Dx1u+ a(x1, x
′, ξ′)wu, ix1u〉L2 =

1

2π
‖u‖2

0, (4.4.19)

so that for u ∈ C∞c (Rn), u = 0 on |x1| ≥ T , we have 2‖Lu‖0T‖u‖0 ≥ 1
2π
‖u‖2

0 and

thus ‖Lu‖0 ≥ 1
4πT
‖u‖0.

Operators of principal type, complex symbols with a nonnegative imagi-
nary part

Theorem 4.4.15. Let Ω be an open subset of Rn, m ∈ R and P ∈ Ψm
ps(Ω) a pseudo-

differential operator with symbol p such that (4.3.1) holds with pm complex-valued

and positively-homogeneous of degree m. We assume that P is of principal type (see

(4.4.18)) such that the function Im pm is nonnegative (resp. nonpositive). Then the

operator P is locally solvable at every point of Ω with loss of one derivative.

Proof. To handle the complex-valued case, we see that the principal type condition

(4.4.18) implies that at a non-elliptic point,

pm(x0, ξ0) = 0, d(Im pm)(x0, ξ0) = 0, ∂ξ(Re pm)(x0, ξ0) 6= 0.

The first thing that we can do is to use the estimate (4.3.15): assuming m = 1,

the bicharacteristic curve γ̇ = HRe pm(γ) starting at γ(0) = (x0, ξ0) we find A0, A1 ∈
Ψ0
ps(Ω), A0 elliptic at γ(0), essuppA1 ⊂ W1, W1 conic-neighborhood of γ(3ε0) where

ε0 > 0, γ(0) /∈ W1, M ∈ Ψ0
ps(Ω),

‖A0v‖2
0 ≤ ‖A1v‖2

0 + ‖MPv‖2
0 + (C1 + C2)‖v‖2

−1/2. (4.4.20)

Applying this to v ∈ C∞c (B(x0, r)) with r small enough, the principal-type assump-

tion ∂ξ Re pm(x0, ξ0) 6= 0 implies, with χ0 supported in the unit ball of Rn, that

A1v = A1χ0

(
(· − x0)/r

)
v with essuppA1χ0

(
(· − x0)/r

)
= ∅, so that (4.4.14) holds

with µ = 1,m = 1, σ = 0. The other cases are analogous.

On the other hand, it is also interesting to find directly a multiplier method, as

in the real-principal type case. We need only to handle

L± = Dx1u+ a(x1, x
′, ξ′)wu± ib(x, ξ)w + r0(x, ξ)w
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with b ∈ S1
1,0, b ≥ 0, a(x1, ·, ·) real-valued in S1

1,0(R2n−2
x′,ξ′ ) uniformly in x1 and r0 ∈ S0

1,0.

With θ ∈ C∞(R;R), we calculate

2 Re〈Dx1u+ a(x1, x
′, ξ′)wu+ ib(x, ξ)wu, iθ(x1)2u〉L2 =

1

π
〈θθ′u, u〉+ 2 Re〈bwu, θ2u〉.

We have

θ2bw + bwθ2 = θθbw + bwθθ = θ[θ, bw] + 2θbwθ + [bw, θ]θ = 2θbwθ + [[bw, θ], θ]

and thus, from G̊arding inequality (Theorem 3.5.1), we find

2 Re〈L+u, iθ
2u〉 ≥ 1

π
〈θθ′u, u〉+ 〈[[bw, θ], θ]u, u〉 − C0‖θu‖2 − ‖[r0, θ]u‖2

where C0 depends on semi-norms of b, r0; to handle the term r0, we have used

〈rw0 u, θ2u〉 = 〈[θ, rw0 ]u, θu〉+ 〈rw0 θu, θu〉.

We have with λ > 0, θ(x1) = eλx1 , for u ∈ C∞c (Rn) vanishing at |x1| ≥ 1/λ (so that

with χ0 ∈ C∞c (R) equal to 1 on [−1, 1], u = χ0(λx1)u)

2 Re〈L+u, ie
2λx1u〉 ≥ (π−1λ− C0)‖eλx1u‖2 − C(λ)‖u‖2

−1/2

implying 2πλ−1‖χ0(λx1)eλx1L+u‖2
0+C(λ)‖u‖2

−1/2 ≥ ( λ
2π
−C0)‖eλx1u‖2, and assuming

χ0 valued in [0, 1], vanishing on (−2, 2)c, and λ ≥ 4πC0,

2πλ−1e4‖L+u‖2
0 + C(λ)‖u‖2

−1/2 ≥
λ

4πe2
‖u‖2.

Choosing λ = 1 + 4πC0, we find that there exists r0 > 0 such that, for u ∈ C∞c (Rn),

with diameter(suppu) ≤ r0

C1‖L+u‖0 + C1‖u‖−1/2 ≥ ‖u‖0,

proving the local solvability of L∗+; the case of L∗− is analogous.

4.5 Pseudo-differential operators

in harmonic analysis

Singular integrals, examples

The Hilbert transform

A basic object in the classical theory of harmonic analysis is the Hilbert transform,

given by the one-dimensional convolution with pv(1/πx) = d
πdx

(ln |x|), where we

consider here the distribution derivative of the L1
loc(R) function ln |x|. We can also

compute the Fourier transform of pv(1/πx), which is given by −i sign ξ (see e.g.
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(1.2.26)). As a result the Hilbert transform H is a unitary operator on L2(R)

defined by

Ĥ u(ξ) = −i sign ξû(ξ). (4.5.1)

It is also given by the formula

(H u)(x) = lim
ε→0+

1

π

∫
|x−y|≥ε

u(y)

x− y
dy.

The Hilbert transform is certainly the first known example of a Fourier multiplier

(H u = F−1(aû) with a bounded a). Since the sign function is bounded, it is

obviously bounded on L2(R), but is is tempting to relate that result to Theorem

3.4.2 of L2-boundedness of the S0
1,0 class; naturally the singularity at 0 of the sign

function prevents it to be a symbol in that class.

The Riesz operators, the Leray-Hopf projection

The Riesz operators are the natural multidimensional generalization of the Hilbert

transform. We define for u ∈ L2(Rn),

R̂ju(ξ) =
ξj
|ξ|
û(ξ), so that Rj = Dj/|D| = (−∆)−1/2 ∂

i∂xj
. (4.5.2)

The Rj are selfadjoint bounded operators on L2(Rn) with norm 1.

We can also consider the n × n matrix of operators given by Q = R ⊗ R =

(RjRk)1≤j,k≤n sending the vector space of L2(Rn) vector fields into itself. The

operator Q is selfadjoint and is a projection since
∑

lR
2
l = Id so that Q2 =

(
∑

lRjRlRlRk)j,k = Q. As a result the operator

P = Id−R⊗R = Id−|D|−2(D ⊗D) = Id−∆−1(∇⊗∇) (4.5.3)

is also an orthogonal projection, the Leray-Hopf projector (a.k.a. the Helmholtz-

Weyl projector); the operator P is in fact the orthogonal projection onto the closed

subspace of L2 vector fields with null divergence. We have for a vector field u =∑
j uj∂j, the identities grad div u = ∇(∇ · u), grad div = ∇⊗∇ = (−∆)(iR⊗ iR),

so that

Q = R⊗R = ∆−1 grad div, divR⊗R = div,

which implies divPu = div u − div(R ⊗ R)u = 0, and if div u = 0, Pu = u. The

Leray-Hopf projector is in fact the (n×n)-matrix-valued Fourier multiplier given by

Id−|ξ|−2(ξ ⊗ ξ). This operator plays an important role in fluid mechanics since the

Navier-Stokes system for incompressible fluids can be written for a given divergence-

free v0, ∂tv + P
(
(v · ∇)v

)
− ν4v = 0

Pv = v,
v|t=0 = v0.

As already said for the Riesz operators, P is not a classical pseudo-differential opera-

tor, because of the singularity at the origin: however it is indeed a Fourier multiplier

with the same functional properties as those of R.
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In three dimensions the curl operator is given by the matrix

curl =

 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0

 = curl∗, (4.5.4)

since we can note that the matrix

C(ξ) = 2π

 0 −iξ3 iξ2

iξ3 0 −iξ1

−iξ2 iξ1 0


is purely imaginary and anti-symmetric, a feature that could not happen for scalar

Fourier multiplier. We get also curl2 = −∆ Id + grad div and (the Biot-Savard law)

Id = (−∆)−1 curl2 +∆−1 grad div, also equal to (−∆)−1 curl2 + Id−P,

which gives curl2 = −∆P, so that

[P, curl] = ∆−1
(
∆P curl−∆ curlP

)
= ∆−1

(
− curl3 + curl(−∆P)

)
= 0,

P curl = curlP = curl(−∆)−1 curl2 = curl
(
Id−∆−1 grad div

)
= curl

since curl grad = 0 (note also the adjoint equality div curl = 0).

These examples show that some interesting cases of Fourier multipliers are quite

close to pseudo-differential operators, with respect to the homogeneity and behaviour

for large frequencies, although the singularities at the origin in the momentum space

make them slightly different. They belong to the family of singular integrals that

we shall review briefly.

Theorem 4.5.1. Let Ω be a function in L1(Sn−1) such that
∫
Sn−1 Ω(ω)dσ(ω) = 0.

Then the following formula defines a tempered distribution T :

〈T, ϕ〉 = lim
ε→0+

∫
|x|≥ε

Ω
( x
|x|
)
|x|−nϕ(x)dx = −

∫
(x · ∂xϕ(x))Ω

( x
|x|
)
|x|−n ln |x|dx.

The distribution T is homogeneous of degree −n on Rn and, if Ω is odd, the Fourier

transform of T is a bounded function.

N.B. We shall use the principal-value notation T = pv
(
|x|−nΩ

(
x
|x|

))
; when n = 1

and Ω = sign, we recover the principal value pv(1/x) = d
dx

(ln |x|) which is odd, ho-

mogeneous of degree -1, and whose Fourier transform is −iπ sign ξ (see e.g. (1.2.26)).

Proof. Let ϕ be in S (Rn) and ε > 0. Using polar coordinates, we check∫
Sn−1

Ω(ω)

∫ +∞

ε

ϕ(rω)
dr

r
dσ(ω)

=

∫
Sn−1

Ω(ω)
[
ϕ(εω) ln(ε−1)−

∫ +∞

ε

ω · dϕ(rω) ln rdr
]
dσ(ω).
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Since the mean value of Ω is 0, we get the first statement of the theorem, noticing

that the function x 7→ Ω(x/|x|)|x|−n+1 ln(|x|)(1 + |x|)−2 is in L1(Rn). We have

〈x · ∂xT, ϕ〉 = −〈T, x · ∂xϕ〉 − n〈T, ϕ〉 (4.5.5)

and we see that

〈T, x · ∂xϕ〉 = lim
ε→0+

∫
Sn−1

Ω(ω)

∫ +∞

ε

rω · (dϕ)(rω)
dr

r
dσ(ω)

=

∫
Sn−1

Ω(ω)

∫ +∞

0

ω · (dϕ)(rω)drdσ(ω)

=

∫
Sn−1

Ω(ω)

∫ +∞

0

d

dr

(
ϕ(rω)

)
drdσ(ω) = −ϕ(0)

∫
Sn−1

Ω(ω)dσ(ω) = 0

so that (4.5.5) implies that x · ∂xT = −nT which is the homogeneity of degree −n
of T . As a result the Fourier transform of T is an homogeneous distribution with

degree 0.

N.B. Note that the formula −
∫

(x · ∂xϕ(x))Ω
(
x
|x|

)
|x|−n ln |x|dx makes sense for Ω ∈

L1(Sn−1), ϕ ∈ S (Rn) and defines a tempered distribution. For instance, if n = 1 and

Ω = 1, we get the distribution derivative d
dx

(
signx ln |x|

)
. However, the condition of

mean value 0 for Ω on the sphere is necessary to obtain T as a principal value, since

in the discussion above, the term factored out by ln(1/ε) is
∫
Sn−1 Ω(ω)ϕ(εω)dσ(ω)

which has the limit ϕ(0)
∫
Sn−1 Ω(ω)dσ(ω). On the other hand, from the defining

formula of T , we get with Ωj(ω) = 1
2
(Ω(ω) + (−1)jΩ(−ω)) (Ω1(resp.Ω2) is the odd

(resp. even) part of Ω)

〈T, ϕ〉 =

∫
Sn−1

Ω(ω)〈 d
dt

(
H(t) ln t

)
, ϕ(tω)〉S ′(Rt),S (Rt)dσ(ω)

=

∫
Sn−1

Ω1(ω)〈pv(
1

2t
), ϕ(tω)〉S ′(Rt),S (Rt)dσ(ω)

+

∫
Sn−1

Ω2(ω)〈 d
dt

(
H(t) ln t

)
, ϕ(tω)〉S ′(Rt),S (Rt)dσ(ω), (4.5.6)

since

A1 =

∫
Sn−1

Ω1(ω)〈pv(
1

2t
), ϕ(tω)〉dσ(ω) = −1

2

∫
Sn−1

Ω1(ω)〈ln |t|, ω · dϕ(tω)〉dσ(ω)

and 〈ln |t|, ω · dϕ(tω)〉 =
∫ +∞

0
ω · dϕ(tω) ln tdt+

∫ +∞
0

ω · dϕ(−sω)(ln s)ds so that

A1 =

∫
Sn−1

Ω1(ω)〈H(t) ln t,−1

2
ω ·
(
dϕ(tω) + dϕ(−tω)

)︸ ︷︷ ︸
− 1

2
d
dt

(ϕ(tω)−ϕ(−tω))

〉dσ(ω)

and thus since Ω1 is odd,

A1 =

∫
Sn−1

Ω1(ω)〈 d
dt

(
H(t) ln t

)
,
1

2
(ϕ(tω)− ϕ(−tω))〉dσ(ω)

=

∫
Sn−1

Ω1(ω)〈 d
dt

(
H(t) ln t

)
, ϕ(tω)〉dσ(ω).
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Let us show that, when Ω is odd, the Fourier transform of T is bounded. Using

(4.5.6) and (1.2.26) we get

〈T̂ , ψ〉 =

∫
Sn−1

Ω(ω)〈pv(
1

2t
), ψ̂(tω)〉dσ(ω)

= −iπ
2

∫
Rn

∫
Sn−1

Ω(ω) sign(ω · ξ)ϕ(ξ)dξdσ(ω)

proving that

T̂ (ξ) = −iπ
2

∫
Sn−1

Ω(ω) sign(ω · ξ)dσ(ω) (4.5.7)

which is indeed a bounded function since Ω ∈ L1(Sn−1).

4.6 Remarks on the Calderón-Zygmund theory

and classical pseudo-differential operators

It is possible to generalize Theorem 4.5.1 in several directions. In particular the

Lp-boundedness (1 < p < ∞) of these homogeneous singular integrals can be es-

tablished, provided some regularity assumptions are made on T̂ (see e.g. Theorem

7.9.5 in [5], the reference books on harmonic analysis by E.M. Stein [24] and J.

