TD 7 – Calcul Différentiel

1 Différentielle, dérivées partielles

Exercice 1

Soit $f: E \to F$ une application entre deux espaces vectoriels normés, E de dimension finie, et x_0 un point de E. Quels liens logiques y a-t-il entre les propriétés suivantes?

- (i) f est différentiable en x_0 ,
- (ii) f admet en x_0 des dérivées directionnelles suivant tout vecteur (non nul),
- (iii) f admet des dérivées partielles en x_0 ,
- (iv) f est continue en x_0 .

Exercice 2

Chacune des formules suivantes définit une fonction f sur $\mathbb{R}^2 \setminus \{(0,0)\}$, que l'on prolonge en posant f(0,0) = 0. Pour chacune des fonctions obtenues, répondre aux questions suivantes. Estelle continue en (0,0)? L'application admet-elle des dérivées partielles en (0,0)? Des dérivées directionnelles? Est-elle différentiable en (0,0)?

(i)
$$\frac{xy}{x^2 + y^2}$$
 et (ii) $\frac{xy^2}{x^2 + y^2}$

Exercice 3

Soit $f: \mathbf{R}^2 \to \mathbf{R}^3$ définie par $f(x, y) = (\sin(x + y), 2xy^2, y)$.

- 1. (i) Calculer les dérivées partielles $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ en un point (x_0, y_0) et écrire la matrice jacobienne.
 - (ii) Rappeler le lien entre dérivées partielles et différentielle et donner la valeur de $Df(x_0, y_0)(\vec{h})$ pour un vecteur $\vec{h} = (h_x, h_y)$ quelconque.
 - (iii) Ecrire l'approximation de $f(x_0 + \vec{h})$ fournie par la différentielle et donner la version matricielle.
- 2. Mêmes questions pour la fonction définie par $g(a, b, c) = (2a + b^2c, ae^b)$.
- 3. Comment obtient-on la matrice de l'application linéaire $D(f \circ g)(a, b, c)$ à partir de celles de Df et Dg?

Exercice 4

Soit I un intervalle ouvert de \mathbf{R} et $f: I^2 \to \mathbf{R}$ une fonction différentiable. Montrer que la fonction $g: I \to \mathbf{R}$ définie par g(x) = f(x, x) est dérivable, et calculer sa dérivée en fonction des dérivées partielles de f.

Exercice 5

Soit $f: \mathbb{R}^m \to \mathbb{R}^m$ différentiable telle que f(0) = 0. Montrer que si Df_0 ne possède aucune valeur propre égale à 1, alors il existe un voisinage U de 0 dans \mathbb{R}^m tel que $f(x) \neq x$ pour chaque $x \in U \setminus \{0\}$.

Exercice 6

Soit I un intervalle de \mathbf{R} et E un espace vectoriel normé.

- 1. Vérifier qu'une application $\gamma: I \to E$ qui est dérivable en t_0 est aussi différentiable en t_0 , et que sa différentielle est bien $D\gamma(t_0): h \mapsto \gamma'(t_0).h$.
- 2. En déduire, à l'aide du théorème de composition, la formule $(f \circ \gamma)'(t_0) = Df(\gamma(t_0)) \cdot \gamma'(t_0)$.

Exercice 7

Soit f un homéomorphisme entre deux voisinages ouverts de 0 dans un espace vectoriel normé.

- 1. Montrer que si, autour de 0, on a f(h) = h + o(||h||), alors on a aussi près de $0: f^{-1}(k) = k + o(||k||)$.
- 2. En déduire le résultat de cours suivant : si f est un homéomorphisme entre deux ouverts U et V d'espaces vectoriels normés tel qu'en un point $a \in U$ f est différentiable de différentielle inversible, alors f^{-1} est différentiable en b = f(a) et $D(f^{-1})_b = (Df_a)^{-1}$.

Exercice 81. Soit $p: \mathbf{R}_{+}^{*} \times]0, 2\pi[\to \mathbf{R}^{2}$ la fonction « coordonnées polaires »

$$(r, \theta) \mapsto (r \cos \theta, r \sin \theta).$$

Montrer que p définit un difféomorphisme entre $\mathbf{R}_{+}^{*} \times]0, 2\pi[$ et un ouvert U de \mathbf{R}^{2} .

