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CHAPTER 1

HODGE THEORY

This chapter is an introduction to Hodge theory, and more generally to
the analysis on elliptic operators on compact manifolds. Hodge theory

represents De Rham cohomology classes (that is topological objects) on a
compact manifold by harmonic forms (solutions of partial differential equations
depending on a Riemannian metric on the manifold). It is a powerful tool to
understand the topology from the geometric point of view.

In this chapter we mostly follow reference [4], which contains a complete
concise proof of Hodge theory, as well as applications in Kähler geometry.

1.1. The Hodge operator

Let V be a n-dimensional oriented euclidean vector space (it will be later
the tangent space of an oriented Riemannian n-manifold). Therefore there is a
canonical volume element vol ∈ ΩnV . The exterior product ΩpV ∧ Ωn−pV →
ΩnV is a non degenerate pairing. Therefore, for a form β ∈ ΩpV , one can
define ∗β ∈ Ωn−pV by its wedge product with p-forms:

(1.1.1) α ∧ ∗β = 〈α, β〉 vol

for all β ∈ ΩpV . The operator ∗ : Ωp → Ωn−p is called the Hodge ∗ operator.
In more concrete terms, if (ei)i=1...n is a direct orthonormal basis of V , then

(eI)I⊂{1,...,n} is an orthonormal basis of ΩV . One checks easily that

∗1 = vol, ∗e1 = e2 ∧ e3 ∧ · · · ∧ en,

∗ vol = 1, ∗ei = (−1)i−1e1 ∧ · · · ∧ êi · · · en.

More generally,

(1.1.2) ∗eI = ε(I, {I)e{I ,
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where ε(I, {I) is the signature of the permutation (1, . . . , n) → (I, {I).

1.1.3. Exercise. — Suppose that in the basis (ei) the quadratic form is given
by the matrix g = (gij), and write the inverse matrix g−1 = (gij). Prove that
for a 1-form α = αie

i one has

(1.1.4) ∗α = (−1)i−1gijαje
1 ∧ · · · ∧ êi ∧ · · · ∧ en.

1.1.5. Exercise. — Prove that ∗2 = (−1)p(n−p) on Ωp.

If n is even, then ∗ : Ωn/2 → Ωn/2 satisfies ∗2 = (−1)n/2. Therefore, if n/2
is even, the eigenvalues of ∗ on Ωn/2 are ±1, and Ωn/2 decomposes accordingly
as

(1.1.6) Ωn/2 = Ω+ ⊕ Ω−.

The elements of Ω+ are called selfdual forms, and the elements of Ω− antiself-
dual forms. For example, if n = 4, then Ω± is generated by the forms

(1.1.7) e1 ∧ e2 ± e3 ∧ e4, e1 ∧ e3 ∓ e2 ∧ e4, e1 ∧ e4 ± e2 ∧ e3.

1.1.8. Exercise. — If n/2 is even, prove that the decomposition (1.1.6) is
orthogonal for the quadratic form Ωn/2 ∧ Ωn/2 → Ωn ' R, and

(1.1.9) α ∧ α = ±|α|2 vol if α ∈ Ω±.

1.1.10. Exercise. — If u is an orientation-preserving isometry of V , that
is u ∈ SO(V ), prove that u preserves the Hodge operator. This means the
following: u induces an isometry of V ∗ = Ω1, and an isometry Ωpu of ΩpV

defined by (Ωpu)(x1 ∧ · · · ∧ xp) = u(x1) ∧ · · · ∧ u(xp). Then for any p-form
α ∈ ΩpV one has

∗(Ωpu)α = (Ωn−pu) ∗ α.
This illustrates the fact that an orientation-preserving isometry preserves every
object canonically attached to a metric and an orientation.

1.2. Adjoint operator

Suppose (Mn, g) is an oriented Riemannian manifold, and E →M a unitary
bundle. Then on sections of E with compact support, one can define the L2

scalar product and the L2 norm:

(1.2.1) (s, t) =
∫

M
〈s, t〉E volg, ‖s‖2 =

∫
M
〈s, s〉E volg .
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If E and F are unitary bundles and P : Γ(E) → Γ(F ) is a linear operator,
then a formal adjoint of P is an operator P ∗ : Γ(F ) → Γ(E) satisfying

(1.2.2) (Ps, t)E = (s, P ∗t)F

for all sections s ∈ C∞
c (E) and t ∈ C∞

c (F ).

1.2.3. Example. — Consider the differential of functions,

d : C∞(M) → C∞(Ω1).

Choose local coordinates (xi) in an open set U ⊂ M and suppose that the
function f and the 1-form α = αidx

i have compact support in U ; write volg =
γ(x)dx1 ∧ · · · ∧ dxn, then by integration by parts:∫

M
〈df, α〉 volg =

∫
gij∂ifαjγdx

1 · · · dxn

= −
∫
f∂i(gijαjγ)dx1 · · · dxn

= −
∫
fγ−1∂i(gijαjγ) volg .

It follows that

(1.2.4) d∗α = −γ−1∂i(γgijαj).

More generally, one has the following formula.

1.2.5. Lemma. — The formal adjoint of the exterior derivative d :
Γ(ΩpM) → Γ(Ωp+1M) is

d∗ = (−1)np+1 ∗ d ∗ .

Proof. — For α ∈ C∞
c (Ωp) and β ∈ C∞

c (Ωp+1) one has the equalities:∫
M
〈dα, β〉 volg =

∫
M
du ∧ ∗v

=
∫

M
d(u ∧ ∗v)− (−1)pu ∧ d ∗ v

by Stokes theorem, and using exercice 1.1.5:

= (−1)p+1+p(n−p)

∫
M
u ∧ ∗ ∗ d ∗ v

= (−1)pn+1

∫
M
〈u, ∗d ∗ v〉 volg .
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1.2.6. Remarks. — 1) If n is even then the formula simplifies to d∗ = −∗d∗.
2) The same formula gives an adjoint for the exterior derivative d∇ : Γ(Ωp⊗

E) → Γ(Ωp+1 ⊗ E) associated to a unitary connection ∇ on a bundle E.
3) As a consequence, for a 1-form α with compact support one has

(1.2.7)
∫

M
(d∗α) volg = 0

since this equals (α, d(1)) = 0.

1.2.8. Exercise. — Suppose that (Mn, g) is a manifold with boundary. Note
~n is the normal vector to the boundary. Prove that (1.2.7) becomes:

(1.2.9)
∫

M
(d∗α) vol = −

∫
∂M

∗α = −
∫

∂M
α~n vol∂M .

For 1-forms we have the following alternative formula for d∗.

1.2.10. Lemma. — Let E be a vector bundle with unitary connection ∇,
then the formal adjoint of ∇ : Γ(M,E) → Γ(M,Ω1 ⊗ E) is

∇∗α = −Trg(∇u) = −
n∑
1

(∇eiα)(ei).

Proof. — Take a local orthonormal basis (ei) of TM , and consider an E-valued
1-form α = αie

i. We have ∗α = (−1)i−1αie
1 ∧ · · · ∧ êi ∧ · · · ∧ en. One can

suppose that just at the point p one has ∇ei(p) = 0, therefore dei(p) = 0 and,
still at the point p,

d∇ ∗ α =
n∑
1

(∇iαi)e1 ∧ · · · ∧ en.

Finally ∇∗α(p) = −
∑n

1 (∇iαi)(p).

1.2.11. Remark. — Actually the same formula is also valid for p-forms. In-
deed, d∇ : Γ(M,Ωp) → Γ(M,Ωp+1) can be deduced from the covariant deriva-
tive ∇ : Γ(M,Ωp) → Γ(M,Ω1 ⊗ Ωp) by the formula(1)

d∇ = (p+ 1)a ◦ ∇,

where a is the antisymmetrization of a (p + 1)-tensor. Also observe that if
α ∈ Ωp ⊂ ⊗pΩ1, its norm as a p-form differs from its norm as a p-tensor by

|α|2Ωp = p!|α|2⊗pΩ1 .

(1)This formula is true as soon as ∇ is a torsion free connection on M .
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Putting together this two facts, one can calculate that d∗ is the restriction of
∇∗ to antisymmetric tensors in Ω1 ⊗ Ωp. We get the formula

(1.2.12) d∗α = −
n∑
1

eiy∇iα.

Of course the formula remains valid for E-valued p-forms, if E has a unitary
connection ∇.

1.2.13. Exercise. — Consider the symmetric part of the covariant deriva-
tive,

δ∗ : Γ(Ω1) → Γ(S2Ω1).

Prove that its formal adjoint is the divergence δ, defined for a symmetric
2-tensor h by

(δh)X = −
n∑
1

(∇eih)(ei, X).

1.3. Hodge-de Rham Laplacian

1.3.1. Definition. — Let (Mn, g) be an oriented Riemannian manifold. The
Hodge-De Rham Laplacian on p-forms is defined by

∆α = (dd∗ + d∗d)α.

Clearly, ∆ is a formally selfadjoint operator. The definition is also valid
for E-valued p-forms, using the exterior derivative d∇, where E has a metric
connection ∇.

1.3.2. Example. — On functions ∆ = d∗d; using (1.2.4), we obtain the
formula in local coordinates:

(1.3.3) ∆f = − 1√
det(gij)

∂i

(
gij

√
det(gij)∂jf

)
.

In particular, for the flat metric g =
∑n

1 (dxi)2 of Rn, one has

∆f = −
n∑
1

∂2
i f.

In polar coordinates on R2, one has g = dr2 + r2dθ2 and therefore

∆f = −1
r
∂r(r∂rf)− 1

r2
∂2

θf.
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More generally on Rn with polar coordinates g = dr2 + r2gSn−1 , one has

∆f = − 1
rn−1

∂r(rn−1∂rf) +
1
r2

∆Sn−1f.

Similarly, on the real hyperbolic space Hn with geodesic coordinates, g =
dr2 + sinh2(r)gSn−1 and the formula reads

∆f = − 1
sinh(r)n−1

∂r(sinh(r)n−1∂rf) +
1
r2

∆Sn−1f.

1.3.4. Exercise. — On p-forms in Rn prove that ∆(αIdx
I) = (∆αI)dxI .

1.3.5. Exercise. — Prove that ∗ commutes with ∆.

1.3.6. Exercise. — If (Mn, g) has a boundary, prove that for two functions
f and g one has∫

M
(∆f)g vol =

∫
M
〈df, dg〉 vol−

∫
∂M

∂f

∂~n
g vol∂M .

Deduce ∫
M

(∆f)g vol =
∫

M
f∆g vol+

∫
∂M

(
f
∂g

∂~n
− ∂f

∂~n
g
)
vol∂M .

1.3.7. Exercise. — Prove that the radial function defined on Rn by (Vn

being the volume of the sphere Sn)

G(r) =

{
1

(n−2)Vn−1rn−2 if n > 2
1
2π log r if n = 2

satisfies ∆G = δ0 (Dirac function at 0). Deduce the explicit solution of ∆f = g

for g ∈ C∞
c (Rn) given by the integral formula

f(x) =
∫

Rn

G(|x− y|)g(y)|dy|n.

The function G is called Green’s function.
Similarly, find the Green’s function for the real hyperbolic space.

1.4. Statement of Hodge theory

Let (Mn, g) be a closed Riemannian oriented manifold. Consider the De
Rham complex

0 → Γ(Ω0) d→ Γ(Ω1) d→ · · · d→ Γ(Ωn) → 0.

Remind that the De Rham cohomology in degree p is defined by Hp = {α ∈
C∞(M,Ωp), dα = 0}/dC∞(M,Ωp−1).
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Other situation: (E,∇) is a flat bundle, we have the associated complex

0 → Γ(Ω0 ⊗ E) d∇→ Γ(Ω1 ⊗ E) d∇→ · · · d∇→ Γ(Ωn ⊗ E) → 0

and we can define the De Rham cohomology with values in E in the same way.
In both cases, we have the Hodge-De Rham Laplacian ∆ = dd∗ + d∗d.

1.4.1. Definition. — A harmonic form is a C∞ form such that ∆α = 0.

1.4.2. Lemma. — If α ∈ C∞
c (M,Ωp), then α is harmonic if and only if

dα = 0 and d∗α = 0. In particular, on a compact connected manifold, any
harmonic function is constant.

Proof. — It is clear that if dα = 0 and d∗α = 0, then ∆α = d∗dα+ dd∗α = 0.
Conversely, if ∆α = 0, because

(∆α, α) = (d∗dα, α) + (dd∗α, α) = ‖dα‖2 + ‖d∗α‖2,

we deduce that dα = 0 and d∗α = 0.

1.4.3. Remark. — The lemma remains valid on complete manifolds, for L2

forms α such that dα and d∗α are also L2. This is proved by taking cut-off
functions χj , such that χ−1

j (1) are compact domains which exhaust M , and
|dχj | remains bounded by a fixed constant C. Then∫

M
〈∆α, χjα〉 vol =

∫
M

(
〈dα, d(χjα)〉+ 〈d∗α, d∗(χjα)〉

)
vol

=
∫

M

(
χj(|dα|2 + |d∗α|2) + 〈dα, dχj ∧ α〉 − 〈d∗α,∇χjyα〉

)
vol

Using |dχj | 6 C and taking j to infinity, one obtains (∆α, α) = ‖dα‖2 +
‖d∗α‖2.

Note Hp the space of harmonic p-forms on M . The main theorem of this
section is:

1.4.4. Theorem. — Let (Mn, g) be a compact closed oriented Riemannian
manifold. Then:

1. Hp is finite dimensional;
2. one has a decomposition C∞(M,Ωp) = Hp ⊕ ∆(C∞(M,Ωp)), which is

orthogonal for the L2 scalar product.
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This is the main theorem of Hodge theory, and we will prove it later, as
a consequence of theorem 1.6.8. Just remark now that it is obvious that
ker ∆ ⊥ im ∆, because ∆ is formally selfadjoint. Also, general theory of
unbounded operators gives almost immediately that L2(M,Ωp) = Hp ⊕ im ∆.
What is non trivial is: finite dimensionality of Hp, closedness of im ∆, and the
fact that smooth forms in the L2 image of ∆ are images of smooth forms.

Now we will derive some immediate consequences.

1.4.5. Corollary. — Same hypothesis. One has the orthogonal decomposi-
tion

C∞(M,Ωp) = Hp ⊕ d
(
C∞(M,Ωp−1)

)
⊕ d∗

(
C∞(M,Ωp+1)

)
,

where

ker d = Hp ⊕ d
(
C∞(M,Ωp−1)

)
,(1.4.6)

ker d∗ = Hp ⊕ d∗
(
C∞(M,Ωp+1)

)
.(1.4.7)

Note that since harmonic forms are closed, there is a natural map Hp → Hp.
The equality (1.4.6) implies immediately:

1.4.8. Corollary. — Same hypothesis. The map Hp → Hp is an isomor-
phism.

Using exercice 1.3.5, we obtain:

1.4.9. Corollary (Poincaré duality). — Same hypothesis. The Hodge ∗
operator induces an isomorphism ∗ : Hp → Hn−p. In particular the corre-
sponding Betti numbers are equal, bp = bn−p.

1.4.10. Remark. — As an immediate consequence, if M is connected then
Hn = R since H0 = R. Since ∗1 = volg and

∫
M volg > 0, an identification

with R is just given by integration of n-forms on M .

1.4.11. Remark. — In Kähler geometry there is a decomposition of har-
monic forms using the (p, q) type of forms, Hk⊗C = ⊕k

0H
p,k−p, and corollary

1.4.9 can then be refined as an isomorphism ∗ : Hp,q → Hm−q,m−p, where
n = 2m.

1.4.12. Remark. — Suppose that n is a multiple of 4. Then by exercises
1.1.8 and 1.3.5, one has an orthogonal decomposition

(1.4.13) Hn/2 = H+ ⊕H−.
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Under the wedge product, the decomposition is orthogonal, H+ is positive
and H− is negative, therefore the signature of the manifold is (p, q) with
p = dimH+ and q = dimH−.

1.4.14. Exercise. — Suppose again that n is a multiple of 4. Note d± :
Γ(Ωn/2−1) → Γ(Ω±) the projection of d on selfdual or antiselfdual forms.
Prove that on (n/2 − 1)-forms, one has d∗+d+ = d∗−d−. Deduce that the
cohomology of the complex

(1.4.15) 0 → Γ(Ω0) d→ Γ(Ω1) d→ · · · d→ Γ(Ωn/2−1)
d+→ Γ(Ω+) → 0

is H0, H1, . . . , Hn/2−1, H+.

1.4.16. Exercise. — Using exercise 1.3.4, calculate the harmonic forms and
the cohomology of a flat torus Rn/Zn.

1.4.17. Exercise. — Let (M, g) be a compact oriented Riemannian mani-
fold.

1) If γ is an orientation-preserving isometry of (M, g) and α a harmonic
form, prove that γ∗α is harmonic.

2) (requires some knowledge of Lie groups) Prove that if a connected Lie
group G acts on M , then the action of G on H•(M,R) given by α → γ∗α is
trivial(2).

3) Deduce that harmonic forms are invariant under Isom(M, g)o, the con-
nected component of the identity in the isometry group of M . Apply this
observation to give a proof that the cohomology of the n-sphere vanishes in
degrees k = 1, . . . , n − 1 (prove that there is no SO(n + 1)-invariant k-form
on Sn using the fact that the representation of SO(n) on ΩkRn is irreducible
and therefore has no fixed nonzero vector).

