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On Compact Bicrossed Products
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Abstract

We make a comprehensive and self-contained study of compact bicrossed products arising from
matched pairs of discrete groups and compact groups. We exhibit an automatic regularity prop-
erty of such a matched pair and produce an easy construction of the associated bicrossed product
G. We investigate the relative co-property (T') and the relative co-Haagerup property of the pair
comprising of the compact group and the bicrossed product, discuss property (7') and Haagerup
property of the discrete dual @, and review co-amenability of G as well. We distinguish two such
non-trivial compact bicrossed products with relative co-property (7') and also provide an infinite
family of pairwise non isomorphic non-trivial discrete quantum groups with property (7°), the
existence of even one of the latter was unknown. Finally, we examine all the properties mentioned
above for the crossed product quantum group given by an action by quantum automorphisms of
a discrete group on a compact quantum group, and also establish the permanence of rapid decay
and weak amenability and provide several explicit examples.

1 Introduction

In the eighties, Woronowicz [Wo87, [Wo88|,[Wo95] introduced the notion of compact quantum groups
and generalized the classical Peter-Weyl representation theory. However, the theory of quantum
groups goes back to Kac [Ka63|, [Ka65] in the early sixties, and his notion of ring groups in modern
terms are known as finite dimensional Kac algebras. In the fundamental work [Ka68] on extensions
of finite groups, Kac introduced the notion of matched pair of finite groups and developed the
bicrossed product construction giving the first examples of semisimple Hopf algebras that are neither
commutative nor cocommutative. It was later generalized by Baaj and Skandalis [BS93| in the
context of Kac algebras and then by Vaes and Vainerman [VV03] in the framework of locally compact

A (Lc. in the sequel) quantum groups; the latter was introduced by Kustermans and Vaes in [KV00].

In the classical case, i.e., in the ambience of groups, Baaj and Skandalis concentrated only on the
case of regular matched pairs of l.c. groups. In [VV03], the authors extended the study to semi-
reqular matched pairs of l.c. groups. The case of a general matched pair of locally compact groups

was settled by Baaj, Skandalis and Vaes in [BSV03].

As a standing assumption, all throughout the paper, all Hilbert spaces and all C*-algebras are
separable, all von Neumann algebras have separable preduals, all discrete groups are countable and
all compact groups are Hausdorff and second countable.

The theory of quantum groups is fathomless. In order to have deeper insights, it is necessary to
generate and study many explicit examples. The bicrossed product construction is a way to get
abundant non-trivial examples of quantum groups which are very far from groups [Fi07]. A compact
bicrossed product is one, in which the resulting quantum group is compact. Without being bogged
technically, the bicrossed product construction in the classical case associates a l.c. quantum group to
a matched pair of l.c. groups (G1,G2). The associated l.c. quantum group (in the bicrossed product
construction) has a Haar state, i.e., is a compact quantum group, if and only if G; is discrete and
G+ is compact [VV03]. In this paper, such a pair will be called as a compact matched pair. Moving
to the quantum case, one can introduce the notion of matched pair of l.c. quantum groups, and
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perform an analogous bicrossed product construction to manufacture a l.c. quantum group that
generalizes the classical bicrossed product construction. This construction is quite technical and
we refer the interested reader to [VV03] for details. It is to be noted that, in the same vein, the
crossed product of a compact quantum group G by a countable discrete group I' acting on G by
quantum automorphisms (see Section 2.2 for precise definition), as considered by Wang [Wa95b],
is subsumed in the quantum bicrossed product construction and hence is a simple case of compact
bicrossed product. Needless to say, that the aforesaid class of bicrossed products in the quantum
setup, does not exhaust the entire class of compact bicrossed products. We point out though, that
despite the intricacy in the bicrossed product construction, the ‘compactness’ of the matched pair
in the classical case (for groups) alleviates technical obstacles, which is the primary sagacity of this
paper.

This paper investigates compact bicrossed products in both classical and quantum setting and studies
their approximation properties, namely, amenability, K-amenability, weak amenability, (relative)
Haagerup property, (relative) property (T) and rapid decay, which enables one to manufacture
explicit examples. The paper has two major parts: one dealing with the classical case and one
dealing with the quantum case. In the quantum case, we only concentrate on compact crossed
products.

We provide a totally self-contained and direct approach dedicated towards the construction of a
compact bicrossed product arising from matched pair of groups (I',G), where I" is discrete and
G is compact. An advantage with our construction is that it avoids technical intricacies that are
obligatory when dealing with l.c. groups. In the process, we observe that the compactness of
G constrains the matched pair to automatically satisfy a regularity property, notably, I',;G are
subgroups of a l.c. group H such that I'G = H and the canonical action of either group on its
complementary pair is continuous. Moreover, the action of I' on G happens via measure preserving
homeomorphisms. This regularity is not automatic in the l.c. setting and one has to compensate
with ‘almost everywhere statements’. The aforesaid regularity galvanizes one to directly perform the
bicrossed construction; the bicrossed product is of course known to be a Kac algebra. The continuous
action of the group G on the countable set I' yields magic unitaries, which along with the irreducible
unitary representations of G and the action of I' on G by measure preserving homeomorphisms
assist us in constructing the bicrossed product in an elegant fashion (Theorems B4]). Some easy
consequences on amenability (which is known from [DQV02]), K-amenability, Haagerup property
are also presented in Corollary B77. We also compute the intrinsic group and the spectrum of the full
C*-algebra of the associated bicrossed product in terms of the fixed points of the canonical actions
and the spectrum of the groups in Proposition [3.8l Needless to say, these are isomorphism invariants
for compact quantum groups.