Duoandikoetxea [2]).

Also a Calderón-Zygmund theory of singular integrals with “variable coeffi-

cients”, given by some kernel k(x, y) satisfying some conditions analogous to ho-

mogeneous functions of degree −n of x − y, has reached a high level of refinement

(see e.g. the book by R. Coifman & Y. Meyer [1] and the developments in [2]). Al-

though that theory is not independent of the theory of classical pseudo-differential

operators, the fact that the symbols do have a singularity at ξ = 0 make them quite

different ; the constrast is even more conspicuous for the Lp theory of Calderón-

Zygmund operators, which is very well understood although its analogue for general

pseudo-differential operators (see e.g. [21]) has not reached the same level of under-

standing. We have seen above that the classes S0
ρ,δ give rise to L2-bounded operators

provided 0 ≤ δ ≤ ρ ≤ 1, δ < 1, and it is possible to prove that the operators with

symbol in the class S0
1,0 are Lp-bounded, 1 < p < ∞. The method of proof of that

result is not significantly different of the proof of the Calderón-Zygmund theorem

of Lp-boundedness for standard homogeneous singular integrals and is based on the

weak (1, 1) regularity and the Marcinkiewicz interpolation theorem. However, some

operators with symbol in the class S0
1,δ with 0 < δ < 1 are not Lp-bounded for p 6= 2.

The present book is almost entirely devoted to the developments of the L2 theory

of pseudo-differential operators, but it is certainly useful to keep in mind that some

very natural and useful examples of singular integrals are not pseudo-differential

operators. For the very important topic of Lp-theory of pseudo-differential operators,

we refer the reader to [20].
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Chapter 5

The Huygens principle

5.1 First order real principal type operators

We study here the Cauchy problem for the linear first-order equation

Dtu+ a(t, x,Dx)u = f on (0, T )× Rn
x, ut=0 = u0, (5.1.1)

where T is a positive parameter, a ∈ C∞([0, T ] × R2n) such that for all (α, β) ∈
Nn × Nn,

sup
(t,x,ξ)∈[0,T ]×Rn×Rn

|(∂αx∂
β
ξ a)(t, x, ξ)〈ξ〉−1+|β|| < +∞, (5.1.2)

and

sup
(t,x,ξ)∈[0,T ]×Rn×Rn

Im a(t, x, ξ) < +∞. (5.1.3)

We expect the Cauchy problem to be well-posed so that looking at the ODE

du

idt
+
(
a1(t) + ia2(t)

)
u = 0, aj smooth real-valued,,

we have u = u(0) exp
∫ t

0
(−ia1(s) + a2(s))ds so that |u(t)| = |u(0)|e

∫ t
0 a2(s)ds, the

latter integral remains bounded for t ≥ 0 whenever a2 = Im a is bounded above.

This makes Condition (5.1.3) rather natural.

Lemma 5.1.1. Let a, T be as above and let σ ∈ R. There exists λ(σ) such that for

any λ ≥ λ(σ), we have for every u ∈ C1
(
[0, T ];Hσ(Rn)

)
∩ C0

(
[0, T ];Hσ+1(Rn)

)
,

sup
t∈[0,T ]

e−λt‖u(t)‖Hσ(Rn)

≤ ‖u(0)‖Hσ(Rn) +

∫ T

0

e−λt‖Dtu+ a(t, x,Dx)u‖Hσ(Rn)dt. (5.1.4)

N.B. It should be noted that no better estimate than (5.1.4) is satisfied for the ODE

Dt + a(t) where a is a complex-valued function with an imaginary part bounded

above.

117
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Proof. We assume first that σ = 0 and we note that, with L2(Rn) norms and dot-

products, assuming A∗1 = A1, A
∗
2 = −A2, 0 ≤ t ≤ T ,

2 Re

∫ t

0

〈Dsu+
(
A1(s) + iA2(s)

)
u,−i1[0,t](s)u〉 = −‖u(0)‖2 + ‖u(t)‖2

+ 2

∫ t

0

〈−A2(s)u, u〉ds,

and assuming that A2 ≤ 0 (operator inequality) we get with L = Dt + A(t)

2

∫ t

0

‖(Lu)(s)‖‖u(s)‖ds+ ‖u(0)‖2 ≥ ‖u(t)‖2,

and thus

‖u(t)‖2 ≤ R(t) = 2

∫ t

0

‖(Lu)(s)‖‖u(s)‖ds+ ‖u(0)‖2,

so that

Ṙ = 2‖(Lu)(t)‖‖u(t)‖ ≤ ‖(Lu)(t)‖2R1/2

and thus
d

dt
R1/2 ≤ ‖(Lu)(t)‖,

so that (for t ∈ [0, T ])

‖u(t)‖ ≤ R1/2(t) ≤ R1/2(0) +

∫ t

0

‖(Lu)(s)‖ds = ‖u(0)‖+

∫ t

0

‖(Lu)(s)‖ds,

the same estimate as for an ODE. We note however that we do not have a priori

A2 ≤ 0 as required above but that G̊arding’s inequality shows that

A2 ≤ β, (5.1.5)

where β is a semi-norm of a. Using the above discussion, we get for λ ≥ β,

‖v(t)‖ ≤ ‖v(0)‖+

∫ t

0

‖Dsv + A(s)v − iλv‖ds,

and setting v(t) = u(t)e−λt, this gives, since Ds − iλ = e−λsDse
λs,

‖u(t)‖e−λt ≤ ‖u(0)‖+

∫ t

0

‖e−λs(Ds + A(s))eλse−λsu‖ds,

which is the sought result for σ = 0. To get the result for arbitrary σ, we note that

‖u(t)‖Hσ = ‖〈D〉σu(t)‖L2 ,

and replacing u by 〈D〉σu in the above inequality for A(t) replaced by 〈D〉σA(t)〈D〉−σ
(which is a first-order operator whose symbol satisfies (5.1.3)) yields for λ ≥ λ(σ),

0 ≤ t ≤ T ,

‖u(t)‖Hσe−λt ≤ ‖u(0)‖Hσ +

∫ t

0

e−λs‖〈D〉−σ
(
Ds + 〈D〉σA(s)〈D〉−σ

)
〈D〉σu‖Hσds

= ‖u(0)‖Hσ +

∫ t

0

e−λs‖
(
Ds + A(s)

)
u‖Hσds,

completing the proof of the lemma.
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It might be worthy as well to record the Hilbertian lemma proven above, noting

that we have used only (5.1.5).

Lemma 5.1.2. Let H be a complex Hilbert space, let T > 0 be given and let [0, T ] 3
t 7→ A(t) ∈ B(H) be a continuous mapping such that

∀t ∈ [0, T ],
A(t)− A∗(t)

2i
≤ β < +∞.

Then for λ ≥ β and for u ∈ C1([0, T ];H), we have with Dt = −i∂t,

sup
t∈[0,T ]

e−λt‖u(t)‖H ≤ ‖u(0)‖H +

∫ T

0

e−λt‖Dtu+ A(t)u‖Hdt. (5.1.6)

We can prove now an existence and uniqueness result based upon the inequalities

in Lemma 5.1.1 and the Hahn-Banach Theorem.

Theorem 5.1.3. Let T > 0 and a satisfying (5.1.2) and (5.1.3). Let σ ∈ R. Then

for any f ∈ L1([0, T ];Hσ(Rn)) and any u0 ∈ Hσ(Rn), there exists a unique solution

of (5.1.1) in C0([0, T ], Hσ(Rn)) and we have as well for λ ≥ λ(σ),

sup
t∈[0,T ]

e−λt‖u(t)‖Hσ(Rn) ≤ ‖u0‖Hσ(Rn) +

∫ T

0

e−λt‖f(t)‖Hσ(Rn)dt. (5.1.7)

Proof. We start with the proof of uniqueness. We may thus assume by linearity

that f = 0 and u(0) = 0. We have also a(t, x,Dx)u ∈ C0([0, T ], Hσ−1) and thus

∂tu ∈ C0([0, T ], Hσ−1), implying since u(0) = 0 that

u ∈ C1([0, T ], Hσ−1) ∩ C0([0, T ], Hσ),

and we may apply Inequality (5.1.4) for λ ≥ λ(σ− 1), entailing that u = 0 on [0, T ].

Let us prove now the existence part of Theorem 5.1.3. Let σ, f and u0 be given as

in the statement of the theorem. For φ ∈ C∞c ([0, T )× Rn), we define

ψ = L∗φ = Dtφ+ A∗(t)φ, A(t) = a(t, x,Dx),

and it follows from Lemma 5.1.1 for λ ≥ λ(−σ),

sup
t∈[0,T ]

e−λ(T−t)‖φ(t)‖H−σ(Rn) ≤
∫ T

0

e−λ(T−t)‖Dtφ+ A∗(t)φ‖H−σ(Rn)dt,

so that

sup
t∈[0,T ]

‖φ(t)‖H−σ(Rn) ≤ C0

∫ T

0

‖ψ‖H−σdt. (5.1.8)

As a result, we have∣∣∣∣∫ T

0

〈f(t), φ(t)〉dt+ 〈u0, φ(0)〉
∣∣∣∣ ≤ C1

∫ T

0

‖ψ‖H−σdt.
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We consider the anti-linear form

L∗
(
C∞c ([0, T )× Rn)

)
3 L∗φ 7→ T (L∗φ) =

∫ T

0

〈f(t), φ(t)〉dt+ 〈u0, φ(0)〉 ∈ C,

which is well-defined since L∗(φ1−φ2) = 0 implies φ1 = φ2 from (5.1.8), and is such

that

|T (L∗φ)| ≤ C1

∫ T

0

‖L∗φ‖H−σdt.

Using the Hahn-Banach theorem, we may extend T to a continuous anti-linear form

on L1([0, T ];H−σ) and thus we can find u ∈ L∞([0, T ];Hσ) such that for every

φ ∈ C∞c ([0, T )× Rn),∫ T

0

〈f(t), φ(t)〉dt+ 〈u0, φ(0)〉 = T (L∗φ) =

∫ T

0

〈u,L∗φ〉dt

=

∫ T

0

〈u,Dtφ+ A∗(t)φ〉dt = 〈Hu,Dtφ+ A∗(t)(φ)〉

which means that

Dt(Hu) + A(t)Hu = f +
1

i
δ0(t)⊗ u0 on (−∞, T )× Rn,

that is

Dtu+ A(t)u = f on (0, T ), u(0) = u0,

in the distribution sense. If f belongs to S (Rn+1), we obtain from the equation

that

∂tu ∈ L∞((0, T );Hσ−1),

and thus u ∈ C0([0, T ];Hσ−1). Using again the equation, we find that

Dtu ∈ C0([0, T ];Hσ−2) and thus u ∈ C1([0, T ];Hσ−2), u(0) = u0.

If f ∈ S (Rn+1), u0 ∈ S (Rn), replacing in the discussion above σ by σ + 2, we

may thus apply the inequality (5.1.4). Now for f, u0 as in the theorem, we may

choose sequences (fk)k≥1 and (u0,k)k≥1 in the relevant Schwartz space with (fk)k≥1

converging in L1([0, T ];Hσ) towards f and (u0,k)k≥1 converging towards u0 in Hσ

and we are able to find a sequence (uk)k≥1 in C1([0, T ];Hσ) such that

Dtuk + A(t)uk = fk, uk(0) = u0,k,

along with Inequality (5.1.4). As a result we find that for λ ≥ λ(σ),

sup
t∈[0,T ]

e−λt‖uk(t)− ul(t)‖Hσ(Rn)

≤ ‖u0,k − u0,l‖Hσ(Rn) +

∫ T

0

e−λt‖fk − fl‖Hσ(Rn)dt. (5.1.9)
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The Cauchy criterion gives the convergence of the sequence (uk)k≥1 in C0([0, T ];Hσ)

towards u ∈ C0([0, T ];Hσ) with

Dt(Huk) + A(t)Huk = fk +
1

i
δ0(t)⊗ u0,k, on (−∞, T )× Rn,

implying directly

Dt(Hu) + A(t)Hu = f +
1

i
δ0(t)⊗ u0, on (−∞, T )× Rn,

whereas Inequality (5.1.4) for uk entails the same inequality for u. The proof of

Theorem 5.1.3 is complete.

Corollary 5.1.4. Let T > 0 and a satisfying (5.1.2) and (5.1.3) and let u satisfying

(5.1.1) with f ∈ ∩σ∈RL∞([0, T ];Hσ(Rn)) and u0 ∈ H+∞(Rn) = ∩σ∈RHσ(Rn). Then

u ∈ ∩σ∈RC1([0, T ];Hσ(Rn)). In particular, for any t ∈ [0, T ], we have u(t, ·) ∈
C∞(Rn).

Proof. Theorem 5.1.3 implies that u ∈ ∩σ∈RC0([0, T ];Hσ(Rn)) and the equation

implies that ∂tu ∈ ∩σ∈RL∞([0, T ];Hσ−1(Rn)), which gives the result.

5.2 Some Hilbertian lemmas

We want to study the wave-front-set of the solution u(t, ·) of (5.1.1), say with f = 0,

knowing the wave-front-set of u0 and we wish to show that the singularities are

indeed propagating backward along the Hamiltonian flow of the real part of principal

symbol τ + Re a1(t, x, ξ), providing Im a1(t, x, ξ) ≤ 0, where a1 stands for principal

symbol of a(t, x,Dx): we assume that a1 belongs to S1 (i.e. satisfies (5.1.2)), a− a1

is bounded in S0, i.e.

sup
(t,x,ξ)∈[0,T ]×Rn×Rn

|(∂αx∂
β
ξ (a− a1))(t, x, ξ)〈ξ〉|β|| < +∞, (5.2.1)

and that a1 is homogeneous of degree 1 for |ξ| ≥ 1, i.e. is such that

∀µ ≥ 1,∀ξ such that |ξ| ≥ 1, a1(t, x, µξ) = µa1(t, x, ξ). (5.2.2)

In order to motivate the backward-forward story above we reformulate Lemma 5.1.2

with the following lemma.

Lemma 5.2.1. Let H be a complex Hilbert space, let I be an interval of R with a

non-empty interior and let I 3 t 7→ A(t) ∈ B(H) be a continuous mapping such that

there exists β ∈ R with

∀t ∈ I, ImA(t) =
A(t)− A∗(t)

2i
≤ β, (5.2.3)

Then for λ ≥ β and for u ∈ C1(I;H), we have with Dt = −i∂t, t0 ≤ t1 in I,

e−λ(t1−t0)‖u(t1)‖H ≤ ‖u(t0)‖H +

∫ t1

t0

e−λ(t−t0)‖Dtu+ A(t)u‖Hdt. (5.2.4)
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If we have for some β ∈ R

∀t ∈ I, ImA(t) =
A(t)− A∗(t)

2i
≥ −β (5.2.5)

Then for λ ≥ β and for u ∈ C1(I;H), we have with Dt = −i∂t, t0 ≤ t1 in I,

e−λ(t1−t0)‖u(t0)‖H ≤ ‖u(t1)‖H +

∫ t1

t0

e−λ(t1−t)‖Dtu+ A(t)u‖Hdt. (5.2.6)

Proof. The first statement is already proven. To prove the second one, we note that

setting u(t) = w(−t) we find for t ∈ [t0, t1], s = −t,

Dtu+ A(t)u = −(Dsw)(s) + A(−s)w(s) = −
(
Ds − A(−s)

)
w.