1.5. Bochner technique

Let (E,∇) be a bundle equipped with a unitary connection over an oriented
Riemannian manifold (Mn, g). Then ∇ : Γ(E) → Γ(Ω1⊗E) and we can define

(2)If ξ belongs to the Lie algebra of G and Xξ is the associated vector field on M given
by the infinitesimal action of G (that is defined by Xξ(x) = d

dt
etξx|t=0), then one has

d
dt

(etξ)∗α|t=0 = LXξα = iXξdα + diXξα. Deduce that if α is closed, then the infinitesimal
action of G on H•(M, R) is trivial.
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the rough Laplacian ∇∗∇ acting on sections of E. Using a local orthonormal
basis (ei) of TM , from lemma 1.2.10 it follows that

(1.5.1) ∇∗∇s =
n∑
1

−∇ei∇eis+∇∇eieis.

If we calculate just at a point p and we choose a basis (ei) which is parallel at
p, then the second term vanishes.

In particular, using the Levi-Civita connection, we get a Laplacian ∇∗∇
acting on p-forms. It is not equal to the Hodge-De Rham Laplacian, as follows
from:

1.5.2. Lemma (Bochner formula). — Let (Mn, g) be an oriented Rie-
mannian manifold. Then for any 1-form α on M one has

∆α = ∇∗∇α+ Ric(α).

1.5.3. Remark. — There is a similar formula (Weitzenböck formula) on p-
forms: the difference ∆α−∇∗∇α is a zero-th order term involving the curva-
ture of M .

Proof of the lemma. — We have dαX,Y = (∇Xα)Y − (∇Y α)X , therefore

d∗dαX = −
n∑
1

(∇eidα)ei,X =
n∑
1

−(∇ei∇eiα)X + (∇ei∇Xα)ei ,

where in the last equality we calculate only at a point p, and we have chosen
the vector fields (ei) and X parallel at p.

Similarly, d∗α = −
∑n

1 (∇eiα)ei , therefore

dd∗αX = −
n∑
1

∇X((∇eiα)ei) = −
n∑
1

(∇X∇eiα)ei .

Therefore, still at the point p, comparing with (1.5.1),

(1.5.4) (∆α)X = (∇∗∇α)X +
n∑
1

(Rei,Xα)ei = (∇∗∇α)X + Ric(α)X .

1.5.5. Remark. — There is a similar formula if the exterior derivative is
coupled with a bundle E equipped with a connection ∇. The formula for the
Laplacian ∆ = (d∇)∗d∇ + d∇(d∇)∗ becomes

(1.5.6) ∆α = ∇∗∇α+ Ric(α) + R∇(α),
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where the additional last term involves the curvature of ∇,

(1.5.7) R∇(α)X =
n∑
1

R∇ei,Xα(ei).

The proof is exactly the same as above, a difference arises just in the last
equality of (1.5.4), when one analyses the curvature term: the curvature acting
on α is that of Ω1 ⊗ E, so equals R⊗ 1 + 1⊗R∇, from which:

n∑
1

(Rei,Xα)ei = Ric(α)X +
n∑
1

R∇ei,Xα(ei).

Now let us see an application of the Bochner formula. Suppose M is com-
pact. By Hodge theory, an element of H1(M) is represented by a harmonic
1-form α. By the Bochner formula, we deduce ∇∗∇α + Ric(α) = 0. Taking
the scalar product with α, one obtains

(1.5.8) ‖∇α‖2 + (Ric(α), α) = 0.

If Ric > 0, this equality implies ∇α = 0 and Ric(α) = 0. If Ric > 0, then
α = 0; if Ric > 0 we get only that α is parallel, therefore the cohomology is
represented by parallel forms. Suppose that M is connected, then a parallel
form is determined by its values at one point p, so we get an injection

H1 ↪→ Ω1
p.

Therefore dimH1 6 n, with equality if and only if M has a basis of parallel
1-forms. This implies that M is flat, and by Bieberbach’s theorem that M is
a torus. Therefore we deduce:

1.5.9. Corollary. — If (Mn, g) is a compact connected oriented Riemannian
manifold, then:

– if Ric > 0, then b1(M) = 0;
– if Ric > 0, then b1(M) 6 n, with equality if and only if (M, g) is a flat

torus.

This corollary is a typical example of application of Hodge theory to prove
vanishing theorems for the cohomology: one uses Hodge theory to represent
cohomology classes by harmonic forms, and then a Weitzenböck formula to
prove that the harmonic forms must vanish or be special under some curvature
assumption. For examples in Kähler geometry see [4]. See also the application
to the spectral estimate (2.10.16).
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1.6. Differential operators

A linear operator P : Γ(M,E) → Γ(M,F ) between sections of two bundles
E and F is a differential operator of order d if, in any local trivialisation of E
and F over a coordinate chart (xi), one has

Pu(x) =
∑
|α|6d

aα(x)∂αu(x),

where α = (α1, . . . , αk) is a multiindex with each αi ∈ {1 . . . n}, |α| = k, ∂α =
∂α1 . . . ∂αn , and aα(x) is a matrix representing an element of Hom(Ex, Fx).

The principal symbol of P is defined for x ∈ M and ξ ∈ T ∗xM by taking
only the terms of order d in P :

σP (x, ξ) =
∑
|α|=d

aα(x)ξα,

where ξα = ξα1 · · · ξαd
if ξ = ξidx

i. It is a degree d homogeneous polynomial
in the variable ξ with values in Hom(Ex, Fx).

A priori, it is not clear from the formula in local coordinates that the princi-
pal symbol is intrinsically defined. But it is easy to check that one has the fol-
lowing more intrinsic definition: suppose f ∈ C∞(M), t ∈ R and u ∈ Γ(M,E),
then

e−tf(x)P
(
etf(x)u(x)

)
is a polynomial of degree d in the variable t, whose monomial of degree d is a
homogeneous polynomial of degree d in df(x). It is actually

tdσP (x, df(x))u(x).

The following property of the principal symbol is obvious.

1.6.1. Lemma. — σP◦Q = σP ◦ σQ .

1.6.2. Examples. — 1) If one has a connection ∇ : Γ(E) → Γ(Ω1⊗E), then
e−tf∇(etfu) = tdf ⊗ u+∇u. Therefore

σ∇(x, ξ) = ξ⊗ : Γ(Ex) → Γ(Ω1
x ⊗ Ex).

2) The principal symbol of the exterior derivative d∇ : Γ(Ωp ⊗ E) →
Γ(Ωp+1 ⊗ E) is σd(x, ξ) = ξ∧.

3) The principal symbol of d∗ : Γ(Ωp+1⊗E) → Γ(Ωp⊗E) is σd∗(x, ξ) = −ξy.
4) The principal symbol of the composite ∇∗∇ is the composite −(ξy) ◦

(ξ⊗) = −|ξ|2.
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1.6.3. Exercise. — Prove that the principal symbol of the Hodge-De Rham
Laplacian is also σ∆(x, ξ) = −|ξ|2.

1.6.4. Lemma. — Any differential operator P : Γ(E) → Γ(F ) of order d has
a formal adjoint P ∗, whose principal symbol is

σP ∗(x, ξ) = (−1)dσP (x, ξ)∗.

1.6.5. Exercise. — Prove the lemma in the following way. In local coordi-
nates, write volg = v(x)dx1 ∧ · · · ∧ dxn. Choose orthonormal trivialisations of
E and F , and write P =

∑
aα(x)∂α. Then prove that

P ∗t =
∑
|α|6d

(−1)|α|
1

v(x)
∂α

(
v(x)aα(x)∗t

)
.

The proof is similar to that in example 1.2.3.

1.6.6. Remark. — In analysis, the principal symbol is often defined slightly
differently: ξj corresponds to Dj = 1

i
∂

∂xj . The advantage is that Dj is for-
mally selfadjoint, so with this definition the principal symbol of P ∗ is always
σP (x, ξ)∗ and the principal symbol of the Laplacian becomes positive.

1.6.7. Definition. — A differential operator P : Γ(E) → Γ(F ) is elliptic if
for any x ∈M and ξ 6= 0 in TxM , the principal symbol σP (x, ξ) : Ex → Fx is
injective.

Here is our main theorem on elliptic operators. It will be proved in section
1.8.

1.6.8. Theorem. — Suppose (Mn, g) is a compact oriented Riemannian
manifold, and P : Γ(E) → Γ(F ) is an elliptic operator, with rankE = rankF .
Then

1. ker(P ) is finite dimensional;
2. there is a L2 orthogonal sum

C∞(M,F ) = ker(P ∗)⊕ P
(
C∞(M,E)

)
.

The Hodge theorem 1.4.4 follows immediately, by applying to the Hodge-De
Rham Laplacian ∆.

Remark that ker(P ∗) is also finite dimensional, since P ∗ is elliptic if P is
elliptic. The difference dim kerP − dim kerP ∗ is the index of P , defined by

ind(P ) = dim kerP − dim cokerP.
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Operators with finite dimensional kernel and cokernel are called Fredholm
operators, and the index is invariant under continuous deformation among
Fredholm operators. Since ellipticity depends only on the principal symbol, it
follows immediately that the index of P depends only on σP . The fundamental
index theorem of Atiyah-Singer gives a topological formula for the index, see
the book [2].

A useful special case is that of a formally selfadjoint elliptic operator. Its
index is of course zero. The invariance of the index then implies that any
elliptic operator with the same symbol (or whose symbol is a deformation
through elliptic symbols) has also index zero.

1.7. Basic elliptic theory

In this section we explain the basic results enabling to prove theorem 1.6.8.

Sobolev spaces. — The first step is to introduce the Sobolev space Hs(Rn)
of tempered distributions f on Rn such that the Fourier transform satisfies

(1.7.1) ‖f‖2
s :=

∫
Rn

|f̂(ξ)|2(1 + |ξ|2)s|dξ|n < +∞.

Equivalently, Hs(Rn) is the space of functions f ∈ L2(Rn) which admit s
derivatives in distribution sense(3) in L2, and

(1.7.2) ‖f‖2
s ∼

∑
|α|6s

‖∂αs‖2
L2 .

(But observe that the definition (1.7.1) is valid also for any real s).
If M is a compact manifold and E a vector bundle over M , then one can

define the space Ck(M,E) of sections of E whose coefficients are of class
Ck in any trivialisation of E, and Hs(M,E) the space of sections of E whose
coefficients in any trivialisation and any coordinate chart are functions of class
Hs in Rn. If M is covered by a finite number of charts (Uj) with trivialisations
of E|Uj by a basis of sections (ej,a)a=1,...,r, choose a partition of unity (χj)
subordinate to (Uj), then a section u of E can be written u =

∑
χjuj,αej,α

with χjuj,α a function with compact support in Uj ⊂ Rn, therefore

(1.7.3) ‖u‖Ck = sup
j,α

‖χjuj,α‖Ck(Rn), ‖u‖2
s =

∑
‖χjuj,α‖2

Hs(Rn).

Up to equivalence of norms, the result is independent of the choice of coordi-
nate charts and trivialisations of E.

(3)Weak derivative: g = Dαf if for any φ ∈ C∞c (Rn) one has
R

Rn(Dαφ)f =
R

Rn φg.
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There is another approach to define Ck and Hs norms for sections of E.
Suppose that Mn has a Riemannian metric, and E is equipped with a unitary
connection ∇. Then one can define

(1.7.4) ‖u‖Ck = sup
j6k

sup
M
|∇ju|, ‖u‖s =

k∑
0

∫
M
|∇ju|2 volg .

1.7.5. Remark. — On a noncompact manifold, the definition (1.7.3) does
not give a well defined class of equivalent norms when one changes the trivi-
alisations. On the contrary, definition (1.7.4), valid only for integral s, can be
useful if (M, g) is non compact; the norms depend on the geometry at infinity
of g and ∇.

1.7.6. Example. — If M is a torus Tn, then the regularity can be seen on
the Fourier series: f ∈ Hs(Tn) if and only if

‖f‖2
s =

∑
ξ∈Zn

(1 + |ξ|2)s|f̂(ξ)|2 < +∞.

From the inverse formula f(x) =
∑

ξ f̂(ξ) exp(i〈ξ, x〉), by the Cauchy-Schwartz
inequality,

|f(x)| 6
∑
ξ∈Zn

|f̂(ξ)| 6 ‖f‖s

( ∑
ξ

(1 + |ξ|2)−s
)1/2

< +∞ if s > n

2
.

It follows that there is a continuous inclusion Hs ⊂ C0 is s > n
2 . Similarly it

follows that Hs ⊂ Ck if s > k + n
2 .

Of course the same results are true on Rn using Fourier transform, and one
obtains the following lemma.

1.7.7. Lemma (Sobolev). — If Mn is compact, k ∈ N and s > k+ n
2 , then

there is a continuous and compact injection Hs ⊂ Ck.

The fact that the inclusion is compact follows from the following lemma
(which is obvious on a torus, and the general case follows):

1.7.8. Lemma (Rellich). — If Mn is compact and s > t, then the inclusion
Hs ⊂ Ht is compact.

Action of differential operators. — If P : Γ(M,E) → Γ(M,F ) is a
differential operator of order d, then looking at P in local coordinates it is
clear that P induces continuous operators P : Hs+d(M,E) → Hs(M,F ).
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In general a weak solution of the equation Pu = v is a L2 section u of E
such that for any φ ∈ C∞

c (M,F ) one has

(u, P ∗φ) = (v, φ).

We can now state the main technical result in this section.

1.7.9. Lemma (Local elliptic estimate). — Let P : Γ(M,E) → Γ(M,F )
be an elliptic operator. Fix a ball B in a chart with local coordinates (xi) and
the smaller ball B1/2. Suppose that u ∈ L2(B,E) and Pu ∈ Hs(B,F ), then
u ∈ Hs+d(B1/2, E) and

(1.7.10) ‖u‖Hs+d(B1/2) 6 C
(
‖Pu‖Hs(B) + ‖u‖L2(B)

)
.

1.7.11. Remark. — An important addition to the lemma is the fact that for
a family of elliptic operators with bounded coefficients and bounded inverse
of the principal symbol, one can take the constant C to be uniform.

1.7.12. Remark. — Elliptic regularity is not true in Ck spaces, that is Pu ∈
Ck does not imply u ∈ Ck+d in general.

We will not prove lemma 1.7.9, which is a difficult result. There are basi-
cally two ways to prove it. The first way is to locally approximate the operator
on small balls by an operator with constant coefficients on Rn or Tn, where
an explicit inverse is available using Fourier transform: one then glues to-
gether these inverses to get an approximate inverse for P which will give what
is needed on u. See [8] for this method. The second way is more modern
and uses microlocal analysis: one inverts the operator “microlocally”, that is
fiber by fiber on each cotangent space—this is made possible by the theory of
pseudodifferential operators. See a nice and concise introduction in [4].

This implies immediately the following global result:

1.7.13. Corollary (Global elliptic estimate). — Let P : Γ(M,E) →
Γ(M,F ) be an elliptic operator. If u ∈ L2(M,E) and Pu ∈ Hs(M,F ), then
u ∈ Hs+d(M,E) and

(1.7.14) ‖u‖s+d 6 C
(
‖Pu‖s + ‖u‖L2

)
.

From the elliptic estimate and the fact that ∩sH
s = C∞, we obtain:

1.7.15. Corollary. — If P is elliptic and Pu = 0, then u is smooth. More
generally, if Pu is C∞ then u is C∞.

1.7.16. Exercise. — Prove (1.7.14) for operators with constant coefficients
on the torus.
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1.8. Proof of the main theorem

We can now prove theorem 1.6.8.
First let us prove the first statement: the kernel of P is finite dimensional.

By the elliptic estimate (1.7.14), for u ∈ ker(P ) one has

‖u‖s+d 6 C
∥∥u‖L2 .

Therefore the first identity map in the following diagram is continuous:

(kerP,L2) −→ (kerP,Hs+d) −→ (kerP,L2).

The second inclusion is compact by lemma 1.7.8. The composite map is the
identity of kerP equipped with the L2 scalar product, it is therefore a compact
map. This implies that the closed unit ball of ker(P ) is compact, therefore
ker(P ) is a finite dimensional vector space.

Now let us prove the theorem in Sobolev spaces. We consider P as an
operator

(1.8.1) P : Hs+d(M,E) −→ Hs(M,F ),

and in these spaces we want to prove

(1.8.2) Hs(M,F ) = ker(P ∗)⊕ im(P ).

We claim that for any ε > 0, there exists an L2 orthonormal family (v1, . . . , vN )
in Hs+d, such that

(1.8.3) ‖u‖L2 6 ε‖u‖s+d +
( N∑

1

|(vj , u)|2
)1/2

.

Suppose for the moment that the claim is true. Then combining with the
elliptic estimate (1.7.14), we deduce

(1− Cε)‖u‖s+d 6 C‖Pu‖s + C
( N∑

1

|(vj , u)|2
)1/2

.

Choose ε = 1
2C , and let T be the subspace of sections in Hs+d(M,E) which

are L2 orthogonal to the (vi)i=1...N . Then we obtain

2‖u‖s+d 6 C‖Pu‖s for u ∈ T.

It follows that P (T ) is closed in Hs(M,F ). But im(P ) is the sum of P (T )
and the image of the finite dimensional space generated by the (vi)i=1...N , so
im(P ) is closed as well in Hs(M,F ).

Finally the statement (1.8.1) in the Sobolev spaces Hs implies the statement
for the space C∞, which finishes the proof of the theorem. Indeed, suppose
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that v ∈ C∞(M,F ) is L2 orthogonal to ker(P ∗). Fix any s > 0 and apply
(1.8.2) in Hs: therefore there exists u ∈ Hs+d(M,E) such that Pu = v. Then
u is C∞ by corollary 1.7.15.

It remains to prove the claim (1.8.3). Choose a Hilbertian basis (vj) of
L2, and suppose that the claim is not true. Then there exists a sequence of
(uN ) ∈ Hs+d(M,E) such that

1. ‖uN‖L2 = 1,
2. ε‖uN‖s+d +

( ∑N
1 |(vj , uN )|2

)1/2
< 1.

