TD 2 – Séries de Fourier

1 Polynômes et séries trigonométriques

Exercice 1

Pour commencer, quelques rappels...

1. Linéariser $\cos^3 x$ et exprimer $\sin(2x) - 3\cos(3x)$ en fonction de $\cos x$ et $\sin x$.

2. Calculer
$$S_n = \sum_{k=0}^n e^{ikx}$$
 et montrer que $S_n = e^{i\frac{\pi}{2}x} \frac{\sin(\frac{n+1}{2}x)}{\sin(\frac{x}{2})}$.

Exercice 2

Passer de la représentation en sinus/cosinus à la représentation exponentielle (et vice-versa) pour les séries trigonométriques suivantes :

1.
$$2\cos x - \frac{1}{3}\sin(4x)$$
,

3.
$$\sum_{k=1}^{+\infty} \frac{1}{k^2} (\cos(kx) - \sin(kx)),$$

2.
$$\frac{e^{ix} - e^{-2ix} + 5}{2}$$

4.
$$\sum_{k=1}^{+\infty} \frac{1}{2^k} (\cos(kx) + e^{ikx}).$$

Exercice 3

Soient $x \in \mathbf{R} \setminus 2\pi \mathbf{Z}$ et $S(x) = \sum_{k=0}^{+\infty} \cos^k x$.

- 1. S est-elle une série trigonométrique?
- 2. Calculer la somme de cette série

Exercice 4

Calculer la somme de la série trigonométrique $\sum_{k=1}^{+\infty} \frac{\cos(kx)}{k \cdot 2^k}$ (pour un nombre complexe $z = re^{i\theta}$, on a par définition $\ln(z) = \ln(r) + i\theta$).

2 Séries de Fourier

Exercice 5 (Phénomène de Gibbs)

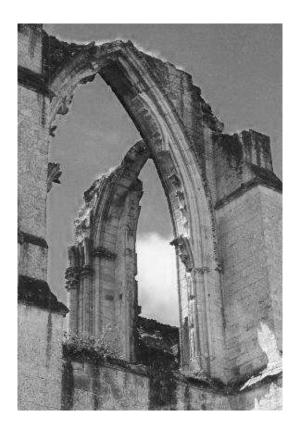
Soit $f: \mathbf{R} \to \mathbf{R}$ la fonction 2π -périodique telle que

$$f(x) = \begin{cases} -1 & \text{si} \quad -\pi < x \le 0\\ 1 & \text{si} \quad 0 < x \le \pi. \end{cases}$$

- 1. Montrer que si f est une fonction impaire, alors pour tout entier k, $a_k(f)=0$ et $b_k(f)=\frac{2}{\pi}\int_0^\pi f(t)\sin(kt)\mathrm{d}t$.
- 2. Calculer les coefficients de Fourier de f et donner la série de Fourier de f.

TD 2 – Séries de Fourier

page 2



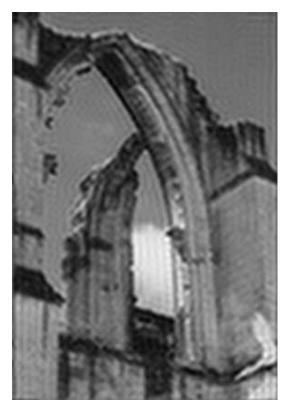


FIGURE 1 – Phénomène de Gibbs : quand on compresse trop l'image, la qualité s'en ressent...

3. Tracer sur un même graphique la fonction f et les sommes partielles $S_0(x)$, $S_2(x)$ et $S_4(x)$ de la série de Fourier de f.

Exercice 6

Soit $f: \mathbf{R} \to \mathbf{R}$ la fonction 2π périodique telle que f(x) = x si $x \in [-\pi, \pi[$.

- 1. Représenter f.
- 2. Calculer les coefficients de Fourier de f et en déduire la série de Fourier de f.
- 3. À l'aide du théorème de Parseval, calculer $\sum_{k=1}^{+\infty} \frac{1}{k^2}$.