Assuming for s ∈ −I,

β ≥ Im−A(−s) =
−A(−s) + A∗(−s)

2i
= (−1)

A(−s)− A∗(−s)
2i

,

which amounts to assume (5.2.5) means Im(−A(−s)) ≤ β so that with

s0 = −t1 ≤ s1 = −t0,

we get from the (already proven) first part of the lemma for λ ≥ β,

e−λ(s1−s0)‖w(s1)‖H ≤ ‖w(s0)‖H +

∫ s1

s0

e−λ(s−s0)‖Dsw − A(−s)w‖Hds, (5.2.7)

i.e.

e−λ(−t0+t1)‖u(t0)‖H ≤ ‖u(t1)‖H +

∫ t1

t0

e−λ(−t+t1)‖Dtu+ A(t)u‖Hdt, (5.2.8)

which is the sought result.

Remark 5.2.2. If β = 0 in (5.2.3) (resp. (5.2.5)), we can take λ = 0 and obtain for

t0 ≤ t1 in I if Dtu+ A(t)u = 0,

‖u(t1)‖H ≤ ‖u(t0)‖H, (resp. ‖u(t0)‖H ≤ ‖u(t1)‖H).

The first inequality implies that if ‖u(t0)‖H is small (or finite) then ‖u(t1)‖H is

smaller (or finite) which amounts to a forward propagation of regularity. We can

also see that first inequality as a backward propagation of singularity: if ‖u(t1)‖H
is large (or infinite) then ‖u(t0)‖H is larger (or infinite). The second inequality is

reversing the direction of propagation with respect to the first one. Note also that

if both (5.2.3) and (5.2.5) are satisfied, which occurs when A(t) is selfadjoint for all

t, then the propagation goes in both directions, backward and forward.
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5.3 Propagation of singularities

Introductory remarks

To simplify matters with the orientation of the bicharacteristics, we shall assume

that

a1 is real-valued, (5.3.1)

but we shall keep in mind that only minor modifications will be necessary to tackle

the case where Im a1 ≤ 0 (backward propagation of singularities, forward prop-

agation of regularity) or the case Im a1 ≥ 0 (forward propagation of singularities,

backward propagation of regularity). If u satisfies (5.1.1) with f = 0 and if Q(t, x,D)

is a pseudo-differential operator commuting with the operator L = Dt + a(t, x,Dx)

we shall have

LQu = 0, Qu|t=0 = Q0u0, Q0 = Q(0, x,Dx)

so that with 0 ≤ t ≤ T for σ ∈ R, λ ≥ λ(σ),

e−λt‖Q(t)u(t)‖Hσ ≤ ‖Q0u0‖Hσ .

If we know that Q0u0 belongs to Hσ, we shall obtain that it is also the case of

Q(t)u(t) and it is a type of microlocal propagation result. However, the requirement

of exact commutation of Q(t) with L is neither realistic nor necessary and we can

implement the same program with some approximate commutation: if q(t, x, ξ) is a

symbol in S0 uniformly in t ∈ [0, T ], Q(t) = q(t, x,Dx), (i.e. (5.1.2) holds true with

〈ξ〉−1+|β| replaced by 〈ξ〉|β|), we obtain that the commutator

[L, Q(t)] =
1

2πi
Op(

∂q

∂t
+ {a1(t), q(t)}) + Op(S−1).

As a result if we are able to solve the first-order PDE

∂q

∂t
+ {a1(t), q(t)} = 0,

we will need only to deal with a remainder of order −1.

The vector field ∂t +Ha1

Let a1(t, x, ξ) be a real-valued smooth fonction, homogeneous of degree 1 with respect

to ξ such that

∀(α, β) ∈ Nn × Nn, sup
(t,x,ξ)∈[0,T ]×Rn×Sn−1

|(∂αx∂
β
ξ a1)(t, x, ξ)| < +∞. (5.3.2)

To find a first integral of the above vector field with initial value q0(x, ξ), we need

to solve the first-order system of ODE{
ẋ(t, y, η) = ∂a1

∂ξ

(
t, x(t, y, η), ξ(t, y, η)

)
, x(0, y, η) = y,

ξ̇(t, y, η) = −∂a1
∂x

(
t, x(t, y, η), ξ(t, y, η)

)
, ξ(0, y, η) = η,

(5.3.3)
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for y ∈ Rn, η ∈ Rn\{0}. We note that for µ > 0, η 6= 0, we have

d

dt
{x(t, y, µη)} = ẋ(t, y, µη)

=
∂a1

∂ξ

(
t, x(t, y, µη), ξ(t, y, µη)

)
=
∂a1

∂ξ

(
t, x(t, y, µη), µ−1ξ(t, y, µη)

)
,

x(0, y, µη) = y,

and

d

dt
{µ−1ξ(t, y, µη)} = µ−1ξ̇(t, y, µη)

= −µ−1∂a1

∂x

(
t, x(t, y, µη), ξ(t, y, µη)

)
= −∂a1

∂x

(
t, x(t, y, µη), µ−1ξ(t, y, µη)

)
,

µ−1ξ(0, y, µη) = η.

As a result
(
x(t, y, µη), µ−1ξ(t, y, µη)

)
and

(
x(t, y, η), ξ(t, y, η)

)
solve the same system

of ODE with the same initial data and thus coincide so that x(t, y, η) is homogeneous

with degree 0 in η and ξ(t, y, η) is homogeneous with degree 1 in η. From the

estimates (5.3.2), we find solutions of (5.3.3) for t ∈ [0, T ] with |η| = 1 and then by

the above homogeneity, we get solutions for t ∈ [0, T ], y ∈ Rn, η ∈ Rn\{0}. We set(
x(t, y, η), ξ(t, y, η)

)
= Ψ(t, y, η),

and a first integral of the vector field ∂t +Ha1 should satisfy

q
(
t,Ψ(t, y, η)

)
= q0(y, η). (5.3.4)

Inverting Ψ, we can find some first integrals Φ(t, x, ξ) such that

q(t, x, ξ) = q0

(
Φ(t, x, ξ)

)
= q0

(
y(t, x, ξ), η(t, x, ξ)

)
where y (resp. η) is homogeneous with degree 0 (resp. 1) with respect to ξ. As a

result q is an homogenous symbol with degree 0 satisfying (5.3.2) and defining

q̃(t, x, ξ) = q(t, x, ξ)ω(ξ)

where ω ∈ C∞(Rn), ω(ξ) = 1 for |ξ| ≥ 1, ω(ξ) = 0 for |ξ| ≤ 1/2, we obtain that q̃

belongs uniformly to S0 and is such that

∂tq̃ + {a1, q̃} ∈ S−∞.

Microlocalized energy estimates

With L = Dt + a(t, x,Dx), 0 ≤ t ≤ T , a1(t, x, ξ) ∈ S1 uniformly and real-valued

such that a− a1 ∈ S0 uniformly. Let q(t, x, ξ) uniformly in S0 such that

∂tq(t, x, ξ) + {a1, q} = 0, q(0, x, ξ) = q0(x, ξ),
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where q0 is given in S0. We have for σ ∈ R , λ ≥ λ(σ),

sup
t∈[0,T ]

e−λt‖Q(t)u(t)‖Hσ(Rn) ≤ ‖Q0u0‖Hσ(Rn) +

∫ T

0

e−λt‖LQu‖Hσ(Rn)dt,

and since [L, Q] is uniformly in S−1, we obtain

sup
t∈[0,T ]

e−λt‖Q(t)u(t)‖Hσ(Rn) ≤ ‖Q0u0‖Hσ(Rn)

+

∫ T

0

e−λt‖QLu‖Hσ(Rn)dt+ C0

∫ T

0

e−λt‖u‖Hσ−1(Rn)dt. (5.3.5)

Let (x0, ξ0) ∈ Rn × Sn−1, σ0 ∈ R such that u0 ∈ Hσ0
(x0,ξ0), i.e. Q0u0 ∈ Hσ0(Rn) for a

polyhomogeneous symbol q0 of order 0, non-characteristic at (x0, ξ0). Let us assume

that Lu ∈ L1([0, T ];Hσ0(Rn)), u ∈ ∪σ∈RL1([0, T ], Hσ(Rn)) and Q0u(0) ∈ Hσ0(Rn).

Let σ1 ∈ R such that u ∈ L1([0, T ], Hσ1(Rn)) with σ0−1 ≤ σ1 < σ0. Then we obtain

that

sup
t∈[0,T ]

e−λt‖Q(t)u(t)‖Hσ0 (Rn) ≤ ‖Q0u0‖Hσ0 (Rn)

+

∫ T

0

e−λt‖QLu‖Hσ0 (Rn)dt+ C0

∫ T

0

e−λt‖u‖Hσ0−1(Rn)dt,

so that ∀t ∈ [0, T ], Q(t)u(t) ∈ Hσ0(Rn).

Theorem 5.3.1. Let T > 0 and a ∈ C∞([0, T ]× R2n) such that (5.1.2) holds true.

Moreover let us assume that there exists a1 real-valued in C∞([0, T ]×R2n) such that

(5.2.1) and (5.2.2) are satisfied. Let σ0 ∈ R and let u ∈ L1([0, T ], Hσ0−1(Rn)) be

such that

Dtu+ a(t, x,Dx)u ∈ L1([0, T ];Hσ0(Rn)), (x0, ξ0) /∈ WFσ0u(0). (5.3.6)

Then defining the flow Ψ of the Hamiltonian vector field of a1 by

Ψ̇(t, y, η) = Ha1(t,·,·)
(
Ψ(t, y, η)

)
, Ψ(0, y, η) = (y, η),

we obtain that for t ∈ [0, T ], Ψ(t, x0, ξ0) /∈ WFσ0u(t).

Proof. We can find Q0 with a polyhomogeneous symbol in S0, non-characteristic at

(x0, ξ0) such that Q0u(0) ∈ Hσ0(Rn) and if u ∈ L1([0, T ], Hσ0−1(Rn)) we obtain from

the above reasoning that Q(t)u(t) ∈ Hσ0(Rn) and from (5.3.4) we see that Q(t) is

non-characteristic at Ψ(t, x0, ξ0), proving that Ψ(t, x0, ξ0) /∈ WFσ0u(t).
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Chapter 6

Elements of Spectral Theory

6.1 The Harmonic Oscillator

We use in this section our Appendix, Section 7.2. We have defined the harmonic

oscillator on Rn as

H =
1

2

(
−∆ + |x|2

)
, (6.1.1)

and we have proven that

H =
∑
k≥0

(n
2

+ k
)
Pk, Id =

∑
k≥0

Pk, (6.1.2)

where Pk is the orthogonal projection on Ek, which has dimension
(
k+n−1
n−1

)
. The

eigenvalue n/2 is simple in any dimension and E0 is generated by

Φ0(x) = π−d/4e−|x|
2/2.

Introducing a small parameter h ∈ (0, 1] (Planck constant), we define

Hh =
1

2

(
−h2∆ + |x|2

)
. (6.1.3)

With the unitary operator Uh on L2(Rn) given by

(Uhw)(x) = hn/4w(h1/2x), (6.1.4)

we find that hU∗h
(
−∆ + |x|2

)
Uh = −h2∆ + |x|2 and we get that

Hh =
∑
k≥0

(n
2

+ k
)
hPk,h, Id =

∑
k≥0

Pk,h, Pk,h = U∗hPkUh. (6.1.5)

Lemma 6.1.1. Let h ∈ (0, 1] and Hh given by (6.1.3). Let 0 ≤ a < b be given real

numbers. Then with σ(Hh) standing for the spectrum of Hh, we have

card
(
σ(Hh) ∩ [a, b]

)
= |{(x, ξ) ∈ R2n, a ≤ 1

2
(h24π2|ξ|2 + |x|2) ≤ b}|+Oa,b,n(h−n+1). (6.1.6)

127
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Proof. We calculate first with a change of variables x = αy, ξ = α−1η, α =
√

2πh,

Vh(a, b) =

∫∫
1
(
a ≤ 1

2
(h24π2|ξ|2 + |x|2) ≤ b

)
dxdξ

=

∫∫
1
( a
πh
≤ y2 + η2 ≤ b

πh

)
dydη = |B2n|(πh)−n

(
bn − an

)
=
bn − an

n!hn
,

noting that 1
2
(h24π2ξ2 + x2) is the symbol of the operator Hh. On the other hand,

we have

cardσ(Hh) ∩ [0, b] = card{α ∈ Nn,
n

2
+ |α| ≤ b

h
} =

∑
0≤k≤ b

h

(
k + n− 1

n− 1

)
,

and also (
k + n− 1

n− 1

)
=

(k + n− 1) . . . (k + 1)

(n− 1)!
=

kn−1

(n− 1)!
+O(kn−2),

so that with λ = b/h (note that for λ→ +∞,
∑

0≤k≤λ k
n−1 = λn/n+O(λn−1) ),

cardσ(Hh) ∩ [0, b] =
1

(n− 1)!

(
λn

n
+O(λn−1)

)
=

bn

n!hn
+O(h−n+1),

providing the sought result.

Remark 6.1.2. We note that the unbounded self-adjoint operator Hh has a compact

resolvent and thus a discrete spectrum made with eigenvalues of finite multiplicities.

The previous lemma gives an interesting asymptotic equality between a quantum

quantity (the number of eigenvalues located in some interval [a, b]) and a classical

quantity (the symbol of the harmonic oscillator). Formula (6.1.6) proves that the

number of eigenvalues between a and b is well-approximated by the volume of the set

where the symbol of the operator lies between these values. In the sequel we shall

try to prove that law, the so-called Weyl’s law, named after the German Mathemati-

cian Hermann Weyl (1885–1955, http://www-history.mcs.st-andrews.ac.uk/

Biographies/Weyl.html) in a more general context.

6.2 Algebra of pseudo-differential operators on Rn

Classes of symbols

Definition 6.2.1. Let m ∈ R. We define the symbol class Γm as the vector space

of functions a ∈ C∞(R2n) such that

∀α ∈ N2n, sup
X∈R2n

|(∂αXa)(X)〈X〉−(2m−|α|)| < +∞. (6.2.1)

http://www-history.mcs.st-andrews.ac.uk/Biographies/Weyl.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Weyl.html
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Using the metrics notation due to L. Hörmander we see that

Γm = S
(
〈X〉2m, g =

|dx|2 + |dξ|2

(1 + |x|2 + |ξ|2)

)
, (6.2.2)

so that the inverse Planck constant function λ is defined by

λ = 〈X〉2, Γmρ = S(λ,
|dX|2

λ
).