2. Justifier l'énoncé suivant trouvé dans une livre de physique : « On écrit la fonction z=f(x,y) en coordonnées polaires et on trouve

$$\frac{\partial z}{\partial r} = \frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta \quad \text{et} \quad \frac{1}{r} \frac{\partial z}{\partial \theta} = -\frac{\partial f}{\partial x} \sin \theta + \frac{\partial f}{\partial y} \cos \theta. \$$

Exercice 9

Montrer que la boule unité ouverte de \mathbb{R}^n est difféomorphe à \mathbb{R}^n .

Exercice 10

Soit $f: GL_n(\mathbf{R}) \to GL_n(\mathbf{R})$ définie par $f(X) = X^{-1}$.

- 1. Montrer que $GL_n(\mathbf{R})$ est un ouvert de $M_n(\mathbf{R})$ (qu'on munit d'une norme subordonnée).
- 2. Montrer que si X est une matrice $n \times n$ telle que ||X|| < 1, alors $I_n X$ est inversible et son inverse est $\sum_{k=0}^{\infty} X^k$. En déduire la différentiabilité et la différentielle de f en I_n .
- 3. A l'aide la formule $(A + H)^{-1} = A^{-1}(I_n + HA^{-1})^{-1}$, en déduire la différentiabilité et la différentielle de f en tout point A de $GL_n(\mathbf{R})$.

Exercice 11

Soit $X = C^0([0,1], \mathbf{R})$ l'espace des fonctions continues de [0,1] dans \mathbf{R} , muni de la norme de la convergence uniforme. Montrer que l'application

$$f \mapsto \int_0^1 f^3(t)dt$$

de X dans $\mathbf R$ est différentiable, et calculer sa différentielle.

Exercice 12

Montrer que le système suivant admet une unique solution.

$$\begin{cases} x = \frac{1}{3}\cos(x+y) \\ y = \frac{1}{3}\sin(x-y) \end{cases}$$

Aide : on pourra penser à utiliser l'inégalité des accroissements finis puis le théorème de point fixe de Picard.

Exercice 13

Un ensemble $K \subset \mathbf{R}^n$ a mesure nulle si pour chaque $\epsilon > 0$, il existe un recouvrement dénombreable de K par de cubes de côté c_i tels que $\sum_i c_i^n < \epsilon$. Soient $U \subset \mathbf{R}^n$ un ouvert, $f: U \to \mathbf{R}^n$ de classe C^1 , et $K \subset U$ un compact avec mesure nulle. Montrer f(K) a également mesure nulle. On pourra procéder comme suit.

- 1. Montrer pour chaque $a \in K$, il existe une boule ouverte B_a centrée en a, un $k_a \ge 0$ tels que $||f(x) f(y)||_{\infty} \le k_a ||x y||_{\infty}$ pour tout $x, y \in B_a$. (Ici $||x||_{\infty} = \max |x_i|$.)
- 2. Montrer que $f(K \cap B_a)$ a mesure nulle.
- 3. Montrer que f(K) peut être couvert par une réunion finie d'ensembles de mesure nulle et conclure.

Utiliser ce résultat pour montrer si N > n, alors l'image d'une fonction de classe C^1 de \mathbf{R}^n dans \mathbf{R}^N ne peut pas contenir une boule ouverte.

2 Problèmes d'extrema

Exercice 14

On considère la fonction f de ${\bf R}^2$ dans ${\bf R}$ définie par

$$f(x,y) = x^5 - x^2y + y.$$

Montrer que f est de classe C^1 sur \mathbf{R}^2 et calculer, en tout point, sa matrice jacobienne et son gradient. Déterminer les points critiques de f.

Exercice 15

Montrer que la fonction $f: \mathbf{R}^2 \to \mathbf{R}$, définie par

$$f(x,y) = (x^2 + y^4 - e^{-y^2} + e^{-x^2})$$

admet un minimum global, et le déterminer.

Exercice 16

On munit \mathbf{R}^n du produit scalaire canonique $\langle \cdot, \cdot \rangle$ et de sa norme associée $\| \cdot \|$. Étant donné $a \in \mathbf{R}^n$, $a \neq 0$, on considère la fonction $f : \mathbf{R}^n \to \mathbf{R}$ définie, pour tout $x \in \mathbf{R}^n$, par :

$$f(x) = \langle a, x \rangle e^{-||x||^2}.$$

- 1. Démontrer que f est différentiable sur \mathbf{R}^n et calculer $\nabla f(x)$ en tout point $x \in \mathbf{R}^n$.
- 2. Déterminer les points critiques de f.
- 3. En déduire les extrema de f

Exercice 17 (Un peu d'extrema liés)

Soient α et β deux nombres réels. Déterminer le maximum et le minimum sur le cercle unité \mathbf{S}^1 de \mathbf{R}^2 de la fonction $f(x,y) = \alpha x + \beta y$.

