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Abstract. In this paper, we generalize Minkowski's theorem. This theo-
rem is usually stated for a centrally symmetric convex body and a lattice
both included in Rn. In some situations, one may replace the lattice by
a more general set for which a notion of density exists. In this paper, we
prove a Minkowski theorem for Meyer sets, which bounds from below the
frequency of di�erences appearing in the Meyer set and belonging to a cen-
trally symmetric convex body. In the later part of the paper, we develop
quite natural applications of this theorem to Diophantine approximation
and to discretization of linear maps.

Introduction

Minkowski theorem states that if a convex subset of Rn is centrally symmet-
ric with respect to 0 and has a big enough volume, then it contains a non-trivial
point with integer coordinates, i.e. a point of Zn. This result was proved by H.
Minkowski in 1889, and initiated a whole �eld, now called geometry of numbers
(see for example the books [Min10], [GL87], [Sie89] or [Cas97]). Since then,
this theorem has led to many applications in various �elds such as algebraic
number theory, Diophantine approximation, harmonic analysis or complexity
theory.

The goal of the present paper is to state a Minkowski theorem in the more
general context where the lattice Zn is replaced by a Meyer subset of Rn. A set
Γ ⊂ Rn is Meyer if both Γ and its set of di�erences ∆Γ are uniformly discrete
and relatively dense (see De�nition 3). In particular, this de�nition implies
that the uniform upper density D+(Γ) of Γ (see De�nition 2) is positive and
�nite. Given a Meyer set Γ ⊂ Rn and a centrally symmetric convex body S,
it is always possible to remove a �nite subset from Γ such that the resulting
set Γ′ is still Meyer and satis�es Γ′ ∩S = ∅. Therefore, one cannot hope to get
a meaningful statement of Minkowski theorem involving only the number of
points in S ∩ Γ and D+(Γ). The solution is to average upon the whole Meyer
set, and to introduce the so-called frequency of di�erences. The frequency of
the di�erence u ∈ Zn is de�ned as the density ρΓ(u) of the set Γ ∩ (Γ − u)
over the density of Γ (De�nition 4). Again, the fact that the set Γ is Meyer
is important here: it implies that the support of ρΓ is uniformly discrete. The
main result of this paper is the following (Theorem 7).

Theorem. Let Γ ⊂ Rn be a Meyer set, and S ⊂ Rn be a centrally symmetric
convex body. Then ∑

u∈S∩Zn
ρΓ(u) ≥ D+(Γ)Vol(S/2).
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This theorem brings a new insight to the classical Minkowski theorem. It
shows that the object of interest is in fact the set of di�erences of elements
in Γ (which, for a lattice, is equal to Γ). In some sense, this point of view is
already present in the original proof of Minkowski and the proof proposed in
the sequel critically uses this fact. This is the purpose of Section 2.

In Section 3, we de�ne weakly almost periodic sets (see De�nition 9). For
such sets, the uniform upper density and the frequency of di�erences are de�ned
as limits (and no longer as upper limits). Roughly speaking, a set Γ is weakly
almost periodic if given any ball B large enough, the intersection of Γ with any
translate t(B) of B is a translation of B ∩ Γ up to a proportion of points ε
arbitrarily small. Such sets include a large class of quasicrystals, in particular
model sets (and, of course, lattices).

The remaining part of the paper is dedicated to two applications of our
main theorem. We investigate Diophantine approximation in Section 4.1. A
corollary is derived to show the existence of a couple of points in a quasicrystal
for which the slope of the line de�ned by those points is arbitrarily close to
a �xed, chosen slope. Another application is also considered: for any given
irrational number α and any positive number ε, the set Eεα of integers n such
that nα is ε-close to 0 is a weakly almost periodic set. Hence, estimates of the
mean number of points in Eεα which lie in the �neighbourhood� [x − d, x + d]
of a point x ∈ Eεα can be given.

In Section 4.2, a second application deals with discretizations of linear isome-
tries. In particular, it shows that in most cases, it is impossible not to lose in-
formation while performing discrete rotations of numerical images with a naive
algorithm.

1. Definitions

We begin with a few notations. The symmetric di�erence of two sets A and
B will be denoted by A∆B = (A\B)∪ (B \A). The notation ∆A will be used
for the set of di�erences of A, de�ned as

∆A = A−A = {a1 − a2 | a1, a2 ∈ A}.

