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Introduction

The cotangent bundle M = T ∗Σ of a complex manifold Σ is a holomorphic-
symplectic manifold. If Σ is a generalized flag manifold, then this holomorphic-
symplectic structure underlies a hyperkähler metric, whose restriction to Σ is the
given homogeneous metric. This hyperkähler metric has been constructed using
finite dimensional hyperkähler quotients for S`n(C)-flags in [9], and in general using
Nahm’s equations (and infinite dimensional quotients) in [1]. For the simplest case,
M = T ∗CPn, there is an explicit formula of Calabi giving the Kähler form of M as
the sum of the pull-back of the Kähler form of CPn and a term given by an explicit
potential [3].

In this paper, we give such a formula for the case where Σ is a hermitian symmet-
ric space. To state the formula, identify T ∗Σ with TΣ using the metric, and write
I for the complex structure of Σ. Then, for ξ ∈ T ∗xΣ ≈ TxΣ, the curvature RIξ,ξ
gives an antiselfadjoint endomorphism of TxΣ, and we can take spectral functions
f(IRIξ,ξ) of the selfadjoint endomorphism IRIξ,ξ, for a function f : R→ R.

Note that we use the convention Rξ,ξ′ = ∇[ξ,ξ′] − [∇ξ,∇ξ′ ] for the curvature.

Theorem 1. Let Σ = G/H be a hermitian symmetric space of compact type, then
there is a unique G-invariant hyperkähler metric g on M = T ∗Σ (with its canonical
holomorphic-symplectic structure), such that the restriction of g to the zero section
is gΣ:

(i) the Kähler form of g is given by ωI = π∗ωΣ + ddcρ, with

ρ(ξ) = (f(IRIξ,ξ)ξ, ξ), f(x) =
1
x

(√
1 + x− 1− ln

1 +
√

1 + x

2

)
;

(ii) with respect to the decomposition of TM between horizontal and vertical
directions, induced by the Levi-Civita connection of Σ, one has g(x, y) = (u(x), y),
with

uξ =
(
Aξ 0
0 A−1

ξ

)
, Aξ = 1 + IRIφ(IRIξ,ξ)ξ,φ(IRIξ,ξ)ξ,

and φ(x) = [2(xf)′]1/2 =
(√

1 + x− 1
x

)1/2

.

It is easy to check that this metric is complete (the completeness was already
known in [1]). Note that f(IRIξ,ξ) is well defined, since Σ is of nonnegative bisec-
tional holomorphic curvature.

Burns [2] has found a formula of type (ii), but case by case using the classification.
Using the curvature, we have a unified formula for all hermitian symmetric spaces
(including exceptional ones), and of course a formula for the potential.

We now look at other hermitian symmetric spaces.

Theorem 2. Let Σ = G/H be a hermitian symmetric space of noncompact type,
then there is a unique G-invariant hyperkähler metric g defined in a neighborhood N
of the zero section Σ in M = T ∗Σ, such that the restriction of g to the zero section
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is gΣ: it is given by the same formulas as above and N is the set of ξ such that the
modulus of the eigenvalues of RIξ,ξ is less than 1. The metric g is incomplete.

In particular, there is only one PS`2(R)-invariant hyperkähler metric on the
cotangent bundle of the Poincaré half-plane, restricting to the standard hyperbolic
metric on the zero section, but it is defined only in a neighborhood of the zero
section and is incomplete.

Theorem 3. Let Σ be a flat complex torus. Then, the translation invariant hy-
perkähler metrics g on T ∗Σ, restricting to the given flat metric on Σ, are given
by

g =
(

1 B
B 1 +B2

)
where B, as a function from a fibre to real bilinear forms, is the hessian of the real
part of a holomorphic function.

In fact, this description is valid for any quotient of Cn by a discrete group of
translations. We deduce the following corollary.

Corollary 4. Let Σ be any hermitian symmetric space, Σ = Σf ×Σc×Σnc, where
Σf is flat, Σc is hermitian symmetric of compact type, and Σnc is hermitian sym-
metric of noncompact type. Then any hyperkähler metric in a neighborhood of Σ in
T ∗Σ, invariant under the isometry group of Σ and restricting to the given metric
on Σ, must be the product of the metrics described in the previous theorems.

We have another corollary for nilpotent orbits (see [8] for the hyperkähler metrics
of the nilpotent orbits). We simply take the principal part of f(x) when x goes to
infinity.