As an example, we see that 1 + |x|2 + |ξ|2 belongs to Γ1 and more generally

(1 + |x|2 + |ξ|2)m ∈ Γm,

and a polynomial in x, ξ with degree 2m belongs to Γm.

Algebra of operators

Most of the results of Section 3.4 can be transferred, mutatis mutandis to the present

framework. Instead of repeating all the arguments, which are almost essentially the

same as in that section we summarize the situation by the following theorem.

Theorem 6.2.2. Let aj ∈ Γmj , j = 1, 2. Then we have

a1 � a2 ≡ a1a2 mod Γm1+m2−1, (6.2.3)

a1 � a2 − a2 � a1 ≡
1

2iπ
{a1, a2} mod Γm1+m2−2, (6.2.4)

where the Poisson bracket {a1, a2} =
∑

1≤j≤n

∂a1

∂ξj

∂a2

∂xj
− ∂a1

∂xj

∂a2

∂ξj
. (6.2.5)

For a ∈ Sm1,0, a∗ ≡ ā mod Γm−1. (6.2.6)

6.3 The Wick calculus

Anti-Wick quantization

We recall here some facts on the so-called anti-Wick quantization, as used in [10],

[11], [12].

Definition 6.3.1. Let Y = (y, η) be a point in Rn×Rn. The operator ΣY is defined

as
[
2ne−2π|·−Y |2]w. Let a be in L∞(R2n). The Wick quantization of a is defined as

aWick =

∫
R2n

a(Y )ΣY dY. (6.3.1)

Remark 6.3.2. The operator ΣY is a rank-one orthogonal projection: we have

ΣY u = (Wu)(Y )τY ϕ0 with (Wu)(Y ) = 〈u, τY ϕ0〉L2(Rn), (6.3.2)

where ϕ0(x) = 2n/4e−π|x|
2

and (τy,ηϕ0)(x) = ϕ0(x− y)e2iπ〈x− y
2
,η〉. (6.3.3)
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In fact we get from the definition of ΣY that, for u ∈ S (Rn)

(Σy,ηu)(x) =

∫∫
u(z)e2iπ(x−z)·ξ2ne−2π|x+z

2
−y|2e−2π|ξ−η|2dzdξ

=

∫
u(z)e2iπ(x−z)·η2n/2e−2π|x+z

2
−y|2e−

π
2
|x−z|2dz

=

∫
u(z)e−2iπ(z− y

2
)·η2n/4e−π|z−y|

2

dz 2n/4e−π|x−y|
2

e2iπ(x− y
2

)·η

= 〈u, τy,ηϕ0〉τy,ηϕ0.

Proposition 6.3.3.

(1) Let a be in L∞(R2n). Then aWick = W ∗aµW and 1Wick = IdL2(Rn) where W is

the isometric mapping from L2(Rn) to L2(R2n) given above, and aµ the operator of

multiplication by a in L2(R2n). The operator πH = WW ∗ is the orthogonal projection

on a closed proper subspace H of L2(R2n) and has the kernel

Π(X, Y ) = e−
π
2
|X−Y |2e−iπ[X,Y ], (6.3.4)

where [, ] is the symplectic form. Moreover, we have

‖aWick‖L(L2(Rn)) ≤ ‖a‖L∞(R2n), (6.3.5)

a(X) ≥ 0 for all X implies aWick ≥ 0. (6.3.6)

(2) Let m be a real number, and p ∈ S(Λm,Λ−1Γ), where Γ is the Euclidean norm

on R2n. Then pWick = pw + r(p)w, with r(p) ∈ S(Λm−1,Λ−1Γ) so that the mapping

p 7→ r(p) is continuous. More precisely, one has

r(p)(X) =

∫ 1

0

∫
R2n

(1− θ)p′′(X + θY )Y 2e−2πΓ(Y )2ndY dθ.

Note that r(p) = 0 if p is affine and r(p) = 1
8π

trace p′′ if p is a polynomial with

degree ≤ 2.

(3) For a ∈ L∞(R2n), the Weyl symbol of aWick is

a ∗ 2n exp−2πΓ,which belongs to S(1,Γ) with kth-seminorm c(k)‖a‖L∞. (6.3.7)

(4) Let R 3 t 7→ a(t,X) ∈ R such that, for t ≤ s, a(t,X) ≤ a(s,X). Then, for

u ∈ C1
c

(
Rt, L

2(Rn)
)
, assuming a(t, ·) ∈ L∞(R2n),∫

R
Re〈Dtu(t), ia(t)Wicku(t)〉L2(Rn)dt ≥ 0. (6.3.8)

(5) With the operator ΣY given in Definition 6.3.1, we have the estimate

‖ΣY ΣZ‖L(L2(Rn)) ≤ 2ne−
π
2

Γ(Y−Z). (6.3.9)
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(6) More precisely, the Weyl symbol of ΣY ΣZ is, as a function of the variable X ∈
R2n, setting Γ(T ) = |T |2

e−
π
2
|Y−Z|2e−2iπ[X−Y,X−Z]2ne−2π|X−Y+Z

2
|2 . (6.3.10)

Remark 6.3.4. Part of this proposition is well summarized by the following diagram:

L2(R2n)
a−−−−−−−−−−−−→

(multiplication by a)
L2(R2n)

W

x yW ∗
L2(Rn) −−−→

aWick
L2(Rn)

Proof. For u, v ∈ S (Rn), we have

〈aWicku, v〉 =

∫
R2n

a(Y )〈ΣY u, v〉L2(Rn)dY =

∫
R2n

a(Y )(Wu)(Y )(Wv)(Y )dY,

which gives

aWick = W ∗aµW. (6.3.11)

Also we have from (6.3.1) that 1Wick = Id, since

1Wick =

∫
R2n

ΣY dY has Weyl symbol

∫
R2n

2ne−2π|X−Y |2dY = 1.

This implies that

W ∗W = Id,

i.e. W is isometric from L2(Rn) into L2(R2n). The operator WW ∗ is bounded

selfadjoint and is a projection since WW ∗WW ∗ = WW ∗. Defining H as rangeW ,

we get that WW ∗ is the orthogonal projection onto H, since the range of WW ∗ is

included in the range of W , and for Φ ∈ H, we have

Φ = Wu = WW ∗Wu ∈ range(WW ∗).

Moreover rangeW is closed since W is isometric, that latter property implying also,

using (6.3.11), the property (6.3.5), whereas (6.3.6) follows from (6.3.1) and ΣY ≥ 0

as an orthogonal projection. The kernel of the operator WW ∗ is, from (6.3.2),

(6.3.3), with X = (x, ξ), Y = (y, η),

Π(X,Y ) = 〈τY ϕ0, τXϕ0〉L2(Rn)

= 2n/2
∫
Rn
e−π|t−x|

2

e−π|t−y|
2

e2iπ(t− y
2

)·ηe−2iπ(t−x
2

)·ξdt

= e−
π
2
|x−y|22n/2

∫
Rn
e−

π
2
|2t−x−y|2e2iπt·(η−ξ)dteiπ(x·ξ−y·η)

= e−
π
2
|x−y|22n/2

∫
Rn
e−2π|t|2e2iπ(t+x+y

2
)·(η−ξ)dteiπ(x·ξ−y·η)

= e−
π
2
|x−y|2e−

π
2
|ξ−η|2eiπ(x+y)·(η−ξ)eiπ(x·ξ−y·η)

= e−
π
2
|x−y|2e−

π
2
|ξ−η|2eiπ(xη−yξ) = e−

π
2
|X−Y |2e−iπ[X,Y ],
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which is (6.3.4). Postponing the proof of H 6= L2(R2n) until after the proof of (2),

we have proven (1). To obtain (2), we note that (6.3.1) gives directly that

aWick = (a ∗ 2n exp−2πΓ)w

and the second order Taylor expansion gives (2) while (3) is obvious from the

convolution formula. Note also that u ∈ S (Rn) implies Wu ∈ S (R2n) since

e−iπy·η(Wu)(y, η) is the partial Fourier transform with respect to x of Rn × Rn 3
(x, y) 7→ u(x)2n/4e−π|x−y|

2
: this gives also another proof of W isometric since∫∫
|u(x)|22n/2e−2π|x−y|2dxdy = ‖u‖2

L2(Rn).

We calculate now, for u ∈ S (Rn) with L2 norm 1, using the already proven (2) on

the Wick quantization of linear forms,

2 Re〈πHξ1Wu, ix1Wu〉L2(R2n) = 2 Re〈W ∗ξ1Wu, iW ∗x1Wu〉L2(Rn)

= 2 Re〈ξWick
1 u, ixWick

1 u〉L2(Rn) = 2 Re〈D1u, ix1u〉L2(Rn) = 1/2π.

If H were the whole L2(R2n), the projection πH would be the identity and we would

have

0 = 2 Re〈ξ1Wu, ix1Wu〉L2(R2n) = 2 Re〈πHξ1Wu, ix1Wu〉L2(R2n) = 1/2π.

Let us prove (4). We have from the Lebesgue dominated convergence theorem,

α =

∫
R

Re〈Dtu(t), ia(t)Wicku(t)〉L2(Rn)dt

= − lim
h→0+

∫
R

1

2πh
Re〈u(t+ h)− u(t), a(t)Wicku(t+ h)〉L2(Rn)dt

= lim
h→0+

1

2πh

(
−
∫
R

Re〈u(t), a(t− h)Wicku(t)〉L2(Rn)dt

+

∫
R

Re〈u(t), a(t)Wicku(t+ h)〉L2(Rn)dt
)

= lim
h→0+

{ 1

2πh

∫
R

Re〈
(
a(t)− a(t− h)

)Wick
u(t), u(t)〉L2(Rn)dt︸ ︷︷ ︸

=β(h)

+

∫
R

Re〈 −1

2πhi

(
u(t+ h)− u(t)

)
, ia(t)Wicku(t)〉L2(Rn)dt︸ ︷︷ ︸

with limit −α

}
.

The previous calculation shows that β(h) has a limit when h → 0+ and 2α =

limh→0+ β(h). Since the function a(t)− a(t− h) is non-negative, the already proven

(6.3.6) implies that the operator (a(t)− a(t− h))Wick is also non-negative, implying

β(h) ≥ 0 which gives α ≥ 0, i.e. (6.3.8)1. Since for the Weyl quantization, one has

1 Note that (6.3.8) is simply a way of writing that d
dt

(
a(t)Wick

)
≥ 0, which is a consequence of

(6.3.6) and of the non-decreasing assumption made on t 7→ a(t,X).
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‖aw‖L(L2(Rn)) ≤ 2n‖a‖L1(R2n), we get the result (6.3.9) from (6.3.10). Let us finally

prove the latter formula. From the composition formula, we obtain that the Weyl

symbol ω of ΣY ΣZ is

ω(X) = 22n

∫∫
e−4iπ[X−X1,X−X2]22ne−2π|X1−Y |2e−2π|X2−Z|2dX1dX2

= 24n

∫∫
e−4iπ[X−Y,X−X2]e−2iπ〈X1,2σ(X−X2)〉e−2π|X1|2e−2π|X2−Z|2dX1dX2

= 23n

∫
e−4iπ[X−Y,X−X2]e−2π|X−X2|2e−2π|X2−Z|2dX2

= 23ne−π|X−Z|
2

∫
e−4iπ[X−Y,X−X2]e−π|X+Z−2X2|2dX2

= 23ne−π|X−Z|
2

e−2iπ[X−Y,X−Z]

∫
e−4iπ[X−Y,−X2]e−4π|X2|2dX2

= 2ne−π|X−Z|
2

e−2iπ[X−Y,X−Z]e−π|X−Y |
2

= 2ne−2iπ[X−Y,X−Z]e−2π|X−Y+Z
2
|2e−

π
2
|Y−Z|2 .
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Fock-Bargmann spaces

There are also several links with the so-called Fock-Bargmann spaces (the space H
above), that we can summarize with the following definitions and properties.

Proposition 6.3.5. With H defined in Proposition 6.3.3 we have

H ={Φ ∈ L2(R2n
y,η), Φ = f(z) exp−π

2
|z|2, z = η + iy , f entire}, (6.3.12)

i.e. H = ranW = L2(R2n) ∩ ker(∂̄ + π
2
z).

Proof. For v ∈ L2(Rn), we have, with the notation z2 =
∑

1≤j≤n z
2
j for z ∈ Cn,

(Wv)(y, η) =

∫
Rn
v(x)2n/4e−π(x−y)2e−2iπ(x− y

2
)ηdx

=

∫
Rn
v(x)2n/4e−π(x−y+iη)2dxe−

π
2

(y2+η2)e−
π
2

(η+iy)2 (6.3.13)

and we see that Wv ∈ L2(R2n)∩ker(∂̄+ π
2
z). Conversely, if Φ ∈ L2(R2n)∩ker(∂̄+ π

2
z),

we have Φ(x, ξ) = e−
π
2

(x2+ξ2)f(ξ + ix) with Φ ∈ L2(R2n) and f entire. This gives

(WW ∗Φ)(x, ξ) =

∫∫
e−

π
2

(
(ξ−η)2+(x−y)2+2iξy−2iηx

)
Φ(y, η)dydη

= e−
π
2

(ξ2+x2)

∫∫
e−

π
2

(η2−2ξη+y2−2xy+2iξy−2iηx)Φ(y, η)dydη

= e−
π
2

(ξ2+x2)

∫∫
e−

π
2

(
η2+y2+2iy(ξ+ix)−2η(ξ+ix)

)
Φ(y, η)dydη

= e−
π
2

(ξ2+x2)

∫∫
e−π(y2+η2)eπ(η−iy)(ξ+ix)f(η + iy)dydη

= e−
π
2
|z|2
∫∫

e−π|ζ|
2

eπζ̄zf(ζ)dydη (ζ = η + iy, z = ξ + ix)

= e−
π
2
|z|2
∫∫

f(ζ)
∏

1≤j≤n

1

π(zj − ζj)
∂

∂ζ̄j

(
e−π|ζ|

2

eπζ̄z
)
dydη

= e−
π
2
|z|2〈f(ζ)

∏
1≤j≤n

∂

∂ζ̄j

( 1

π(ζj − zj)

)
, e−π|ζ|

2

eπζ̄z〉S ′(R2n),S (R2n)

= e−
π
2
|z|2f(z),

since f is entire. This implies WW ∗Φ = Φ and Φ ∈ rangeW , completing the proof

of the proposition.