We will use #(A) for the cardinality of a set A, λ for the Lebesgue measure on
Rn and 1 for the indicator function. The number dxe will denote the smallest
integer bigger than x. For a set A ⊂ Rn, we will denote by Vol(A) the volume
of the set A. Finally, for any integer n, the number µn will refer to the volume
of the unit ball of dimension n. We will often use the notation

∑
x∈A f(x)

with A an uncountable set with no further justi�cation; in this paper, every f
considered have a countable support.

De�nition 1. Let Γ be a subset of Rn.

• We say that Γ is relatively dense if there exists RΓ > 0 such that each
ball with radius at least RΓ contains at least one point of Γ.
• We say that Γ is uniformly discrete if there exists rΓ > 0 such that each
ball with radius at most rΓ contains at most one point of Γ.

The set Γ is called a Delone set if it is both relatively dense and uniformly
discrete.
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De�nition 2. For a discrete set Γ ⊂ Rn and R ≥ 1, the uniform R-density is:

D+
R(Γ) = sup

x∈Rn

#
(
B(x,R) ∩ Γ

)
Vol
(
B(x,R)

) ,

and the uniform upper density is:

D+(Γ) = lim
R→+∞

D+
R(Γ).

Remark that if Γ ⊂ Rn is a Delone set for the parameters rΓ and RΓ, then
its upper density satis�es:

1

µnRnΓ
≤ D+(Γ) ≤ 1

µnrnΓ
.

De�nition 3. A Meyer set Γ is a Delone set whose set of di�erences ∆Γ is
also Delone.

J.C. Lagarias showed in [Lag96] that a Delone set is Meyer if and only if
∆Γ ⊂ Γ +F for some �nite set F . A basic example of Meyer set is a relatively
dense subset of a lattice1. More generally, Y. Meyer showed in [Mey72] that a
Delone set is Meyer2 if and only if there exists a model set Λ (see De�nition 11)
and a �nite set F such that Γ ⊂ Λ + F . By de�nition, the set of di�erences
of a Meyer set has �nite upper density. The following de�nition quanti�es the
density of di�erences in the set Γ and compares it to the density of Γ.

De�nition 4. For every v ∈ Zn, we set

ρΓ(v) =
D+{x ∈ Γ | x+ v ∈ Γ}

D+(Γ)
=
D+
(
Γ ∩ (Γ− v)

)
D+(Γ)

∈ [0, 1]

the frequency of the di�erence v in the Delone set Γ.

Remark that when Γ is a lattice, the set Γ ∩ (Γ − v) is either equal to Γ
(when v ∈ Γ), either empty (when v /∈ Γ). Hence, ρΓ(v) = 1v∈Γ and for any
subset A of Rn,

∑
v∈A ρΓ(v) counts the number of elements of Γ falling in A.

De�nition 5. We say that the function f admits a mean M(f) if for every
ε > 0, there exists R0 > 0 such that for every R ≥ R0 and every x ∈ Rn, we
have ∣∣∣∣∣∣M(f)− 1

Vol
(
B(x,R)

) ∑
v∈B(x,R)

f(v)

∣∣∣∣∣∣ < ε.

2. A Minkowski theorem for Meyer sets

We now state a Minkowski theorem for the map ρΓ. To begin with, we recall
the classical Minkowski theorem which is only valid for lattices (see for example
IX.3 of [Ber10] or the whole books [GL87, Sie89, Cas97]).

Theorem 6 (Minkowski). Let Λ be a lattice of Rn, k ∈ N and S ⊂ Rn be a
centrally symmetric convex body. If Vol(S/2) > k covol(Λ), then S contains at
least 2k distinct points of Λ \ {0}.

1Recall that a lattice of Rn is a discrete subgroup of Rn with �nite upper density and
which linearly spans Rn.

2For the equivalent de�nition given by the result of J.C. Lagarias.
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In particular, if Vol(S/2) > covol(Λ), then S contains at least one point of
Λ\{0}. This theorem is optimal in the following sense: for every lattice Λ, there
exists a centrally symmetric convex body S such that Vol(S/2) = k covol(Λ)
and that S contains less than 2k distinct points of Λ \ {0}.

Proof of Theorem 6. We consider the integer valued function

ϕ =
∑
λ∈Λ

1λ+S/2.