Corollary 5. Under the hypothesis of theorem 1, if RIξ,ξ has generically no zero
eigenvalue, then, taking f(x) = x−1/2, φ(x) = x−1/4, and removing the contribution
from the basis (so that ωI = ddcρ and Aξ = IRIφ(IRIξ,ξ)ξ,φ(IRIξ,ξ)ξ) defines again a
hyperkähler metric on the open set {ξ,RIξ,ξ is injective} ⊂ T ∗Σ; this metric is the
hyperkähler metric of a nilpotent orbit of gC.

See section 3 to understand which nilpotent orbit appears.
In the first section, we establish the equations for hyperkähler metrics on cotan-

gent spaces of hermitian symmetric spaces, that are invariant under the isometry
group of the basis. We deduce the proof of theorem 3 and a uniqueness statement
(lemma 6) when one fixes the restriction on the zero section.

In the second section, we prove a formula for the potential in symplectic quotients
(theorem 7) which is essentially an amplification of an idea in [6]. The formula con-
tains a term involving a character of the group: this term is needed when taking
the inverse image by a normalized moment map of nonzero vectors in the dual of
the Lie algebra. We deduce the formula for the potential in the case of complex
grassmannians (since their cotangent spaces are obtained by finite dimensional quo-
tients). This section is not necessary for the proofs of the formulas, but we think
that it gives a good motivation for the formula for the potential, since we obtain
the other hermitian symmetric spaces simply by extrapolating the intrinsic formula
for complex grassmannians.

In the third section, we recall some root theory for hermitian symmetric spaces
(we use the “restricted root theorem” of Harish-Chandra and Moore), and we prove
the above theorems.

1. Equations and the example of T ∗Tn

We recall some facts on hyperkähler structures (see for example [5]). A triple
(g, I, J) formed by a riemannian metric g and two anticommuting g-orthogonal
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almost-complex structures I and J on a manifold M is a hyperkähler structure on
M whenever the pairs (g, I) and (g, J) are Kähler. Then the pair (g,K = IJ) is
Kähler as well.

For any triple as above, let us denote ωI , ωJ and ωK the corresponding Kähler
forms. Then we have:

(g, I, J) is hyperkähler iff dωI = dωJ = dωK = 0. (1.1)

The point here is that the three Kähler forms being closed implies the integrability
of the three almost-complex structures.

If (g, I, J) is a hyperkähler structure on M , then (M, I, ωc = ω2 + iω3) is a
holomorphic-symplectic manifold. Consider the case that the underlying holomor-
phic-symplectic manifold is the cotangent bundle T ∗Σ of some complex manifold
Σ. By (1.1), a riemannian metric g on T ∗Σ is hyperkähler (with respect to the
underlying holomorphic-symplectic structure) if and only if

g(I·, I·) = g(·, ·), (1.2)

J2 = −1, where J is defined by reωc = g(J ·, ·), (1.3)

dωI = 0, where ωI = g(I·, ·). (1.4)

Suppose now that Σ is Kähler and consider the decomposition of the tangent bundle
TM = H∇ ⊕ V of TM between the horizontal part, determined by the Levi-Civita
connection∇, and the vertical part, tangent to the fibres of the projection π. Denote
by g0 the riemannian metric on M induced by the metric of Σ and the decomposition
H∇ ⊕ V . Identify TΣ and T ∗Σ using the metric, so that for any ξ ∈ M , H∇ξ and
Vξ are identified with Tπ∗ξΣ. With respect to g0 and the above decomposition of
TM , the complex structure IM , the real part reωc of the symplectic form and the
unknown metric g are written as

IM =
(
I 0
0 −I

)
, reωc =

(
0 1
−1 0

)
, g =

(
A B
B∗ D

)
,

where A, B, D are endomorphisms of Tπ∗ξΣ. Then, the conditions (1.2) and (1.3)
are respectively equivalent to

AI = IA, DI = ID, BI = −IB, (1.5)

AD = 1 +B2, DA = 1 + (B∗)2, AB∗ = BA, B∗D = DB. (1.6)