Exercice 18 (Un peu d'extrema liés, tome 2)

Let C be the subset of the plane defined by

$$C = \{(x, y) \in \mathbf{R}^2 \mid xy + x = \varphi\},\$$

where $\varphi = (1 + \sqrt{5})/2$ is the golden ratio. Determine the distance of the set C to the origin.

Exercice 19 (Fermat Point)

Let ABC be a non-flat plane triangle. We want to find the minimum in the plane of the map

$$f(M) = MA + MB + MC.$$

- 1. Show that if ABC is a triangle of the plane, then there exists a point M of the plane minimizing the sum of the distances to A, B and C.
- 2. Prove that the map $x \mapsto ||x||_2$ is differentiable on $\mathbf{R}^2 \setminus \{0\}$. Deduce that f is differentiable on $\mathbf{R}^2 \setminus \{A, B, C\}$.
- 3. Prove that if $P \notin \{A, B, C\}$ is a local extremum of f, then

$$\frac{\overrightarrow{PA}}{PA} + \frac{\overrightarrow{PB}}{PB} + \frac{\overrightarrow{PC}}{PC} = 0$$

- 4. Deduce that $\widehat{APB} = \widehat{BPC} = \widehat{CPA} = 2\pi/3$.
- 5. Using the fact that for any angle α , the set of points M of the plane such that $\widehat{AMB} = \alpha$ is an arc of circle passing through A and B, prove that f has at most one local extremum different from A, B and C.
- 6. (difficult) Prove that if all angles of ABC are smaller than $2\pi/3$, then A, B and C are not local minima of f, and thus that f has a unique minimum, lying in the interior of ABC.

Exercice 20

Let $f: \mathbf{R}^n \to \mathbf{R}$ be defined by $f(x) = x_1 x_2 \dots x_n$, and X be the set

$$X = \{(x_1 \cdots, x_n) \in \mathbf{R}^n_{\perp} \mid x_1 + \cdots + x_n = n\}.$$

- 1. Determine the maximum of f on the set X.
- 2. Deduce from it the inequality between arithmetic and geometric means : for any $(x_1, \ldots, x_n) \in \mathbf{R}^n_+$,

$$\sqrt[n]{x_1 \dots x_n} \le \frac{x_1 + \dots + x_n}{n}.$$

3 Inversion locale, fonctions implicites

Exercice 21

Difféomorphisme ou non?

- 1. $\mathbb{R} \to \mathbb{R}, x \mapsto e^x$.
- 2. $\mathbb{R} \to \mathbb{S}^1, t \mapsto e^{it}$.
- 3. $\mathbb{R} \to \mathbb{R}, x \mapsto x^3$.

- 4. Un isomorphisme linéaire entre espaces vectoriels de dimension finie.
- 5. Un isomorphisme linéaire entre espaces de Banach.

Exercice 22

Let $F(x, y) = x^2 + y^4 - 3xy + x$.

1. Compute and represent the gradient vector at the point (2,1). What can be deduced for the level line

$$L_1 = \{(x,y)|F(x,y) = 1\}$$
?

- 2. Show that the equation $x^2 + y^4 3xy + x = 1$ defines implicitly y as a map of x in a neighbourhood of (2,1).
- 3. Differentiate the equation $F(x, \varphi(x)) = 0$. Deduce the derivative $\varphi'(2)$.

Exercice 23

Soit $f: \mathbf{R}^2 \to \mathbf{R}^2$ définie par $f(x,y) = (e^x \cos y, e^x \sin y)$. Prouver que f est différentiable sur \mathbf{R}^2 et que Df(x,y) est bijective en tout point (x,y) de \mathbf{R}^2 . L'application f est-elle injective?

Exercice 24

Soient U un voisinage ouvert de 0 dans \mathbf{R} . et $\Psi: U \to M_n(\mathbf{R})$ une application de classe \mathcal{C}^1 telle que $\Psi(0) = I_n$.