Proposition 6.3.6. Defining

H = ker(∂̄ +
π

2
z) ∩S ′(R2n), (6.3.14)

the operator W given by (6.3.2) can be extended as a continuous mapping from

S ′(Rn) onto H (the L2(Rn) dot-product is replaced by a bracket of (anti)duality).
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The operator Π̃ with kernel Π given by (6.3.4) defines a continuous mapping from

S (R2n) into itself and can be extended as a continuous mapping from S ′(R2n) onto

H . It verifies

Π̃2 = Π̃, Π̃|H = IdH . (6.3.15)

Proof. As above we use that e−iπyη(Wv)(y, η) is the partial Fourier transform w.r.t.

x of the tempered distribution on R2n
x,y

v(x)2n/4e−π(x−y)2 .

Since e±iπyη are in the space OM(R2n) of multipliers of S (R2n), that transformation

is continuous and injective from S ′(Rn) into S ′(R2n). Replacing in (6.3.13) the

integrals by brackets of duality, we see that W (S ′(Rn)) ⊂ H . Conversely, if Φ ∈
H , the same calculations as above give (6.3.15) and (6.3.14).

Theorem 6.3.7. Let A ∈ Op(Γm) with m < 0. Then A is a compact operator on

L2(Rn).

Proof. Let am ∈ Γm. Then, we may consider the symbol

am−1 = am −
(
am ∗ 2n exp−2π| · |2

)
which belongs to Γm−1. We may then consider

am−2 = am−1 −
(
am−1 ∗ 2n exp−2π| · |2

)
∈ Γm−2,

so that

am =
(
am ∗ 2n exp−2π| · |2

)
+ am−1

=
(
am ∗ 2n exp−2π| · |2

)
+
(
am−1 ∗ 2n exp−2π| · |2

)
+ am−2,

. . .

=
(
am ∗ 2n exp−2π| · |2

)
+ · · ·+

(
am−N ∗ 2n exp−2π| · |2

)
+ am−N−1,

with aj ∈ Γj. As a result, if N is large enough, the symbol am−N−1 belongs to

L2(R2n) and thus the kernel of its Weyl quantization is also in L2(R2n), so is a

Hilbert-Schmidt operator, thus a compact operator. We need now to look at the

operator with anti-Wick symbol ã = am + · · · + am−N ∈ Γm with m < 0. Let

χ ∈ C∞c (R2n; [0, 1]), equal to 1 on the unit Euclidean ball B2n. For λ > 0, we define

bλ(X) = ã(X)χ(X/λ).

Since m < 0, we have limλ→+∞ ‖bλ − ã‖L∞(R2n) = 0 : in fact we have

|bλ(X)− ã(X)| ≤ sup
|X|≥λ

|ã(X)| ≤ C0λ
2m =⇒ ‖bλ − ã‖L∞(R2n) ≤ C0λ

2m.

This implies from (6.3.5) that limλ→+∞
(
ã − bλ

)Wick
= 0, in operator-norm. Now

the operator bWick
λ is obviously compact since its symbol is bλ ∗ 2n exp−2π| · |2, thus

in L2(R2n) since bλ belongs to L2(R2n), proving the compactness of the operator

with Weyl symbol am.
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6.4 Ellipticity and Sobolev spaces

Ellipticity

Definition 6.4.1. Let m ∈ R and let a ∈ Γm. The symbol a is said to be elliptic in

Γm whenever

∃R > 0,∃c > 0,∀X with |X| ≥ R we have |a(X)| ≥ c〈X〉2m.

Lemma 6.4.2. Let m ∈ R and let a ∈ Γm be elliptic in Γm. Then there exists b in

Γ−m such that

b � a = 1 + r1, a � b = 1 + r2, rj ∈ Γ−∞ = ∩s∈RΓs.

Proof. Let χ ∈ C∞c (R2n; [0, 1]), equal to 1 on the unit Euclidean ball B2n, supported

in 2B2n and let χ̃ = 1− χ. We define

b−m(X) =
χ̃(X/R)

a(X)
=
χ̃R(X)

a(X)
.

Since a is bounded below by c〈X〉2m for |X| ≥ R, that is on the support of χ̃(·/R),

then b−m is a smooth function on R2n. Moreover an application of the Faà de Bruno

formula shows that b−m ∈ Γ−m. As a result, we have

a � b−m = χ̃R + ρ−1 = 1−χR + ρ−1︸ ︷︷ ︸
r−1

, ρ−1, r−1 ∈ Γ−1.

We can find b−m−1 ∈ Γ−m−1 such that

a �
(
b−m + b−m−1

)
∈ 1 + Γ−2,

since it is enough to get

1 + r−1 + a � b−m−1 ∈ 1 + Γ−2,

and we may choose b−m−1 = −r−1χRa
−1. Following the proof of Lemma 3.4.13, we

obtain the result.

Sobolev spaces

The Sobolev spaces H s are defined in (7.2.53).

Theorem 6.4.3. Let a ∈ Γm. Then the operator aw with domain S (Rn) is closable.

Proof. Let us assume that (uk)k≥1 is a sequence of S (Rn), converging in L2(Rn),

with limit u such that the sequence (vk = awuk)k≥1 converges in L2(Rn) with limit

v. For φ ∈ S (Rn), we have

〈v − awu, φ〉S ′,S = lim
k
〈awuk − awu, φ〉S ′,S = lim

k
〈uk − u, āwφ〉L2 = 0,

so that awu = v.
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Theorem 6.4.4. Let a ∈ Γm with m ≥ 0 be a real-valued globally elliptic symbol.

Then the operator aw with domain H m is self-adjoint.

Proof. In the first place we know that aw is a continuous linear operator from H m

into H 0 = L2 so that we can consider the operator A = aw with domain DA = H m.

Let us now check A∗ and its domain

DA∗ = {v ∈H 0,∃u ∈H 0,∀w ∈H m, 〈v, Aw〉H 0 = 〈u,w〉H 0}.

In particular, we note that for v ∈ DA∗ , φ ∈ S , we have, since a is real-valued,

〈A∗v, φ〉S ∗,S = 〈A∗v, φ〉H 0 = 〈v, Aφ〉H 0 = 〈v, awφ〉S ∗,S = 〈awv, φ〉S ∗,S ,

which implies that A∗v = awv, so that for v ∈ DA∗ , a
wv ∈ L2. Since a is elliptic,

there exists b ∈ Γ−m such that

awbw = I + rw, bwaw = I + sw, r, s ∈ Γ−∞.

Let v ∈ DA∗ : we have

v =

∈H m︷ ︸︸ ︷
bw awv︸︷︷︸
∈L2

−
∈S︷︸︸︷
swv ∈H m,

and thus DA∗ ⊂ H m, with A∗ = aw on DA∗ . On the other hand if v ∈ H m ⊂ L2

(since m ≥ 0), we have

∀w ∈ DA = H m, 〈v,Aw〉H 0 = 〈v, aww〉H 0 = 〈awv, w〉H 0 ,

since the latter identity is true for w ∈ S and thus if w = limk wk in H m, wk ∈ S ,

we find by continuity of aw from H m into L2

〈v, aww〉H 0 = lim
k
〈v, awwk〉H 0 = lim

k
〈awv︸︷︷︸
∈L2

, wk〉S ∗,S

= lim
k
〈awv, wk〉H 0 = 〈awv, w〉H 0 .

This implies that H m ⊂ DA∗ and thus H m = DA∗ with

A∗ = aw = A on DA∗ = DA,

and the self-adjointness of A.
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Chapter 7

Appendix

7.1 On the Faà di Bruno formula

That formula1 is dealing with the iterated derivative of a composition of functions.

First of all, let us consider (smooth) functions of one real variable

U
f−→ V

g−→ W, U, V,W open sets of R.

With g(r) always evaluated at f(x), we have

(g ◦ f)′ = g′f ′

(g ◦ f)′′ = g′′f ′2 + g′f ′′

(g ◦ f)′′′ = g′′′f ′3 + g′′3f ′′f ′ + g′f ′′′

(g ◦ f)(4) = g(4)(f ′)4 + 6g(3)f ′
2
f ′′ + g′′(4f ′′′f ′ + 3f ′′

2
) + g′f (4)

i.e.
1

4!
(g ◦ f)(4) =

g(4)

4!

(
f ′

1!

)4

+ 3
g(3)

3!

(
f ′′

2!

)(
f ′

1!

)2

+
g(2)

2!

[(f ′′
2!

)2

+ 2
f ′′′

3!
f ′
]

+
g(1)

1!

f (4)

4!
.

More generally we have the remarkably simple

(g ◦ f)(k)

k!
=
∑

1≤r≤k
kj≥1

g(r) ◦ f
r!

∏
k1+···+kr=k

f (kj)

kj!
(7.1.1)

· There is only one multi-index (1, 1, 1, 1) ∈ N∗4 such that
∑

1≤j≤4 kj = 4.

· There are 3 multi-indices (1, 1, 2), (1, 2, 1), (2, 1, 1) ∈ N∗3 with
∑

1≤j≤3 kj = 4.

· There is 1 multi-index (2, 2) ∈ N∗2 with
∑

1≤j≤2 kj = 4 and 2 multiindices

(1, 3), (3, 1) such that
∑

1≤j≤2 kj = 4.

1Francesco Faà di Bruno (1825–1888) was an italian mathematician and priest, born at Alessan-
dria. He was beatified in 1988, probably the only mathematician to reach sainthood so far. The
“Chevalier François Faà di Bruno, Capitaine honoraire d’État-Major dans l’armée Sarde”, defended
his thesis in 1856, in the Faculté des Sciences de Paris in front of the following jury: Cauchy (chair),
Lamé and Delaunay.
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· There is 1 index 4 ∈ N∗ with
∑

1≤j≤1 kj = 4.

Usually the formula is written in a different way with the more complicated

(g ◦ f)(k)

k!
=

∑
l1+2l2+···+klk=k

r=l1+···+lk
g(r)◦f
l1!...lk!

∏
1≤j≤k

(
f (j)

j!

)lj
. (7.1.2)

Let us show that the two formulas coincide. We start from (7.1.1)

(g ◦ f)(k)

k!
=
∑

1≤r≤k

g(r) ◦ f
r!

∏
k1+···+kr=k

kj≥1

f (kj)

kj!
.

If we consider a multi-index

(k1, . . . , kr) = (1, . . . , 1︸ ︷︷ ︸
l1times

, 2, . . . , 2︸ ︷︷ ︸
l2times

, . . . , j, . . . , j,︸ ︷︷ ︸
ljtimes

. . . , k, . . . , k︸ ︷︷ ︸
lktimes

)

we get in factor of g(r)/r! the term
∏

1≤j≤k

(
f (j)

j!

)lj
with l1 + 2l2 + · · · + klk =

k, l1 + · · ·+ lk = r and since we can permute the (k1, . . . , kr) above, we get indeed

a factor r!
l1!...lk!

which gives (7.1.2).

The proof above can easily be generalized to a multidimensional setting with

U
f−→ V

g−→ W, U, V,W open sets of Rm,Rn,Rp, f, g of class Ck.

Since the derivatives are multilinear symmetric mappings, they are completely de-

termined by their values on the “diagonal” T ⊗ · · · ⊗ T : the symmetrized products

of T1 ⊗ · · · ⊗ Tk, noted as T1 . . . Tk, can be written as a linear combination of k-th

powers. In fact, in a commutative algebra on a field with characteristic 0, using the

polarization formula, the products T1 . . . Tk are linear combination of k-th powers

T1T2 . . . Tk =
1

2kk!

∑
εj=±1

ε1 . . . εk(ε1T1 + · · ·+ εkTk)
k. (7.1.3)

For T ∈ Tx(U), we have

(g ◦ f)(k)

k!
T k =

∑
1≤r≤k

g(r) ◦ f
r!

∏
k1+···+kr=k

kj≥1

f (kj)

kj!
T kj ,

which is consistent with the fact that f (kj)(x)T kj belongs to the tangent space

Tf(x)(V ) of V at f(x) and ⊗1≤j≤rf
(kj)(x)T kj is a tensor product in T r,0(Tf(x)(V )) on

which g(r)(f(x)) acts to send it on Tg(f(x))(W ).
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7.2 The Harmonic Oscillator

Polynômes d’Hermite

Présentation à l’aide d’une fonction génératrice

Soit x ∈ C. La fonction C 3 t 7→ e−t
2+2tx = G(x, t) est entière et par suite

G(x, t) = e−t
2+2tx =

∑
n≥0

tn

n!
Hn(x), Hn(x) =

∂nG

∂tn
(x, 0), (7.2.1)

avec un rayon de convergence infini pour tout x ∈ C. Notons que

H0(x) = G(x, 0) = 1, H1(x) =
∂G

∂t
(x, 0) = e−t

2+2tx(−2t+ 2x)|t=0 = 2x,

H2(x) =
∂2G

∂t2
(x, t)|t=0 = e−t

2+2tx
{

(−2t+ 2x)2 − 2
}
|t=0

= 4x2 − 2.

Lemma 7.2.1. Pour n ∈ N, Hn est un polynôme de degré n, de même parité que n,

dont le monôme de plus haut degré est 2nXn. On a également, pour n ∈ N∗,m ∈ N,

Hn+1(X) = 2XHn(X)− 2nHn−1(X), (7.2.2)

H ′n(X) = 2nHn−1(X), (7.2.3)

H2m(0) = (−1)m
(2m)!

m!
. (7.2.4)

N.B. On dira que la fonction G est une fonction génératrice pour la suite des

polynômes d’Hermite Hn.

Proof. On a pour n ∈ N, avec g(y) = e−y
2
, l’identité G(x, t) = g(x− t)ex2 , et donc

Hn(x) =
∂nG

∂tn
(x, 0) = ex

2

(−1)ng(n)(x) = ex
2

(−1)n
( d
dx

)n{e−x2}. (7.2.5)

Démontrons par récurrence sur n ∈ N que Hn est un polynôme de degré n, de

même parité que n, dont le monôme de plus haut degré est 2nXn. C’est vérifié pour

n = 0, 1, 2. Supposons que cette propriété est vérifiée pour un entier n ≥ 0. On a

Hn+1(x) = ex
2

(−1)n+1 d

dx

{
e−x

2

ex
2( d
dx

)n{e−x2}}
= (−1)n+1

( d
dx
− 2x

){
(−1)nHn(x)

}
= −H ′n(x) + 2xHn(x), (7.2.6)

et l’on trouve que Hn+1 est un polynôme de monôme de plus haut degré 2X2nXn =

2n+1Xn+1. En outre comme Hn est de la parité de n, H ′n et XHn sont de la parité

de n+ 1 ainsi donc que Hn+1, ce qui achève notre raisonnement par récurrence. On

a en outre

∂G

∂x
(x, t) = 2tG(x, t) = 2

∑
n≥0

(n+ 1)
tn+1

(n+ 1)!
Hn(x) =

∑
k≥1

tk

k!
2kHk−1(x), (7.2.7)
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avec un rayon de convergence infini pour tout x ∈ C. On a également (cf. (7.2.1))

H ′k(x) =
∂k+1G

∂x∂tk
(x, 0).

et comme la fonction t 7→ (∂G/∂x)(x, t) est entière pour tout x, il vient

∂G

∂x
(x, t) =

∑
k≥0

tk

k!
H ′k(x),

qui donne avec (7.2.7), H ′k(x) = 2kHk−1(x) pour k ≥ 1. Comme nous avons

démontré en (7.2.7) que pour n ≥ 0, Hn+1(x) = 2xHn(x) − H ′n(x), il vient pour

n ≥ 1,

Hn+1(x) = 2xHn(x)− 2nHn−1(x), H ′n(x) = 2nHn−1(x),

ce qui donne (7.2.2), (7.2.3). La propriété (7.2.4) est vraie pour m = 0 et si on la

suppose vérifiée pour un entier m ≥ 0, il vient de (7.2.2) (déjà démontré!) pour

2m+ 1,

H2m+2(0) = −(4m+ 2)H2m(0)

= (−1)m+1 (2m+ 2)!