To compute dωI , we introduce, for any vector field X on Σ, the horizontal lift Xh of
X with respect to ∇ and the vertical vector field Xv, whose restriction to each fibre
T ∗xΣ ≈ TxΣ is the constant vector field Xx. For any two vector fields X an Y on Σ,
one has [Xv, Y v] = 0, [Xh, Y v] = (∇XY )v and [Xh, Y h]ξ = [X,Y ]hξ +RX,Y ξ, where
R is the curvature of Σ (convention RX,Y = ∇[X,Y ] − [∇X ,∇Y ]). The condition
(1.4) is then easily checked to be equivalent to the following system, for any ξ over
x and any X,Y, Z ∈ TxΣ,

dv(DI) = 0,

(Z, dv(BI)X,Y ) + ((Zh · (DI)X,Y ) = 0,

((Zv · (AI)X,Y ) + (DIRX,Y ξ, Z)

+((Xh · (BI)Z, Y )− ((Y h · (BI)Z,X) = 0,∑
XY Z

((Xh · (AI)Y, Z) +
∑
XY Z

(BIRX,Y ξ, Z) = 0.

(1.7)

Here, dv(DI) is the vertical exterior derivative of DI, as a 2-form; BI is considered
as a 1-form (in fact a (1,0)-form by (1.2)) on π−1(x), with values in TxΣ; Zh · (DI)
and the like denote the covariant derivative in the horizontal directions with respect
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to the pull-back of ∇ acting on sections of π−1(EndTΣ); in the last formula, we
sum over the circular permutations of X, Y , and Z.

From now on, we restrict ourselves to the case when Σ is a hermitian symmetric
space (of any type), and we only consider hyperkähler metrics on M = T ∗Σ, that
are invariant under the action of the group G of isometries of Σ. The horizontal
distribution H∇ is tangent to the orbits of G in M , so that A, B, D are parallel with
respect to π−1∇ in horizontal directions. The last equation in (1.7) is then empty
(B commutes with RX,Y since B is parallel), and the second and third equation
reduce respectively to:

dvB = 0,

(Zv · (AI))ξ −Rξ,(DI)Z = 0.
(1.8)

We are now ready to deduce the two following consequences, for torus and for
hermitian symmetric spaces without flat factor.

Proof of theorem 3. By the second equation in (1.8), A is constant on each fibre,
hence equal to 1. By the first equation in (1.8), in a fibre T ∗xΣ, B is the differential
of some 0-form α with values in TxΣ; since B is of type (1,0), α is holomorphic.
Since B is symmetric by (1.3), α is closed as a 1-form on T ∗xΣ, hence the differential
of some holomorphic function. Then B, as a real bilinear form, is the hessian of the
real part of this function. Conversely, it is clear that such a function determines, in
this way, a translation invariant hyperkähler metric on T ∗Σ.

Lemma 6. Let Σ = G/H be a hermitian symmetric space without flat factor.
Then, the G-invariant hyperkähler metrics g on T ∗Σ (with its canonical symplectic
structure) are the metrics of the form:

g =
(
A 0
0 A−1

)
,

where A is G-equivariant, and satisfies (ξ ∈ T ∗xΣ ≈ TxΣ and Z ∈ TxΣ):

(Zv · (AI))ξ = R(AI)−1Z,ξ. (1.9)

In particular, in any connected neighborhood of the zero section, T ∗Σ admits at most
one G-invariant hyperkähler metric restricting to the given hermitian symmetric
metric on Σ.

Proof. As in the proof of the above theorem, we have B = dα on each fibre, where
α is holomorphic and can be chosen H-invariant on T ∗xΣ, hence invariant as well
under the action of the complexified group HC. Since Σ has no flat factor, the
group HC has a dense orbit; it follows that α is constant and B vanishes identically.
Then, by (1.3), D = A−1. In particular, the second equation in (1.8) implies the
first in (1.7) (use the Bianchi identity) and the whole system is then equivalent to
(1.9). The last assertion is a direct consequence of (1.9), which, on each radial ray,
reduces to an ordinary differential equation.