The hypothesis about the covolume of Λ and the volume of S/2 imply that the
mean of the periodic function ϕ satis�es M(ϕ) > k. In particular, as ϕ has
integer values, there exists x0 ∈ Rn such that ϕ(x0) ≥ k + 1 (note that this
argument is similar to pigeonhole principle). So there exists λ0, · · · , λk ∈ Λ,
with the λi sorted in lexicographical order (for a chosen basis), such that the
x0− λi all belong to S/2. As S/2 is centrally symmetric, as λi− x0 belongs to
S/2 and as S/2 is convex,

(
(x0− λ0) + (λi− x0)

)
/2 = (λi− λ0)/2 also belongs

to S/2. Then, λi − λ0 ∈ (Λ \ {0}) ∩ S for every i ∈ {1, · · · , k}. By hypothesis,
these k vectors are all di�erent. To obtain 2k di�erent points of S ∩ Λ \ {0}
(instead of k di�erent points), it su�ces to consider also the points λ0−λi; this
collection is disjoint from the collection of λi − λ0 because the λi are sorted in
lexicographical order. This proves the theorem. �

Minkowski theorem can be seen as a result about the function ρΓ. Recall
that for a lattice Λ,

∑
u∈S ρΛ(u) equals exactly the number of elements of S∩Γ.

Then, for a centrally symmetric convex body S ⊂ Rn,∑
u∈S

ρΛ(u) ≥ 2dD(Λ)Vol(S/2)e − 1.

Simply remark that the optimal k in Theorem 6 is given by k = dD(Λ)Vol(S/2)e−
1. The following result is the main theorem of the paper.

Theorem 7. Let Γ be a Meyer subset of Rn, and S ⊂ Rn be a centrally
symmetric convex body. Then∑

u∈S
ρΓ(u) ≥ D+(Γ)Vol(S/2).

Remark 8. One can note that this theorem does not involve the factor 2 present
in the classical Minkowski theorem which results of the fact that to any point
of a lattice falling in the centrally symmetric set S corresponds its opposite,
which also lies in S. The authors do not know if this factor 2 should or should
not be present in Theorem 7 and this fact still remains to be investigated.

Proof of Theorem 7. The strategy of proof of this theorem is similar to that
of the classical Minkowski theorem: we consider the set Γ + S/2 and de�ne a
suitable auxiliary function which depends on this set. The argument is based
on a double counting for the quantity

ρRa =
1

Vol(BR)

∑
v∈BR∩Γ

1v∈(S/2+a)

∑
u∈S∩∆Γ

1v∈Γ1u+v∈Γ

D+(Γ)
. (1)

When R is large, ρRa can be interpreted as the approximate frequency of the dif-
ferences falling in S with the restriction that one of the point (in the di�erence)
is in S/2 + a. It can also be interpreted as the local approximate frequency in
a neighbourhood of a (the neighbourhood S/2 + a). The convenience of this
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restriction is expressed in Equation (3). A way to get a global expression, from
this local de�nition of the frequency, is to sum over a ∈ Rn.∫

Rn

ρRa dλ(a) =
1

Vol(BR)

∑
v∈BR∩Γ

∑
u∈S∩∆Γ

1v∈Γ1u+v∈Γ

D+(Γ)

∫
Rn

1a∈(S/2+v)dλ(a)

=
1

Vol(BR)

∑
v∈BR∩Γ

∑
u∈S∩∆Γ

1v∈Γ1u+v∈Γ

D+(Γ)
Vol(S/2)

= Vol(S/2)
∑

u∈S∩∆Γ

1

Vol(BR)

∑
v∈BR∩Γ

1v∈Γ1u+v∈Γ

D+(Γ)
.

Thus, by the de�nition of ρΓ, we get

lim
R→+∞

∫
Rn

ρRa dλ(a) ≤ Vol(S/2)
∑

u∈S∩∆Γ

ρΓ(u). (2)

In sight of the last inequality, it remains to show a lower bound on the left
hand side. First of all, we remark that as S is a centrally symmetric convex
body, x, y ∈ S/2 implies that x+ y ∈ S, thus

1v∈S/2+a1u∈S ≥ 1v∈S/2+a1u+v∈S/2+a. (3)

Hence, multiplying both sides by 1v∈Γ1u+v∈Γ, we get

1v∈(S/2+a)∩Γ1u∈S1u+v∈Γ ≥ 1v∈(S/2+a)∩Γ1u+v∈(S/2+a)∩Γ.

We now sum this inequality over u ∈ ∆Γ to get∑
u∈S∩∆Γ

1v∈(S/2+a)∩Γ1u+v∈Γ ≥ 1v∈(S/2+a)∩Γ

∑
u∈∆Γ

1u+v∈(S/2+a)∩Γ.

