DS 3 – Transformée de Fourier et transformée en z 24/05/2013 – Durée : 2h

Les documents et les calculatrices sont interdits. Toutes les réponses devront être (même rapidement) justifiées. Certaines questions en milieu d'exercices peuvent être difficiles; on pourra utiliser les résultats de ces questions pour répondre aux questions suivantes. Enfin, comme d'habitude, les qualités de rédaction seront prises en compte dans la notation...

1 Transformation de Fourier et convolution

Exercice 1 (Question de cours)

Donner (sans justifier cette fois-ci) la définition de la transformée de Fourier inverse.

Exercice 2

Soit f la fonction définie par $f(x) = e^{-\pi x} \chi_{[0,+\infty[}(x).$

- 1. Calculer la transformée de Fourier \hat{f} de f.
- 2. En déduire la valeur de l'intégrale

$$\int_{-\infty}^{+\infty} \frac{1}{\pi^2 + (2\pi p)^2} \mathrm{d}p.$$

Exercice 3

Soient a et ω deux réels strictement positifs. Calculer la transformée de Fourier de la fonction $f(x) = \cos(\omega x)\chi_{[-a,a]}(x)$ (on pourra utiliser la formule $\cos(y) = \text{Re}(e^{iy})$).

Exercice 4

Soit a > 0. On définit les deux fonctions $f, g : \mathbf{R} \to \mathbf{R}$ par

$$f(x) = e^{-ax} \chi_{[0,+\infty[}(x)$$
 et $g(x) = \chi_{[0,1]}(x)$.

Le but de cet exercice est de calculer le produit de convolution f * g.

- 1. Montrer que f et g sont des fonctions intégrables.
- 2. Montrer que pour tout $x \in \mathbf{R}$, on a $(f * g)(x) = \int_0^{+\infty} e^{-at} \chi_{[0,1]}(x-t) dt$.
- 3. Montrer que $\chi_{[0,1]}(x-t) = \chi_{[x-1,x]}(t)$.
- 4. En déduire que :
 - (a) pour $x \le 0$, (f * g)(x) = 0,
 - (b) pour $x \ge 1$, $(f * g)(x) = e^{-ax} \frac{e^a 1}{a}$,
 - (c) pour $x \in [0, 1]$, $(f * g)(x) = \frac{1 e^{-ax}}{a}$.

DS 3 - TF-TZ page 1

Exercice 5

Le but de cet exercice est de trouver une solution intégrable à l'équation différentielle

$$y' + y = e^{-x} \chi_{[0,+\infty[}(x).$$
 (E)

1. Montrer que dans l'espace des fréquences, l'équation (E) devient

$$\hat{y}(p) = \frac{1}{(1 + 2i\pi p)^2}.$$

2. En déduire que si f est une solution intégrable de (E), alors

$$f(x) = xe^{-x}\chi_{[0,+\infty[}(x).$$

Exercice bonus

Existe-t-il une fonction f intégrable sur \mathbf{R} telle que pour toute fonction g intégrable sur \mathbf{R} , on ait f * g = g?

Quelques formules utiles (ou pas)

Pour toute fonction f intégrable dont la dérivée est intégrable, $\hat{f}'(p) = (2i\pi p)\hat{f}(p)$.

La transformée de Fourier de $f(x) = \frac{x^k}{k!} e^{-x} \chi_{[0,+\infty[}(x) \text{ est } \hat{f}(p) = \frac{1}{(1+2i\pi p)^{k+1}}$.

La transformée de Fourier de $f(x) = e^{-|x|}$ est $\hat{f}(p) = \frac{2}{1 + 4\pi^2 p^2}$.

2 Transformée en z

Exercice 6 (Question de cours)

Donner la transformée en z de la suite $u_n=1$. Quel est l'ensemble de convergence de cette transformée en z?

Exercice 7

À l'aide de la dérivée de la transformée en z de la suite $u_n = 2^n$, calculer la transformée en z de la suite $v_n = n \cdot 2^n$.

Exercice 8

Trouver l'original des fonctions suivantes :

$$1. \ f(z) = \frac{1}{z},$$

3.
$$f(z) = \frac{1}{1+z^2}$$

2.
$$f(z) = \frac{z+1}{z-2}$$
,

4.
$$f(z) = e^{-\frac{1}{z}}$$
.

Exercice 9

Le but de cet exercice est de résoudre l'équation de récurrence $u_{n+1} - 2u_n = 1$ pour $u_0 = 0$.

- 1. Montrer que la transformée en z de la suite $(u_n)_{n\in\mathbb{N}}$ vérifie $Z(u_n)(z)=\frac{z}{(z-1)(z-2)}$
- 2. En déduire l'expression de la suite $(u_n)_{n \in \mathbb{N}}$ en fonction de n.

DS 3 - TF-TZ page 2