2. Potential in symplectic quotients and the grassmannian

We give a general formula for the Kähler potential of Kähler quotients, which
comes as an amplification of (3.58) in [6], and can be used for hyperkähler quotients
when applied to the zero set of the complex part of the hyperkähler moment map.
In particular, we will apply this formula to obtain an explicit formulation for the
Kähler potential of the hyperkähler metric on the cotangent bundle of the complex
grassmannians.
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2.1. Potential in symplectic Kähler quotients. Let (W, g, I) be a Kähler man-
ifold and G be a compact Lie group acting on W , preserving g and I. We assume
that the action of G extends to a holomorphic action of the complexified group GC.
We also assume that W admits a global Kähler potential K, which can be assumed
G-invariant without loss of generality, so that the Kähler form is ω = ddcK. Then,
if g is the Lie algebra of G, K determines a G-equivariant function µ : W → g∗ for
the action of G, defined by (writing µX(x) =< µ(x), X >):

µX = dcK(ξX), (2.1)

where ξX is the vector field induced on W by X ∈ g. Since dµX = −iξXω, µ is a
moment map for the action of G.

For any character χ : G→ S
1, we write −2πic for the derivative of χ at the origin

of G, where c is viewed as a G-invariant element of g∗. In the sequel, we choose χ
such that c is a regular value for the moment map µ, and Mc = µ−1(c)/G is a well
defined Kähler quotient. We also denote by χ : GC → C

∗ the extension of χ to GC.
We assume that, for any x ∈ W , there exists an unique element gx ∈ exp(ig) such
that gxx ∈ µ−1(c).

We denote by q : W → µ−1(c) the map q(x) = gxx and by ω̂ the pull-back on W
via q of the Kähler form of the Kähler quotient Mc.

Theorem 7. We have ω̂ = ddcK̂, where K̂ is given, for x ∈W , by

K̂(x) = K(gxx) +
1

4π
ln |χ(gx)|2.

Remark. In case that W is a hermitian vector space, endowed with the flat Kähler
structure, which is the case of interest in the sequel, we may choose K(x) = |x|2/4.

Proof. We introduce the trivial complex line bundle L = W × C, we denote by σ
the canonical section σ(x) = (x, 1), and we consider the hermitian metric h on L
determined by h(σ) = exp(4πK), so that the Kähler form ω can be written ω =
−RD/2πi, where RD is the curvature of the Chern connection D of (L, h). We make
GC act holomorphically on L by g(x, u) = (gx, χ(g)u). This action induces a linear
action of GC on the space Γ(L) of sections of L, by putting: (gs)(x) = g(s(g−1x))
for any s ∈ Γ(L); then the induced action of the complexified Lie algebra gC on
Γ(L) reads as follows, for X ∈ gC:

X s = −DξXs+ 2πiµX − 2πic(X). (2.2)

Via the action of GC on L, we define a new hermitian metric ĥ on L by ĥ(u) =
h(gxu), for any element u of the fibre Lx, where gx is defined as above. In particular,
for the canonical section σ, we have

ĥ(σ)(x) = |χ(gx)|2h(σ)(gxx) = |χ(gx)|2e4πK(gxx).

Let R̂ be the curvature of the Chern connection of the hermitian bundle (L, ĥ). The
theorem follows from the above formula and the fact that R̂ = −2πiω̂.

To prove this fact, note that, by the very definition of the Kähler quotient
structure on Mc, we have ω̂ = q∗(ω|µ−1(c)). It follows that 2πiq∗(ω|µ−1(c)) co-
incides with the curvature of the Chern connection D̂ of the hermitian bundle
L̂ = (q∗(L|µ−1(c)), q∗h). On the other hand, the action of GC on L induces an iso-
morphism ψ : L → L̂, which identifies the hermitian bundle L̂ with (L, ĥ). It thus
remains to prove that the induced connection D′ = ψ−1 ◦ D̂ ◦ ψ coincides with the
Chern connection of (L, ĥ). Since D′ clearly preserves the metric ĥ, it is sufficient
to show that D′ is compatible with the holomorphic structure of L, that is D′ξσ is
C-linear in ξ. This, in turn, follows directly from the expression:

D′ξσ(x) = g−1
x

[(
D(gx)∗ξgxσ

)
(gxx)

]
,
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which we obtain by a direct computation using (2.2), and the following obvious
expression for the differential of q at the point x: q∗ξ = (gx)∗ξ + ξXxgxx, where Xx is
the element of ig defined by: Xx = (ξ · g)g−1

x .