Remarking that for every v ∈ Γ, every v′ ∈ Γ can be written as v′ = u+ v with
u ∈ ∆Γ, we deduce that∑

u∈S∩∆Γ

1v∈(S/2+a)∩Γ1u+v∈Γ ≥ 1v∈(S/2+a)∩Γ

∑
v′∈Γ

1v′∈(S/2+a)∩Γ

≥ 1v∈(S/2+a)∩Γ#
(
(S/2 + a) ∩ Γ

)
,

and �nally,

ρRa ≥
1

D+(Γ)

1

Vol(BR)

∑
v∈BR∩Γ

1v∈(S/2+a)#
(
(S/2 + a) ∩ Γ

)
.

We denote by BS
R the S-interior of BR and by B

S
R the S-expansion of BR,

BS
R =

(
B{R + S

){
= {x ∈ BR | ∀s ∈ S, x+ s ∈ BR}

B
S
R = BR + S = {x+ s | x ∈ BR, s ∈ S}
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In particular, a ∈ BS
R implies that S/2 + a ⊂ BR and a ∈ BR implies that

S/2 + a ∈ BS
R. Then∫

Rn

ρRa dλ(a) ≥ 1

D+(Γ)

1

Vol(BR)

∫
Rn

 ∑
v∈BR∩Γ

1v∈(S/2+a)#
(
(S/2 + a) ∩ Γ

) dλ(a)

≥ 1

D+(Γ)

1

Vol(BR)

∫
BSR

 ∑
v∈BR∩Γ

1v∈(S/2+a)#
(
(S/2 + a) ∩ Γ

) dλ(a)

≥ 1

D+(Γ)

1

Vol(BR)

∫
BSR

#
(
(S/2 + a) ∩ Γ

)2
dλ(a).

Using the convexity of x 7→ x2, we deduce that

lim
R→+∞

∫
Rn

ρRa dλ(a) ≥ lim
R→+∞

Vol(BS
R)

D+(Γ)Vol(BR)

(
1

Vol(BS
R)

∫
BSR

#
(
(S/2 + a) ∩ Γ

)
dλ(a)

)2

.

(4)
We then use the fact that the family {BR}R>0 is van Hove when R goes to
in�nity (see for example [Moo02, Equation 4]), that is

lim
R→+∞

Vol(BR)−Vol(BS
R)

Vol(BR)
= 0 and lim

R→+∞

Vol(BR)−Vol(B
S
R)

Vol(BR)
= 0.

It remains to compute the remaining term in Equation (4),

1

Vol(BS
R)

∫
BSR

#
(
(S/2 + a) ∩ Γ

)
dλ(a).

The quantity #
(
(S/2 + a) ∩ Γ

)
is bounded by some constant M (as S can be

included in some ball of large radius), independently from a and is equal to∑
v∈BR∩Γ

1v∈(S/2+a)∩Γ for all a ∈ BS
R.

Hence,

1

Vol(BS
R)

∣∣∣∣∣∣
∫
BSR

#
(
(S/2 + a) ∩ Γ

)
dλ(a)−

∫
B
S
R

∑
v∈BR∩Γ

1v∈S/2+adλ(a)

∣∣∣∣∣∣ ≤MVol(B
S
R \BS

R)

Vol(BS
R)

;

thus the two integrals have the same limit superior when R tends to +∞.
Besides,

1

Vol(BS
R)

∫
B
S
R

∑
v∈BR∩Γ

1v∈S/2+adλ(a) =
1

Vol(BS
R)

∑
v∈BR∩Γ

∫
B
S
R

1a∈S/2+vdλ(a)

=
1

Vol(BS
R)

∑
v∈BR∩Γ

Vol(S/2)

=
Vol(BR)

Vol(BS
R)

#(BR ∩ Γ)

Vol(BR)
Vol(S/2).

Applied to Equation (4), this gives

lim
R→+∞

∫
Rn

ρRa dλ(a) ≥ Vol(S/2)2D+(Γ).
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To �nish the proof, we combine the last inequality with the �rst estimate of
Equation (2) and get ∑

u∈S∩∆Γ

ρΓ(u) ≥ Vol(S/2)D+(Γ).

�

3. Weakly almost periodic sets

In this section, we describe a family of Meyer sets called weakly almost pe-
riodic sets. For these sets, the superior limits appearing in the de�nitions of
the upper density and the frequency of di�erences are actually limits. Roughly
speaking, a weakly almost periodic set Γ is a set for which two large patches are
almost identical, up to a set of upper density smaller than ε. More precisely,
we have the following de�nition.