(m+ 1)!

m+ 1

(2m+ 1)(2m+ 2)
(4m+ 2) = (−1)m+1 (2m+ 2)!

(m+ 1)!
,

soit le résultat cherché.

Une présentation plus explicite

En utilisant la formule de Faà di Bruno sur la dérivation des fonctions composées,

on peut obtenir une expression plus explicite des polynômes d’Hermite. Rappelons

que pour g, f ∈ C∞(R), on a pour n ≥ 1

(g ◦ f)(n)

n!
=
∑

1≤r≤n

g(r) ◦ f
r!

∏
n1+···+nr=n

nj≥1

f (nj)

nj!
. (7.2.8)

On définit Hn par la formule

Hn(x) = ex
2

(−1)n
( d
dx

)n{e−x2}. (7.2.9)

On se propose maintenant de calculer explicitement Hn en utilisant la formule (7.2.8)

: il vient avec g(y) = ey, f(x) = −x2, pour n ≥ 1

Hn(x) = ex
2

(−1)nn!
∑

1≤r≤n

g(r) ◦ f
r!

∏
n1+···+nr=n

nj≥1

f (nj)

nj!
.

Les valeurs possibles de nj dans la formule ci-dessus sont 1, 2 : il faut choisir un

sous-ensemble de {1, . . . , r} à s éléments, 1 ≤ s ≤ r sur lequel nj = 1. Il vient par

conséquent

Hn(x) = ex
2

(−1)nn!
∑

1≤r≤n
s+2(r−s)=n

e−x
2

r!
(−2x)s

((−2)

2!

)r−s
Cs
r .
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On remarque que n− s = 2k (un entier pair ≥ 0) et pour n ≥ 1,

r − s = k, 1 ≤ k + s ≤ n, 2k ≤ n, i.e. 1 ≤ k + n− 2k ≤ n, 2k ≤ n,

soit 0 ≤ 2k ≤ n, pour n ≥ 2. Il vient, pour n ≥ 2

Hn(x) = ex
2

(−1)nn!
∑

1≤r≤n
s+2(r−s)=n

e−x
2

r!
(−2x)s

((−2)

2!

)r−s r!

(r − s)!s!

= n!
∑

0≤k≤n/2

(−2x)n−2k(−1)k

(n− 2k)!k!
,

formule également valable pour n = 0, 1 car de (7.2.9) vient

H0(x) = 1, H1(x) = 2x.

On a donc pour tout n ∈ N,

Hn(x) = n!
∑

0≤k≤E(n/2)

(2x)n−2k(−1)k

(n− 2k)!k!
, (7.2.10)

ce qui montre immédiatement que Hn est un polynôme de degré n, de même parité

que n, dont le monôme de plus haut degré est 2nXn. De plus si n = 2m est pair on

redémontre (7.2.4). En outre pour n ≥ 1, on peut calculer directement

H ′n(x) = n!
∑

0≤k<n/2

(2x)n−2k−12(n− 2k)(−1)k

(n− 2k)!k!

= 2n (n− 1)!
∑

0≤k<n/2

(2x)n−1−2k(−1)k

(n− 1− 2k)!k!

= 2n (n− 1)!
∑

0≤2k≤n−1

(2x)n−1−2k(−1)k

(n− 1− 2k)!k!

= 2nHn−1(x). (7.2.11)

De plus, la formule (7.2.6) est prouvée directement par récurrence, et l’on a donc

Hn+1(x) = −H ′n(x) + 2xHn(x),

de sorte qu’avec le calcul (7.2.11), on obtient le Lemme 7.2.1 sans utiliser la fonction

génératrice, avec en outre l’expression explicite (7.2.10).

Quelques calculs explicites

La commande Mathematica HermiteH[n, x] permet d’obtenir le nième polynôme

d’Hermite. En écrivant HermiteH[n, x] // TraditionalForm, on obtient
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H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x2 + 12

H5(x) = 32x5 − 160x3 + 120x

H6(x) = 64x6 − 480x4 + 720x2 − 120

H7(x) = 128x7 − 1344x5 + 3360x3 − 1680x

H8(x) = 256x8 − 3584x6 + 13440x4 − 13440x2 + 1680

H9(x) = 512x9 − 9216x7 + 48384x5 − 80640x3 + 30240x

H10(x) = 1024x10 − 23040x8 + 161280x6 − 403200x4 + 302400x2 − 30240

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H20(x) = 1048576x20 − 99614720x18 + 3810263040x16 − 76205260800x14

+ 866834841600x12 − 5721109954560x10 + 21454162329600x8

− 42908324659200x6 + 40226554368000x4 − 13408851456000x2

+ 670442572800
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Équation différentielle

Lemma 7.2.2. Soit n ∈ N. Alors le polynôme d’Hermite Hn vérifie

H ′′n(X)− 2XH ′n(X) + 2nHn(X) = 0. (7.2.12)

Proof. Démontrons par récurrence pour n ≥ 2 que

2nHn(X)− 4XnHn−1(X) + 4n(n− 1)Hn−2(X) = 0. (7.2.13)

Cela est vérifié pour n = 2 car

4H2(X)− 8XH1(X) + 8H0(X) = 4(4X2 − 2)− 8X 2X + 8 = 0.

En supposant (7.2.13) vérifié pour un entier n ≥ 2, on calcule, en utilisant (7.2.2),

(2n+ 2)Hn+1(X)− 4X(n+ 1)Hn(X) + 4(n+ 1)nHn−1(X)

= (2n+ 2)
(
2XHn(X)− 2nHn−1(X)

)
− 4X(n+ 1)Hn(X) + 4(n+ 1)nHn−1(X)

= Hn(X)
(
(4n+ 4)X − 4(n+ 1)X

)
+Hn−1(X)

(
−2n(2n+ 2) + 4(n+ 1)n

)
= 0,

ce qui achève la récurrence. Utilisant le Lemme 7.2.1, il vient pour n ≥ 2

H ′′n(X)− 2XH ′n(X) + 2nHn(X)

= 2n2(n− 1)Hn−2(X)− 2X2nHn−1(X) + 2nHn(X) = 0,

d’après (7.2.13), ce qui démontre le résultat cherché pour n ≥ 2. Pour n = 0,

on a H0 = 1 et l’équation (7.2.12) est trivialement vérifiée. Pour n = 1, on a

H1 = 2X et le membre de gauche de (7.2.12) vaut −4X + 2× 2X = 0, terminant la

démonstration.

Fonctions d’Hermite

Proposition 7.2.3. Pour n,m ∈ N, on a∫
R
Hn(x)Hm(x)e−x

2

dx = δn,mn!2n
√
π. (7.2.14)

Proof. On a en effet pour n ≥ m,∫
R
Hn(x)Hm(x)e−x

2

dx = (−1)n
∫
R

( d
dx

)n{e−x2}Hm(x)dx =

∫
e−x

2

H(n)
m (x)dx,

qui vaut 0 si n > m (Hm est un polynôme de degré m) et pour m = n, on obtient∫
R
Hn(x)2e−x

2

dx =

∫
R
e−x

2

n!2ndx = n!2n
√
π,

soit le résultat cherché.
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Les polynômes d’Hermite sont à coefficients réels (cf. e.g. (7.2.10)), de sorte que

les fonctions φn, dites fonctions d’Hermite définies sur R par

φn(x) = Hn(x)e−x
2/2(2nn!)−1/2π−1/4 (7.2.15)

= (−1)n(2nn!)−1/2π−1/4ex
2/2
( d
dx

)n{e−x2}, (7.2.16)

vérifient 〈φn, φm〉L2(R) = δn,m. (7.2.17)

Theorem 7.2.4. La suite des fonctions d’Hermite {φn}n∈N forme une base hilber-

tienne de L2(R). Chaque fonction d’Hermite φn appartient à la classe de Schwartz

S (R).

Proof. La dernière assertion est triviale car

φn(x) = Hn(x)e−x
2/2(2nn!)−1/2π−1/4

et donc φn ∈ C∞(R) et, par récurrence sur k ∈ N,

xlφ(k)
n (x) = Pn,k,l(x)e−x

2/2, Pn,k,l polynôme,

ce qui implique que supx∈R |xlφ
(k)
n (x)| = Cn,k,l < +∞. Au vu de (7.2.17), il suffit de

démontrer que l’orthogonal de l’espace engendré par {φn}n∈N est réduit à {0}. Soit

f une fonction de L2(R) telle que,

pour tout n ∈ N,

∫
R
f(x)φn(x)dx = 0.

Comme chaque Hn est un polynôme de degré n, l’espace vectoriel engendré par

{Hn}0≤n≤N est l’espace des polynômes de degré ≤ N (récurrence sur N). Par suite

on a

pour tout n ∈ N,

∫
R
f(x)xne−x

2/2dx = 0.

Considérons la fonction F , donnée pour z ∈ C par

F (z) =

∫
R
f(x)e−x

2/2ezxdx.

On a pour K compact de C, MK = supz∈K |Re z|, l’estimation

sup
z∈K
|f(x)e−x

2/2ezx| ≤ |f(x)|︸ ︷︷ ︸
L2

e−x
2/2e|x|MK︸ ︷︷ ︸
L2

∈ L1(R),

et comme z 7→ f(x)e−x
2/2ezx est entière, la fonction F est entière. En outre, pour

n ∈ N, il vient

F (n)(0) =

∫
R
f(x)e−x

2/2xndx = 0,

ce qui implique que F est identiquement nulle. La fonction R 3 x 7→ h(x) =

f(x)e−x
2/2 appartient à L1(R) comme produit de deux fonctions de L2(R) (inégalité

de Cauchy-Schwarz). On a de plus

ĥ(ξ) = F (−2iπξ) = 0,
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de sorte que la transformée de Fourier de h est nulle, et donc h = 0. On a donc,

pour presque tout x ∈ R,

f(x)e−x
2/2 = 0,

ce qui implique f(x) = 0 presque partout et f = 0 comme fonction de L2(R).

Oscillateur harmonique

Equation différentielle

Lemma 7.2.5. Soit n ∈ N. Alors la fonction d’Hermite φn définie par (7.2.15)

vérifie l’équation différentielle

− φ′′n(x) + x2φn(x) = (2n+ 1)φn(x). (7.2.18)

Proof. En utilisant (7.2.15) et (7.2.12), il vient

φ′n(x) =
{
H ′n(x)− xHn(x)

}
e−x

2/2(2nn!)−1/2π−1/4,

φ′′n(x) =
{
H ′′n(x)− xH ′n(x)−Hn(x)− x

(
H ′n(x)− xHn(x)

)}
e−x

2/2(2nn!)−1/2π−1/4

=
{
H ′′n(x)− 2xH ′n(x) + (x2 − 1)Hn(x)

}
e−x

2/2(2nn!)−1/2π−1/4

=
{
−2nHn(x) + (x2 − 1)Hn(x)

}
e−x

2/2(2nn!)−1/2π−1/4

= −(2n+ 1)φn(x) + x2φn(x),

ce qui donne le résultat cherché.

Création, annihilation

Definition 7.2.6. L’opérateur de création (resp. annihilation) A+ (resp. A−) est

l’opérateur différentiel de S (R) dans lui-même donné par

A+ =
1√
2

(
− d

dx
+ x

)
, A− =

1√
2

(
d

dx
+ x

)
. (7.2.19)

L’oscillateur harmoniqueH est l’opérateur différentiel de S (R) dans lui-même donné

par

H =
1

2

(
− d2

dx2
+ x2

)
. (7.2.20)

Remark 7.2.7. Du lemme 7.2.5, il vient pour n ∈ N,

Hφn = (
1

2
+ n)φn. (7.2.21)

Lemma 7.2.8. Sur S (R), on a

H = A+A− +
1

2
, (7.2.22)

[A−, A+] = A−A+ − A+A− = I. (7.2.23)



148 CHAPTER 7. APPENDIX

Proof. Pour ψ ∈ S (R), on a

2(A+A−ψ)(x) = (− d

dx
+ x)

{
ψ′(x) + xψ(x)

}
= −

(
ψ′′(x) + xψ′(x) + ψ(x)

)
+ xψ′(x) + x2ψ(x),

ce qui donne 2A+A− = 2H− I et (7.2.22). De plus, on a

2(A−A+ − A+A−)ψ

=

(
d

dx
+ x

)
(−ψ′(x) + xψ(x))−

(
− d

dx
+ x

)
(ψ′(x) + xψ(x))

= −ψ′′(x) + ψ(x) + xψ′(x)− xψ′(x) + x2ψ(x)

+ ψ′′(x) + ψ(x) + xψ′(x)− xψ′(x)− x2ψ(x) = 2ψ(x),

soit le résultat cherché.

Lemma 7.2.9. Soit n ∈ N. On a

φn =
1√
n!
An+φ0 (7.2.24)

A+φn =
√
n+ 1φn+1, (7.2.25)

A−φn+1 =
√
n+ 1φn, A−φ0 = 0. (7.2.26)

Proof. En utilisant (7.2.16), calculons

(A+φn)(x) = 2−1/2(−1)n(2nn!)−1/2π−1/4(x− d

dx
)
{
ex

2/2
( d
dx

)n{e−x2}}.
Comme (sur S (R)), on a

d

dx
− x = ex

2/2 d

dx
e−x

2/2, (7.2.27)

il vient

(A+φn)(x) = (−1)n+1(2n+1n!)−1/2π−1/4ex
2/2
( d
dx

)n+1{e−x2} =
√
n+ 1φn+1,

soit (7.2.25). La propriété (7.2.24) est vérifiée pour n = 0, et si on la suppose vraie

pour un entier n ≥ 0, il vient

φn+1 =︸︷︷︸
(7.2.25)

(n+ 1)−1/2A+φn = (n+ 1)−1/2(n!)−1/2A+A
n
+φ0 =

An+1
+ φ0√

(n+ 1)!
,

et donc (7.2.24). En outre, en utilisant (7.2.25), il vient

A−φn+1 = (n+ 1)−1/2A−A+φn =︸︷︷︸
(7.2.23)

(n+ 1)−1/2
(
A+A− + 1

)
φn

=︸︷︷︸
(7.2.22)

(n+ 1)−1/2
(
H +

1

2

)
φn =︸︷︷︸

(7.2.21)

(n+ 1)−1/2(n+ 1)φn = (n+ 1)1/2φn.