2.2. The cotangent bundle of the complex grassmannian. In this paragraph,
we apply the formula of theorem 7 to the case of the cotangent space T ∗Gr,N of the
complex grassmannian of r-subspaces of CN , realized as a hyperkähler quotient (see
[9]) of the flat quaternionic space V ⊕ V ∗, where V = Hom(Cr,CN ) and the dual
V ∗ is identified with Hom(CN ,Cr) via the trace. The unitary group G = Ur acts
on V ⊕ V ∗ by g(x, ξ) = (x ◦ g−1, g ◦ ξ) which clearly preserves the flat hyperkähler
structure. To perform the quotient by G, we restrict the action to the open subset
V reg ⊕ V ∗, where V reg is the set of elements of maximal rank r in V . We denote
by W the submanifold of V reg ⊕ V ∗ defined by

W = {(x, ξ) ∈ V reg ⊕ V ∗, ξx = 0},
endowed with the induced structure. Then, W is G-invariant and is the zero set of
the complex part of the hyperkähler moment map for the action of G.

Any character of Ur has the form χk(g) = (det g)`, where ` is some integer and
k = `/2π. The corresponding G-invariant element of g∗ is ck(X) = k tr(iX). The
square norm induces a Ur-invariant global potential K(x, ξ) = (|x|2 + |ξ|2)/4 on W .
Then, the associated moment map (2.1) is the real part of the hyperkähler moment
map for Ur. For any k > 0, ck is a regular value for µ and we have

µ−1(ck) = {(x, ξ) ∈W, x∗x− ξξ∗ = 2k 1}.
On the other hand, the quotient µ−1(ck)/Ur, as a holomorphic-symplectic manifold,
coincides with the quotient W/GC, where GC = GLrC is the full linear group, acting
on W in the natural way, and W/GC is naturally identified, still as a holomorphic-
symplectic manifold, to the cotangent space T ∗Gr,N by identifying the class of the
pair (x, ξ) with the pair (P, α), where P ∈ Gr,N is the image of x and α is the
element of T ∗PGr,N = Hom(CN/P, P ) defined by α = xξ.

For any (x, ξ), we look for a positive self-adjoint g = gx,ξ ∈ GLr such that
g−1x∗xg−1 − gξξ∗g = 2k 1. Writing γ =

√
x∗x g−1, g is determined by

γγ∗ = k
(

1 + (1 + k−2
√
x∗x ξξ∗

√
x∗x)1/2

)
.

By theorem 7, we get 4K̂(x, ξ) = |xg−1|2 + |gξ|2 + 2k ln |det g|2. Since g(x, ξ) ∈
µ−1(ck), the two first square norms are equal up to an additive constant, so that,
up to an additive constant,

K̂(x, ξ) =
k

2
ln det(x∗x) +

k

2
tr
(

1
k
γγ∗ − ln(γγ∗)

)
.

The first term is easily recognized as the Kähler potential, pulled back to V reg, of the
Ur-invariant metric on Gr,N defined by (X,X)k = 2k tr(X∗X) for X ∈ TPGr,N =
Hom(P,CN/P ). To interpret the second term, note that γγ∗ is conjugate to 1+(1+
k−2αα∗)1/2 = 1 + (1 + 4X∗X)1/2, where X = 1/(2k)α∗ is the dual vector of α. Let
R denote the curvature of (·, ·)k, which is independent of k, and for each vector X ∈
TPGr,N consider the symmetric endomorphism IRIX,X(Y ) = 2(X∗XY + Y X∗X).
For any integer j, we infer ((IRIX,X)jX,X)k = k/2 tr((4X∗X)j+1), hence

k/2 tr(k−1γγ∗ − ln(γγ∗)) = (f(IRIX,X)X,X)k,

where f is the function defined on R+ by

f(x) =
1
x

(√
1 + x− 1− ln

1 +
√

1 + x

2

)
.

This proves formula (i) of theorem 1 for the case of the grassmannian Σ = Gr,N
with the metric (·, ·)k.
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Remark. Though the UN -invariant metrics (·, ·)k differ from each other by a mere
homothety, the corresponding hyperkähler metrics on T ∗Gr,N are substantially dis-
tinct.
Example. When Σ = P

n, (·, ·)k is the metric with constant holomorphic sectional
curvature c = 2/k and the operator IRIX,X acts on X by multiplication by c|X|2k,
so that the formula for the potential reduces to the formula of Calabi [3].

3. Root theory and proof of the theorems

In this section, we prove the theorems of the introduction. First, we recall some
root theory for hermitian symmetric spaces (see for example [10] and [4]).