De�nition 9. We say that a Delone set Γ is weakly almost periodic if for every
ε > 0, there exists R > 0 such that for every x, y ∈ Rn, there exists v ∈ Rn

such that
#
((
B(x,R) ∩ Γ

)
∆
((
B(y,R) ∩ Γ

)
− v
))

Vol(BR)
≤ ε. (5)

Note that the vector v is di�erent from y − x a priori. The Delone set
assumption is not restrictive in the later de�nition. Indeed, any Γ ⊂ Zn with
positive upper density (D+(Γ) > 0) and satisfying Equation (5) is a Delone set.
Of course, every lattice, or every �nite union of translates of a given lattice, is
weakly almost periodic.

A weakly almost periodic set possesses a uniform density, as stated by the
following proposition of [Gui15b].

Proposition 10. Let Γ be a weakly almost periodic set. Then there exists a
number D(Γ), called the uniform density of Γ, satisfying: for every ε > 0, there
exists Rε > 0 such that for every R > Rε and every x ∈ Rn,∣∣∣∣∣#

(
B(x,R) ∩ Γ

)
Vol
(
B(x,R)

) −D(Γ)

∣∣∣∣∣ < ε.

In particular, D(Γ) = D+(Γ), and for every x ∈ Rn, we have

D(Γ) = lim
R→+∞

#
(
B(x,R) ∩ Γ

)
Vol
(
B(x,R)

) .

As noted in [Gui15b], it seems that the notion of weakly almost periodicity
is the weakest that allows this uniform convergence of density.

An important class of examples of weakly almost periodic sets is given by
model sets (sometimes also called �cut-and-project� sets). These sets have
numerous applications to theory of quasicrystals, harmonic analysis, number
theory, discrete dynamics etc. (see for instance [Mey72] or [Moo00]).

De�nition 11. Let Λ be a lattice of Rm+n, p1 and p2 the projections of R
m+n

on respectively Rm × {0}Rn and {0}Rm ×Rn, and W a Riemann integrable
subset of Rm. The model set modelled on the lattice Λ and the window W is
(see Figure 1)

Γ =
{
p2(λ) | λ ∈ Λ, p1(λ) ∈W

}
.
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Figure 1. Construction of a model set.

In [Gui15b] it is proved that these sets are weakly almost periodic sets.
Moreover, if the projection p2 is injective when restricted to Λ, and the set p2(Λ)
is dense, then the density of the obtained model set is equal to Vol(W ) Covol(Λ)
(see for example Proposition 4.4 of [Mey12]).

From now, we suppose that the weakly almost periodic sets we consider are
Meyer. The following lemma states that the occurrences of a given di�erence
in a weakly almost periodic set form a weakly almost periodic set.

Lemma 12. Let v ∈ Rn and Γ be a Meyer, weakly almost periodic set. Then
the set

{x ∈ Γ | x+ v ∈ Γ} = Γ ∩ (Γ− v)

is weakly almost periodic.

Proof of Lemma 12. Since Γ is Meyer, its set of di�erences is Delone.
Let ε > 0 and v ∈ Rn. As Γ is a weakly almost periodic set, for every ε > 0,

there exists R > 0 such that for every x, y ∈ Rn, there exists w ∈ Rn such
that

#
((
B(x,R) ∩ Γ

)
∆
((
B(y,R) ∩ Γ

)
− w

))
Vol(BR)

≤ ε. (6)

On the other hand, considering a smaller ε if necessary, one can choose R
arbitrarily large compared to ‖v‖. In this case, we have, for every z ∈ Rn (and
in particular for x and y),

#
((
B(z,R) ∩ Γ

)
∆
((
B(z + v,R) ∩ Γ

)))
Vol(BR)

≤
#
(
B(z,R)∆B(z + v,R)

)
Vol(BR)

≤ ε.

(7)
Let x, y ∈ Rn. We can now estimate the quantity

A
.
=

#
((
B(x,R) ∩ Γ ∩ (Γ− v)

)
∆
((
B(y,R) ∩ Γ ∩ (Γ− v)

)
− w

))
Vol(BR)

:

A ≤
#
((
B(x,R) ∩ Γ

)
∆
((
B(y,R) ∩ Γ

)
− w

))
Vol(BR)

+
#
((
B(x,R) ∩ (Γ− v)

)
∆
((
B(y,R) ∩ (Γ− v)

)
− w

))
Vol(BR)

.
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The �rst term is smaller than ε by Equation (6); and the second term (denoted
by A2) is smaller than (by a translation of vector v)

A2 ≤
#
((
B(x+ v,R) ∩ Γ

)
∆
((
B(y + v,R) ∩ Γ

)
− w

))
Vol(BR)

,

which by Equations (6) and (7) leads to

A2 ≤ 3ε.

