TD 3 – Transformation de Fourier

1 Calculs de transformées de Fourier

Exercice 1

Soit a>0 et f la fonction définie par $f(x)=e^{-ax}\chi_{[0,+\infty[}(x))$. Calculer la transformée de Fourier \hat{f} de f. Soit g la fonction définie par $g(x)=e^{ax}\chi_{]-\infty,0](x)}$. Calculer la transformée de Fourier \hat{g} de g. En déduire la valeur de l'intégrale

$$\int_{-\infty}^{+\infty} \frac{1}{a^2 + 4\pi^2 p^2} \,\mathrm{d}p.$$

Exercice 2

Soit f la fonction définie par $f(x) = x \chi_{[-1,1]}(x)$. Calculer la transformée de Fourier \hat{f} de f.

Exercice 3

Soit $f: \mathbf{R} \to \mathbf{R}$ la fonction définie par

$$f(x) = \begin{cases} 1 + x & \text{si} \quad x \in [-1, 0] \\ 1 - x & \text{si} \quad x \in [0, 1] \\ 0 & \text{si} \quad |x| \ge 1. \end{cases}$$

- 1. Faire la représentation graphique de la fonction f.
- 2. Calculer la transformée de Fourier \hat{f} de f.
- 3. En déduire la valeur de l'intégrale $\int_0^{+\infty} \frac{\sin^4 x}{x^4} \, \mathrm{d}x$.

Exercice 4

Soient a > 0, $k \in \mathbb{N}$ et f la fonction définie par $f(x) = \frac{x^k}{k!} e^{-ax}$. En utilisant le résultat de l'exercice 1, calculer \hat{f} .

Exercice 5

Soit g la fonction représentée par la figure 1.

1. Exprimer la fonction g en fonction de la fonction f définie dans l'exercice 3.

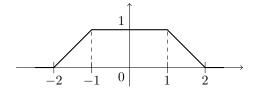


FIGURE 1 – Graphe de la fonction g

2. À l'aide de la transformée de Fourier de la fonction f, calculer la transformée de Fourier de g.

Exercice 6

À l'aide de la transformée de Fourier de la fonction $\chi_{[-1,1]}$, calculer l'intégrale

$$\int_{-\infty}^{+\infty} \frac{\sin^2 x}{x^2} \, \mathrm{d}x.$$

Exercice 7

Soit a > 0 et f la fonction définie sur \mathbf{R} par $f(x) = e^{-a|x|}$.

1. On considère une fonction $g: \mathbf{R} \to \mathbf{R}$ qui est intégrable et paire. Montrer que

$$\hat{g}(p) = 2 \int_0^{+\infty} g(x) \cos(px) \, \mathrm{d}x.$$

- 2. En déduire la transformée de Fourier de f, puis celle de $x\mapsto \frac{1}{1+x^2}$.
- 3. Retrouver la transformée de Fourier de f en utilisant les résultats de l'exercice 1.
- 4. En déduire, pour $\omega \in \mathbf{R}$, la valeur de l'intégrale $\int_0^{+\infty} \frac{\cos(\omega x)}{1+x^2}$.

Exercice 8

Soient a > 0 et f la fonction définie sur \mathbf{R} par $f(x) = e^{-ax^2}$.

1. Montrer que f est solution de l'équation différentielle

$$y'(x) + 2axy(x) = 0.$$

- 2. En appliquant la transformation de Fourier à cette équation différentielle, en déduire une équation différentielle vérifiée par \hat{f} .
- 3. Sachant que $\int_{-\infty}^{+\infty}e^{-ax^2}=\sqrt{\frac{\pi}{a}},$ calculer $\hat{f}(0).$ En déduire que

$$\hat{f}(p) = \sqrt{\frac{\pi}{a}} e^{\frac{-\pi^2 p^2}{a}}.$$

2 Convolution et transformée de Fourier

Exercice 9

Existe-t-il une fonction f intégrable sur \mathbf{R} telle que pour toute fonction g intégrable sur \mathbf{R} , on ait f * g = g? On pourra utiliser la transformée de Fourier. Que dire du Dirac?

Exercice 10

Soient a > 0 et $f_a : \mathbf{R} \to \mathbf{R}$ la fonction définie par $f_a(x) = \frac{1}{a}e^{-x^2a^2}$. Pour b > 0, en passant par la transformation de Fourier, calculer $f_a * f_b$ (ou utilisera le résultat de l'exercice 8).

Exercice 11

Soit a > 0, calculer la transformée de Fourier F de $\chi_{[-a,a]} * \chi_{[-a,a]}$. Que reconnaît-t-on?

3 Applications

Exercice 12

On cherche une fonction f intégrable et solution de l'équation différentielle

$$-y'' + y = e^{-2|x|}.$$

1. Montrer que si f vérifie cette équation différentielle, alors

$$\hat{f}(p) = \frac{4}{3} \left(\frac{1}{1 + 4\pi^2 p^2} - \frac{1}{4 + 4\pi^2 p^2} \right).$$

2. En déduire f(x).

Exercice 13

Soit a > 0. On considère le filtre du second ordre régi par l'équation différentielle

$$-\frac{1}{a^2}g'' + g = f.$$

- 1. On suppose que les fonctions intervenant dans l'équation différentielle sont toutes intégrables. En déduire une relation entre \hat{g} et \hat{f} .
- 2. En déduire que

$$g(t) = \frac{1}{2} a \int_{-\infty}^{+\infty} e^{-a|t-s|} f(s) \, \mathrm{d}s. \tag{1}$$

On rappelle que la transformée de Fourier de $x\mapsto \frac{a^2}{a^2+4\pi^2x^2}$ est $p\mapsto \frac{1}{2}ae^{-a|t|}$.

3. On appelle réponse impulsionnelle la fonction g donnée par (1) lorsque f est l'impulsion de Dirac δ_0 , et réponse indicielle la fonction g donnée par (1) lorsque f est la fonction de Heaviside $\chi_{[0,+\infty[}$. Calculer ces réponses.

Exercice 14 (Équation de la chaleur)

On considère l'équation de la chaleur en une dimension pour une fonction u(x,t) où $x \in \mathbf{R}$ et $t \in \mathbf{R}_+$:

$$\begin{cases} \frac{\partial u}{\partial t}(x,t) - \frac{\partial^2 u}{\partial x^2}(x,t) = 0\\ u(x,0) = u_0(x). \end{cases}$$
 (2)

Cette équation modélise l'évolution de la chaleur sur un fil de longueur infinie. La quantité u(x,t) représente la température du fil à l'abscisse x et au temps t.

1. On considère que pour tout temps t, la fonction $x \mapsto u(x,t)$ est intégrable; on pose $\hat{u}(x,t)$ sa transformée de Fourier. Montrer que \hat{u} vérifie l'équation

$$\frac{\partial \hat{u}}{\partial t}(p,t) + 4\pi^2 p^2 \hat{u}(p,t) = 0.$$

2. En déduire que

$$\hat{u}(p,t) = \hat{u}_0(p) e^{-4\pi^2 p^2 t}.$$

3. On pose $g(p,t) = e^{-4\pi^2 p^2 t}$. Montrer que

$$u(x,t) = u_0(x) * \hat{g}(x,t).$$

4. En utilisant le résultat de l'exercice 8, en déduire que

$$u(x,t) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{y^2}{4t}} u_0(x-y) dy.$$

Question subsidiaire : quel est le rapport avec le flou gaussien en traitement de l'image?