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WHAT IS IT?
On the left: initial picture. On the right: pic-

ture obtained by rotating successively the first
one 25 times with a consumer software, with
angles chosen arbitrarily (the last rotation being
performed so that the resulting image is in the
correct orientation). We observe that these rota-
tions induce a quite strong blur.

EXPLANATION
We rotate images made of pixels, thus we

have to apply discretizations of the rotations.
The discretization Â of a linear map A is de-

fined as
Â : Zn −→ Zn

x 7−→ π(Ax),

where π : Rn → Zn is a projection on the nearest
integer point.

Example
of set
Â(Z2).

Given a sequence (Ak)k≥1 of matrices of
SLn(R), we want to estimate the density of the
sets Γk = (Âk ◦ · · · ◦ Â1)(Zn), called the rate of
injectivity (where BR := B(0, R)):

τk(A1, · · · , Ak) = lim
R→+∞

Card
(
Γk ∩BR

)
CardZn ∩BR

∈]0, 1].

We then have the following theorem:

Theorem 1 (2015, [1]). For a generic sequence
(Ai)i ∈ `∞(Sl2(R)) (or of `∞(O2(R))), we have

lim
k→+∞

τk
(
A1, · · · , Ak

)
= 0.

This expresses that in a certain sense, we can
not avoid phenomenons like the blur of Picture 1
in the general case.
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WHAT IS IT?
This is a tiling of the plane by squares. It can

be easily shown that for every such tiling of the
plane, any square has a common edge with an-
other square. More generally, in any dimension:

Theorem 2 (Hajós, 1941). Let Λ be a lattice of Rn.
Then the collection {B∞(λ, 1/2)}λ∈Λ of unit hyper-
cubes centred on points of Λ tiles the plane if and only
if in a canonical basis of Rn (that is, permuting co-
ordinates if necessary), Λ admits a generating matrix
which is upper triangular with ones on the diagonal.

The proof of this theorem involves fine re-
sults of group theory (see [2]). Surprisingly, Ha-
jós’ theorem becomes wrong if we do not sup-
pose that the centres of the cubes form a lattice
of Rn, as soon as n ≥ 8 (but it remains true for
n ≤ 6, the case n = 7 is still open).

WHAT LINK WITH PICTURE 1?
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It can be proved that if the matrix A is to-
tally irrational (meaning that AZn is equidis-
tributed mod Zn, which is a generic condition),
then τ1(A) = D

(⋃
γ∈AZn B∞(γ, 1/2)

)
(where D

denotes the density). So Hajós’ theorem tells us
when the equality τ1(A) = 1 holds.

The same construction holds for arbitrary
times k: if we set the matrix of Mnk(R)

MA1,··· ,Ak
=


A1 − Id

A2

. . .

. . . − Id
Ak

 ,

then for a generic sequence of matrices (Ak)k, we
have

τk(A1, · · · , Ak) = D

 ⋃
γ∈MA1,··· ,Ak

Znk

B∞(γ, 1/2)

 .

This replaces the iteration by a passage in
higher dimension. Then, Theorem 1 can be seen
as a statement of concentration of the measure
around the faces of a cube in high dimensions.

WHAT IS IT?
This picture represents the density of a com-

puted invariant measure of a conservative C1-
diffeomorphism f of the torus T2, C1-close to Id.
This density is represented in logarithmic scale (a
yellow pixel has measure ' 10−2). The measure
represented is of the form

µfNx = lim
M→+∞

1

M

M−1∑
m=0

(fmN )∗δx

with N = 23. Here fN denotes the map iter-
ated when the computer works with N decimal
places (in other words, the computations have
been made with 23 binary digits), and x is the
point located on the small black and white box.

WHAT LINK WITH PICTURE 1?
We define grids on the torus Tn:

EN =
{(
ik/2

N
)

1≤k≤n

∣∣∣ 0 ≤ ik ≤ 2N − 1
}
,

and a projection PN : Tn → EN on the near-
est point of the grid. The discretization of f ∈
Diff1(Tn) is then the map fN = PN ◦ f : EN →
EN .

We want to compare the invariant measures
of f with that of fN for large N . The invari-
ant measures of fN are supported by its periodic
points (fN is a finite map). For the diffeomor-
phism itself, it is conjectured that a C1-generic
conservative diffeomorphism is ergodic; thus we
can expect to observe mainly Lebesgue measure
among the invariant measures of fN . This is not
what we observe in practice (see Picture 3), nor
in theory:

Theorem 3 (2015, [1]). For any point x ∈ Tn, for
a generic f ∈ Diff1(Tn,Leb), for every f -invariant
probability measure µ, there exists a subsequence of
discretizations (fNk

)k such that,

µ
fNk
x −→

k→+∞
µ.

By applying some results of C1-generic dy-
namics (Abdenur, Avila, Bonattti, Crovisier,
Mañé, Wilkinson. . . ), we can reduce the proof of
Theorem 3 to that of a statement similar to The-
orem 1: we first approximate the measure µ by
a periodic measure ω, and then merge the posi-
tive orbits of x and ω under fN by perturbing the
sequence of derivatives on ω such that it has a
small rate of injectivity.