Exercice 7 (Piano vs guitare, tome I)

On considère les fonctions f et g comme dessinées sur les figures 2 et 3, que l'on étend à des fonctions de ${\bf R}$ dans ${\bf R}$ qui sont impaires et 2π -périodiques.

- 1. Donner l'expression de f(x) et de g(x) en fonction de $x \in [0, \pi]$.
- 2. Calculer les coefficients de Fourier de f et de g, puis exprimer les séries de Fourier de f et g.

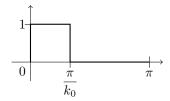
Exercice 8

Soit $f: \mathbf{R} \to \mathbf{R}$ la fonction 2π -périodique égale à $1 - \frac{x^2}{\pi^2}$ sur $[-\pi, \pi]$. Calculer les coefficients de

Fourier a_k et b_k de f (on pourra faire des intégrations par parties). En déduire les valeurs de $\sum_{k=1}^{\infty} \frac{1}{k^2}$,

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} \text{ et } \sum_{k=1}^{\infty} \frac{1}{k^4}.$$

TD 2 – Séries de Fourier



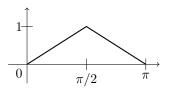


FIGURE 2 – Graphe de la fonction f

FIGURE 3 – Graphe de la fonction g

Exercice 9

Soit $f: \mathbf{R} \to \mathbf{R}$ la fonction 2π périodique telle que $f(x) = \operatorname{ch} x$ si $x \in [-\pi, \pi[$.

- 1. Représenter f.
- 2. Calculer les coefficients de Fourier de f et en déduire la série de Fourier de f.
- 3. En déduire les sommes $\sum_{k=1}^{+\infty} \frac{1}{k^2+1}$ et $\sum_{k=1}^{+\infty} \frac{(-1)^k}{k^2+1}$.

Exercice 10

Soit $f: \mathbf{R} \to \mathbf{R}$ la fonction telle que $f(x) = |\sin(nx)|$. Calculer les coefficients de Fourier de f et en déduire la série de Fourier de f.

Exercice 11 (Circuit RC)

On considère le circuit RC comme représenté à la figure 4.

- 1. Établir l'équation différentielle reliant $u_C(t)$ à e(t) (on posera comme d'habitude $\tau = RC$).
- 2. On considère cette dernière équation différentielle et suppose que $e(t) = e^{i\omega t}$ (on sort du monde des réels) et que $u_C(t)$ est une série trigonométrique. Déterminer $u_C(t)$
- 3. On suppose que e(t) = f(t) où f est la fonction donnée à l'exercice 5. Déterminer $u_C(t)$, et représenter e(t) et $u_C(t)$ sur un même graphique, interpréter.

Exercice 12 (Circuit RLC)

On considère le circuit RLC comme représenté à la figure 5.

- 1. Établir l'équation différentielle reliant $u_C(t)$ à e(t) (on posera comme d'habitude $\tau = RC$).
- 2. On considère cette dernière équation différentielle et suppose que $e(t) = e^{i\omega t}$ (on sort du monde des réels) et que $u_C(t)$ est une série trigonométrique. Déterminer $u_C(t)$ (question subsidiaire : que reconnaît-on?).
- 3. On suppose que e(t) = g(t) où g est la fonction donnée à l'exercice 7 (cf figure 3). Déterminer $u_C(t)$, et représenter e(t) et $u_C(t)$ sur un même graphique, interpréter.

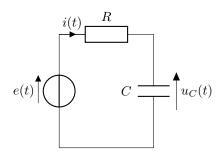


FIGURE 4 - Circuit RC

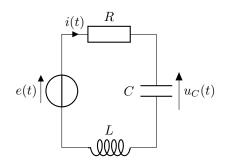


FIGURE 5 - Circuit RLC