- 1. Montrer qu'il existe un voisinage ouvert V de 0 contenu dans U, dont l'image $\Psi(V)$ est contenue dans $GL_n(\mathbf{R})$.
- 2. Montrer que l'application $x \mapsto \Psi(x) \cdot x$ est un difféomorphisme au voisinage de 0.

Exercice 25

Montrer que le système d'équations

$$\begin{cases} x + y + z + t = 0 \\ x^2 + y^2 + z^2 + t = 2 \\ x^3 + y^3 + z^3 + t^2 = 0 \end{cases}$$

a une unique solution (x,y,z)=f(t) proche de (0,-1,1), pour t assez petit. Déterminer la dérivée de f en 0.

4 Sous-variétés

Exercice 26

Les ensembles suivants sont-ils des sous-variétés? Si oui, déterminer leur dimension :

- 1. Le graphe de la fonction de la fonction $x \mapsto |x|$.
- 2. La sphère \mathbf{S}^n définie par

$$\mathbf{S}^n = \{ x = (x_0, \dots, x_n) \in \mathbf{R}^{n+1} \mid x_0^2 + \dots + x_n^2 = 1 \}.$$

3. Le tore \mathbf{T}^n défini par

$$\mathbf{T}^n = \{ z = (z_1, \dots, z_n) \in \mathbf{C}^n \mid |z_1| = \dots = |z_n| = 1 \}.$$

4. L'ensemble défini par $\{(x,y) \in \mathbf{R}^2 \mid x^3 = y^2\}$.

5. Pour $p \in [1, +\infty[$, la boule unité de la norme $\|\cdot\|_q$

$$\mathbf{S}_q = \{ x \in \mathbf{R}^{n+1} \mid \sum_i |x_i|^q = 1 \}.$$

- 6. Le groupe orthogonal $O_n(\mathbf{R}) = \{ A \in M_n(\mathbf{R}) \mid A^t A = I_n \}.$
- 7. Le groupe spécial linéaire $SL_n(\mathbf{R}) = \{A \in M_n(\mathbf{R}) \mid \det(A) = 1\}.$

5 Différentielles secondes

Exercice 27

Soit E un espace vectoriel de dimension finie et $u: E \to \mathbf{R}^n$ une application linéaire. On fixe $a \in \mathbf{R}^n$ et on définit $f: E \to \mathbf{R}$ par $f(x) = ||u(x) - a||_2^2$, où la norme $||\cdot||_2$ est la norme euclidienne sur \mathbf{R}^n . Montrer que f est de classe C^2 . Calculer Df(x) et $D^2f(x)$ pour tout $x \in E$.

Exercice 28

Soient E, F et G des espaces vectoriels de dimension finie et $B: E \times F \to G$ une application bilinéaire. Montrer que B est de classe C^2 et déterminer la différentielle seconde D^2B .

Exercice 29

Pour chacune des fonctions $f: \mathbf{R}^2 \to \mathbf{R}$ suivantes, déterminer les points critiques et leur nature.

- 1. $f(x,y) = x^4 x^2 + y^2$,
- 2. $f(x,y) = \cos x + y^2$,
- 3. $f(x,y) = x^2 + y^3$.

Exercice 30

Soient E un espace vectoriel de dimension finie, muni d'une norme quelconque, et $f: E \to \mathbf{R}_+^*$ une fonction de classe \mathcal{C}^2 . On suppose qu'il existe M > 0 tel que

$$\forall x \in E, \quad ||D^2 f(x)|| \le M.$$

1. Montrer que si $h \in E$ et $\lambda \in \mathbf{R}$, on a :

$$\forall x \in E, \quad f(x) + \lambda Df(x) \cdot h + \frac{\lambda^2}{2} M ||h||^2 > 0.$$

2. En déduire que $||Df(x)|| \le \sqrt{2Mf(x)}$.

Exercice 31 (Rouvière p.329)

Soit U un ouvert convexe de \mathbb{R}^n et $f: U \to \mathbb{R}$ une application deux fois différentiable sur U. Montrer que f est une fonction convexe sur U si et seulement si D^2f est une forme quadratique positive en tout point, i.e.

$$D^{2}f_{x}(h,h) = \sum_{i=1}^{n} \frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}(x)h_{i}h_{j} \ge 0 \quad \forall x \in U, h \in \mathbf{R}^{n}.$$

(on pourra utiliser le fait qu'une fonction convexe est au-dessus de ses tangentes).