De plus, on a

π1/4
√

2A−φ0 = (
d

dx
+ x)(e−x

2/2) = 0,

ce qui termine la démonstration du lemme.
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Opérateurs sur `2(N)

Grâce au Théorème 7.2.4, l’application

`2(N) −→ L2(R)
(an)n∈N 7→

∑
n∈N anφn

est un isomorphisme isométrique d’espaces de Hilbert d’application réciproque

Ψ : L2(R) −→ `2(N)
u 7→ (〈u, φn〉)n∈N

. (7.2.28)

On peut donc identifier L2(R) à `2(N) via ces applications. Considérons le sous-

espace vectoriel E de L2(R) défini par

E = {
∑
n∈N

anφn}(an)n∈N∈Ẽ, (7.2.29)

avec le sous-espace Ẽ de `2(N) défini par

E = {(an)n∈N ∈ `2(N),
∑
n∈N

n2|an|2 < +∞}. (7.2.30)

L’oscillateur harmonique H s’identifie à l’opérateur H̃ : Ẽ → `2(N) défini par

H̃
(
(an)n∈N

)
=
(
(n+

1

2
)an
)
n∈N,

donné par la matrice diagonale infinie

1
2

0 . . .
0 3

2
0 . . .

0 0 5
2

0 . . .
...

...
. . .

0 . . . . . . 0 1
2

+ n 0 . . .


.

L’opérateur de création A+ vérifie

A+φn =
√
n+ 1φn+1,

et avec Ψ donné par (7.2.28), il vient avec Ã+ = ΨA+Ψ−1,

Ã+

(
(an)n∈N

)
= ΨA+

(∑
n

anφn
)

= Ψ
(∑

n

an
√
n+ 1φn+1

)
=
(
0, a0, a1

√
2, a2

√
3, . . .

)
= (bn)n∈N, b0 = 0, bn = an−1

√
n pour n ≥ 1,
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avec un résultat dans `2(N) si
∑

n n|an|2 < +∞. Notons que l’opérateur borné de

`2(N) dans lui-même donné par

S
(
(an)n∈N

)
= (bn)n∈N, b0 = 0, bn = an−1 pour n ≥ 1, (7.2.31)

est isométrique, injectif et non surjectif avec une image de codimension 1. Si (en)n∈N
est la base hilbertienne standard de `2(N), on a

Sen = en+1, rangeS = S(`2(N)) = e⊥0 .

L’opérateur d’annihilation A− vérifie A−φn =
√
nφn−1 pour n ≥ 1 et A−φ0 = 0,

et avec Ψ donné par (7.2.28), il vient avec Ã− = ΨA−Ψ−1

Ã−
(
(an)n∈N

)
= ΨA−

(∑
n≥1

anφn
)

= Ψ
(∑
n≥1

an
√
nφn−1

)
=
(
a1, a2

√
2, a3

√
3, . . .

)
= (bn)n∈N, bn = an+1

√
n+ 1 pour n ≥ 0,

avec un résultat dans `2(N) si
∑

n n|an|2 < +∞. Notons que l’opérateur borné de

`2(N) dans lui-même donné par

S ′
(
(an)n∈N

)
= (bn)n∈N, bn = an+1 pour n ≥ 0, (7.2.32)

est surjectif, non injectif avec un noyau de dimension 1 égal à Ce0. Si (en)n∈N est la

base hilbertienne standard de `2(N), on a

S ′e0 = 0, S ′en = en−1, pour n ≥ 1, kerS = Ce0.

On peut remarquer que S∗ = S ′ car

〈S∗em, en〉`2(N) = 〈em, Sen〉`2(N) = 〈em, en+1〉`2(N) = δm,n+1,

soit S∗e0 = 0, S∗em = em−1 pour m ≥ 1. On peut résumer une partie des résultats

précédents par le résultat suivant.

Theorem 7.2.10. L’oscillateur harmonique H défini par (7.2.20) vérifie

H =
∑
n≥0

(
1

2
+ n)Pn, Id =

∑
n≥0

Pn, (7.2.33)

où Pn est la projection orthogonale sur Cφn, se prolonge en un opérateur continu de

l’espace E (défini en (7.2.29)) dans L2(R).

La dimension supérieure

Soit d ≥ 1. On définit pour α = (αj)1≤j≤d ∈ Nd, x ∈ Rd,

Φα(x) =
d∏
j=1

φαj(xj), En = Vect{Φα}α∈Nd,|α|=n, (7.2.34)

avec |α| = α1 + · · ·+ αd. On dira que les fonctions Φα sont les fonctions d’Hermite

en dimension d.
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Lemma 7.2.11. La dimension de En est Cd−1
n+d−1.

Proof. Démontrons que card{α ∈ Nd, |α| = l} = Cd−1
l+d−1. Commençons par prouver

par récurrence sur l que

Cd−1
l+d−1 =

∑
0≤j≤l

Cd−2
j+d−2, (7.2.35)

ce qui est vérifié pour l = 0, et comme Cd−1
l+d = Cd−1

l+d−1 + Cd−2
l+d−1, on obtient

Cd−1
l+1+d−1 = Cd−1

l+d−1 + Cd−2
l+d−1 =

∑
0≤j≤l+1

Cd−2
j+d−2,

ce qui démontre (7.2.35). On a par ailleurs

card{α ∈ Nd, |α| = l} =
∑

0≤j≤l

card{β ∈ Nd−1, |β| = j}, (7.2.36)

ce qui permet de démontrer par récurrence sur d que

card{α ∈ Nd, |α| = l} = Cd−1
l+d−1,

car cette propriété est vraie pour d = 1 et si elle est vérifiée pour un entier d ≥ 1, il

vient de (7.2.36), (7.2.35),

card{α ∈ Nd+1, |α| = l} =
∑

0≤j≤l

card{β ∈ Nd, |β| = j} =
∑

0≤j≤l

Cd−1
l+d−1 = Cd

l+d.

Montrons par récurrence sur d que les
∑

0≤k≤nC
d−1
k+d−1 fonctions {Φα}|α|=k,0≤k≤n sont

indépendantes. C’est vrai pour d = 1. Supposons que cette propriété est vérifiée

pour un entier d ≥ 1. Supposons que∑
α∈Nd+1,|α|≤m

cαΦα = 0.

On obtient alors l’identité

∑
0≤k≤m

{ ∑
β∈Nd
|β|=m−k

c(β,k)

( d∏
j=1

φβj(xj)
)}
φk(xd+1) = 0,

et de l’indépendance des fonctions {φk(xd+1)}0≤k≤m, il vient l’identité sur Rd

∑
β∈Nd
|β|=m−k

c(β,k)

d∏
j=1

φβj(xj) = 0.

L’hypothèse de récurrence démontre que tous les cβ,k sont nuls.
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Remark 7.2.12. En posant pour 1 ≤ j ≤ d,

A+,j =
1√
2

(
− ∂

∂xj
+ xj

)
, A−,j =

1√
2

( ∂

∂xj
+ xj

)
, (7.2.37)

il vient de (7.2.24), avec α! =
∏

1≤j≤d αj!,

Φα(x) =
d∏
j=1

φαj(xj) =
1√
α!

d∏
j=1

(
A
αj
+,jφ0

)
(xj).

Theorem 7.2.13. Les (Φα)α∈Nd forment une base hilbertienne de L2(Rd) composée

par les vecteurs propres de l’oscillateur harmonique en dimension d:

H =
1

2

(
−∆x + |x|2

)
=
∑
n≥0

(d
2

+ n
)
Pn, Id =

∑
n≥0

Pn, (7.2.38)

où Pn est la projection orthogonale sur En, espace de dimension Cd−1
n+d−1. La valeur

propre d/2 est simple en toute dimension et E0 est engendré par

Φ0(x) = π−d/4e−|x|
2/2.

Proof. Remarquons tout d’abord que pour α, β ∈ Nd, Φα,Φβ appartiennent à la

classe de Schwartz S (Rd) et que

〈Φα,Φβ〉L2(Rd) =

∫
Rd

d∏
j=1

φαj(xj)
d∏
j=1

φβj(xj)dx

=
d∏
j=1

〈φαj , φβj〉L2(R) =
d∏
j=1

δαj ,βj = δα,β.

Démontrons que l’orthogonal de l’espace engendré par {Φα}α∈Nd est réduit à {0}.
Soit f une fonction de L2(Rd) telle que,

pour tout α ∈ Nd,

∫
R
f(x)Φα(x)dx = 0.

Comme chaque Hn est un polynôme de degré n, l’espace vectoriel engendré par

{Hn}0≤n≤N est l’espace des polynômes de degré ≤ N (récurrence sur N). Par suite

on a

pour tout α ∈ Nd,

∫
R
f(x)xαe−|x|

2/2dx = 0.

Considérons la fonction F , donnée pour z ∈ Cd par

F (z) =

∫
R
f(x)e−|x|

2/2e
∑

1≤j≤d zjxjdx.

On a pour K compact de Cd, MK = supz∈K |Re z|, l’estimation

sup
z∈K
|f(x)e−|x|

2/2ez·x| ≤ |f(x)|︸ ︷︷ ︸
L2

e−|x|
2/2e|x|MK︸ ︷︷ ︸
L2

∈ L1(Rd),
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et comme z 7→ f(x)e−|x|
2/2ezx est entière, la fonction F est entière. En outre, pour

α ∈ Nd, il vient

F (α)(0) =

∫
R
f(x)e−|x|

2/2xαdx = 0,

ce qui implique que F est identiquement nulle. La fonction

Rd 3 x 7→ h(x) = f(x)e−|x|
2/2

appartient à L1(Rd) comme produit de deux fonctions de L2(Rd) (inégalité de

Cauchy-Schwarz). On a de plus

ĥ(ξ) = F (−2iπξ) = 0,

de sorte que la transformée de Fourier de h est nulle, et donc h = 0. On a donc,

pour presque tout x ∈ Rd,

f(x)e−|x|
2/2 = 0,

ce qui implique f(x) = 0 presque partout et f = 0 comme fonction de L2(Rd). Nous

avons donc démontré que

Id =
∑
n≥0

Pn.

En outre de (7.2.37), il vient

H =
∑

1≤j≤d

Hj, Hj =
1

2

(
− ∂2

∂x2
j

+ x2
j

)
,

et donc pour α ∈ Nd,

HΦα =
∑

1≤j≤d

(1

2
+ αj

)
Φα =

(d
2

+ |α|
)
Φα,

ce qui démontre H =
∑

n≥0

(
d
2

+ n
)
Pn.

Remark 7.2.14. Bien entendu, l’opérateur H n’est pas borné sur L2(Rd), mais peut

se définir sur l’espace

E = {
∑
n≥0

∑
α∈Nd
|α|=n

aαΦα}(aα)
α∈Nd∈Ẽ

, (7.2.39)

avec Ẽ = {(aα)α∈Nd ∈ `2(Nd),
∑
α∈Nd
|α|2|aα|2 < +∞}. (7.2.40)

La restriction de H à E est complètement déterminée par les restrictions de H à

rangePn = En et l’on vient de voir que

H|En =
(d

2
+ n
)

Id . (7.2.41)
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Harmonic oscillator, another normalization

The Harmonic oscillator Hn in n dimensions is defined as the operator with Weyl

symbol π(|x|2 + |ξ|2) and thus we find that

H = U√2π

1

2

(
|x|2 + 4π2|ξ|2

)w
U∗√

2π
= U√2π

1

2

(
−∆ + |x|2

)
U∗√

2π
.

We shall define in one dimension the Hermite function of level k ∈ N, by

ψk(x) =
(−1)k

2k
√
k!

21/4eπx
2

(
d√
πdx

)k
(e−2πx2), (7.2.42)

and we find that (ψk)k∈N is a Hilbertian orthonormal basis on L2(R). The one-

dimensional harmonic oscillator can be written as

H =
∑
k≥0

(
1

2
+ k)Pk, (7.2.43)

where Pk is the orthogonal projection onto ψk.

In n dimensions, we consider a multi-index (α1, . . . , αn) = α ∈ Nn and we define

on Rn, using the one-dimensional (7.2.42),

Ψα(x) =
∏

1≤j≤n

ψαj(xj), Ek = Vect
{

Ψα

}
α∈Nn,|α|=k, |α| =

∑
1≤j≤n

αj. (7.2.44)

We note that the the dimension of Ek is
(
k+n−1
n−1

)
and that (7.2.43) holds with Pk

standing for the orthogonal projection onto Ek; the lowest eigenvalue of H is n/2

and the corresponding eigenspace is one-dimensional in all dimensions, although

in two and more dimensions, the eigenspaces corresponding to the eigenvalue n
2

+

k, k ≥ 1 are multi-dimensional with dimension
(
k+n−1
n−1

)
. The n-dimensional harmonic

oscillator can be written as

Hn =
∑
k≥0

(
n

2
+ k)Pk,n, (7.2.45)

where Pk,n stands for the orthogonal projection onto Ek defined above.

Mehler’s formula

Lemma 7.2.15. For Re t ≥ 0, we have in n dimensions,(
cosh(t/2)

)n
exp−tπ(|x|2 + |ξ|2)w =

(
e−2 tanh( t

2
)π(x2+ξ2)

)w
. (7.2.46)

Proof. By tensorisation, it is enough to prove that formula for n = 1, which we

assume from now on. To prove that formula, we need only to consider the one-

dimensional case. We define

L = ξ + ix, L̄ = ξ − ix, M(t) = β(t)
(
e−α(t)πLL̄

)w
,
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where α, β are smooth functions of t to be determined. Assuming β(0) = 1, α(0) = 0,

we find that M(0) = Id and

Ṁ + π(|L|2)wM =
(
β̇e−απ|L|

2 − βα̇π|L|2e−απ|L|2 + π(|L|2)]βe−απ|L|
2
)w

.

We have

|L|2]e−απ|L|2 = |L|2e−απ|L|2 +
1

4iπ

=0︷ ︸︸ ︷{
|L|2, e−απ|L|2

}
+

1

(4iπ)2

1

2

(
∂2
ξ (|L|2)∂2

xe
−απ|L|2 + ∂2

x(|L|2)∂2
ξ e
−απ|L|2

)
= |L|2e−απ|L|2

+
1

(4iπ)2

1

2
e−απ|L|

2
(

2
(
(−2απx)2 − 2απ

)
+ 2
(
(−2απξ)2 − 2απ

))
= |L|2e−απ|L|2

(
1− 4α2π2

16π2

)
+
απ

4π2
e−απ|L|

2

,

so that

Ṁ + π(|L|2)wM

=

(
β̇e−απ|L|

2 − βα̇π|L|2e−απ|L|2 + πβ|L|2e−απ|L|2
(

1− 4α2π2

16π2

)
+
απβ

4π
e−απ|L|

2

)w
=

(
e−απ|L|

2
{
|L|2

(
−πα̇β + πβ(1− α2

4
)
)

+ β̇ +
αβ

4

})w
.