From the second condition we deduce that (uN ) is bounded in Hs+d(E), there-
fore there is a weakly convergent subsequence in Hs+d(E), and the limit sat-
isfies

ε‖u‖s+d + ‖u‖0 6 1.

By the compact inclusion Hs+d ⊂ L2 this subsequence is strongly convergent
in L2(E) so by the first condition, the limit u satisfies

‖u‖0 = 1,

which is a contradiction.

1.8.4. Remark. — The same proof applies for an elliptic operator P :
Γ(E) → Γ(F ) where the ranks of E and F are not the same. The results are

1. kerP is finite dimensional (this can be also obtained by identifying kerP
with kerP ∗P , and by noting that P ∗P is elliptic if P is elliptic);

2. the image of the operator P : Hs+d(M,E) → Hs(M,F ) is closed, and
there is a L2 orthogonal decomposition Hs(M,F ) = kerP ∗ ⊕ imP ; note
that here kerP ∗ depend on s as P ∗ is not elliptic if rankF > rankE.

1.9. Elliptic complexes



CHAPTER 2

MODULI PROBLEMS

Moduli spaces of solutions of geometric partial differential equations (that
is the spaces of solutions modulo the group of symmetries, which is

usually an infinite dimensional group) are an important theme in differential
geometry: moduli spaces of flat connections, instantons or solutions of the
Seiberg-Witten equations, complex structures, holomorphic curves, selfdual
metrics, Einstein metrics... This chapter develops the local theory by focusing
on two examples: flat or selfdual connections and Einstein metrics.

In more details, we will study the local structure of the space of flat unitary
connections modulo gauge transformations on a manifold M . This is governed
by a deformation complex, which is the De Rham complex associated to the
flat connection ∇:

0 → Γ(u(E)) d∇→ Γ(Ω1 ⊗ u(E)) d∇→ Γ(Ω2 ⊗ u(E)) d∇→ · · ·

If M is 4-dimensional, there is short version of the sequence

0 → Γ(u(E)) d∇→ Γ(Ω1 ⊗ u(E))
d∇−→ Γ(Ω2

− ⊗ u(E))

which governs the deformations of selfdual connections ∇ (satisfying F (∇)− =
0). This moduli space plays an important role in gauge theory, but we develop
here only a small part of the theory—the local theory. For more on the com-
pactification of the moduli spaces and on the applications to 4-dimensional
topology, see the book [5].

The second main example will be the moduli space of Einstein metrics,
for which the book [3] is a good reference. The corresponding deformation
complex is

0 → Γ(TM) δ∗→ Γ(S2T ∗M) d Ric−λ−→ Γ(S2T ∗M)
δ+ 1

2
d Tr

−→ Γ(TM) → 0.
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Here the theory is less satisfactory, as the complex is obstructed as soon as
the dimension of the moduli space is greater than 0, so the description of local
deformations of Einstein metrics is an open problem in most cases. The main
use of the complex is then to deduce local rigidity in the zero dimensional case.

2.1. Finite dimensional quotients

Let us first review quickly the finite dimensional theory. Let G be a Lie
group acting on a manifold M . We want to make M/G a manifold. The
properties expected from such a quotient are:

1. the projection map π : M →M/G is a smooth submersion;
2. (universal property): if a map f : M → N is G-invariant (f(gx) = f(x)),

then it factors through π: there is a smooth map f̃ : M/G → N such
that f = f̃ ◦ π,

M
f−→ N

↓ ↗f̃

M/G

Such a quotient can be constructed if the action satisfies the two following
conditions:

1. the action is proper, that is the graph map

Φ : M ×G −→M ×M

(x, g) 7→ (x, gx)

is proper; an equivalent condition is that for any compact K in M , the
set {g ∈ G, g(K) ∩K 6= ∅} is compact;

2. the action is free, that is for any x ∈M the isotropy group at x,

Gx = {g ∈ G, g · x = x},

is trivial.
The first condition implies that the quotient M/G is Hausdorff. Under this

condition, one has the following general result.

2.1.1. Theorem (Slice theorem). — Let G act properly on the manifold
M . For each x ∈M there exists a submanifold S ⊂M (the slice), containing
x and diffeomorphic to a ball, such that

1. if g ∈ Gx then g(S) ⊂ S;
2. if g ∈ G and g(S) ∩ S 6= ∅ then g ∈ Gx;
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3. there exists a section σ : G/Gx → G defined in a neighbourhood U of the
identity, such that the map F : U × S →M defined by F (u, s) = σ(u) · s
is a diffeomorphism onto a neighborhood of x.

Note that if Gx is trivial, the second condition says that each orbit near x
meets S in only one point, so M/G ' S near x, and one recovers the structure
of M/G. Also note that in this case, the theorem implies that Gy is trivial for
y close to x.

In general, the theorem implies a topological equivalence M/G ' S/Gx near
x, but S/Gx is usually singular.

Proof of the theorem (exercise). — By properness of the action, Gx is com-
pact so one can choose on M a Gx-invariant Riemannian metric. Then choose
for S the image by the Riemannian exponential of (a small ball in) the orthog-
onal complement of Tx(Gx).

The third condition is a direct application of the inverse function theorem.
The second condition is obtained by contradiction: suppose yk, zk ∈ S

converge to x and zk = gk(yk). Use the properness of the action to extract a
limit g ∈ Gx for (gk), and then decompose g−1gk on the product Gx · (imσ)
to prove that it belongs to Gx.

2.2. Hölder spaces

A useful tool in nonlinear analysis is Hölder spaces. This is a family of
functional spaces Ck,α for α ∈ (0, 1) which interpolate between the Ck and
Ck+1 spaces, but have the advantage over Ck spaces that they behave nicely
with respect to elliptic operators.

For a function f in Rn, we say that f ∈ Cα if f ∈ C0 and

sup
x 6=y

|f(x)− f(y)|
|x− y|α

< +∞.

Then the Cα norm is defined as

‖f‖Cα = sup |f |+ sup
|f(x)− f(y)|
|x− y|α

.

It is clear that a C1 function is Cα for all α < 1.
The space of Ck,α functions is defined as the space of Ck functions f whose

k-th derivatives ∇kf ∈ Cα, and the Ck,α norm is defined as

‖f‖Ck,α = ‖f‖Ck + ‖∇kf‖Cα .

The reason why Hölder spaces are nice for nonlinear analysis is:
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2.2.1. Lemma. — The spaces Ck,α are Banach algebras.

Proof. — Let us do that only for Cα. If f and g are Cα functions, then

|f(x)g(x)− f(y)g(y)|
|x− y|α

6 |f(x)| |g(x)− g(y)|
|x− y|α

+ |g(y)| |f(x)− f(y)|
|x− y|α

which immediately implies

sup
|(fg)(x)− (fg)(y)|

|x− y|α
6 ‖f‖C0‖g‖Cα + ‖g‖C0‖f‖Cα

which proves the lemma.

2.2.2. Remarks. — 1) The Sobolev spaces Hs are algebras is s is large
enough. More precisely, Hs is an algebra as soon as s > n/2, that is as
soon as Hs ⊂ C0 (exercise: prove it, using the continuous injection Hs ⊂ Lp

if s
n > 1

2 −
1
p if 1 < p <∞).

2) One can prove that there is a continuous inclusion Hs ⊂ Ck,α if s >
n
2 + k + α and 0 < α < 1. The inclusion is compact if s > n

2 + k + α.

As for Sobolev spaces (section 1.7), Hölder spaces can be generalized to
sections of a bundle E on a compact manifold M . It is clear that a differential
operator P : Γ(E) → Γ(F ) of order d induces a continuous operator

(2.2.3) P : Ck+d,α(E) −→ Ck,α(F ).

The Hölder version of the elliptic estimate (lemma 1.7.9) is the Schauder
estimate:

2.2.4. Lemma. — Suppose P : Γ(E) → Γ(F ) is an elliptic operator of order
d. If on a coordinate ball B one has Pu ∈ Ck,α(F ), then u ∈ Ck+d,α(E) and
one has the estimate

‖u‖Ck+d,α(B1/2,E) 6 C
(
‖Pu‖Ck,α(B,F ) + ‖u‖C0(B,E)

)
.

The operator P acting on Hölder spaces (2.2.3) again satisfies

(2.2.5) Ck,α(F ) = ker(P ∗)⊕ im(P ),

as follows immediately from the same statement (1.8.2) for Sobolev spaces and
from lemma 2.2.4.
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2.3. Spaces of connections and gauge group

Fix a flat connection A on a rank r bundle E over M . The holonomy
representation gives a representation

ρ : π1(M) −→ GLr(C),

which sends a loop c starting from x to the parallel transport along c, which
is a transformation of Ex ' C. If we change the base point x, we obtain the
same representation, up to conjugation by an element of G.

If g is a gauge transformation of E (that is a section of the bundle GL(E)),
then it acts on A by

∇g(A) = g ◦ ∇A ◦ g−1.

Then the holonomy of A along a loop starting from x is conjugated by gx. So
we obtain a map

(2.3.1) {flat connections}/gauge −→ {rep. π1(M) → GL(r,C)}/GL(r,C)

and it is well-known that this is map is a bĳection. An inverse map is
constructed by associating to the representation ρ the quotient bundle E =
M̃ ×ρ Cr, obtained by taking the quotient of the flat trivial bundle M ×Cr by
the equivalence relation (x, e) ∼ (xg, ρ(g)−1e).

If one restricts to unitary representations ρ : π1(M) → U(r), then one
obtains unitary bundles E with unitary flat connections. This is the space
that we are now going to study.

Fix the unitary bundle (E, h) and consider

A = {C1,α unitary connections on E}

and the gauge group

G = {C2,α unitary gauge transformations of E}.

This definition means that a connection A ∈ A if the coefficients of its con-
nection 1-form are of regularity C1,α in any smooth local trivialization of E.
If one fixes a smooth connection A0 ∈ A , then one can describe A as the
affine space

A = {A0 + a, a ∈ C1,α(M,Ω1 ⊗ u(E))}.

The curvature of A = A0 + a can be written as

F (A) = F (A0) + dA0a+ a ∧ a ∈ Cα(M,Ω2 ⊗ u(E)).
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It is clear that the linear map a→ dA0a is smooth C1,α → Cα, and the bilinear
map a→ a∧ a is also smooth as C1,α is an algebra, so we get the first part of
the following lemma.

2.3.2. Lemma. — 1) The curvature map F : A → Cα(M,Ω2 ⊗ u(E)) is a
smooth map, whose differential at a point A is a 7→ dAa.

2) The group G is a Banach Lie group, with Lie algebra C2,α(Ω2 ⊗ u(E)),
it acts smoothly on A , and the differential of the action at the identity is
u 7→ −dAu.

Proof. — Locally an element g ∈ G is a C2,α application g from an open
set to Ur. Since exp : ur → Ur is a local diffeomorphism near the origin,
if g is C0 close to the identity, then g = exp(u) with u of class C2,α. This
furnishes a chart from a neighbourhood of the identity in G to C2,α(u(E)),
which gives the structure of a Banach manifold. In this chart, because C2,α

is an algebra, the group operations are smooth (use the Campbell-Hausdorff
formula to prove that the composition is smooth). In the same way one obtains
a chart near any g0 ∈ A by parametrizing nearby transformations by g = g0e

u

with u ∈ C2,α(u(E)).
The action of an element of G on a connection A = A0 + a is by

g(A) = A− dAgg
−1 = A0 + gag−1 − dA0gg

−1.

This involves only one derivative of g (so the result is C1,α) and algebraic
operations, so the action is smooth.

2.4. The action of the gauge group

We now study the action of the gauge group and we try to mimick the finite
dimensional case explained in section 2.1 to construct A /G . First we must
see when the action is free. First observe that the constant homotheties (this
is a circle S1 in the center of G ) act always trivially on A , so it is enough to
look at the action of G /S1. If A ∈ A , note

H0
A = ker dA, dA : C2,α(u(E)) → C1,α(Ω1 ⊗ u(E)).

2.4.1. Lemma. — Let A ∈ GA, then the stabilizer of A is reduced to the
homotheties if and only if H0

A is reduced to R.

Proof. — If u ∈ C2,α(u(E)) satisfies dAu = 0, then g = expu ∈ G also satisfies
dAg = 0, therefore

g(A) = A− dAgg
−1 = A.
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Conversely, if g(A) = A then dAg = 0, so g is parallel and its eigenvalues
are constant. If g is not an homothety, then it must have at least two distinct
eigenvalues, so we get an eigendecomposition E = ⊕k

1Ej of E, and since g is
parallel, A also decomposes as A = ⊕k

1Aj , where Aj is a unitary connection on
Ei. Consider a transformation u = ⊕k

1ixj with xj ∈ R: then u ∈ C2,α(u(E))
and dAu = 0, so H0

A 6= 0.

2.4.2. Remark. — Actually the proof of the lemma contains more:
1. the Lie algebra of the isotropy group GA of A is H0

A;
2. the connections A for which GA is not reduced to S1 are the reducible

connections (admitting a direct sum decomposition).

Let A ∈ A , then by lemma 2.3.2, the tangent space to the G orbit of A is
im(dA) ⊂ C1,α(Ω1 ⊗ u(E)). But

C1,α(Ω1 ⊗ u(E)) = im(dA)⊕ ker(d∗A).

2.4.3. Exercise. — Check that this equality is indeed true, even for A with
non smooth coefficients (C1,α).

Therefore we have a candidate for a slice to the orbit of A,

SA,ε = A+ (ker d∗A) ∩Bε,

where Bε is the ball of radius ε. Choose a supplementary subspace U for H0
A:

C2,α(u(E)) = H0
A ⊕ U.

2.4.4. Lemma. — If ε is small enough then
1. g ∈ GA implies g(SA,ε) ⊂ SA,ε;
2. if g ∈ G and g(SA,ε) ∩ SA,ε 6= ∅, then g ∈ GA;
3. the map F : U × SA,ε → A given by (u,A) 7→ eu(A) is diffeomorphism

onto a neighbourhood of A.

This statement is exactly analogous to the finite dimensional slice theorem
2.1.1. It follows that local structure of A /G near A is that of SA,ε/GA. In
particular:

2.4.5. Corollary. — If A is irreducible, then near A the quotient A /G is a
manifold, with tangent space

TA(A /G ) = ker(d∗A) ⊂ C1,α(Ω1 ⊗ u(E)).
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Proof of the lemma. — The first statement is left as an exercise. The third
statement follows immediately from the inverse function theorem, since the
differential of F at (0, A) is

d(0,A)F (u, a) = dAu+ a

which is an isomorphism C2,α(u(E))×ker(d∗A) → C1,α(u(E)) by the definition
of SA,ε.

There remains to prove the second statement. By contradiction, suppose
that there exist two sequences (Ai) and (Bi) of connections in SA,1/i, and
gauge transformations gi ∈ G such that g(Ai) = Bi. Write Ai = A + ai,
Bi = A+ bi with ai, bi → 0 in C1,α. Then

bi = gaig
−1 − dAgig

−1
i ,

which we can rewrite

(2.4.6) dAgi = giai − bigi.

Since the gi are unitary transformations, they are bounded. We will now use
an iteration on the equation (2.4.6) to prove that gi remains actually bounded
in C2,α. The RHS of (2.4.6) remains bounded, so dAgi remains bounded in C0

and gi remains bounded in C1. In the same way, we deduce that gi is bounded
in C2, and finally that the RHS of (2.4.6) goes to zero in C1,α. It follows that
gi is bounded in C2,α with ‖dAgi‖C1,α → 0, so we can extract a weak limit g in
C2,α such that dAg = 0 (therefore g ∈ GA). Because ‖dA(g − gi)‖C1,α → 0 the
convergence of the (gi) to g is actually strong in C2,α. The end of the proof is
similar to the finite dimensional case.

2.5. The moduli space of flat unitary connections

Suppose that A is a unitary connection on the Hermitian bundle E → M .
We consider the associated De Rham complex:

(2.5.1) 0 → Γ(u(E)) dA→ Γ(Ω1 ⊗ u(E)) dA→ Γ(Ω1 ⊗ u(E)) dA→ · · ·

and we note H i
A its cohomology groups. This is a complex precisely when

A is flat. We have already seen that the first operator in the complex is
the infinitesimal action of the gauge group on the space of connections, and
therefore H0

A measures the reducibility of A. The second operator in the
complex is the differential of the curvature (lemma 2.3.2), so its kernel consists
of the infinitesimal solutions of the equation F (A) = 0. Dividing by the gauge
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group, we deduce that infinitesimal flat connections modulo the gauge group
are parametrized by H1

A.
Let us define the moduli space

M = {A ∈ A , FA = 0}/G .

Remark that the moduli space does not depend on the precise regularity we
have chosen for the connections. Indeed, if the C1,α connection A is flat,
then it is gauge equivalent to the smooth connection M ×ρ Cr, where ρ is its
holonomy representation.

Let us analyze the equation F = 0 near a flat connection A. Take a con-
nection B = A + a, decompose a into its trace part and trace free part: the
trace part is just a one form with values in iR (the homotheties in u(E)), and
we get

(2.5.2) a = iβ + ao, β ∈ Γ(Ω1), ao ∈ Γ(Ω1 ⊗ su(E)).

Then F (A+ a) = dAa+ a ∧ a = dA + 1
2 [a, a], therefore β does not contribute

in the bracket, and we get

(2.5.3) FA+a = idβ + dAa
o + ao ∧ ao,

where the only trace term is the first. So the equation F (A+a) = 0 decouples
into

(2.5.4) dβ = 0, F o
A+a = dAa

o + ao ∧ ao = 0.

Similarly the gauge condition d∗Aa = 0 decouples into

(2.5.5) d∗β = 0, d∗Aa
o = 0.