Finally, A ≤ 4ε. �

When Γ is weakly almost periodic, we deduce, from Lemma 12 together with
Proposition 10, that the upper limits appearing in the uniform upper density
D+(Γ) and the frequencies of di�erences ρΓ(v) are, in fact, limits. Moreover,
ρΓ possesses a mean (see De�nition 5) that can be computed easily.

Proposition 13. If Γ is Meyer and weakly almost periodic, then

M(ρΓ) = D(Γ).

Proof of Proposition 13. This proof lies primarily in an inversion of limits.
Let ε > 0. As Γ is weakly almost periodic, by Proposition 10, there exists

R0 > 0 such that for every R ≥ R0 and every x ∈ Rn, we have∣∣∣∣D(Γ)− Γ ∩B(x,R)

Vol(BR)

∣∣∣∣ ≤ ε. (8)

So, we choose R ≥ R0, x ∈ Zn and compute

1

Vol(BR)

∑
v∈B(x,R)

ρΓ(v) =
1

Vol(BR)

∑
v∈B(x,R)

D
(
(Γ− v) ∩ Γ

)
D(Γ)

=
1

Vol(BR)

∑
v∈B(x,R)

lim
R′→+∞

1

Vol(BR′)

∑
y∈BR′

1y∈Γ−v1y∈Γ

D(Γ)

=
1

D(Γ)
lim

R′→+∞

1

Vol(BR′)

∑
y∈BR′

1y∈Γ
1

Vol(BR)

∑
v∈B(x,R)

1y∈Γ−v

=
1

D(Γ)
lim

R′→+∞

1

Vol(BR′)

∑
y∈BR′

1y∈Γ︸ ︷︷ ︸
�rst term

1

Vol(BR)

∑
v′∈B(y+x,R)

1v′∈Γ︸ ︷︷ ︸
second term

.

By Equation (8), the second term is ε-close toD(Γ). Considered independently,
the �rst term is equal to D(Γ) (still by Equation (8)). Thus, we have∣∣∣∣∣∣ 1

Vol
(
B(x,R)

) ∑
v∈B(x,R)

ρΓ(v)−D(Γ)

∣∣∣∣∣∣ ≤ ε,
which conclude the proof. �

Theorem 7 may now be reformulated in the context of Meyer weakly almost
periodic sets.

Corollary 14. If Γ ⊂ Zn is a weakly almost periodic set, then∑
u∈S

ρΓ(u) ≥ D(Γ)#(S/2 ∩ Zn).
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Figure 2. Example 15 of equality case in Corollary 14 for k = 3.

The idea of the proof of this corollary is identical to that of Theorem 7, but
instead of integrating ρRa (see Equation (1)) over Rn, one sums ρRa over Zn.
Some technicalities in the proof require Γ to be a weakly almost periodic subset
of Zn.

The case of equality in this corollary is attained even in the non trivial case
where #(S/2 ∩ Zn) > 1, as shown by the following example.

Example 15. If k is an odd number, if Γ is the lattice kZ × Z, and if S is a
centrally symmetric convex set such that (see Figure 2)

S ∩ Γ =
{

(i, 0) | i ∈ {−(k − 1), · · · , k − 1}
}
∪
{
± (i, 1) | i ∈ {1, · · · , k − 1}

}
,

then
∑

u∈S ρ(u) = 1, D(Γ) = 1/k and #(S/2 ∩ Zn) = k.

4. Applications

4.1. Application to Diophantine approximation.

4.1.1. A Dirichlet theorem for quasicrystals. In this section, we develop a gen-
eralization of Dirichlet theorem for approximations of irrational numbers. We
give this theorem for completeness.

Theorem 16 (Dirichlet). Let α = (α1, . . . , αn) be such that at least one of the
αi is irrational. Then there are in�nitely many tuples of integers (x1, . . . , xn, y)
such that the highest common factor of x1, . . . , xn, y is 1 and that∣∣∣∣xiy − αi

∣∣∣∣ ≤ y−1−1/n for i = 1, . . . , n.

One may be interested by approximations of real numbers by tuples in sets
di�erent from Zn+1, for instance quasicrystals. The following result is an easy
consequence of Theorem 7 which is convenient for the study of Diophantine
approximations in weakly almost periodic sets.

