Pierre-Antoine Guihéneuf, univ. Paris-Sud- Orsay
pierre-antoine.guiheneuf@math.u-psud.fr
http://www.math.u-psud.fr/~guiheneu/

Picture 1

WHAT IS IT?

On the left: initial picture. On the right: picture obtained by rotating successively the first one 25 times with a consumer software, with angles chosen arbitrarily (the last rotation being performed so that the resulting image is in the correct orientation). We observe that these rotations induce a quite strong blur.

EXPLANATION

We rotate images made of pixels, thus we have to apply discretizations of the rotations.

The discretization \widehat{A} of a linear map A is defined as

$$
\begin{aligned}
\widehat{A}: \quad \mathbf{Z}^{n} & \longrightarrow \mathbf{Z}^{n} \\
x & \longmapsto \pi(A x)
\end{aligned}
$$

where $\pi: \mathbf{R}^{n} \rightarrow \mathbf{Z}^{n}$ is a projection on the nearest integer point.

Example of set $\widehat{A}\left(\mathbf{Z}^{2}\right)$.

Given a sequence $\left(A_{k}\right)_{k \geq 1}$ of matrices of $S L_{n}(\mathbf{R})$, we want to estimate the density of the sets $\Gamma_{k}=\left(\widehat{A_{k}} \circ \cdots \circ \widehat{A_{1}}\right)\left(\mathbf{Z}^{n}\right)$, called the rate of injectivity (where $B_{R}:=B(0, R)$):
$\left.\left.\tau^{k}\left(A_{1}, \cdots, A_{k}\right)=\lim _{R \rightarrow+\infty} \frac{\operatorname{Card}\left(\Gamma_{k} \cap B_{R}\right)}{\operatorname{Card} \mathbf{Z}^{n} \cap B_{R}} \in\right] 0,1\right]$.
We then have the following theorem:
Theorem 1 (2015, [1]). For a generic sequence $\left(A_{i}\right)_{i} \in \ell^{\infty}\left(S l_{2}(\mathbf{R})\right)$ (or of $\ell^{\infty}\left(O_{2}(\mathbf{R})\right)$), we have

$$
\lim _{k \rightarrow+\infty} \tau^{k}\left(A_{1}, \cdots, A_{k}\right)=0
$$

This expresses that in a certain sense, we can not avoid phenomenons like the blur of Picture 1 in the general case.

Bibliography

[1] Pierre-Antoine Guihéneuf. Discrétisations spatiales de systèmes dynamiques génériques. PhD thesis, Université Paris-Sud, 2015.
[2] Sherman K. Stein and Sándor Szabó. Algebra and tiling, volume 25 of Carus Mathematical Monographs. Mathematical Association of America, Washington, DC, 1994.

WHAT IS IT?

This is a tiling of the plane by squares. It can be easily shown that for every such tiling of the plane, any square has a common edge with another square. More generally, in any dimension:
Theorem 2 (Hajós, 1941). Let Λ be a lattice of \mathbf{R}^{n}. Then the collection $\left\{B_{\infty}(\lambda, 1 / 2)\right\}_{\lambda \in \Lambda}$ of unit hypercubes centred on points of Λ tiles the plane if and only if in a canonical basis of \mathbf{R}^{n} (that is, permuting coordinates if necessary), Λ admits a generating matrix which is upper triangular with ones on the diagonal.

The proof of this theorem involves fine results of group theory (see [2]). Surprisingly, Hajós' theorem becomes wrong if we do not suppose that the centres of the cubes form a lattice of \mathbf{R}^{n}, as soon as $n \geq 8$ (but it remains true for $n \leq 6$, the case $n=7$ is still open).

What Link with picture 1?

It can be proved that if the matrix A is totally irrational (meaning that $A \mathbf{Z}^{n}$ is equidistributed $\bmod \mathbf{Z}^{n}$, which is a generic condition), then $\tau^{1}(A)=D\left(\bigcup_{\gamma \in A \mathbf{Z}^{n}} B_{\infty}(\gamma, 1 / 2)\right)$ (where D denotes the density). So Hajós' theorem tells us when the equality $\tau^{1}(A)=1$ holds.

The same construction holds for arbitrary times k : if we set the matrix of $M_{n k}(\mathbf{R})$

$$
M_{A_{1}, \cdots, A_{k}}=\left(\begin{array}{cccc}
A_{1}-\mathrm{Id} & & \\
& & \ddots & \\
& A_{2} & \ddots & \\
& & \ddots & -\mathrm{Id} \\
& & & A_{k}
\end{array}\right)
$$

then for a generic sequence of matrices $\left(A_{k}\right)_{k}$, we have
$\tau^{k}\left(A_{1}, \cdots, A_{k}\right)=D\left(\bigcup_{\gamma \in M_{A_{1}, \cdots, A_{k}} \mathbf{Z}^{n k}} B_{\infty}(\gamma, 1 / 2)\right)$
This replaces the iteration by a passage in higher dimension. Then, Theorem 1 can be seen as a statement of concentration of the measure around the faces of a cube in high dimensions.

Picture 3

WHAT IS IT?

This picture represents the density of a computed invariant measure of a conservative C^{1} diffeomorphism f of the torus \mathbf{T}^{2}, C^{1}-close to Id. This density is represented in logarithmic scale (a yellow pixel has measure $\simeq 10^{-2}$). The measure represented is of the form

$$
\mu_{x}^{f_{N}}=\lim _{M \rightarrow+\infty} \frac{1}{M} \sum_{m=0}^{M-1}\left(f_{N}^{m}\right)^{*} \delta_{x}
$$

with $N=23$. Here f_{N} denotes the map iterated when the computer works with N decimal places (in other words, the computations have been made with 23 binary digits), and x is the point located on the small black and white box.

What Link with picture 1?

We define grids on the torus \mathbf{T}^{n} :

$$
E_{N}=\left\{\left(i_{k} / 2^{N}\right)_{1 \leq k \leq n} \mid 0 \leq i_{k} \leq 2^{N}-1\right\}
$$

and a projection $P_{N}: \mathbf{T}^{n} \rightarrow E_{N}$ on the nearest point of the grid. The discretization of $f \in$ $\operatorname{Diff}^{1}\left(\mathbf{T}^{n}\right)$ is then the map $f_{N}=P_{N} \circ f: E_{N} \rightarrow$ E_{N}.

We want to compare the invariant measures of f with that of f_{N} for large N. The invariant measures of f_{N} are supported by its periodic points (f_{N} is a finite map). For the diffeomorphism itself, it is conjectured that a C^{1}-generic conservative diffeomorphism is ergodic; thus we can expect to observe mainly Lebesgue measure among the invariant measures of f_{N}. This is not what we observe in practice (see Picture 3), nor in theory:

Theorem 3 (2015, [1]). For any point $x \in \mathbf{T}^{n}$, for a generic $f \in \operatorname{Diff}^{1}\left(\mathbf{T}^{n}\right.$, Leb $)$, for every f-invariant probability measure μ, there exists a subsequence of discretizations $\left(f_{N_{k}}\right)_{k}$ such that,

$$
\mu_{x}^{f_{N_{k}}} \underset{k \rightarrow+\infty}{\longrightarrow} \mu
$$

By applying some results of C^{1}-generic dynamics (Abdenur, Avila, Bonattti, Crovisier, Mañé, Wilkinson...), we can reduce the proof of Theorem 3 to that of a statement similar to Theorem 1: we first approximate the measure μ by a periodic measure ω, and then merge the positive orbits of x and ω under f_{N} by perturbing the sequence of derivatives on ω such that it has a small rate of injectivity.