This is seen also on the deformation complex (2.5.1) which decouples into the
trace part, giving the usual De Rham complex, and the trace free part, giving
the complex

(2.5.6) 0 → Γ(su(E)) dA→ Γ(Ω1 ⊗ su(E)) dA→ Γ(Ω1 ⊗ su(E)) dA→ · · · .

We will note (H i
A)o the cohomology of this complex.

The trace part of the problem (2.5.4)–(2.5.5) is just the linear problem
dβ = d∗β = 0, so the solutions are harmonic 1-forms. Geometrically they
correspond to the flat unitary connections induced on detE. The space of
solutions is H1(M,R), at least locally(1). The problem on the trace free part
is non linear, and the answer is the following result.

(1)Actually the space of flat line bundles is H1(M, R)/H1(M, Z), because H1(M, Z)

parametrizes the connected components of the gauge group of maps g : M → U(1).
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2.5.7. Theorem. — If A is irreducible and (H2
A)o of the complex (2.5.6)

vanishes, then M is a manifold near A, with tangent space at A equal to H1
A.

Note that H1
A = H1(M,R)⊕ (H1

A)o. For a statement when (H2
A)o does not

vanish, see exercise 2.5.11.

Proof. — We have to consider the zero set {FA+a = 0} modulo the gauge
group near a given connection A ∈ A . By lemma 2.4.4, this is equivalent to
restrict the equation to the slice SA,ε. Also we have seen that the equation
FA = 0 decomposes into its trace and trace free parts, and that the solutions
on the trace part are parametrized by H1(M,R). There remains to understand
the trace free part, so the whole proof we will suppose that a is trace free:

a ∈ C1,α(Ω1 ⊗ su(E)).

Let us first consider the case of Riemann surfaces. Then the De Rham
complex (2.5.1) stops at degree 2. The condition (H2

A)o = 0 then means that
dA : C1,α(su(E)) → Cα(su(E)) is surjective. It follows that the curvature map

F o : So
A,ε → Cα(su(E))

is a submersion, so the zero set is a manifold, whose tangent space at A is the
kernel of the differential of F o, therefore is equal to

{a ∈ C1,α(Ω1 ⊗ su(E)), d∗Aa = 0, dAa = 0} = (H1
A)o.

Adding the trace part gives the statement of the theorem.
The general case is more difficult. The curvature is no more a submersion,

but there will be a replacement: the third operator in the complex (2.5.1) gives
a constraint on FA: the Bianchi identity dAFA = 0. We will use it to construct,
starting from an infinitesimal solution a1 ∈ (H1

A)o, a true solution A+ a ∈ A

of the equation FA+a = 0. This will prove that (H1
A)o indeed parametrizes M

near A (or more exactly the part with fixed induced connection on detE).
Let us now proceed with the construction. Consider

dA : C1,α(Ω1 ⊗ su(E)) → Cα(Ω2 ⊗ su(E)).

Inside C1,α(Ω1 ⊗ su(E)), decompose

(2.5.8) ker d∗A = H1
A ⊕W.

Since H2
A = 0, one has im dA = ker dA inside Cα(Ω2 ⊗ su(E)), and there

exists a continuous right inverse

G : ker dA →W

satisfying dAGγ = γ for any γ ∈ Cα(Ω2 ⊗ su(E)) such that dAγ = 0.
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Now start from a1 ∈ (H1
A)o, represented by a harmonic 1-form, and look

for a solution
A+ a = A+ a1 + Φ(a1), Φ(a1) ∈W.

The curvature of our first order approximation is

FA+a1 = a1 ∧ a1

which is of order 2. We try to find a correction a2 ∈W , such that FA+a1+a2 = 0
up to order 3. The equation gives da2 = −a1 ∧ a1 at order 2, so we choose
the second order term a2 = −G(a1 ∧ a1). This is possible because dAa1 = 0
implies dA(a1 ∧ a1) = 0. Now A+ a1 + a2 is a better solution of the problem:

FA+a1+a2 = a1 ∧ a2 + a2 ∧ a1 + a2 ∧ a2

is of order 3.
The general pattern is now clear. We solve inductively by terms A + a1 +

a2 + · · ·+ ak, taking at each step

ak = −G
(
F

(k)
A+a1+···+ak−1

)
,

where the supscript (k) denotes terms of order k exactly, that is terms involving
wedge products ai1 ∧ · · · ∧ aip with i1 + · · ·+ ip = k. This is possible if

dA(F (k)
A+a1+···+ak−1

) = 0,

which follows from (dA+a1+···+ak−1
FA+a1+···+ak−1

)(k) = 0. (Indeed ak−1 has
been constructed so that FA+a1+···+ak−1

is at least of order k). The convergence
of the series

Φ(a1) =
∑
i>2

ai

in C1,α for small a1 is left to the reader. The reader will also check that if
A + a ∈ SA,ε is a solution with small enough ε, then the projection of a on
(H1

A)o using the decomposition (2.5.8) completely determines a, so we have
completely parameterized M near A by the graph of Φ.

2.5.9. Remark. — From the slice theorem, it is immediate that if A is not
irreducible, than a local model for M near A is H1

A/GA.

2.5.10. Remark. — The wedge product a⊗ b 7→ a ∧ b induces a map H1
A ⊗

H1
A → H2

A, and this contains the first obstruction to solve the problem in the
proof of the theorem. If this map vanishes and M is a Kähler manifold, then
M is still smooth at A (Goldman-Millson).
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2.5.11. Exercise (Kuranishi’s model). — The exercise gives another
proof of the theorem, and a description of the moduli space in the case (H2

A)o

does not vanish. The result is that everything reduces to zero sets of maps
between finite dimensional spaces. We can restrict to the nonabelian part of
the equation, so we consider only connections B = A + a with Tr a = 0, and
the moduli space M o = {FB = 0}/G o

A, where G o = C2,α(SU(E)). Locally
the moduli space M is the product of M o with H1(M,R).

1) Decompose Γ(Ω2⊗su(E)) = ker(dA)⊕im(d∗A), and note π the orthogonal
projection on ker(dA). Prove that for B ∈ A close to A, the projection
π : ker(dB) → ker(dA) is injective (prove an estimate ‖dBf‖ > c‖f‖ for B
close to A and f ∈ im d∗A). Maybe here you need Ck,α connections and Ck+1,α

gauge transformations with k > 1.
2) Deduce that for B close to A, one has FB = 0 if and only if πFB = 0.
3) Still inside su(E)-valued 2-forms, decompose ker(dA) = (H2

A)o⊕ im(dA),
and note π0 the orthogonal projection on im(dA). If A is irreducible, prove
that N = {π0FB = 0}/G o is smooth near A, with tangent space (H1

A)o at
the point A (otherwise locally N ≈ (H1

A)o/G o
A). Deduce another proof of the

theorem when (H2
A)o = 0.

4) Suppose now that (H2
A)o 6= 0. Prove that {πFB = 0}/G o is the zero set

of a map f : N → (H2
A)o. Deduce that near A, the moduli space is given as

the zero set of a smooth map f : (H1
A)o → (H2

A)o. If A is reducible, prove that
f is G o

A-equivariant, and a local model for M o is given by f−1(0)/G o
A.

2.5.12. Remark. — On a Riemann surface, by Poincaré duality, (H0
A)o = 0

implies (H2
A)o = 0. Therefore M is smooth at the irreducible points. An

application of the index theorem of Atiyah-Singer shows that its dimension is
(2g−2)(r2−1)+2g. The identification of the tangent space with the space H1

A

enables to define geometric structures on M : the alternate 2-form
∫
M Tr(a∧b)

on H1
A turns out to be a symplectic form(2) (construction of Atiyah-Bott); the

L2 norm of harmonic forms gives a Riemannian metric on M , related to the
symplectic structure by a complex structure on M which in turn has its origin
in the identification of M with a space of holomorphic bundles on the Riemann
surface (theorem of Narasimhan-Seshadri). The result is a Kähler metric on
M .

(2)The form is closed because it is obviously closed when seen on A , as it has constant
coefficients; then M is obtained by a process called “symplectic reduction” under the action
of G ; this implies that there is an induced symplectic form on M .
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2.6. The moduli space of instantons

On a four dimensional manifold (M4, g), we have the decomposition of 2-
forms into selfdual and antiselfdual forms:

Ω2 = Ω+ ⊕ Ω−.

In this dimension we can study the selfdual connections, that is unitary connec-
tions such that FA is selfdual. These connections are often called instantons.

If A is a unitary connection on a bundle E, then there is a sequence of
operators,

(2.6.1) 0 → Γ(u(E)) dA→ Γ(Ω1 ⊗ u(E))
d−A→ Γ(Ω2

− ⊗ u(E)) → 0.

This is the half De Rham complex considered in (1.4.15), but with values
in u(E). The composite d−AdA equals F−

A , so if A is an instanton then the
sequence (2.6.1) is a complex. Therefore we have well defined cohomology
groups H0

A, H1
A and H−

A . We have also the trace free part (H−
A )o.

2.6.2. Theorem. — If A is irreducible and (H−
A )o = 0, then the moduli space

of instantons on E is smooth at A, with tangent space H1
A.

In general, a local model for the moduli space is given by the quotient by GA

of the zero set of a GA-equivariant map H1
A → (H−

A )o.

The proof is the same than that of theorem 2.5.7 and exercice 2.5.11.
Usually one considers only SU(r) instantons, which avoids the problem of

distinguishing the abelian part of the equation.
As for the case of flat connections, the moduli space does not depend on

the precise regularity of the connections which has been chosen for the con-
structions (in this case it is more usual to choose Sobolev spaces rather than
Hölder spaces), because one can show that any instanton is gauge equivalent
to a smooth instanton(3).

This result is just the beginning of gauge theory. The moduli spaces of
the instanton equation, or other gauge equations like Seiberg-Witten equa-
tions, are used to build differential invariants of M4. This requires killing the
obstruction space H2

A by a generic deformation of the equation, and under-
standing a compactification of M . Then the topology of M ⊂ A /G gives

(3)The proof is local, and consists in a local version of the gauge fixing d∗Aa = 0: one can
prove that on any sufficiently small ball, there exists a trivialisation in which A = d + a and
d∗a = 0; then the two equations d∗a = 0 and (da + a ∧ a)− = 0 form a nonlinear elliptic
system from which one can deduce the regularity of a, see [5] for more details.
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rise to the invariants. For example, in the case of Seiberg-Witten equation,
the dimension of the moduli space is often zero and the invariant is just the
number of points in M . For more on gauge theory see the book [5]. For an
introduction to Seiberg-Witten theory see [7].

2.6.3. Exercise (Moduli space near a reducible connection)
Let (M4, g) be a compact oriented Riemannian manifold with b1(M) =

b−2 (M) = 0. Let E be a SU2-fibre bundle on M , so E is a Hermitian rank
2 bundle with trivial determinant: detE = Λ2E = C. One gives the second
Chern class c2(E) = −1.

Let M be the moduli space of SU2-instantons on E. At a connection A,
the local structure of M is therefore governed by the deformation complex

0 → Γ(su(E)) → Γ(Ω1 ⊗ su(E)) → Γ(Ω2
− ⊗ su(E)) → 0.

It will be admitted that under the previous hypothesis, the index theorem
gives dimH0 − dimH1 + dimH2 = −5.

Let G be the gauge group of SU2-transformations of E, so the elements of
G are the sections of SU(E). Let A ∈ M be a reducible connection, therefore
E = L⊕ L∗ (so that detE = L⊗ L∗ = C), and the connection A decomposes
as A = AL ⊕ (AL)∗, where AL is a connection on L and (AL)∗ the connection
induced by A on L∗. Topologically L must satisfy c1(L)2 = −c2(E) = 1.

1) Prove that the stabilizer GA of A is the group U(1), seen inside GA as

the matrix
(
u 0
0 u−1

)
in the decomposition E = L⊕L∗. Deduce dimH0

A = 1.

2) Prove that the bundle su(E) can be identified with the bundle R⊕L⊗L,
where (v, s) ∈ R ⊕ L ⊗ L is identified to the antiselfadjoint endomorphism(
iv s

−s∗ −iv

)
.

3) One looks at the action of eiθ ∈ U(1) ⊂ GA on su(E) = R⊕L⊗L. Prove
that eiθ acts trivially on the R part and by e2iθ on the L⊗ L part.

4) Prove that H1
A of the deformation complex decomposes into H1

A =
H1(R)⊕H1(L⊗ L), and H1(R) = 0.

5) Suppose H2
A = 0. Prove that topologically the moduli space M near A

is a (neighborhood of 0 in the) quotient C3/U(1), that is M − {A} is near A
a cone R∗

+ × CP 2.
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2.7. The moduli space of complex flat connections

In this section, we will see what happens when we consider arbitrary flat
connections, rather than just flat unitary connections. We still fix a Hermitian
bundle (E, h), but the connections will be no more unitary, and the metric
h will be used only as an auxiliary for the Hodge theory of the deformation
complex.

Given a flat connection A, the deformation complex for all flat connections
is now

(2.7.1) 0 → Γ(Ω0 ⊗ EndE) dA→ Γ(Ω1 ⊗ EndE) dA→ Γ(Ω2 ⊗ EndE) dA→ · · ·

We consider the space A c of all flat complex connections on E with regularity
C1,α, the complexified gauge group G c consisting of all sections of GL(E) of
regularity C2,α. Of course again constant homotheties act trivially on A c, so
we really want to look at the action of G c/C∗ on A c.

The theory is completely parallel to that in the case of unitary connections,
except that lemma 2.4.4 and its corollary 2.4.5 are no more true. To get a free
action on A c, instead of restricting to irreducible connections, we shall need
to restrict to semisimple connections, that is flat connections A on E such
that there is no nontrivial A-parallel subbundle F ⊂ E.

For such a semisimple connection A, an element g ∈ G c
A satisfies dAg = 0.

Then the generalized eigenspaces of g are parallel, which by semisimplicity
implies that there is only one: so g has only one constant eigenvalue. Up
to composing by a constant homothety, g is therefore unipotent, and again
ker(g − 1) is parallel with respect to A: since it is not trivial, it must be the
whole of E so g = 1.

So we have proved that for a semisimple connection, the stabilizer of A is
reduced to C∗, which acts trivially on the whole of A c. Now the only thing to
check is the second statement in the slice lemma 2.4.4. Suppose that we have
sequences ai and bi going to 0 in C1,α(Ω1 ⊗ EndE), such that, as in (2.4.6),

(2.7.2) dAgi = giai − bigi.

Up to composing gi with a homothety, we can suppose that supM |gi| = 1.
Then we can extract exactly as in the proof of lemma 2.4.4 a subsequence
gi → g in C2,α such that dAg = 0 and sup |g| = 0. It follows that g is a
nonzero homothety, and the end of the proof of lemma 2.4.4 remains valid.

Note that here we do not treat the case when the stabilizer is not reduced
to homotheties: the proof of the slice theorem in this case fails because the
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limit g satisfies dAg = 0 but it could be non invertible. This cannot happen
for the compact group U(r).

Finally we obtain the analogous result to theorem 2.5.7 and exercice 2.5.11:

2.7.3. Theorem. — If the flat connection A is semisimple, and the cohomol-
ogy group H2

A of the deformation complex (2.7.1) vanishes, then the moduli
space of complex flat connections is smooth at the point A, with tangent space
H1

A.
If H2

A 6= 0, then a local model for the moduli space is given as the zero set
of a map H1

A → H2
A.

Here all the objects are complex, so it turns out that the moduli space is a
complex manifold. The symplectic form alluded to in remark 2.5.12 becomes
a holomorphic symplectic form. There is also a special Riemannian metric
on M (it is hyperKähler), its construction requires the theory of harmonic
metrics on flat bundles.

2.8. The diffeomorphism group

We now start to study a different problem: the action of diffeomorphisms
of a manifold on the space of Riemannian metrics, and the Einstein equation.

If M and N are two compact manifolds, then the space of Ck,α maps from
M to N is a Banach manifold, whose tangent space at a map f ∈ Ck,α(M,N)
is Ck,α(f∗TN). Indeed, choose a Riemannian metric on N , then one can
parametrize the maps g which are C0 close to f by

g(x) = expf(x)(X(x)), X(x) ∈ Tf(x)N.

The vector X(x) is a section on M of the bundle f∗TN , and Ck,α if and only
if g is Ck,α. This gives a chart Ck,α(M,N) → Ck,α(f∗TN). If we have two
maps f1 and f2, there is a smooth transition function between the two charts,
given by X(x) 7→ Y (x) = exp−1

f2(x) expf1(x)(X(x)).
If M = N , we can ask the map f to be a diffeomorphism, and we obtain the

diffeomorphism group Dk,α of diffeomorphisms of M of regularity Ck,α. From
the description of the tangent space above, we obtain that its Lie algebra is

T1D
k,α = Ck,α(TM),

that is vector fields on M of regularity Ck,α. Here we see a first problem: the
bracket of two such vector fields is only Ck−1,α, so that Dk,α cannot be a Lie
group. This comes from the fact that the composition is continuous, but not
smooth in Dk,α, so Dk,α is a smooth manifold, but only a topological group.
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2.8.1. Lemma. — If φ ∈ Dk,α(M), then the right translation by φ is smooth;
if φ is smooth then the left translation by φ is smooth.

Proof. — The right translation by φ sends ψ(x) = expx(Xx) to ψ ◦ φ(x) =
expφ(x)(Xφ(x)), so in the corresponding charts we obtain the map X → X ◦ φ
which is smooth since it is linear.

The left translation by φ send ψ(x) = expx(Xx) to φ◦ψ(x) = φ(expxX(x)) =
expφ∗g

φ(x)(φ∗X(x)), where in the last term the exponential of the metric φ∗g is
used. If φ is smooth then φ∗g is smooth and can be used to build charts for
Dk,α: in the corresponding charts the left translation is X 7→ φ∗X which is
again smooth because it is a continuous linear map.