Corollary 17. Let L1, . . . , Ln be n linear forms on Rn such that det(L1, . . . , Ln) 6=
0. Let A1, . . . , An be positive real numbers and let Γ be a weakly almost periodic
set. Then ∑

x∈Zn
∀i |Li(x)|≤Ai

ρΓ(x) ≥ D(Γ)A1 . . . An| det(L1, . . . , Ln)|−1.

Proof. De�ne S = {x ∈ Rn : |Li(x)| ≤ Ai} . �
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Figure 3. For a �xed chosen direction α, one can �nd two points in a Penrose
tilling de�ning a line whose slope is close to α. Two di�erent chosen directions
are shown. Penrose tilings are model sets, thus are weakly almost periodic (see
[dB81]).

Let Q > 1 be a parameter that will be speci�ed later and de�ne for any
i ∈ {1, . . . , n} the linear form Li : Rn+1 → R by

Li(x1, . . . , xn, y) = xi − αiy

and Ln+1(x1, . . . , xn, y) = y. We have immediately that det(L1, . . . , Ln) = 1.

We apply Corollary 17 with A1 = · · · = An = Q−1/n and An+1 = 2Q/D(Γ). If
all the inequalities |Li(x1, . . . , xn, y)| ≤ Ai are veri�ed, then for each i ≤ n,∣∣∣∣αi − xi

y

∣∣∣∣ ≤ 21/n

D(Γ)1/n
|y|−1−1/n.

We obtain ∑
(x1,...,xn,y)∈Zn+1\{0}
∀i, |Li(x)|≤Ai

ρΓ(x) ≥ 1.

In particular, there exists a point u in Zn+1 which is a di�erence of two di�erent
points v = (xv1, . . . , x

v
n, y

v) and w = (xw1 , . . . , x
w
n , y

w) in the weakly almost
periodic set Γ and such that ∀i, |Li(v − w)| ≤ Ai. Thus, for any i ≤ n, the
slope of the line de�ned by the two points (xvi , y

v) and (xwi , y
w) approximates

the slope given by α. More precisely,∣∣∣∣αi − xvi − xwi
yv − yw

∣∣∣∣ ≤ 21/n

D(Γ)1/n
|yv − yw|−1−1/n ≤ D(Γ)21/n

(4Q)1+1/n
.

Remark that the approximation quality highly depends on the density of the
considered set Γ. Thus, we will �nd at least one direction in Γ close to α
(close with a factor comparable to Q−1−1/n) in one ball of size comparable
with Q. This can be seen as a non-asymptotic counterpart of the strong results
of [MS15].
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4.1.2. Frequency of di�erences and approximations. Theorem 7 gives informa-
tions about the simultaneous approximations of a set of numbers for an arbi-
trary norm: given a norm N on Rn and a n-tuple of Q-linearly independent
numbers α = (α1, · · · , αn), we look at the set

Eεα =
{
y ∈ Z | ∃x ∈ Zn : N(yα− x) < ε

}
=
{
y ∈ Z | ∃x ∈ Zn : N

(
α− x

y

)
<
ε

y

}
.

This set is a model set modelled on the lattice spanned by the matrix
−1 α1

. . .
...

−1 αn
1


and on the window W = {x ∈ Rn | N(x) < ε}. It is a weakly almost periodic
set with density equal to Vol(W ) (as long as W does not intersect any integer
translate of itself). Then Theorem 7 asserts that for every d > 0,∑

u∈Z
|u|≤d

ρεEα(u) ≥ dVol(W ).

In other words, given v ∈ Eεα, the average number of points v′ ∈ Eεα such that
|v − v′| ≤ d is bigger than dVol(W ).

4.2. Application to the dynamics of the discretizations of linear maps.
Here, we recall a theorem of [Gui15a] and sketch its proof, which crucially uses
Minkowski theorem for weakly almost periodic sets.

We take a Euclidean projection3 π of Rn onto Zn; given A ∈ GLn(R), the

discretization of A is the map Â = π ◦ A : Zn → Zn. This is maybe the
simplest way to de�ne a discrete analogue of a linear map. We want to study
the action of such discretizations on the set Zn; in particular if these maps are
far from being injective, then when applied to numerical images, discretizations
will induce a loss of quality in the resulting images.

Thus, we study the rate of injectivity of discretizations of linear maps: given
a sequence (Ak)k∈N of linear maps, the rate of injectivity in time k of this
sequence is the quantity

τk(A1, · · · , Ak) = lim
R→+∞

#
(
(Âk ◦ · · · ◦ Â1)(BR ∩ Zn)

)
#(BR ∩ Zn)

∈]0, 1].