3.1. Root theory for hermitian symmetric spaces. Let G/H be an irreducible
hermitian symmetric space, g and h be the Lie algebras of G and H,

g = h⊕m, [h,m] ⊂ m, [m,m] ⊂ h;

the curvature of Σ is given by Rξ,ξ′ = [ξ, ξ′] ∈ h ⊂ End m for ξ, ξ′ ∈ m; let I ∈ h

be the complex structure and decompose mC = m+ ⊕ m− according to the decom-
position of mC in eigenspaces for the eigenvalues ±i of I: m+ and m− are abelian
subalgebras of gC; let t ⊂ h be a Cartan subalgebra of g containing I and ∆ be the
tC-root system in gC, so gC = tC⊕⊕α∈∆gα; let ∆H be the set of tC-roots of hC and
∆M be the set of roots α with gα ⊂ mC; choose an ordering of the set ∆ such that

m± = ⊕α∈∆±
M

gα;

two roots α, β ∈ ∆ are strongly orthogonal if neither α± β is a root; in that case α
and β are orthogonal; consider a maximal strongly orthogonal set of ∆+

M :

Ψ = {ψ1, . . . , ψr},

where ψi+1 is the lowest element of ∆+
M strongly orthogonal to each of ψ1, . . . , ψi;

choose for α ∈ ∆+ a triple (hα, nα, n−α) ∈ it × gα × g−α, such that [hα, n±α] =
±2n±α, [nα, n−α] = hα; this choice can be made so that g has a basis consisting of
a basis of t and

eα = nα − n−α, fα = i(nα + n−α), α ∈ ∆+;

one has, for α ∈ ∆+
M ,

Ieα = fα, Ifα = −eα, [eα, fα] = 2ihα;

from strong orthogonality,
a = ⊕ψ∈ΨReψ

is a maximal abelian subalgebra in m, so

m = ∪x∈H Ad(x)a = Ad(H)a, (3.1)

and r is the rank of the symmetric space. If the centralizer in m of ξ ∈ a is a, then
ξ is a regular element of a; in that case, m = a + [h, ξ].

Strong orthogonality of Ψ implies

t− = [a, Ia] = ⊕ΨRihψ;

let t+ be the orthogonal complement of t− in t with respect to the Killing form; let
µ be the restriction of roots from tC to t−. The restricted root theorem of Harish-
Chandra and Moore asserts that two cases may occur: identify ψi with µ(ψi), then

µ(∆) ∪ {0} = {(±ψs ± ψt)/2, 1 ≤ s, t ≤ r} or

µ(∆) ∪ {0} = {(±ψs ± ψt)/2, 1 ≤ s, t ≤ r} ∪ {±ψt/2, 1 ≤ t ≤ r} .
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In the first case,

µ(∆+
H) = {(ψs − ψt)/2, 1 ≤ t < s ≤ r} ,

µ(∆+
M ) = {(ψs + ψt)/2, 1 ≤ t ≤ s ≤ r} ,

in the second case

µ(∆+
H) = {(ψs − ψt)/2, 1 ≤ t < s ≤ r} ∪ {−ψt/2, 1 ≤ t ≤ r} ,

µ(∆+
M ) = {(ψs + ψt)/2, 1 ≤ t ≤ s ≤ r} ∪ {ψt/2, 1 ≤ t ≤ r} .

Lemma 8. If α ∈ ∆+
H , then

(i) there exists at most one ψ+ ∈ Ψ, such that ψ+ + α is a root;
(ii) there exists at most one ψ− ∈ Ψ, such that ψ− − α is a root;
(iii) if both ψ+ and ψ− exist, then ψ+ 6= ψ−;
(iv) one has α(hψ) = δψψ− − δψψ+ for ψ ∈ Ψ.

Proof. Suppose that we are in the first case of the restricted root theorem and write
µ(α) = (ψs−ψt)/2, with t < s. If ψ++α is a root, then µ(ψ++α) = ψ++(ψs−ψt)/2,
which, according to the description of µ(∆+

M ), implies ψ+ = ψt. Similarly, if ψ−−α
is a root, then ψ− = ψs. So ψ+ and ψ− are unique and distinct. The same is true
in the second case of the restricted root theorem.

If ψ+ exists, then α and α+ψ+ are roots, but α−ψ+ and α+2ψ+ are not roots,
since ψ+ 6= ψ− and [m+,m+] = 0. The fourth assertion follows.