Note that it is clear that if φ is only Ck,α then φ∗X is Ck−1,α so the above
map X 7→ φ∗X is not well defined in Ck,α.

The stabilizer of the action of the diffeomorphisms on a metric g is the
group of isometries of g: it is a (finite dimensional) Lie group [6], whose
Lie algebra is the space of Killing vector fields: in the kernel of the sym-
metrization of the covariant derivative δ∗ : Γ(TM) → Γ(S2T ∗M). Therefore
Dk,α/ Isom(g) is a smooth manifold, with tangent space at the identity equal
to Ck,α(TM)/ ker δ∗.

2.9. Action of diffeomorphisms on metrics

The space of Riemannian metrics on a compact manifold Mn is an open set
in the vector space of all symmetric 2-tensors, so it is clearly a manifold. We
will consider the space M etk,α of Riemannian metrics of regularity Ck,α.

2.9.1. Lemma. — The action of diffeomorphisms on metrics by (φ, g) 7→ φ∗g

is continuous Dk+1,α ×M etk,α → M etk,α.

Proof. — In local coordinates,

(2.9.2) (φ∗g)kl = gij(φ(x))
∂φi

∂xk
(x)

∂φj

∂xl
(x)

so the statement of the lemma is clear.

Observe that the action is not smooth: indeed, in formula (2.9.2), if we differ-
entiate with respect to φ, then we obtain terms dφ(x)gij(φ̇(x)) which are only
Ck−1,α if g is Ck,α.
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2.9.3. Lemma. — 1) If φ ∈ Dk+1,α then the map g 7→ φ∗g is smooth in
M etk,α.

2) If g is smooth, then the map φ→ φ∗g is smooth Dk+1,α → M etk,α.

Proof. — The map g 7→ φ∗g is linear, so the first statement is obvious. The
second statement comes immediately from the explicit formula (2.9.2) above.

Remind that the infinitesimal action of the diffeomorphisms on metrics is
given by LXg = δ∗X. Let g be a smooth metric on M , since δ∗ is elliptic we
have an orthogonal decomposition

(2.9.4) Ck,α(S2T ∗M) = im(δ∗)⊕ ker(δ).

Therefore a possible slice for the action of Dk+1,α on M etk,α is

(2.9.5) Sε = g + ker(δ) ∩Bε,

where Bε is a ball of radius ε in Ck,α(S2T ∗M). To check that it is a slice, we
must see that the orbit of any metric h close to g meets Sε; so we look for a
diffeomorphism φ such that

(2.9.6) δg(φ∗h) = 0.

Problem: the action φ→ φ∗h is not smooth. This is overcomed by observing
that φ∗δgφ∗h = δφ∗gh, so we can replace equation (2.9.6) by

(2.9.7) δφ∗gh = 0.

Because g is smooth, from lemma 2.9.3 we deduce that the map (φ, h) 7→
Φ(φ, h) = δφ∗gh is now smooth,

Φ : Dk+1,α ×M etk,α → Ck−1,α(T ∗M).

The partial derivative with respect to the first variable is the map

∂1Φ : Ck+1,α(TM) → Ck−1,α(TM),

X 7→ δδ∗X.

To analyse equation (2.9.7), we distinguish two cases:
1. ker(δδ∗) = 0, which is equivalent to ker δ∗ = 0 (which means Isom(M, g)

is discrete): then ∂1Φ is an isomorphism and we can apply the implicit
function theorem to Φ, so for any h close to g, there exists a unique
diffeomorphism φ close to the identity and solving the equation;
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2. ker(δδ∗) 6= 0: then ∂1Φ is not surjective, but the reason is that Φ satisfies
the constraint

Φ(φ, h) ∈ im(δφ∗g) = ker
(
(δ∗)φ∗g

)⊥φ∗g ;

since ker((δ∗)φ∗g) = φ∗ ker((δ∗)g), all these kernels have the same dimen-
sion; this implies that for φ close to the identity and h close to g one
has

δφ∗gh = 0 ⇐⇒ πδφ∗gh = 0,

where π is the orthogonal projection on im(δg) with respect to g; so we
can apply the implicit function theorem to π ◦ Φ to solve the equation
(2.9.7), and the solution is unique if we restrict to a complement of
Isom(M, g) in Dk+1,α.

Together this gives the third condition of the following slice result:

2.9.8. Lemma. — The slice Sε defined by (2.9.5) for the action of Dk+1,α

on M etk,α satisfies:
1. if φ ∈ Isom(M, g) then φ(Sε) ⊂ Sε;
2. if φ ∈ Dk+1,α and φ(Sε) ∩ Sε 6= ∅, then φ ∈ Isom(M, g);
3. choose a section σ : Dk+1,α/ Isom(M, g) → Dk+1,α, then the map F :

Dk+1,α/ Isom(M, g) × Sε → M etk,α defined by F (φ, g) = σ(φ)∗g is a
homeomorphism in a neighbourhood of (1, g).

Observe that the map F cannot be smooth since the pullback φ∗g is not
smooth in these spaces.

Proof. — Only the second condition remains to be proved. As in the lemma
2.4.4, the point is to control the diffeomorphism φ and its inverse in Ck+1,α

if φ∗g1 = g2 and g1 and g2 are controled in Ck,α. As φ is an isometry from
(M, g2) to (M, g1), it is controled in C0 and its first derivatives are bounded
(and the same is true for φ−1). Now in local coordinates one calculates that
the coefficients blij of the Levi-Civita connection of g2 are given in terms of the
coefficients al

ij of the Levi-Civita connection of g1 by the formula

(2.9.9) blij = (∂rφ
j)−1(∂sφ

k)−1at
rs(∂tφ

l)− (∂2
rsφ

l)(∂sφ
i)−1(∂rφ

j)−1.

Since the first derivatives of φ are bounded, we deduce from the equation a
control on the second derivatives (∂2

rsf
l). Now an iteration based on equation

(2.9.9) gives a Ck+1,α control on φ, since the connections forms a and b are
controled in Ck−1,α if g1 and g2 are controled in Ck,α. The same holds for
φ−1.
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2.10. The Einstein equation

The linearization of the Ricci tensor is (see [3], that we follow closely in this
section)

(2.10.1) dg Ric(ġ) =
1
2
∆Lġ − δ∗δġ − 1

2
∇dTr(ġ);

here the Lichnerowicz Laplacian ∆L is defined by

∆Lġ = ∇∇∗ġ + Ric ◦ġ + ġ ◦ Ric−2
◦
Rġ,

where the composition of two quadratic forms means the quadratic form cor-
responding to the composition of the associated selfadjoint endomorphisms,
and the action

◦
R of the curvature on symmetric 2-tensors is a symmetric

endormorphism of S2T ∗M , defined by

(
◦
Rh)X,Y =

n∑
1

h(Rei,XY, ei);

obviously
◦
Rg = Ricg,

so
◦
R preserves the decomposition Rg ⊕ S2

0T
∗M when g is Einstein.

2.10.2. Remark. — As in the case of connections, the precise regularity used
to study the Einstein equation is not relevant. Indeed one can prove that a
Ck,α Einstein metric is always diffeomorphic to a smooth Einstein metric. If
h is a small deformation of a smooth Einstein metric g, we can use the gauge
δgh = 0, so h is a solution of the nonlinear elliptic system (2.10.11), and it is
not difficult to prove that h is smooth.

The general case is obtained by a local version: if g is Ck,α, one can construct
locally Ck+1,α harmonic coordinates (xi), that is satisfying ∆xi = 0. The
choice of coordinates breaks down the diffeomorphism invariance, so that the
Einstein equation becomes a nonlinear elliptic system. One can then prove
smoothness of the metric in the harmonic coordinates.

2.10.3. Exercise. — Consider S2T ∗M ⊂ Ω1 ⊗ Ω1, and prove that the cur-
vature term RΩ1

(h) in equation (1.5.7) is −
◦
Rh.

2.10.4. Lemma (Einstein-Hilbert functional). — Let E(g) =
∫
M Scalg volg,

then dgE(ġ) = −
∫
M 〈ġ,Ricg −1

2 Scalg g〉 volg.

Proof. — Left as an exercise: calculate ˙Scal using (2.10.1).
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2.10.5. Exercise. — Prove that for any diffeomorphism invariant Rieman-
nian functional E(g), the gradient of E is divergence free. Deduce another
proof of the Bianchi identity: Ric−1

2 Scal g is divergence free.

2.10.6. Exercise. — Use the Einstein-Hilbert functional to prove that if (gt)
is a one parameter family of Einstein metrics with varying Einstein constant,
Ric(gt) = λ(t)gt, then

dλ

dt
=

(n− 1)λ
nVol gt

dVol gt

dt
.

Deduce that in the family the sign of λ remains constant (+1, 0 or −1).

From the exercise, we deduce that when we look at the deformations of
Einstein metrics, then (up to rescaling) we can suppose that the Einstein
constant remains constant in the family.

So now let us study the deformations of the equation Ric(g) = λg, where λ
is a fixed real number. As usual, there is a deformation complex:

(2.10.7) 0 → Γ(TM) δ∗→ Γ(S2T ∗M) d Ric−λ−→ Γ(S2T ∗M) Bg

→ Γ(T ∗M) → 0.

Here Bg is the Bianchi operator, Bg : Γ(S2T ∗M) → Γ(Ω1), given by

(2.10.8) Bgh = δgh+
1
2
dTrg h.

The first arrow is the infinitesimal action of the diffeomorphism, the middle
arrow is the linearization of the equation. Because of the Bianchi identity,

(2.10.9) Bg Ricg = 0,

the sequence if a complex when the Einstein equation Ric(g) = λg is satisfied.

2.10.10. Exercise. — Check that (2.10.7) is an elliptic complex.

Here the theory will not be as nice as in the connection case. As we shall
see later, the complex of symbols can be deformed into a selfadjoint complex,
so the index of the complex is zero. If for example H0 = 0 (that is Isom(g)
is discrete), then dimH2 = dimH1 + dimH3, so there are obstructions (H2)
as soon as there are infinitesimal deformations (H1). So we will be unable
to use the deformation complex to provide a family of deformations. Instead,
our main theorem in this section (theorem 2.10.19) will only state a rigidity
result: if H1 = 0, then every nearby solution is diffeomorphic to g.
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By the slice lemma 2.9.8, for h close to g we can also suppose δgh = 0, so
we want to solve the system

δgh = 0

Ric(h) = λh
(2.10.11)

To solve both equations together, we define

(2.10.12) Φg(h) = Ric(h)− λh+ (δh)∗δgh.

Then the system (2.10.11) implies Φg(h) = 0. Let us study the equation
Φg(h) = 0 at an Einstein metric g. The linearization is

(2.10.13) dgΦg(ġ) =
1
2
∇∗∇ġ −

◦
Rġ − 1

2
∇dTr ġ.

On the trace part, we obtain

(2.10.14) Tr dgΦg(ġ) = ∆ Tr(ġ)− λTr(ġ).

Then:

2.10.15. Lemma. — If λ 6= 0, then ker(∆− λ) = 0.

Proof. — If λ < 0 it is obvious. If λ > 0, it is a direct consequence of the
following eigenvalue estimate : if Ricg > λg, then the first (nonzero) eigenvalue
of ∆ on functions satisfies

(2.10.16) λ1 >
n

n− 1
λ.

To prove this estimate, suppose that ∆f = λ1f with λ1 > 0. Then ∆df =
λ1df . The Bochner formula (lemma 1.5.2) reads

(∇∗∇− λ1)df + Ric(df) = 0.

Taking the scalar product with df , we obtain

‖∇df‖2 − λ1‖df‖2 6 −λ‖df‖2.

But ∆f = −Tr(∇df) so ‖∇df‖2 > 1
n‖∆f‖

2 = λ1
n ‖df‖

2, and the lemma follows.

Coming back to the trace (2.10.14) of our infinitesimal equation, the lemma
implies that the solutions are zero if λ 6= 0, or constants if λ = 0 (which
correspond to scaling g). In the λ = 0 case we forget the trivial solutions, so
the infinitesimal solutions of Φg(h) = 0 satisfy

Tr ġ = 0
1
2
∇∗∇ġ −

◦
Rġ = 0

(2.10.17)
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In addition, we look for metrics in the slice to g, so we suppose that we have
the gauge condition

(2.10.18) δg ġ = 0.

The system (2.10.17)–(2.10.18) characterizes infinitesimal Einstein deforma-
tions of g. Here is the main theorem of this section.

Call an Einstein metric g rigid if any small Einstein deformation of g is
diffeomorphic to g.

2.10.19. Theorem. — If the Einstein metric g has no infinitesimal defor-
mations solving the system (2.10.17)–(2.10.18), then g is rigid as an Einstein
metric. This is satisfied in particular when the sectional curvature of g is
negative and n > 2.

Proof. — By the Bianchi identity, one has

(2.10.20) BhΦg(h) = Bh(δh)∗δgh.

Infinitesimally, this gives

(2.10.21) Bg
(
dgΦg(ġ)

)
= Bg(δg)∗δg ġ.

In particular, observe that

(2.10.22) δgġ = 0 implies Bg(dgΦg(ġ)) = 0.

We will note

(2.10.23) H = kerBg, H ⊂ Ck−2,α(S2T ∗M),

and π the orthogonal projection on H with respect to the L2 scalar product.
If h is an Einstein metric close to g, then by a diffeomorphism we can put

h in the gauge δgh = 0, then it satisfies Φg(h) = 0 and therefore is in the zero
set of the map

(2.10.24) P : ker δg → H, P (h) = πΦg(h).

We will prove that under the assumption of the theorem, the map P is a local
diffeomorphism, so that P−1(0) = {g} and there is no other Einstein metric
near g.

The differential of P at g is just

(2.10.25) dgP = π ◦ dgΦg = dgΦg
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since we restrict to ker δg, see (2.10.22). The kernel of dgP consists of the in-
finitesimal Einstein deformations, so it is trivial by hypothesis. The orthogonal
of the image is exactly

(2.10.26) H ∩ ker
(
(dgΦg)∗

)
,

and we have to check that it vanishes. An element u ∈ H∩ker(dgΦg)∗ satisfies
the system

Bgu = δu+
1
2
dTru = 0,

1
2
∇∗∇u−

◦
Ru− 1

2
(δδu)g = 0.

(2.10.27)

Using the first equation to replace in the second one, we get

(2.10.28) 1
2
∇∗∇u−

◦
Ru+

1
4
(∆ Tru)g = 0.

The trace of this equation is(1
2

+
n

4
)∆ Tru− λTru = 0.

Since 1
2 + n

4 > 1, lemma 2.10.15 implies that Tru = 0. Then the system

(2.10.27) implies δu = 0 and 1
2∇

∗∇u−
◦
Ru = 0, so the solutions are again the

infinitesimal Einstein deformations, therefore are trivial.
The second part of the theorem involves studying the kernel of the operator

P = 1
2∇

∗∇−
◦
R in the system (2.10.17), in the case g has negative sectional cur-

vature. By the exercice 2.10.3 and the Bochner-Weitzenböck formula (1.5.6),
if we consider h ∈ Γ(S2T ∗M) as a section of Ω1 ⊗ Ω1, then

(2.10.29) Ph =
1
2
(
∆h−

◦
Rh− Scal

n
h
)
.

We claim that if Ricg > λg, then for trace free symmetric 2-tensors h,

(2.10.30) 〈
◦
Rh, h〉
|h|2

+ λ 6 (n− 2) supK.

Suppose this claim is true. Integrating equation (2.10.29) against h, we get

(2.10.31) (Ph, h) > −1
2

(
(
◦
Rh, h) + λ‖h‖2

)
>

1
2
(n− 2)‖h‖2(− supK).

If g has K < 0 and n > 2, we deduce that Ph = 0 implies h = 0.
There remains to prove (2.10.30). Suppose a is an eigenvalue of

◦
R on

S2
0T

∗M , with associated eigenvector η. Diagonalize η in an orthonormal basis,
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with eigenvalues λ1 > |λ2| > · · · > |λn| satisfying
∑
λi = 0. Then, denoting

by Kmax the largest sectional curvature at the point,

aλ1 = (
◦
Rη)11 =

∑
i>1

R1ii1λi =
∑
i>1

Kmaxλi −
∑
i>1

(Kmax −R1ii1)λi

6 −Kmaxλ1 + λ1

∑
i>1

(Kmax −R1ii1)

6 λ1

(
(n− 2)Kmax − Ric11

)
so a 6 (n− 2)Kmax − λ, which proves the claim.

In particular, note that the theorem proves that the quotients of the hy-
perbolic space Hn are rigid as Einstein metrics for n > 2. Of course this is
not true for n = 2, as the hyperbolic metrics on a Riemann surface of genus g
form a (6g − 6)-dimensional manifold (Teichmüller space).

There are only few situations in which the moduli space of Einstein metrics
is known. The main example is the case of Kähler-Einstein metrics: in that
case one can parametrize the moduli space by the nearby complex structures,
see [3].

Given an infinitesimal solution of Einstein equations, the question of inte-
grating it into a true solution is very difficult, as one has to check high order
obstructions. There exist explicit examples where an infinitesimal deformation
cannot be integrated. As a result, almost nothing is known on the dimension
of the moduli space of Einstein metrics.

2.10.32. Exercise. — The aim of the exercice is to prove that if Rich < 0,
then the equation Φg(h) = 0 defined in (2.10.12) is equivalent to the system
(2.10.11).

1) Decompose the covariant derivative on 1-forms as ∇ = δ∗ + 1
2d, and

deduce that on 1-forms.

(2.10.33) ∇∗∇ = δδ∗ +
1
2
d∗d

Use the Bochner formula to deduce, still on 1-forms,

(2.10.34) (δ +
1
2
dTr)δ∗ =

1
2
(
∇∗∇− Ric

)
.

