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PICTURE 1

WHAT IS IT?

On the left: initial picture. On the right: pic-
ture obtained by rotating successively the first
one 25 times with a consumer software, with
angles chosen arbitrarily (the last rotation being
performed so that the resulting image is in the
correct orientation). We observe that these rota-
tions induce a quite strong blur.

EXPLANATION

We rotate images made of pixels, thus we
have to apply discretizations of the rotations.

The discretization A of a linear map A is de-

fined "
PR 4z s zm

r — 7(Ax),

where m : R" — Z" is a projection on the nearest
integer point.

Example

oAf set
A(Z?).

Given a sequence (Ay)r>1 of matrices of
SL,(R), we want to estimate the density of the
sets I'y, = (Zl; o .- -
injectivity (where Br := B(0, R)):

Card (I'y N Br)
k .
Ay, Ap) = 1
T( b 7 k) R—1>I—Eoo CardZ™ N Br

€10, 1].

We then have the following theorem:

Theorem 1 (2015, [1]). For a generic sequence
(A7) € £2°(SI2(R)) (or of £°(O2(R))), we have

lim 7*(Ay, -, Ay) = 0.

k— -+ o0

This expresses that in a certain sense, we can
not avoid phenomenons like the blur of Picture 1
in the general case.

BIBLIOGRAPHY

|1] Pierre-Antoine Guihéneuf.  Discrétisations
spatiales de systemes dynamiques générigues.

PhD thesis, Université Paris-Sud, 2015.

2] Sherman K. Stein and Sandor Szabd. Alge-
bra and tiling, volume 25 ot Carus Mathemati-

cal Monographs. Mathematical Association of
America, Washington, DC, 1994.

o Ay )(Z™), called the rate of

pierre—antoine.guiheneuf@math.u-psud. fr

http://www.math.u-psud.fr/~guiheneu/

PICTURE 2

WHAT IS IT?

This is a tiling of the plane by squares. It can
be easily shown that for every such tiling of the
plane, any square has a common edge with an-
other square. More generally, in any dimension:

Theorem 2 (Hajos, 1941). Let A be a lattice of R".
Then the collection { Boo (A, 1/2) }aen of unit hyper-
cubes centred on points of A tiles the plane if and only
if in a canonical basis of R™ (that is, permuting co-
ordinates if necessary), A admits a generating matrix
which 1s upper triangular with ones on the diagonal.

The proof of this theorem involves fine re-
sults of group theory (see [2]). Surprisingly, Ha-
jos” theorem becomes wrong if we do not sup-
pose that the centres of the cubes form a lattice
of R", as soon as n > 8 (but it remains true for
n < 6, the case n = 7 is still open).

WHAT LINK WITH PICTURE 172

It can be proved that if the matrix A is to-
tally irrational (meaning that AZ" is equidis-
tributed mod Z", which is a generic condition),

then 71(A) = D (UweAZn B (7, /2)) (where D
denotes the density). So Hajos” theorem tells us
when the equality 7'(A) = 1 holds.

The same construction holds for arbitrary
times k: if we set the matrix of M, (R)

A —1d

.1
Ak
then for a generic sequence of matrices (Ay)x, we
have
Tk(Ah'” 7Ak):D U BOO(771/2)

’YEMAL... ,Akznk

This replaces the iteration by a passage in
higher dimension. Then, Theorem 1 can be seen
as a statement of concentration of the measure
around the faces of a cube in high dimensions.

PICTURE 3

WHAT IS IT?

This picture represents the density of a com-
puted invariant measure of a conservative C'-
diffeomorphism f of the torus T#, C*-close to Id.
This density is represented in logarithmic scale (a
yellow pixel has measure ~ 10~2). The measure
represented is of the form

M—1

1
N — 1 - m *

m=0

with N = 23. Here fy denotes the map iter-
ated when the computer works with N decimal
places (in other words, the computations have
been made with 23 binary digits), and z is the
point located on the small black and white box.

WHAT LINK WITH PICTURE 1?
We define grids on the torus T":

o<¢k<2N—1},

by = {(ik/zN)gkgn — "R =
and a projection Py : T" — FEpx on the near-
est point of the grid. The discretization of f &
Diﬂ’l(T”) is then the map fy = Pyo f: Exn —
En.

We want to compare the invariant measures
of f with that of fy for large N. The invari-
ant measures of fy are supported by its periodic
points (fy is a finite map). For the diffeomor-
phism itself, it is conjectured that a C'-generic
conservative diffeomorphism is ergodic; thus we
can expect to observe mainly Lebesgue measure
among the invariant measures of fy. This is not
what we observe in practice (see Picture 3), nor

in theory:

Theorem 3 (2015, [1]). For any point x € T", for
a generic f € Diff'(T™, Leb), for every f-invariant
probability measure i, there exists a subsequence of
discretizations ( fn, )x such that,

i,
— .
Ha k— + 00 H

By applying some results of C'-generic dy-
namics (Abdenur, Avila, Bonattti, Crovisier,
Mané, Wilkinson. . .), we can reduce the proof of
Theorem 3 to that of a statement similar to The-
orem 1: we first approximate the measure p by
a periodic measure w, and then merge the posi-
tive orbits of  and w under fy by perturbing the
sequence of derivatives on w such that it has a
small rate of injectivity.