Suppose that ψ+ + α and ψ− − α are roots, then (ψ− − α, ψ+) = −(α, ψ+) > 0,
so β = ψ+ + α− ψ− is a root in ∆H . This implies that

[nα, nψ+ ] = c[nβ , nψ− ] for some c ∈ R.
Using (iv) of the above lemma, one gets [nα, n−ψ− ] = c[nβ , n−ψ+ ]. From this we
deduce

[fα, eψ± ] = ±I[eα, eψ± ], [cfβ , eψ± ] = ∓I[eα, eψ∓ ], (3.2)

and, for ξ =
∑

Ψ ξψeψ ∈ a,

[fα, ξ] = I(ξψ+ [eα, eψ+ ]− ξψ− [eα, eψ− ]), [cfβ , ξ] = I(ξψ− [eα, eψ+ ]− ξψ+ [eα, eψ− ]).

As I[eα, ξ] = I(ξψ+ [eα, eψ+ ] + ξψ− [eα, eψ− ]), the following lemma is obvious.

Lemma 9. Suppose α ∈ ∆+
H as above and ξ =

∑
Ψ ξψeψ ∈ a; write ξψ+ = 0

(respectively ξψ− = 0) if ψ+ (respectively ψ−) does not exist; if ξψ+ 6= ξψ− , then

I[eα, ξ] = [xfα + ycfβ , ξ],

with

x =
ξ2
ψ+

+ ξ2
ψ−

ξ2
ψ+
− ξ2

ψ−

, y = −
2ξψ+ξψ−
ξ2
ψ+
− ξ2

ψ−

.

We will use later this lemma to write I[eα, ξ] as an element of the infinitesimal
orbit of the isotropy group H.

3.2. Proof of the formulas. Now, let Σ = G/H be an irreducible hermitian
symmetric space, and π : M = T ∗Σ → Σ its cotangent bundle. We use the
notations of the first section.

Lemma 10. Let g be a Kähler metric on M , with Kähler form ω = π∗ωΣ + ddcρ,
where ρ is a G-invariant potential on M , then

g(x, y) = (u(x), y), with u =
(
A 0
0 D

)
,

with, at a point ξ,

Aξ = 1 + IRIξ,gradξ ρ, Dξ = ((dξ grad ρ)− I(dξ grad ρ)I).
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Proof. This is an easy exercise, using the techniques of the first section.

Lemma 11. If ρ(ξ) =< f(IRIξ,ξ)ξ, ξ >, then gradξ ρ = 2(xf)′(IRIξ,ξ)ξ.

Proof. From (3.1) and the H-invariance of ρ, we may suppose ξ =
∑
ξψeψ ∈ a. By

density, it is enough to prove the formula at a regular ξ ∈ a, that is ξ such that
m = a + [h, ξ]. From H-invariance, gradξ ρ is orthogonal to [h, ξ], so gradξ ρ ∈ a.
Now we simply differentiate in a:

RIξ,ξ =
∑

ξ2
ψ[Ieψ, eψ] = −2i

∑
ξ2
ψhψ, ρ(ξ) =

∑
ξ2
ψf(4ξ2

ψ)|eψ|2,

dξρ = 2
∑

(xf)′(4ξ2
ψ)|eψ|2ξψdξψ,

which gives the formula of the lemma.

Lemma 12. For gradξ ρ = F (IRIξ,ξ)ξ, one has the following formulas at a point
ξ =

∑
ξψeψ:

(i) in horizontal directions:

Aξ = 1 + IRIF 1/2(IRIξ,ξ)ξ,F 1/2(IRIξ,ξ)ξ,

(ii) in vertical directions: for ζ ∈ a⊕ Ia,

Dξ(ζ) = 2(xF )′(IRIξ,ξ)(ζ),

(iii) in vertical isotropic directions: for α ∈ ∆H , with the notations of lemma 9,
if ξψ+ 6= ξψ− ,

Dξ([eα, ξ]) = 2
ξ2
ψ+
F (4ξ2

ψ+
)− ξ2

ψ−
F (4ξ2

ψ−
)

ξ2
ψ+
− ξ2

ψ−

(ξψ+ [eα, eψ+ ] + ξψ− [eα, eψ− ]),

and the same formula is true replacing eα by fα.

Remark. For formula (iii) when ξψ+ = ξψ− , it is clear by density that the same
formula is true with a coefficient 2(xF )′(4ξ2

ψ+
).