2) Prove that
BhΦg(h) = (δh +

1
2
dTrh)(δh)∗δgh.

Deduce that if Rich < 0, then Φg(h) = 0 implies δgh = 0 and therefore h
satisfies the system (2.10.11).
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2.10.35. Exercise. — Let g be a smooth metric.
1) Prove that if Ricg < 0, then g has no Killing vector field, so the isometry

group of g is discrete. Hint: use formula (2.10.34), which reads Bgδ∗ =
1
2(∇∗∇− Ric).

2) Prove that if Ricg < 0, then instead of the gauge δgh = 0 to find a slice
at g for the action of the diffeomorphisms, one can use the “Bianchi gauge”

(2.10.36) Bg(h) = δgh+
1
2
dTrg h = 0.

3) One can use this gauge to study the Einstein equation near g. Prove that
if Rich < 0, the system

(2.10.37) Bgh = 0, Rich = λh

is equivalent to

(2.10.38) Φg(h) := Rich−λh+ (δh)∗Bgh = 0.

Prove that

(2.10.39) dgΦg =
1
2
∇∗∇−

◦
R.

Suppose g is Einstein with Ricg < 0. Prove that if g has no infinitesimal
Einstein deformation (that is no ġ satisfying (2.10.17) and (2.10.18)), then
dgΦg is an isomorphism. Deduce a simpler proof of theorem 2.10.19 in the
case Ricg < 0.



CHAPTER 3

A GLUING CONSTRUCTION: DEHN
SURGERY FOR EINSTEIN METRICS

Gluing constructions for solutions of geometric non linear elliptic problems
are frequently used now. The examples include gauge theory (instan-

tons, Seiberg-Witten theory), Gromov-Witten theory (holomorphic curves),
minimal surfaces, selfdual metrics, extremal Kähler metrics. . . In all cases one
starts from solutions defined on two manifolds X1 and X2, which have some
coincidence along a common Y which can be found in X1 and X2, and one
tries to construct solutions on a manifold X obtained from X1 and X2 by
surgery along Y . The main steps are

1. construction of a family (φt)t>0 of approximate solutions on X, which
converge when t → 0 to the two given solutions on the disjoint sum
X1 qX2;

2. for small enough t, deform the approximate solution φt to a true solution
on X; the main technical step here is usually to prove a uniform estimate
for the norm of a right inverse of the linearization of the problem.

We will illustrate this technique on the particular example of the construc-
tion of new Einstein metrics from cusp hyperbolic metrics by Dehn surgery. In
dimension 3, this is a classical result of Thurston: in that case, the result is the
construction of compact hyperbolic 3-manifolds, and the method of Thurston
was group theoretic. In higher dimension, it is a recent result of Anderson [1],
the proof is analytic, and it gives another proof of the 3-dimensional result.

3.1. Cusp ends

Remind the half space model of hyperbolic n-space: one has

Hn = {x1 > 0} ⊂ Rn,



46 CHAPTER 3. DEHN SURGERY FOR EINSTEIN METRICS

with the metric
g =

(dx1)2 + · · ·+ (dxn)2

(x1)2
.

Take a lattice Zn−1 ⊂ Rn−1
x2···xn , so the quotient is a torus

T = Rn−1/Zn−1,

with flat metric gT . We have an induced hyperbolic metric on (0,+∞)× T =
Hn/Zn−1. Replacing the coordinate x1 by r = 1/x1, we can write this metric
as

(3.1.1) g =
dr2

r2
+ r2gT .

This metric is complete and has two ends:
1. r → 0 : then the diameter of the torus slices is O(r) so goes to zero, and

the volume rn−2dr ∧ volT has finite integral—it is a cusp end;
2. r → +∞ : here the diameter of the torus slices blows up and the volume

is infinite—it is a hyperbolic end.
The theory of Fuchsian groups enable to construct a lot of complete hy-

perbolic manifolds Hn/Γ for discrete subgroups Γ ⊂ SO(1, n) with only cusp
ends. Each end, near infinity, can be described by the formula (3.1.1).

3.2. Toral black hole metric

Let us now consider the metric

(3.2.1) gBH =
dr2

V (r)
+ V (r)dθ2 + r2gT n−2 , V (r) = r2 − a

rn−3
.

Here Tn−2 is a torus, θ is a circular variable on a circle of length β > 0, r is a
real variable, and a > 0 is a real parameter. Obviously we need

(3.2.2) r > r+ = a
1

n−1 ,

so the metric is defined on (r+,+∞) × S1 × Tn−2. An easy calculation (see
section 3.10) shows that gBH is Einstein, with

(3.2.3) Ric(gBH) = −(n− 1)gBH .

Actually the whole curvature tensor of gBH is easily calculated (see again
the details in section 3.10): the submanifold (r+,+∞)×{0}× Tn−2 is totally
geodesic as the fixed point set of the isometry θ → −θ. More generally, if
we fix any subspace E ⊂ Tn−2, then (r+,+∞) × E is totally geodesic. In
the same way, (r+,+∞) × S1 × E is totally geodesic. It follows that in the
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basis (∂r, ∂θ, ∂x2 , . . . , ∂xn−1) (or more precisely in the corresponding basis of 2-
forms) the curvature is diagonal, so it is determined by the following sectional
curvatures (whose calculation is straightforward):

Krθ = −1 + (n− 3)(n− 2)
a

2rn−1
,

Krxi = −1− (n− 3)
a

2rn−1
,

Kθxi = −1− (n− 3)
a

2rn−1
,

Kxixj = −1 +
a

rn−1
.

(3.2.4)

If n = 3, of course all the sectional curvatures are −1. If n > 4, observe
that Krθ always takes nonnegative values, so gBH has never negative sectional
curvature.

Let us examine the behaviour of gBH at the ends. First, when r goes to
infinity, we have V (r) ∼ r2 and therefore

(3.2.5) gBH ∼ dr2

r2
+ r2(dθ2 + gT n−2), r → +∞.

This is a hyperbolic end. This is confirmed by the formulas (3.2.4): when
r → +∞, all curvatures go to −1 at speed O( 1

rn−1 ).
When r → r+, we have V (r) ∼ (n− 1)r+(r − r+) and therefore

(3.2.6) gBH ∼ 1
(n− 1)r+

dr2

r − r+
+ (n− 1)r+dθ2 + r2+gT , r → r+,

so after the change of coordinates u =
√
r − r+, we get

(3.2.7) gBH ∼ 4
(n− 1)r+

(
du2 +

r2+(n− 1)2

4
u2dθ2

)
+ r2+gT .

In this formula the coordinate u goes to zero, so we can think of the metric
as being defined on the product of a punctured disk D − {0} with a torus
T , where the disk D is equipped with polar coordinates (u, θ). It is clear
that the metric gBH on (D − {0}) × T is incomplete. There is an obvious
compactification of (D−{0})×T by D×T , adding a ‘core torus’ {0}×Tn−2.
The formula (3.2.7) defines a continuous extension of gBH on D× T provided
that the circular variable 1

2r+(n− 1)θ is defined on an interval of length 2π(1).

(1)In general, the metric dr2 + r2dθ2 for θ ∈ [0, α] has a cone singularity at zero with angle
α. If the angle is 2π, the metric is of course the smooth flat metric.
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Here this gives the condition that θ ∈ [0, β] with

(3.2.8) β =
4π

(n− 1)r+
.

The metric gBH actually extends smoothly over D × T . To see this, it
suffices to perform the exact calculation for gBH with respect to the coordinate
u instead of the approximation (3.2.7). This is left to the reader.

In dimension n = 3, there is a useful coordinate change: we have V (r) =
r2 − a, so we choose a coordinate t so that

(3.2.9) dt =
dr

r2 − a
, that is t = argcosh

r√
a
.

The torus Tn−2 is now a circle, with coordinate ϕ, and the formula (3.2.1)
becomes

(3.2.10) gBH = dt2 + sinh2(t)adθ2 + cosh2(t)adϕ2.

Observe that with the choice (3.2.8), the variable
√
aθ of course varies between

0 and 2π. This formula is the standard form of a hyperbolic metric around
the core geodesic t = 0.

3.3. Twisted toral black hole metric

There is a twisted version of the toral black hole metric that will be useful
later. Observe that the slices {r = cst} are tori Tn−1 = S1 × Tn−2, and we
made the circle S1 and the torus Tn−2 orthogonal. This is arbitrary, and can
be generalized in the following way. Fix a torus Tn−1 = Rn−1/Λ, where Λ is
a lattice Zn−1, and a simple circle S1 ⊂ Tn−1. If (v1, . . . , vn−1) is a basis of
Λ, such circle is given by a vector

(3.3.1) v =
∑

nivi, ni ∈ Z, (ni) prime.

By composing by an element of SLn−1(Z), we can suppose that v = v1. Then
〈v2, . . . , vn−1〉 generates an action of Zn−2 on Rn−1 which descends to an action
on

(3.3.2) R/〈v〉 × Rn−2 = S1 × Rn−2,

whose quotient is exactly our torus Tn−1. We can write the toral black hole
metric (3.2.1) on (r+,+∞)× S1 × Rn−2,

(3.3.3) gBH =
dr2

V (r)
+ V (r)dθ2 + r2gRn−2 ,
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and observe that this is invariant under the residual Zn−2 action on S1×Rn−1,
so descends to a metric on the quotient (r+,+∞) × Tn−1. As before, this
metric extends smoothly on the compactification obtained by adding a core
torus Tn−2 at r = r+ (just compactify (r+,+∞) × S1 × Rn−2 by adding a
Rn−2 at r = r+, and observe that the Zn−2 action extends as a free action on
the compactification).

Another way to write the same twisted metric is the following: the torus
Tn−1 is equipped with the direction of the circles generated by v, but it is not
a metric product. Denote η the 1-form dual to the vector field v

|v| (this is our
form dθ above, but we note it differently to emphasize that the metric of Tn−1

is not a product). From the explicit form of V (r) we can rewrite the metric
on (r+,+∞)× Tn−1 as

(3.3.4) gBH =
dr2

V (r)
+ r2gT n−1 −

a

rn−3
η2.

Locally, the twisted metric (3.3.3) is the same as our initial metric, so it shares
exactly the same properties. In particular it is Einstein.

3.4. Dependence on the parameter

The toral black hole metric depends on the parameter a. Nevertheless, as
we shall see, this dependence is artificial. Denote (rj , θj , x

i
j) for j = 1, 2 the

coordinates for the two metric g1 and g2 defined by the parameters a1 and a2.
Write a2 = λn−1a1 and perform the change of variables r2 = λr1. Then the
two corresponding functions V are related by V2(r2) = λ2V1(r1), and we get

(3.4.1) g2 =
dr21
V1(r1)

+ V1(r1)λ2dθ2
2 + r21λ

2
(
(dx2

2)
2 + · · ·

)
.

Taking

(3.4.2) θ1 = λθ2, xj
1 = λxj

2,

we exactly recover g1. So all the toral black hole metrics for different values
of a are actually the same metric (up to a scaling of the Tn−2 factor).

On the other hand, it is interesting to note that, at least formally, when
a → 0, then V (r) → r2 so gBH converges to the hyperbolic metric dr2

r2 +
r2dθ2 + r2gT n−1 . Of course in the process of making a go to zero, we obtain
longer and longer circle (coordinate θ) and torus Tn−2, see (3.4.2), so we do
not get a geometric convergence towards the model cusp metric (3.1.1). To
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obtain this in the next section, we will need a subtler construction with more
and more twisted toral black hole metrics.

3.5. Dehn surgery and statement of the theorem

Here we describe the surgery. Start from a hyperbolic manifold (Mn, g)
with cusps. For simplicity we will assume that M has only one end, but if
there are several cusp ends, one can do the same on each end. Then we have
coordinates such that near the end, the metric has the form

(3.5.1) g =
dr2

r2
+ r2gT .

Up to changing r → λr and gT → λ−2gT , we can suppose that the formula is
valid for r 6 2. Therefore M is the union of a compact part M1 = {r > 1}
and of a cusp end (0, 1]×Tn−1 along their common boundary: M = M1qT n−1

(0, 1]× Tn−1.
The surgery consists in cutting the noncompact cusp end and gluing a com-

pact end D×Tn−2 instead. The two pieces M1 and D×Tn−2 will be identified
along their common boundary Tn−1 in the following way. Choose a simple
closed geodesic σ in Tn−1: this will be the boundary of the disk D that will
be glued. As used in section 3.3, one can choose a basis (v1 = σ, v2, . . . , vn−1)
of the lattice Λ such that Tn−1 = Rn−1/Λ. Then Tn−1 = S1 × Tn−2, where
Tn−2 is generated by v2, . . . , vn. We can then perform the topological sum

(3.5.2) Mσ = M1 qT n−1 (D × Tn−2).

The result is a manifold whose topology depends only on the homotopy class
of σ, that is only on the class [σ] ∈ H1(Tn−1,Z).

Of course we also want to perform surgery on the metric. Here we will use
the twisted toral black hole metric of section 3.3. We know that the torus
Tn−1 is not a Riemannian product S1 × Tn−2, with the S1 corresponding to
σ, but it is twisted: Tn−1 = (S1 × Rn−2)/Zn−2, where Zn−2 is generated by
v2, . . . , vn. Denote by ` the length of σ. Choose the parameter a so that the
associated function V (r) = r2 − a

rn−3 satisfies

(3.5.3) βV (1) = `, that is 4π(1− a)

(n− 1)a
1

n−1

= `.
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This makes the length at r = 1 of the circle of the toral black hole metric
coincide with `. Observe that when ` becomes big, then

(3.5.4) a ∼
(

4π
(n− 1)`

)n−1

so in particular a → 0. With this choice of a, the twisted toral black hole
metric

(3.5.5) bσ = V (r)−1dr2 + V (r)dθ2 + r2gRn−2

on (S1 × Rn−1)/Zn−2 coincides exactly on the slice {r = 1} with the given
metric on Tn−1. This is the metric that we will glue with g in order to get a
Riemannian metric on Mσ.

In order to obtain a smooth metric on Mσ, we choose a cut-off function
χ(r) > 0 such that

(3.5.6) χ(r) =

{
0 if r 6 1/2

1 if r > 2.

Then we define on Mσ the metric

(3.5.7) gσ = χg + (1− χ)bσ.

This metric coincides with g on the compact part {r > 2} of M , and with bσ
for r 6 1/2.

Since V (r) = r2 − a
rn−3 , from (3.5.4) we deduce that for 1/2 6 r 6 2 one

has when `→ +∞

(3.5.8) V (r) = r2 +O(
1

`n−1
).

The same is true for all the derivatives of V . It follows that, still on the region
1/2 6 r 6 2, one has

(3.5.9) |bσ − g| = O(
1

`n−1
) and |∇k(bσ − g)| = O(

1
`n−1

)

for all k > 0. (Here we take the covariant derivative ∇ and the norm with
respect to the fixed metric g; this is not an important choice since bσ is closer
and closer to g, so it would be equivalent to use bσ instead of g). In particular
it follows that

(3.5.10) Ric(gσ) + (n− 1)gσ = O(
1

`n−1
)

and the same is true for all covariant derivatives. Therefore the metrics gσ are
a family of metrics defined on the (distinct) compact manifolds Mσ, which are
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closer and closer to being Einstein when the length of σ goes to infinity. The
family converges to the cusp metric g on M .

We can now state the main theorem of this chapter.

3.5.11. Theorem. — For ` large enough, there is a small perturbation g̃σ of
gσ on Mσ which satisfies the Einstein equation

Ric(g̃σ) + (n− 1)g̃σ = 0.

The perturbation g̃σ is unique (up to diffeomorphism) in a small neighbourhood
of gσ.

If there are several cusp ends, the same result is true, provided that one
chooses a long enough geodesic at each end.

The meaning of the ‘small neighbourhood’ will be made precise in section
3.8, where the theorem is proved.

3.6. Idea of proof of the theorem

We will use the deformation theory of Einstein metrics, studied in section
2.10, to deform gσ into an Einstein metric. We want to solve the Einstein
equation for a metric h close to gσ. Therefore it is natural to search for h in a
good gauge with respect to the action of the diffeomorphisms on the metrics.
We choose the condition

(3.6.1) Bgσh = 0.

It is then natural to pose

(3.6.2) Φ(h) = Ric(h) + (n− 1)h+ (δh)∗Bgσh.

It has been proved in exercice 2.10.35 that, as far as Ric(h) < 0 (which will
be the case by (3.5.10) if h is close to gσ), the equation Φ(h) = 0 is equivalent
to the system

(3.6.3) Bgσh = 0, Ric(h) + (n− 1)h = 0.

Furthermore, the linearization at gσ of Φ is

(3.6.4) L := dgσΦ =
1
2
∇∗∇−

◦
R.

We can decompose Φ as

(3.6.5) Φ(gσ + h) = Φ(0) + L(h) +Q(h),
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where Q is of order 2 in h. The theorem will be proved by using the following
abstract lemma.

3.6.6. Lemma. — Let Φ : E → F be a smooth map between Banach spaces,
such that Φ(x) = Φ(0)+L(x)+Q(x), where L = d0Φ is linear and Q satisfies

(3.6.7) ‖Q(x)−Q(y)‖ 6 k(‖x‖+ ‖y‖)‖x− y‖ for ‖x‖ 6 r0, ‖y‖ 6 r0.

Suppose that L is invertible and

(3.6.8) ‖L−1‖ 6 c

Then if r 6 r0 satisfies the two conditions

(3.6.9) r 6
1

2kc
, ‖Φ(0)‖ 6

r

c
− kr2,

there exists a unique solution of the equation Φ(x) = 0 such that ‖x‖ 6 r.