To prove that the limit of this de�nition is well de�ned, we show that

lim sup
R→+∞

#
(
(Âk ◦ · · · ◦ Â1)(BR ∩ Zn)

)
#(BR ∩ Zn)

= | det(A1 · · ·Ak)|D+
(

(Âk ◦ · · · ◦ Â1)(Zn)
)

and use the fact that the set (Âk ◦ · · · ◦ Â1)(Zn) is weakly almost periodic. In
particular, when all the matrices are of determinant ±1, we have

τk(A1, · · · , Ak) = D+
(

(Âk ◦ · · · ◦ Â1)(Zn)
)

Then, Theorem 7 applies to prove next result.

3That is, π(x) is (one of the) point(s) of Zn the closest from x for the Euclidean norm.
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Figure 4. Original image (left) of size 220 × 282 and 10 successive random
rotations of this image (right), obtained with the software Gimp (linear inter-
polation algorithm).

Theorem 18. Let (Pk)k≥1 be a generic4 sequence of matrices5 of On(R). Then

τk
(
(Pk)k≥1

)
−→
k→+∞

0.

Thus, for a generic sequence of angles, the application of successive dis-
cretizations of rotations of these angles to a numerical image will induce an
arbitrarily large loss of quality of this image (see Figure 4).

Let us sketch the proof of Theorem 18. The idea is to study the set of
di�erences of the sets

Γk = (P̂k ◦ · · · ◦ P̂1)(Zn).

In particular, by analysing the action of the discretization of a generic map on
the frequency of di�erences, one can prove the following lemma (we will admit
its proof).

Lemma 19. For every k, for every isometry P ∈ On(R) and every ε > 0,
there exists δ > 0 and a matrix Q ∈ On(R) such that d(P,Q) < ε satisfying:
for every v0 ∈ Zn,

(i) either there exists v1 ∈ Zn \ {0} such that ‖v1‖2 < ‖v0‖2 and that

ρ
Q̂(Γk)

(v1) ≥ δρΓk(v0);

(ii) or

D(Q̂(Γk)) ≤ D(Γ)
(
1− δρΓk(v0)

)
.

In other words, in case (i), making a ε-small perturbation of P if necessary,
if a di�erence v0 appears with a positive frequency in Γ, then some di�erence
v1 6= 0 will also appear with positive frequency, with the fundamental property
that ‖v1‖2 < ‖v0‖2. In case (ii), the rate of injectivity strictly decreases between
times k and k + 1.

We then iterate this process, as long as we are in the �rst case of the lemma:
starting from a di�erence v0 appearing with a frequency ρ0 in Γk, one can build
a sequence of di�erences (vm) of vectors of Zn with decreasing norm such that
for every m we have ρΓk+m(vm) ≥ δmρ0. Ultimately, this sequence of points

4A property concerning elements of a topological set X is called generic if satis�ed on at
least a countable intersection of open and dense sets. In particular, Baire theorem implies
that if this space is complete (as here), then this property is true on a dense subset of X.

5The set of sequences of matrices is endowed with the norm ‖(Pk)k≥1‖ = supk≥1 ‖Pk‖,
making it a complete space (see Note 4).
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(vm) will go to 0 (as it is a sequence of integral points with decreasing norms).
Thus, there will exist a rank m0 ≤ ‖v0‖22 such that we will be in case (ii) of the
lemma (which is the only case occurring when ‖v0‖2 = 1). Then, we will get

D(Γk+m0) ≤ D(Γk)
(
1− δm0ρΓ(v0)

)
.

It remains to initialize this construction, that is, to �nd a di�erence v0 ∈ Zn

�not too far from 0� and such that ρΓ(v0) is large enough. This step simply
consists in the application of Theorem 7: applying it to S = B(0, r) with
r2 = 8/(πD(Γ)), one gets ∑

u∈B(0,r)

ρΓ(u) ≥ 2,

thus ∑
u∈B(0,r)\{0}

ρΓ(u) ≥ 1.

As the support of ρΓ is included in Zn, and as #(B(0, r) ∩ Zn) ≤ π(r + 1)2,
this implies that there exists u0 ∈ B(0, r) ∩ (Zn \ {0}) such that

ρΓ(u0) ≥ 1

π(r + 1)2
,

which gives for r ≥ 3

ρΓ(u0) ≥ D(Γ)

16
.

This allows to estimate the �loss of injectivity� D(Γk)−D(Γk+m0) that occurs
between times k and k+m0. Theorem 18 is obtained by applying this reasoning
many times.
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