Proof. The formula (i) is a consequence of

RIξ,F (IRIξ,ξ)ξ = RIF 1/2(IRIξ,ξ)ξ,F 1/2(IRIξ,ξ)ξ.

This is easy for ξ ∈ a, whence the general case by (3.1).
Now we prove (ii). Clearly Dξ(Iζ) = IDξ(ζ), so we may suppose ζ ∈ a. Since a

is abelian, dξRIξ,ξ(Iζ) = 0, so

−I(dξ grad ρ)(Iζ) = F (IRIξ,ξ)ζ;

since RIξ,ξ and (dξRIξ,ξ)(ζ) = 2RIξ,ζ commute,

(dξ grad ρ)(ζ) = F ′(IRIξ,ξ)(2RIξ,ζξ) + F (IRIξ,ξ)ζ;

using RIξ,ζξ = RIξ,ξζ, we get the second formula.
Finally, we prove (iii). Since grad ρ is H-equivariant, we get (dξ grad ρ)[X, ξ] =

[X, gradξ ρ] for X ∈ h. We deduce

(dξ grad ρ)[eα, ξ] = [eα, F (IRIξ,ξ)ξ]

= ξψ+F (4ξ2
ψ+

)[eα, eψ+ ] + ξψ−F (4ξ2
ψ−)[eα, eψ− ].

On the other hand, [Ieα, ξ] = [xfα + ycfβ , ξ] from lemma 9, so using (3.2)

−I(dξ grad ρ)(I[eα, ξ]) = −I[xfα + ycfβ , F (IRIξ,ξ)ξ]

= (xξψ+F (4ξ2
ψ+

) + yξψ−F (4ξ2
ψ−))[eα, eψ+ ]

− (xξψ−F (4ξ2
ψ−) + yξψ+F (4ξ2

ψ+
))[eα, eψ− ];

replacing x and y according to lemma 9 gives the formula. The proof for fα is the
same.
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Proof of theorem 1. First we prove that the description (ii) of the theorem
follows from the formula for the potential in (i). We use lemmas 10, 11 and 12. The
statement for horizontal directions is clear since F = 2(xf)′ = φ2. Thus we have
only to check that Dξ is the inverse of Aξ. It suffices to compare the eigenvalues
on the eigenspaces gψ for ψ ∈ ∆M . The eigenvalues on g±ψ are the same, so we
may assume ψ ∈ ∆+

M . There are two cases: ψ ∈ Ψ or ψ = α+ ψ+ for α ∈ ∆+
H and

ψ+ ∈ Ψ. For example, in the second case, the eigenvalue of Aξ on gα+ψ+ is

1 + 2ξ2
ψ+
φ2(4ξ2

ψ+
) + 2ξ2

ψ−φ
2(4ξ2

ψ−)

and the eigenvalue of Dξ is

2((xφ2)(4ξ2
ψ+

)− (xφ2)(4ξ2
ψ−))/(4ξ2

ψ+
− 4ξ2

ψ−);

since xφ2(x) =
√

1 + x− 1, the result follows from the trivial identity 1/(
√

1 + x+√
1 + y) = (

√
1 + x−

√
1 + y)/(x− y).

Now it is clear from conditions (1.4), (1.5) and (1.6) that the metric is hy-
perkähler. The uniqueness comes from lemma 6.
Proof of theorem 2. This theorem is now clear.
Proof of corollary 4. From the proof of lemma 6, we see that the only possible
non diagonal terms in the metric must come from the Σf part.
Proof of corollary 5. It is easy to check that these functions define a hyperkähler
structure on {ξ,RIξ,ξ is injective} ⊂ M . It is not difficult to identify this open
subset of M , as a holomorphic-symplectic manifold, with the nilpotent orbit in gC

of a regular element X of m+. Thus we get an explicit formula for its hyperkähler
metric. It is easy to verify that the formula does not depend on the choice of the
hermitian symmetric metric on Σ.
Remark. These nilpotent orbits are very special ones: they are the most degenerate
ones, since ad(X)3 = 0. For example they do not cover the case of the regular
sl3-orbit of [7].
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simples complexes, Math. Ann., to appear.

[2] D. Burns, Some examples of the twistor construction, in “Contributions to several complex
variables: in honor of Wilhelm Stoll” (eds. A. Howard and P. M. Wong), Vieweg (1986).
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