For example, suppose that c > 1, the hypothesis is true for r = 1
2kc if

‖Φ(0)‖ 6 1
4k . Using the freedom to fix r, we see that if furthermore ‖Φ(0)‖ is

small, then the solution will be also small.

Proof. — The equation can be written x = −L−1(Φ(0)+Q(x)). The result is
a direct application of the fixed point theorem for contractant mappings.

Our application of the abstract lemma to the Einstein equation Φ(0) = 0
is not straight forward. We will consider Φ as a map between Hölder spaces,
but the manifolds Mσ vary, so some care has to be taken in the definition of
the Hölder spaces. Then the estimate (3.6.7) on Q is easy because Q is an
explicit nonlinear operator. The norm of Φ(0) is O( 1

`n−1 ) so goes to zero, so
the main remaining ingredient to apply the lemma is a uniform estimate on
the norm of the inverse of the linearization L when `→ +∞. As is typical in
gluing problems, this last step is the most difficult part of the proof.

3.7. The Hölder spaces

Our first step is to define correctly the Hölder spaces needed for the analysis,
in a uniform way for all manifolds Mσ. We cannot choose balls, because when
σ goes to infinity the injectivity radius goes to zero. Nevertheless there is an
alternative.

It is easy to check that the second fundamental form of the slices {x = cst}
for gBH is bounded, and all its covariant derivatives. Now the calculation
(3.2.4) for the curvature tensor shows that the curvature and all its covariant
derivatives remain bounded indepently of σ.
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The fact that the curvature is uniformly bounded implies that the conju-
gacy radius remains bounded below by a uniform constant ρ. Therefore the
exponential map remains a local diffeomorphism on all balls Bx(ρ) ⊂ TxMσ.
Furthermore, because all the covariant derivatives of the curvature are uni-
formly bounded, we get that on each such ball the metric

(3.7.1) exp∗x gσ = gijdx
idxj

has coefficients (gij) mutually bounded with those of the flat metric (δij),

(3.7.2) C−1
0 (δij) 6 (gij) 6 C0(δij)

where the constant C is uniform with respect to σ, and all the derivatives of
gij are bounded,

(3.7.3) |∇kgij | 6 Ck

on B(ρ) for a uniform constant Ck. We can say that the metrics gσ have
‘bounded local geometry’.

For each σ, cover Mσ by (a finite number of) images by the exponential
map of balls Bxi(ρ/2). The Hölder norm of a tensor f is then defined as the
supremum of the Hölder norms of exp∗xi

f on each ball. Because of the uniform
control (3.7.2)–(3.7.3) on the coefficients of the metrics, the elliptic estimate for
the geometric operator L = 1

2∇
∗∇−

◦
R in these balls have controled constants,

see remark 1.7.11 which is valid also for Hölder spaces. Therefore there is a
constant C > 0, such that the following estimate is valid in every ball Bxi(ρ)
and for all σ:

(3.7.4) ‖u‖C2,α(B(ρ/2)) 6 C
(
‖Lu‖Cα(B(ρ)) + ‖u‖C0(B(ρ))

)
.

Of course the uniform global elliptic estimate follows:

(3.7.5) ‖u‖C2,α(Mσ) 6 C
(
‖Lu‖Cα(Mσ) + ‖u‖C0(Mσ)

)
.

We are now in a better position to apply lemma 3.6.6. Indeed we have an
operator between two well defined Banach spaces (depending on σ),

(3.7.6) Φ : C2,α(S2T ∗M) → Cα(S2T ∗M),

defined by

(3.7.7) Φ(h) = Ric(gσ + h) + (n− 1)(gσ + h) + (δ∗)g+hBgh.

In particular,

(3.7.8) Φ(0) = Ric(gσ) + (n− 1)gσ,
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so by equation (3.5.10) we have

(3.7.9) ‖Φ(0)‖Cα 6
C

`n−1

for some constant C independent of σ. Also, Q(h) = Φ(h) − Φ(0) − L(h) is
a nonlinear explicit expression depending on two derivatives of h, with zero
linearisation at 0. It follows that in each uniform ball satisfying (3.7.2)–(3.7.3),
if ‖x‖C2,α 6 r0 and ‖y‖C2,α 6 r0, then there exists a constant k such that

(3.7.10) ‖Q(x)−Q(y)‖Cα 6 k
(
‖x‖C2,α + ‖y‖C2,α

)
‖x− y‖C2,α .

Of course, the whole point again is that the constants r0 and k do not depend
on σ. The estimates (3.7.9) and (3.7.10) are precisely the needed ingredients
for the application of lemma 3.6.6, the last missing ingredient is a uniform
control of the norm of ‖L−1‖.

Unfortunately, this turns out to be not true between Hölder spaces, as we
shall see later in the proof. This is the motivation to introduce modified Hölder
spaces in the next section.

3.8. Weighted Hölder norms

On the same spaces Ck,α of sections of S2T ∗M we define a slightly different
norm. Remind that on the end of Mσ we have a smooth function r > r+
that we can extend smoothly over the whole Mσ, so that r > 2 on the fixed
‘compact part’ of Mσ. Then we define

(3.8.1) ‖f‖
Ck,α

δ
= ‖

( r
r+

)δ
f‖Ck,α ,

where δ is a fixed real number. The quotient by r+ is just a normalization
which ensures that the weight r

r+
satisfies the lower bound r

r+
> 1 if δ > 0. As

r is smooth and bounded below on each Mσ, the Ck,α
δ norm is equivalent to

the Ck,α norm, but the equivalence is not uniform with respect to σ, because
r+ → 0.

Observe that, with respect to the metrics gσ, one has a uniform estimate

(3.8.2)
∣∣∣∣drr

∣∣∣∣ 6 C,

and more generally, all derivatives are uniformly bounded:

(3.8.3) |∇k ln r| 6 Ck.
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It follows that on each ball B(x, ρ) with uniform geometry (3.7.2)–(3.7.3), the
function r has only uniform variation: C−1 6 r

r(x) 6 C, where C does not
depend on σ; using the bound on derivatives, we get

(3.8.4) C−1 r(x)
δ

rδ
+

‖f‖Ck,α(B(x,ρ)) 6 ‖f‖
Ck,α

δ (B(x,ρ))
6 C

r(x)δ

rδ
+

‖f‖Ck,α(B(x,ρ))

for a constant which does not depend on σ. We deduce that the elliptic
estimate (3.7.4) still holds with uniform constants in the ball B(x, ρ):

(3.8.5) ‖u‖
C2,α

δ (B(x,ρ/2))
6 C

(
‖Lu‖Cα

δ (B(x,ρ)) + ‖u‖C0
δ (B(x,ρ))

)
.

As usual, this implies the global elliptic estimate

(3.8.6) ‖u‖
C2,α

δ
6 C

(
‖Lu‖Cα

δ
+ ‖u‖C0

δ

)
.

We can check whether we are still in a position to apply the fixed point
theorem (lemma 3.6.6) in these modified Hölder spaces. First, because of the
weight, the estimate (3.7.9) on Φ(0) becomes

(3.8.7) ‖Φ(0)‖Cα
δ

6
C

rδ
+`

n−1
.

Using the formula (3.2.2), we know that r+ ∼ `−(n−1) so we get

(3.8.8) ‖Φ(0)‖Cα
δ

6
C

`n−1−δ
.

This is still good if δ < n− 1.
Second, the estimate (3.7.10) is a local estimate on each ball B(x, ρ). As

above we pass to an estimate by multiplying the norms involved by ( r(x)
r+

)δ:
we obtain

(3.8.9)
(r(x)
r+

)δ‖Q(x)−Q(y)‖Cα(B(x,ρ))

6 k
(r(x)
r+

)δ(‖x‖C2,α(B(x,ρ)) + ‖y‖C2,α(B(x,ρ))

)
‖x− y‖C2,α(B(x,ρ)).

As observed above, if δ > 0 then r
r+

> 1, so r
r+

6 ( r
r+

)2. Using that ( r(x)
r+

)δ‖ ·
‖k,α

C is (uniformly) equivalent to ‖ · ‖
Ck,α

δ
, we obtain

(3.8.10) ‖Q(x)−Q(y)‖Cα
δ

6 k
(
‖x‖

C2,α
δ

+ ‖y‖
C2,α

δ

)
‖x− y‖

C2,α
δ
.

The third and last ingredient is the following lemma, which will be proved
in the next section:
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3.8.11. Lemma. — For 0 < δ < n − 1, the operator L : C2,α
δ → Cα

δ is
invertible, and the norm of the inverse is bounded uniformly with respect to σ:

‖L−1‖ 6 C.

Given lemma 3.8.11, the theorem 3.5.11 now follows directly from the fixed
point theorem: the constant C and k are fixed, and for ` large enough, the
norm ‖Φ(0)‖Cα goes to zero by (3.8.8). So lemma 3.6.6 provides a unique
solution h for ` large enough. Moreover, because of the bound on ‖Φ(0)‖, we
can be sure that, when ` goes to infinity, the solution satisfies

(3.8.12) ‖h‖
C2,α

δ
= O(`−(n−1−δ)),

which means that the Einstein metric gσ + h is closer and closer to the ap-
proximate solution gσ.

3.8.13. Exercise. — Let (Mn, g) be a complete hyperbolic metric, with fi-
nite volume and a finite number k of cusps. The manifold M can be written
as

M = M0 q E1 q · · · q Ek,

where M0 is a compact manifold, whose boundary has k torus components,
and each end Ei = (0, 2) × Tn−1

i with metric g|Ei = dr2

r2 + r2γi, where γi is
a flat metric on the torus Ti. The end Ei is glued to M0 along its boundary
{2} × Ti = Ti.

For a choice of simple closed geodesics σi in Ti, with length `(σi) > L for L
large enough, one produces by Dehn surgery an Einstein metric gσ1,...,σk

on a
compact manifold Mσ1,...,σk

.
1) Prove that when the lengths of all the geodesics σi go to infinity, then

(Mσ1,...,σk
, gσ1,...,σk

) converges to (M, g).
2) One fixes the first r geodesics σ1,. . . ,σr so that `(σi) > L for 1 6 i 6 r,

and one takes a limit when the `(σi) → +∞ for i > r. Prove that the Ein-
stein metrics gσ1,...,σk

converge to a metric gσ1,...,σr on a noncompact manifold
Mσ1,...,σr , obtained topologically from M by Dehn surgery on the first k ends.
Give an approximation of the metric gσ1,...,σr and precise a bound on the er-
ror term. Prove that the metric gσ1,...,σr is complete with finite volume, and
Einstein.

3.9. Estimate for the inverse of the linearisation

Lemma 3.8.11 is the main technical result needed for the proof of the gluing
theorem. The proof is by contradiction. Suppose that we have no uniform
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estimate

(3.9.1) ‖u‖
C2,α

δ
6 C‖Lu‖Cα

δ
,

then there exists a sequence σi and corresponding ui such that

(3.9.2) ‖ui‖C2,α
δ

= 1, ‖Lui‖Cα
δ
→ 0.

By the elliptic estimate (3.8.6), the norm

(3.9.3) ‖ui‖C0
δ

= sup
( r
r+

)δ|u|

remains bounded below, so there is a sequence of points xi ∈Mσi such that

(3.9.4)
(r(xi)
r+

)δ|u(xi)| > η > 0.

Three cases may occur:
1. there is a subsequence such that r(xi) remains bounded below by a pos-

itive constant, r(xi) > A−1 > 0; this means that xi remains at bounded
distance of the compact part of M ;

2. for a subsequence, r(xi)
r+

6 A; this means that xi remains at finite distance
of the core torus Tn−2 of the black hole metric;

3. for a subsequence, r(xi) → 0 and r(xi)
r+

→ +∞; this is a case where xi

remains in the transition part between the black hole metric and the
hyperbolic metric on M .

In each case, we will see that because of (3.9.2) we can obtain a convergence
of ui towards a nonzero solution u of Lu = 0 on some limit of the Mσ, and in
each case we will see that this is not allowed. This will prove the lemma.

3.9.5. Remark. — This method of proof is known as ‘blowup analysis’: in
order to control the solutions, one looks at the possible places where they
could blow up, and extracts limits on certain limiting manifolds. The limits
are then ruled out using case by case arguments.

First case. Here xi ∈Mσ converges to x ∈M . Consider

(3.9.6) ũi =
ui

rδ
+

.

Then by (3.9.2) the sequence ũi satisfies

(3.9.7) ‖rδũi‖C2,α 6 1, ‖rδLũi‖Cα → 0, r(xi)δ|ũi(xi)| > η > 0.

Fix some R > 0. Let us consider xi as a point of M , then on the ball around x
of radius R for g, the metrics gσ converge to the hyperbolic metric g. Because
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‖ui‖C2,α(BR) remains bounded, we can extract weakly in C2,α
δ a limit u on the

ball BR, which satisfies Lu = 0 because of (3.9.7). Because of the compact
embedding C2,α ⊂ C0, the convergence is strong in C0 so the limit satisfies
again r(x)δ|u(x)| > η. Now taking R larger and larger, we can extract a
subsequence which converges on each ball BR towards a limit u defined on the
whole M ; on (M, g) the limit now satisfies

(3.9.8) ‖rδu‖C2,α 6 1, Lu = 0, u(x) 6= 0.

Remind that g is hyperbolic, and L = 1
2∇

∗∇ −
◦
R has no L2 kernel for a

hyperbolic metric by formula (2.10.31), see also remark 1.4.3 to handle the
non compactness. If δ < n−1

2 , then the first condition in (3.9.8) implies that
u ∈ L2, so u vanishes, which is a contradiction(2).
Second case. The points xi remain at bounded distance of the core torus Tn−2,
in particular r(xi) → 0. We then rewrite the metrics gσ in coordinates where
the point xi converges. We take

(3.9.9) s =
r

r+
,

which by section 3.4 takes the toral black hole metric part of gσ to the metric

(3.9.10) g̃σ = V −1(s)ds2 + V (s)r2+dθ
2 + s2r2+gRn−2

on (1,+∞) × (S1 × Rn−2)/Zn−2. Here V (s) is the function obtained for the
value a = 1 of the parameter,

(3.9.11) V (s) = s2 − 1
sn−3

.

Of course the formula (3.9.10) coincides with gσ only on the part {r 6 1
2},

that is s 6 1
2r+

(which is of order `−(n−1)).
Observe now that:
– s(xi) remains bounded, and u(xi) > η;
– ‖( r

r+
)δui‖C2,α = ‖sδui‖C2,α 6 1;

– similarly ‖sδLui‖Cα → 0.
Here one must be careful, because the manifold varies for each i. It is useful
to rewrite the metric (3.9.10) as in formula (3.3.4):

(3.9.12) g̃σ = V (s)−1ds2 + r2+
(
s2gT n−1 −

1
sn−3

η2
)
,

(2)Actually one can prove that for δ satisfying 0 < δ < n−1
2

, there is no solution of Lu = 0

on M with rδ|u| 6 C.
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where gT n−1 is now the fixed given metric on Tn−1, and η is the unit 1-form
dual to the circle action associated to the choice of the geodesic σ in Tn−1.

The following observation is useful.

3.9.13. Lemma. — Suppose that f is a function on a torus T with flat co-
ordinates (xi). Denote by f̄ the mean value of f on T . Suppose now that gε

is a metric on T with diameter smaller than ε. If ‖f‖C2,α(gε) 6 c, then

|f(x)− f̄ |+
∑

|∂xif |+
∑

|∂2
xixjf | 6 cε2+α.

Proof. — First if ‖f‖Cα(gε) 6 c, then writing

|f(x)− f(x0)| 6 ‖f‖Cα(gε)dgε(x0, x)α,

and using that dgε(x0, x) is smaller that the diameter ε, we obtain that the
difference f − f(x0) is controled by cεα. Noting f̄ the mean value of f on T ,
we can rewrite this as

|f(x)− f̄ | 6 cεα.

Now apply this to the second derivatives ∂2
xixjf : because of the scale factor,

the hypothesis implies ‖∂2
xixjf‖Cα(gε) 6 cε2, and their mean value is 0, so we

obtain
|∂2

xixjf | 6 cε2+α.

The result now follows easily.

The lemma proves that if we have a more and more collapsed torus, the func-
tions with bounded derivatives tend to be constant. Of course, the same is
true for sections of flat bundles.

Now come back to our metrics g̃σ and the solutions ui. Take fixed coordi-
nates (xi) on Tn−1. The form (3.9.10) of the metric and the bound on the
derivatives of ui implies that ui is close to a tensor ūi(r) depending only on r:

(3.9.14) ui = ūi(r) + vi, |vi|+
∑

|∂xjvi|+
∑

|∂2
xjxkvi| 6 c(s)r2+α

+ .

It follows immediately that we can extract a subsequence (ui) which converges
on every compact subset of (1,+∞)×Tn−1 to a u which depends only on the
variable s; also xi → x and u(x) > η > 0 so the solution is not zero; finally we
have sup sδ|u| 6 1.

Another way to see this limit is to pullback the sequence (ui) to a sequence ũi

on the fixed manifold (1,+∞)×Rn−1, where the second factor has coordinates
x̃i = r+xi; the metrics gσ become the fixed metric

(3.9.15) gBH = V (s)−1ds2 + V (s)(dx̃2)2 + s2
(
(dx̃3)2 + · · ·+ (dx̃n)2

)
,
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compactified at s = 1 by adding a Rn−2. The control (3.9.14) on the derivatives
of ui then gives a control

(3.9.16) r−2
+ |vi|+ r−1

+

∑
|∂x̃jvi|+

∑
|∂2

x̃j x̃kvi| 6 c(s)rα
+.

All the derivatives along Rn−1 go to zero (in particular the second derivatives
involved in Lũi), so ũi converges to a limit u which depends only on s and is
a solution of Lu = 0 for gBH .