We solve now

α̇ = 1− α2

4
, α(0) = 0⇐⇒ α(t) = 2 tanh(t/2),

and

4β̇ + αβ = 0, β(0) = 1⇐⇒ β(t) =
1

cosh(t/2)
.

We obtain that Ṁ + π(|L|2)wM = 0, M(0) = Id, and this implies

β(t)
(
e−α(t)πLL̄

)w
= M(t) = exp−tπ(|L|2)w,

which proves (7.2.46).

In particular, for t = −2is, s ∈ R, we have in n dimensions

(cos s)n exp
(
2iπs(|x|2 + |ξ|2)w

)
=
(
e2iπ tan s(|x|2+|ξ|2)

)w
. (7.2.47)

Lemma 7.2.16. For any z ∈ C, Re z ≥ 0, we have[
exp−

(
2zπ
(
|ξ|2 + |x|2

))]w
=

1

(1 + z)n

∑
k≥0

(1− z
1 + z

)k
Pk, (7.2.48)

where Pk is defined in (7.2.43) and the equality holds between L2(Rn)-bounded oper-

ators.
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Proof. Starting from (7.2.47), we get for τ ∈ R, in n dimensions,

(cos(arctan τ))n exp
(
2iπ arctan τ(|x|2 + |ξ|2)w

)
=
(
e2iπτ(|x|2+|ξ|2)

)w
,

so that using the spectral decomposition of the (n-dimensional) Harmonic Oscillator,

we get

(1 + τ 2)−n/2
∑
k≥0

e2i(arctan τ)(k+n
2

)Pk =
(
e2iπτ(|x|2+|ξ|2)

)w
,

which implies

(1 + τ 2)−n/2
∑
k≥0

(1 + iτ)2k+n

(1 + τ 2)k+n
2

Pk =
(
e2iπτ(|x|2+|ξ|2)

)w
,

entailing ∑
k≥0

(1 + iτ)k

(1− iτ)k+n
Pk =

(
e2iπτ(|x|2+|ξ|2)

)w
,

proving the lemma by analytic continuation.

Sobolev spaces based upon the Harmonic Oscillator

For θ ∈ (0, 1) and a ∈ C,Re a > 0, we have

aθ =

∫ +∞

0

ae−tat−θdt
1

Γ(1− θ)
,

since ∫ +∞

0

ae−tat−θdt =

∫ +∞

0

e−ss1−θ−1aθds = aθΓ(1− θ),

so that

Hθ =

∫ +∞

0

e−tHt−θdt
H

Γ(1− θ)
,

and thus

Hθ =

(∫ +∞

0

(
cosh(t/2)

)−n
e−2 tanh( t

2
)π(x2+ξ2)t−θdt

)w H
Γ(1− θ)

,

entailing that Hθ = µwθ with

µθ(x, ξ) =

∫ +∞

0

cosh(t/2)−n
(
e−2 tanh( t

2
)λ]λ

)
t−θdt

1

Γ(1− θ)
, λ = π(x2 + ξ2).

The Weyl composition formula is

(a]b)(x, ξ) =
∑

0≤k<ν

2−k
∑

|α|+|β|=k

(−1)|β|

α!β!
Dα
ξ ∂

β
xa D

β
ξ ∂

α
x b+ rν(a, b), (7.2.49)

with rν(a, b)(X) = Rν

(
a(X)⊗ b(Y )

)
|X=Y

, (7.2.50)

Rν =

∫ 1

0

(1− θ)ν−1

(ν − 1)!
exp

θ

4iπ
[∂X , ∂Y ]dθ

( 1

4iπ
[∂X , ∂Y ]

)ν
, (7.2.51)
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and defining

ωk(a, b) = 2−k
∑

|α|+|β|=k

(−1)|β|

α!β!
Dα
ξ ∂

β
xa D

β
ξ ∂

α
x b, (7.2.52)

we get that

ω0 = ab, ω1 =
1

4iπ
{a, b} ,

so that the beginning of this expansion is thus

ab+
1

4iπ
{a, b},

where the Poisson bracket {a, b} is given by (3.4.12). The ωk(a, b) with k even are

symmetric in a, b and skew-symmetric for k odd: this is obvious from the above

expression coming from [∂X , ∂Y ]k. Also, when a, b are real-valued the ωk(a, b) with

k even are real and purely imaginary for k odd.

We see that

1

4(2iπ)2

∑
|α|+|β|=2

(−1)|β|

α!β!
∂αξ ∂

β
xe
−2λ tanh t/2 ∂βξ ∂

α
xπ(x2 + ξ2)

=
π

4(2iπ)2

∑
1≤j≤n

(
1

2
∂2
ξj

(
e−2λ tanh t/2

)
2 +

1

2
∂2
xj

(
e−2λ tanh t/2

)
2

)
=
−1

16π
divx,ξ∇x,ξe

−2λ tanh t/2 =
−1

16π
divx,ξ e

−2λ tanh t/2(−2 tanh t/2)∇λ

=
−1

16π
e−2λ tanh t/2

{
(−2 tanh t/2)2|∇λ|2 + (−2 tanh t/2)∆λ

}
=
−1

16π
e−2λ tanh t/2

{
4(tanh t/2)24πλ+ (−2 tanh t/2)4πn

}
,

that is

e−2 tanh( t
2

)λ]λ = e−2 tanh( t
2

)λ
(
λ
(
1− (tanh t/2)2

)
+
n tanh t/2

2

)
and thus

µθ(x, ξ) =

∫ +∞

0

cosh(t/2)−ne−2 tanh( t
2

)λ
(
λ
(
1− (tanh t/2)2

)
+
n tanh t/2

2

)
t−θdt

1

Γ(1− θ)
,

that is

µθ(x, ξ) =

∫ +∞

0

cosh(t/2)−n−2e−2 tanh( t
2

)λ
(
λ+

n sinh t

4

)
t−θdt

1

Γ(1− θ)
.

We have

Γ(1− θ)|µθ| ≤
∫ 1

0

e−λt/2C0λt
−θdt+O(e−ε0λ), ε0 > 0,
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and a change of variables shows that the first term in the rhs of the above inequality

is ∫ λ

0

e−ss−θλθds = O
(
λθ
)
.

An easy calculation of derivatives shows that we have in fact

µθ ∈ S(λθ,
dX2

λ
), |µθ| ≈ λθ for large λ (elliptic symbol).

We have similarly

H−1 =

∫ +∞

0

e−tHdt,

and Mehler’s formula provides a symbol in S(λ−1, dX
2

λ
) for that operator and for any

integer m ∈ Z, we get that Hm is a pseudo-differential operator with an (elliptic)

symbol in S(λm, dX
2

λ
). As a result, for any s ∈ R, Hs is a pseudo-differential operator

with an (elliptic) symbol in S(λs, dX
2

λ
).

We define for s ∈ R the Sobolev spaces based upon the harmonic oscillator

H s = H−s
(
L2(Rn)

)
, ‖u‖H s = ‖Hsu‖L2 . (7.2.53)

The Hilbertian structure and duality properties are obvious, we have explicit pseudo-

differential isomorphisms with L2 for all H s, and we get now for free the fact that a

pseudo-differential operator with symbol in S(λt, dX
2

λ
) sends continuously H s into

H s−t. We have indeed for a ∈ S(λt, dX
2

λ
), u ∈ S (Rn),

‖awu‖H s−t = ‖Hs−tawH−s︸ ︷︷ ︸
order 0

Hsu‖L2 . ‖Hsu‖L2 = ‖u‖H s .

This means that the algebraic computations with these Sobolev spaces can be made

completely similar to what happens for the standard Sobolev spaces in Rn, replacing

the Fourier multiplier 〈D〉s by Hs.

7.3 Elements of operator theory

Let H be a Hilbert space, let D be a dense subspace of H and let A : D → H be a

linear operator. The pair (A,D) will be called the operator A with domain D and

D will be denoted by DA. We define

D∗ = {v ∈ H,∃u ∈ H,∀w ∈ D, 〈v, Aw〉H = 〈u,w〉H}. (7.3.1)

Note that u is uniquely determined by v since if u, ũ satisfy for all w ∈ D,

〈v, Aw〉H = 〈u,w〉H , 〈v, Aw〉H = 〈ũ, w〉H ,

we obtain 〈ũ − u,w〉H = 0 so that ũ − u ∈ D⊥ = {0}. We define then the adjoint

operator A∗ : D∗ → H1 by A∗v = u where u is the unique vector in H1 such that

∀w ∈ D, 〈v, Aw〉H = 〈u,w〉H .
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As a result, for v ∈ D∗, the vector A∗v is uniquely determined by the identity

∀w ∈ D, 〈A∗v, w〉H = 〈v,Aw〉H . (7.3.2)

Note also that D∗ is a vector space since v, ṽ ∈ D∗ imply that

∀w ∈ D, 〈A∗v, w〉H = 〈v, Aw〉H , 〈A∗ṽ, w〉H = 〈ṽ, Aw〉H ,

and thus for a, ã ∈ C, we get

∀w ∈ D, 〈av + ãṽ, Aw〉H2 = 〈aA∗v + ãA∗ṽ, w〉H1 ,

entailing from (7.3.1) that av + ãṽ ∈ D∗ and from (7.3.2)

aA∗v + ãA∗ṽ = A∗(av + ãṽ).

The pair (A∗, D∗) will be called the adjoint of A.

Definition 7.3.1. Let H,A,D be as above. The operator A with domain D is said

to be symmetric whenever

∀u, v ∈ D, 〈Au, v〉H = 〈u,Av〉H . (7.3.3)

The operator A with domain D is said to be self-adjoint whenever A = A∗ on

D = D∗.

Note that a self-adjoint operator is obviously symmetric, whereas the converse is

not always true. In particular if an operator A with dense domain D is symmetric,

we have D ⊂ D∗: in fact if v ∈ D, we do have for all w ∈ D

〈v,Aw〉 = 〈Av,w〉,

so that from (7.3.1), we get v ∈ D∗ with A∗v = Av.

Definition 7.3.2. Let H,A,D be as above. The operator A is said to be closed

whenever the graph

GA = {(u,Au)}u∈D,

is closed in H1 ⊕H2.

Remark 7.3.3. Let H,D,A be as above. Then the operator (A∗, D∗) is closed. In

fact the graph of A∗ is

{v ⊕ A∗v}v∈D∗ ⊂ H ⊕H,

and if (vk)k≥1, (A
∗vk)k≥1 are converging sequences in H, with

v = lim
k
vk, y = lim

k
A∗vk,

we have for all w ∈ D, 〈A∗vk, w〉 = 〈vk, Aw〉, and thus

〈y, w〉 = lim
k
〈A∗vk, w〉 = 〈v, Aw〉,

so that by definition y = A∗v, proving the closedness of the graph.
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Remark 7.3.4. Let H be a Hilbert space. The Closed Graph Theorem says that an

operator A with domain H is bounded iff its graph is closed. Let us consider an

operator (A,D) which is bounded, i.e. such that

sup
u∈D,‖u‖H=1

‖Au‖H < +∞. (7.3.4)

Then the operator A is closed iff D is a closed subspace of H. The condition is

sufficient since if D is closed, A appears as a bounded operator from the Hilbert space

D into the Hilbert space H and thus is closed. Conversely, if (7.3.4) is satisfied and

A is closed, the graph {u⊕Au}u∈D is closed, entailing that if (uk)k≥1 is a sequence

of D converging in H, the sequence (Auk)k≥1 is a Cauchy sequence in H since from

(7.3.4)

‖Auk − Aul‖H ≤ C‖uk − ul‖H ,

and thus limk uk = u, limk Auk = v, so that the closeness of the graph of A implies

u ∈ D with v = Au, thus the closedness of D.
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[3] Lars Hörmander, Pseudo-differential operators and non-elliptic boundary prob-

lems, Ann. of Math. (2) 83 (1966), 129–209. MR 0233064 (38 #1387)

[4] , Linear partial differential operators, Springer Verlag, Berlin, 1976. MR

0404822 (53 #8622)

[5] , The analysis of linear partial differential operators. I, Grundlehren der

Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-

ences], vol. 256, Springer-Verlag, Berlin, 1983, Distribution theory and Fourier

analysis. MR 717035

[6] , The analysis of linear partial differential operators. IV, Grundlehren

der Mathematischen Wissenschaften [Fundamental Principles of Mathematical

Sciences], vol. 275, Springer-Verlag, Berlin, 1994, Fourier integral operators,

Corrected reprint of the 1985 original. MR 1481433 (98f:35002)

[7] , The analysis of linear partial differential operators. III, Classics in

Mathematics, Springer, Berlin, 2007, Pseudo-differential operators, Reprint of

the 1994 edition. MR 2304165 (2007k:35006)

[8] Richard A. Hunt, On L(p, q) spaces, Enseignement Math. (2) 12 (1966), 249–

276. MR 0223874 (36 #6921)

[9] P. D. Lax and L. Nirenberg, On stability for difference schemes: A sharp form
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curl, 113

Ṫ ∗(Ω), 93
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û, Fourier transform, 7

P: the Leray projection, 112
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S ′(Rn), 10

S (Rn), 7

C∞b (R2n), 62

opt a, 70

OpΩ(a), 92

〈ξ〉 = (1 + |ξ|2)1/2, 72

{a, b} Poisson bracket, 76

a � b: composition of symbols, 65

aw, 80

Hs(Rn): Sobolev space, 74

adjoint operator, 67

bicharacteristic curves, 99

characteristic points, 94

conic-neighborhood, 93

derivative of a distribution, 10

Dini condition, 24

Dirichlet kernel, 23

elliptic points, 94

elliptic regularity theorem, 97

essential support, 95

Fock-Bargmann space, 134

Fourier inversion formula, 8

Fourier transform, 7

Fourier transform of Gaussian functions,

17

Gabor wavelet, 20

Hamiltonian vector field, 99

Helmoltz-Weyl projector, 112

Hilbert transform, 111

length of a multi-index, 7

Leray-Hopf projection, 112

local solvability, 103

loss of derivatives, 103

multi-index, 7

multipliers of S ′(Rn), 18

null bicharacteristic curves, 99

phase translation, 20

Plancherel formula, 14

Poisson bracket, 76, 129

Poisson formula, 20

propagation of singularities, 98
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real principal type, 109

Riemann-Lebesgue lemma, 5

Riesz operators, 112

Schwartz, 7

semi-classical calculus, 83

sharp G̊arding inequality, 80

solvability with loss, 106

support of a distribution, 11

tempered distributions, 10

wave packets, 20

wave-front-set, 96

Wick quantization, 129
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