TD 1 – Séries entières

Les divers documents du cours pourront être trouvés à la page http://www.math.u-psud.fr/~guiheneu/Enseignement.html.

1 Calcul du rayon de convergence

Exercice 1

Calculer les rayons de convergence des séries suivantes; lorsque le rayon de convergence est fini, préciser s'il y a convergence aux extrémités de l'intervalle de convergence :

1.
$$\sum_{n=0}^{+\infty} (n+1) x^n$$
 et $\sum_{n=0}^{+\infty} \sqrt{n} x^n$,

5.
$$\sum_{n=0}^{+\infty} \frac{2^n}{n^2 + 1} x^n,$$

2.
$$\sum_{n=0}^{+\infty} \left(n + \frac{1}{n+1} \right) x^n$$
,

6.
$$\sum_{n=0}^{+\infty} \frac{1}{(3n)!} x^{2n+1},$$

3.
$$\sum_{n=0}^{+\infty} n^n x^n$$
 et $\sum_{n=0}^{+\infty} \frac{1}{\sqrt{n}^{\sqrt{n}}} x^n$,

7.
$$\sum_{n=0}^{+\infty} \sin\left(\frac{n\pi}{2013}\right) x^n.$$

4.
$$\sum_{n=0}^{+\infty} \ln(n+1) x^n$$
,

Exercice 2

Le but de cet exercice est de calculer le rayon de convergence d'une série de terme général polynomial.

- 1. Soit k un entier positif. Montrer que $(n+1)^k = n^k + n^k \varepsilon(n)$, où ε est une fonction qui tend vers 0 en $+\infty$.
- 2. Soit $P = \sum_{k=0}^{d} p_k x^k$ un polynôme non nul. Montrer que $P(n+1) \underset{n \to +\infty}{\sim} P(n)$.
- 3. Déterminer le rayon de convergence de la série $\sum_{n=0}^{+\infty} P(n)x^n$.

2 Calcul de sommes de séries entières

Exercice 3

Après avoir donné leur rayon de convergence, calculer la somme des séries entières suivantes :

TD 1 – Séries entières page 1

1.
$$\sum_{n=0}^{+\infty} x^{3n}$$
 et $\sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} x^n$,

3.
$$\sum_{n=0}^{+\infty} ((-2)^n + n) x^n$$
,

2.
$$\sum_{n=0}^{+\infty} n^2 x^n$$
 et $\sum_{n=1}^{+\infty} \frac{x^{2n}}{2n}$,

4.
$$\sum_{n=0}^{+\infty} \frac{\cos(n\theta)}{n!} x^n.$$

Exercice 4

On considère la série entière :

$$\sum_{n=1}^{+\infty} \frac{x^n}{n(n+2)}.$$

- 1. Déterminer son rayon de convergence. On appelera f la somme de la série.
- 2. Calculer f'; en déduire f.
- 3. Décomposer $\frac{1}{n(n+2)}$ en éléments simples ; en déduire une autre méthode pour calculer f.

Exercice 5

Soit la série entière suivante :

$$\sum_{n=0}^{+\infty} \frac{(-1)^n x^n}{n+1}.$$

Déterminer son rayon de convergence R, étudier la convergence en -R et R, et calculer la somme de la série dans l'intervalle]-R,R[.

3 Calcul de DSE

Exercice 6

On pose $f(x) = \arctan(1-x)$.

1. Montrer que f est dérivable et vérifier que

$$f'(x) = \frac{i}{2} \left(\frac{1}{x - (1+i)} - \frac{1}{x - (1-i)} \right)$$

2. Montrer que pour tout $x \in]-\sqrt{2}, \sqrt{2}[$,

$$f'(x) = \frac{i}{\sqrt{2}} \sum_{n=0}^{+\infty} \cos\left((n+1)\frac{\pi}{4}\right) \left(\frac{1}{\sqrt{2}}\right)^n x^n.$$

3. En déduire le développement en série entière de f en 0

4 Divers

Exercice 7 (Résolution d'équation différentielle 1)

Trouver une solution développable en série entière de l'équation différentielle :

$$xy' + 2y = x^3 + 1.$$

Exercice 8 (Résolution d'équation différentielle 2)

Trouver une solution développable en série entière de l'équation différentielle :

$$y' - 2xy = x$$

telle que y(0) = 0.

TD 1 – Séries entières

page 3

Exercice 9 (Résolution d'équation différentielle 3)

On cherche une solution de l'équation différentielle :

$$y'' + 2xy' + 2y = 0$$

Avec y(0) = 1 et y'(0) = 0.

- 1. Trouver sous forme de série entière la solution de cette équation différentielle.
- 2. Identifier cette solution avec une fonction « classique ».

Exercice 10 (Suite de Fibonacci)

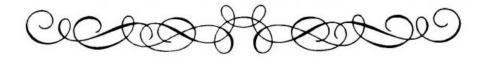
La suite de Fibonacci est la suite $(u_n)_{n\in\mathbb{N}}$ définie par les données initiales $u_0=u_1=1$ et la relation de récurrence $u_{n+1}=u_n+u_{n-1}$. Le but de cet exercice est d'obtenir une expression

de u_n en fonction de n à l'aide des séries entières. On pose $S(x) = \sum_{n=0}^{+\infty} u_n x^n$.

- 1. Montrer par récurrence que la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.
- 2. En déduire que pour tout $n \ge 1$, on a $\frac{u_{n+1}}{u_n} \le 2$. Qu'est ce que cela implique pour le rayon de convergence de la série ?
- 3. Montrer que $S(x) = 1 + (x^2 + x)S(x)$ puis que $S(x) = \frac{1}{1 X X^2}$.
- 4. En décomposant $\frac{1}{1-X-X^2}$ en éléments simples, donner une expression de u_n en fonction de n.

Exercice 11 (Principe des zéros isolés)

Soit f la somme d'une série entière de rayon supérieur à 1. On suppose que pour tout $k \in \mathbf{N}^*$, on a $f(\frac{1}{k}) = 0$. À l'aide de la formule de Taylor-Young, montrer que f est nulle.



Pour rappel, voici la formule de Taylor-Young, à découper et à encadrer chez vous :

Théorème (Formule de Talor-Young). Soit I un intervalle ouvert non vide de \mathbf{R} et soit a un point de I. Soit $f:I\to\mathbf{R}$ une fonction et n un entier positif. On suppose que f est n fois d'erivable sur l'intervalle I. Alors, il existe une fonction $\varepsilon(x)$ définie sur I, qui tend vers 0 lorsque x tend vers a, telle que l'on ait pour tout $x\in I$:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2!}f''(a) + \dots + \frac{(x - a)^n}{n!}f^{(n)}(a) + (x - a)^n \varepsilon(x).$$

*-----

TD 1 – Séries entières