Now the contradiction follows from:

3.9.17. Lemma. — Let 0 < δ < n − 1. On R2 × Rn−2 with the black hole
metric (3.9.15), there is no solution u of the equation

Lu =
1
2
∇∗∇u−

◦
Ru = 0

with u = u(s) depending on s only, and satisfying |u| = O(s−δ) when s→ +∞.

The proof relies on a painful calculation of the ODE system satisfied by u.
This is done in section 3.10.

It is interesting to note that this lemma would be wrong with δ = 0, there
does exist bounded solutions of Lu = 0, and this is the main motivation
for introducing the weight rδ. Indeed the metric (3.9.15) comes in a family
of Einstein metrics, obtained by varying the metric gT n−1 of the torus. The
corresponding infinitesimal deformations provide bounded solutions of Lu = 0.
Third case. We suppose that xi goes infinitely far from the compact part
(r(xi) → 0), but goes also infinitely far from the core torus ( r(xi)

r+
→ +∞).

Then we proceed similarly to the previous case, by introducing the coordinate

(3.9.18) s =
r

r(xi)
.

The effect is to send r(xi) to the fixed s(xi) = 1. In these coordinates, the
metric is the toral black hole metric (3.9.15), but with parameter

(3.9.19) ãi =
ai

r(xi)n−1
=

ai

rn−1
+

rn−1
+

r(xi)n−1
→ 0

since ai and rn−1
+ have the same order. This means that the metrics gσ on the

coverings ( r+

r(xi)
,+∞)× Rn−1 converge to the model hyperbolic metric

(3.9.20) g =
ds2

s2
+ s2gRn−1

Let x = limxi. It follows that we can extract a convergent subsequence (ui)
on balls B(x,R), and the limit u satisfies
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1. u depends on s only;
2. Lu = 0 for the limit metric g;
3. sup sδ|u| < +∞;
4. u(x) 6= 0.

Of course, we can as well consider u as a solution for the complete cusp metric
on (0,+∞)× Tn−1. Here the contradiction follows from the following lemma,
which will be proved in section 3.10:

3.9.21. Lemma. — Let 0 < δ < n− 1. On R+ × Tn−1 with the cusp hyper-
bolic metric ds2

s2 + s2gT n−1, there is no solution of the equation

Lu =
1
2
∇∗∇u−

◦
Ru = 0

with u = u(s) depending on s only, and satisfying sup sδ|u| < +∞.

3.10. Explicit calculations for the toral black hole metric

In this section we provide the explicit calculations promised in the surgery
construction, and we prove lemmas 3.9.17 and 3.9.21. We consider the black
hole toral metric

(3.10.1) g =
dr2

V (r)
+ V (r)dθ2 + r2gT n−2 .

Our aim is to understand the kernel of the infinitesimal Einstein operator

(3.10.2) L =
1
2
∇∗∇−

◦
R

on tensors depending on the variable r only. Therefore, in the whole section
we consider functions (or tensors) depending on the variable r only, that is
constant on each slice {r} × Tn−1.

Let ~n =
√
V ∂r denote the normal vector of the slices {r}×Tn−1. The second

fundamental form of the slices, I = −1
2L~n(V dθ2 + r2gT n−2), is calculated as

(3.10.3) I = −1
2

√
V ∂rV dθ

2 − r
√
V gT n−2 ,

or

(3.10.4) g−1I = −


q1

q2
. . .

qn−1
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with

(3.10.5) q1 = − ∂rV

2
√
V
, q2 = · · · = qn−1 =

√
V

r
.

Also we shall denote

(3.10.6) H = −Trg I =
n−1∑

1

qi = q1 + (n− 2)q2.

Choose orthonormal coordinates (x1 = θ, x2, . . . , xn−1) on Tn−1 = S1 ×
Tn−2. We shall calculate in the orthonormal frame

(3.10.7) e0 =
√
V ∂r, e1 =

∂θ√
V
, e2 =

∂2

r
, e3 =

∂3

r
, . . .

and the dual frame

(3.10.8) e0 =
dr√
V
, e1 =

√
V dθ, e2 = rdx2, e3 = rdx3, . . .

Levi-Civita connection. — The Levi-Civita connection is given by

(3.10.9)
{
∇e0 =

∑n−1
1 qie

i ⊗ ei,

∇ej = −qjej ⊗ e0, j > 1.

From these formulas we deduce the formulas on symmetric 2-tensors; since the
basis (ej) is ∇0-parallel, it suffices to write ∇j for j > 1. The result is below,
with the convention that we write only the list of nonzero derivatives:

∇j(e0)2 = qj(e0ej + eje0),

∇j(ej)2 = −qj(e0ej + eje0),

∇j(e0ej + eje0) = 2qj((ej)2 − (e0)2),

∇j(e0ek + eke0) = qj(ejek + ekej), k 6= j, k > 1,

∇j(ejek + ekej) = −qj(e0ej + eje0), k 6= j, k > 1.

(3.10.10)

Rough Laplacian. — We deduce the rough Laplacian on symmetric 2-tensors:

(3.10.11) ∇∗∇ = −
n−1∑

0

(∇2
i −∇∇iei) = −∇2

0 −H∇0 + Q
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with Q = −
∑n−1

1 ∇2
i given by the formulas (here as above j, k > 1 and j 6= k):

Q(e0)2 = −2
n−1∑

1

q2i ((e
i)2 − (e0)2),

Q(ej)2 = 2q2j ((e
j)2 − (e0)2),

Q(e0ej + eje0) = (3q2j +
n−1∑

1

q2i )(e
0ej + eje0),

Q(ejek + ekej) = (q2j + q2k)(e
jek + ekej).

(3.10.12)

Since the frame (ei) is ∇0-parallel, the term involving derivatives with respect
to r, that is −∇2

0−H∇0 acts on each coefficient as the usual scalar Laplacian:

(3.10.13) −∇2
0 −H∇0 = ∆ = − 1

rn−2
∂r(rn−2V ∂r).

Riemannian curvature. — The surfaces obtained by fixing all variables xi

but one fixed variable xj are totally geodesic. It follows that e0 ∧ ej is an
eigenvector of the curvature operator: R(e0 ∧ ej) = −K0je0 ∧ ej . Also, the
torus slices {r} × Tn−1 are flat and the second fundamental form is diagonal,
so it follows that similarly for j, k > 1 one has R(ej∧ek) = −Kjkej∧ek, where
Kjk is determined by the second fundamental form:

(3.10.14) Kjk = −qjqk.

The other coefficients K0j are given by

(3.10.15) K0j = −
√
V ∂rqj − q2j .

A useful remark is that for j > 2, one has

(3.10.16) K0j −K1j = −
√
V ∂r(

√
V

r
)− V

r2
+
√
V

r

1
2
∂rV√
V

= 0.

From the form of the curvature tensor, the Ricci tensor is diagonal is the
basis (ei), and we get

Ric00 =
∑
i>1

K0i = −
√
V ∂rH −

∑
i>1

q2i

Ricjj =
∑
i6=i

Kij = −
√
V ∂rqj −Hqj

(3.10.17)

From equation (3.10.16) one has Ric00 = Ric11. A calculation gives, for j > 2,

(3.10.18) Ricjj = −∂rV

r
− (n− 3)

V

r2
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so the Einstein equation Ricjj = −(n−1) gives immediately the familiar form

(3.10.19) V (r) = r2 − a

rn−3

for some constant a. For this V it is easy to check that Ric00 = Ric11 =
−(n− 1) as well, so we indeed get an Einstein metric.

Finally we calculate the action
◦
R of the curvature on symmetric 2-tensors.

From the definition

(3.10.20) (
◦
Rh)X,Y =

∑
h(Rei,XY, ei)

and the fact the curvature operator is diagonal, we deduce immediately that,
for j 6= k,

(3.10.21)
◦
R(ejek + ekej) = −Kjk(ejek + ekej),

◦
R((ej)2) =

∑
i6=j

Kij(ei)2.

We now suppose that the metric is Einstein, that is V is given by the
formula (3.10.19), which we have not used previously. We can then give the
complete eigendecomposition of

◦
R: here is the list of the eigenvalues and of

the corresponding eigenvectors:
1. −(n− 1) for g =

∑n−1
0 (ei)2;

2. −K01 for (e0)2 − (e1)2 and e0e1 + e1e0;
3. −K02 = −K12 for e0ej + eje0 and e1ej + eje1 for j > 2;
4. −K23 for (ej)2 − (ek)2 and ejek + ekej for j, k > 2;
5. K01 − 2K02 for (e0)2+(e1)2

2 − (e2)2+···+(en−1)2

n−2 .

Hyperbolic case. — Let us now do some explicit calculations for the case
a = 0, that is g is the complete hyperbolic cusp metric. We begin by a scalar
Laplacian,

(3.10.22) P = ∆ + λ = − 1
rn
∂r(rn−2∂r) + λ.

There are two radial solutions, fi(r) = rδi , with

(3.10.23) δ1, δ2 = −n− 1
2

±
√

(n− 1)2

4
+ λ.

We choose δ1 > −n−1
2 and δ2 < −n−1

2 . Then there is an obvious consequence,
which is at the same time a useful observation: if a radial solution satisfies
|f | = o(rδ1) when r goes to infinity, then |f | = O(rδ2) which is a much better
decay. A similar statement holds at r = 0: if |f | = o(rδ2) when r goes to zero,
then |f | = O(rδ1).
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3.10.24. Remark. — This observation is actually valid for all solutions, and
can be proved using Fourier decomposition along the torus Tn−1.

Now pass to the operator (3.10.2). Here q1 = q2 = 1 and all sectional
curvatures equal −1, so from equation (3.10.12) and the calculation (3.10.21)
and below we deduce the following form of L in the frame (ejek + ekej):

(3.10.25) L =
1
2
∆ + S ,

where ∆ is the scalar Laplacian, that is ∆(fjk(ejek + ekej)) = (∆fjk)(ejek +
ekej), and S is a linear operator with the following eigenvalues:

1. (n− 1) on Rg;
2. 0 on S2

0T
∗Tn−1 (the directions in Tn−1 are the (ej)j>1);

3. n
2 on (e0ej + eje0)j>1;

4. n on (e0)2 − 1
n−1((e1)2 + · · ·+ (en−1)2).

The important point here is that all the eigenvalues λ of S are nonnegative,
and the zero eigenspace is exactly S2

0T
∗Tn−1. Since on all the components, L

is of the form 1
2∆+λ, it follows from the above analysis that the only bounded

infinitesimal Einstein deformations lie in the kernel of S , that is S2
0T

∗Tn−1:
on this subspace, one has L = 1

2∆, so the bounded solutions are just the
constants, since the other solutions blow up at r = 0. This corresponds to
deforming the flat metric gT n−1 of the torus in the formula

(3.10.26) g =
dr2

r2
+ r2gT n−1 .

Proof of lemma 3.9.21. — Suppose that we have a radial solution of Lu = 0
with sup rδ|u| < +∞ for some δ satisfying 0 < δ < n − 1. We look at the
equation on each eigenspace of S : the solutions are rδ1 and rδ2 with δ1 > 0
and δ2 6 −(n − 1). The condition that u = O(r−δ) at infinity rules out rδ1 ,
and the same condition at r = 0 rules out rδ2 , so there is no solution, and the
lemma is proved.

It turns out that the lemma remains true for general (rather than radial)
deformations: the general proof relies on remark 3.10.24 to prove that the
solution is actually L2, and then on the usual integration by parts.

Black hole metric. — We now pass to the case of the black hole toral metric.
As before we start with the case of the scalar Laplacian (3.10.13). There are
two fundamental solutions depending on r only: the first solution is of course
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the constant solution f1(r) = 1, and the second one is

(3.10.27) f2(r) =
∫ +∞

r

du

un−2V (u)
.

At infinity, V (r) ∼ r2 so f2(r) ∼ 1
nrn−1 which is the solution of the hyperbolic

space. When r → r+, one has V (r) ∼ (n − 1)r+(r − r+) so f2(r) → +∞.
In particular we see that the only bounded radial solutions are the constants.
Furthermore, there is no solution so that |f(r)| 6 cr−δ for some δ > 0.

It is not surprising that the behavior at infinity is the same as the behav-
ior on the hyperbolic space, since when r → +∞ the coefficients of ∆ are
asymptotic to that of the hyperbolic Laplacian.

Before attacking the infinitesimal Einstein operator L, it is useful to under-
stand the equation for the infinitesimal action of the diffeomorphisms. Recall
that the infinitesimal action of a vector field X is δ∗X; this satisfies of course
the infinitesimal Einstein equation, so it lies in the kernel of L if it satisfies
the gauge condition Bδ∗X = 0. Actually Lδ∗ = δ∗Bδ∗ = 1

2δ
∗(∇∗∇−Ric), see

section 2.10. So we have to understand the solutions of the equation

(3.10.28) Bδ∗X =
1
2
(∇∗∇− Ric)X = 0.

We use the explicit calculation of the Levi-Civita connection to get:
1. X = f jej with j > 1: then we obtain

δ∗X =
1
2
(
√
V ∂rf

j − qjf
j)(e0ej + eje0),(3.10.29)

Bδ∗X =
1
2
(∆f j + (n− 1 + q2j )f

j)ej .(3.10.30)

2. X = f0e0: then

δ∗X =
√
V ∂rf

0(e0)2 + q1f
0(e1)2 + q2f

0
(
(e2)2 + · · ·+ (en−1)2

)
,(3.10.31)

Tr(δ∗X) =
√
V ∂rf

0 +Hf0,

(3.10.32)

Bδ∗X =
1
2
(
∆f0 + (n− 1 + q21 + (n− 2)q22)f

)
e0.(3.10.33)

Observe that in all cases, the equation can be written (∆ + λj(r))f j = 0,
where λj(r) is a positive function with limit n at infinity for j > 1, or 2(n−1)
for j = 0. For each j, we therefore have again two solutions with asymptotic
behaviour rδ1 and rδ2 , where δ1 > 0 and δ2 < −(n− 1) are given by (3.10.23).
In particular, for j > 1 one obtains

(3.10.34) δ1 = 1, δ2 = −n.
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In all cases, observe that if a solution is bounded near infinity then it is O(r−n).
Of course it must blow up at r = r+ since there is no L2 solution of the equation
(3.10.28).

We can now calculate the (radial) solutions of the infinitesimal Einstein
operator L satisfying sup |rδu| < +∞ for some δ > 0. Again the form of the
operator in the basis (ejek + ekej) is

(3.10.35) L =
1
2
∆ + S ,

where S = 1
2A −

◦
R is a linear operator, which we can calculate explicitly

from (3.10.12) and (3.10.21). The asymptotics when r → +∞ are the same as
for the hyperbolic metric, so the solutions of this ODE are asymptotic to that
of the hyperbolic space which were calculated above: we have seen that the
condition |u| = O(r−δ) at infinity implies |u| = O(r−(n−1)), and in particular
u ∈ L2. Then (see section 2.10) the equation Lu = 0 implies

(3.10.36) Tr(u) = 0, δu = 0.

3.10.37. Remark. — The corresponding radial operator for the hyperbolic
space, − 1

rn∂rr
n−2∂r + Shyp, where Shyp is given by the formulas below

(3.10.25), is called the indicial operator of L. Its solutions completely govern
the behaviour of the solutions of our operator L for the metric gBH . We have
used this fact for radial solutions (it is then easy, relying on ODE analysis),
but it remains true for all solutions. This is more difficult and requires
analysis on ‘asymptotically hyperbolic manifolds’.

Now write the solution u as

(3.10.38) u =
n−1∑

0

ujj(ej)2 +
∑

06j<k6n−1

ujk(ejek + ekej).

We have the following cases, corresponding to the different eigenvalues of S .
In each case we will show that there is no solution:

1. 2 6 j < k: then S (ejek + ekej) = (q22 + K23)(ejek + ekej) = 0 and
similarly S ((ej)2−(ek)2) = 0; on these components one has L = 1

2∆, the
only bounded solutions are the constants, they correspond to changing
the flat metric gT n−2 in formula (3.10.1), but of course they are not
O(r−δ) at infinity;

2. 1 < j: then S (e1ej + eje1) = (q1−q2)2

2 (e1ej + eje1), in particular S > 0.
So a L2 solution must vanish.
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3. 0 < j: then S (e0ej +eje0) = (3
2q

2
j +

∑n−1
1 q2i +K0j)(e0ej +eje0); here for

each j there are two solutions with growth rate r or r−n at infinity; L2 (or
bounded) solutions must be O(r−n), and we observe that these solutions
must coincide with the solutions (3.10.29) coming from the infinitesimal
action of the diffeomorphisms, which blow up at r = r+, so again there is
no solution. This can also be proved by writing down the gauge condition
δu = 0 on the tensor u0j(e0ej + eje0), which results in a first order ODE
on u0j .

4. Since Tr(u) = 0, there remains to consider the space spanned by (e0)2 −
(e1)2 and (e0)2+(e1)2

2 − (e2)2+···+(en−1)2

n−2 . The tensors in this space are
determined by the coefficients u00 and u11. The gauge condition δu = 0
implies

(3.10.39) −
√
V ∂ru00 − (H + q2)u00 = (q2 − q1)u11.

This relation implies that the space of solutions (u00, u11) with the decay
O(r−(n−1)) is 1-dimensional. But we have such a space: the trace free
part of the solution (3.10.31), and we know that it blows up at r = r+.
So again there is no solution.

This finishes the proof of lemma 3.9.17. This proof is more difficult than
in the hyperbolic case: we have proved, as in the hyperbolic case, that the
solutions must be L2, but it is not sufficient to prove that they vanish, because
the toral black hole metric has some nonnegative sectional curvatures, so the
usual integration by parts is not available. So we had to push further the
explicit calculations to indeed rule out all possible solutions.
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