With the help of the construction above, we explore the approximation properties of the dual of
a compact bicrossed product arising from a compact matched pair of groups. We characterize the
relative co-property (T") for the pair (G, G), where G is the bicrossed product of the compact matched
pair (I, G), in terms of the action of I' on G. More precisely, the negation of relative co-property
(T') for the pair (G, G) amounts to the existence of an asymptotically I'-invariant sequence of Borel
probability measures on G each of which assign zero weight to the identity e of the group but yet
converge to the Dirac measure . in the weak* topology (Theorem [£.2). In the event of existence of
such a sequence of measures on G, by a standard result in measure theory (due to Parthasarathy
and Steernman [PS85]), the measures in the sequence versus their push forwards with respect to the
group action implemented by I' have large common support. Thus, along the way, we show that
such a sequence of measures can be replaced by one for which the I'-action on G is nonsingular. This
result generalizes the classical characterization of the relative property (7') for the pair (Hy, g x Hy)



(originally defined in [Ma82]), where I'y is a countable discrete group acting on a countable discrete
abelian group Hy [CT1I]. We show that if the dual G of the bicrossed product has property (7'),
then I' necessarily has property (7') and the set of fixed points in G of the action of I on G is finite.
We also show that if T’ has (T) and G is finite then G has (T) and the converse holds when the
action of I on G is compact (Theorem [.3).

Proceeding further, we characterize the relative co-Haagerup property for the pair (G,G) again in
terms of the action of I' on G. Like before, we prove that this property is equivalent to the existence
of an approximately I'-invaraint sequence of probability measures on G which converge in weak*
topology to J. and whose Fourier transform (regarded as an element of the multiplier algebra of
CH(@)) fall in C}(G) (Theorem [5.3]), and, like before, we show that the measures can be chosen such
that the action of I on G is nonsingular. Again, this result generalizes the classical characterization
of the relative Haagerup property for the pair (Hy, g X Hp), where I'y is a countable discrete group
acting on the countable discrete abelian group Hy [CTII].

In the quantum setting, an example of a matched pair of a classical countable discrete group with a
compact quantum group is the pair arising in a crossed product in which the discrete group acts on
the compact quantum group by quantum automorphisms [Wa95b]. Since one of the involved actions
is trivial, the representation theory is easier to study. But as the compact quantum group need
not be commutative, Kac or co-amenable, approximation properties become harder to exhibit. We
provide a self-contained and very short approach to this construction and study all the properties
mentioned above for the associated crossed product quantum group. Let a : I' ~ G be an action of
the discrete group I' on the compact quantum group G by quantum automorphisms and G be the
crossed product quantum group. In this context, we first provide a short account of the quantum
group structure of G and its representation theory which was initially studied by Wang in [Wa95b]
(but, in contrast with the work of Wang, we do not invoke free products). We deduce obvious
consequences on amenability and K-amenability of G in Corollary and describe the intrinsic
group and the spectrum of the full C*-algebra of G in Proposition

In the quantum setting, we study weak amenablity of G. In [KR99], it was proved that when G
is Kac, then Ayp(G) = Ayp(C(G)) = Ap(L®(G)). In our setup we estimate (in Theorem [67) the
Cowling-Haagerup constants under compactness. When the action « of I' is compact we show that

Ao (C(G)) < Ap(D) A (G).

Rapidly decreasing functions on group C*-algebras were first studied by Jolissaint in [Jo90]. Gener-
alizing this notion, rapid decay ((RD) in the sequel) for quantum groups was studied in [Ve07] and
subsequently this notion was calibrated in [BVZ14]. Following [BVZI14], we show the permanence
of (RD) in the setup of crossed products. To be precise, we show that if I' acts on G via quantum
automorphisms, there is a length function [ on Irr(G) which is invariant with respect to the canonical
action of T on Irr(G) such that (G, 1) has (RD), and T has (RD), then G has (RD) with respect to
a pertinent length function on Irr(G) (Theorem [6.11]).

Our characterization of the relative co-property (7) for the pair (G,G) is analogous to the classical
bicrossed product case: the approximating measures and J. in the characterization of the classical
case are replaced in the quantum setting respectively by states on C,,(G) and the counit of G.
This proof is technically more involved than the classical case (Theorem [6I3]). We also obtain a
statement about property (7") for G analogous to the property (T') statement we mentioned above
for classical bicrossed products (Theorem [6.14]).

Analogous statements hold for the relative co-Haagerup property of the pair (G, G) as well (Theorem
[6.17). Moreover, we generalize a result of Jolissaint regarding Haagerup property to the setup of non
tracial von Neumann algebras [JoOT]: for a compact, state (faithful normal) preserving action of a



countable discrete group with Haagerup property on a von Neumann algebra with the same property,
the crossed product has the Haagerup property (Poposition [6.I8]). Hence, if I" and L°°(G) have the
Haagerup property and the action « is compact then L°°(G) also has the Haagerup property. It is
known that, for any compact quantum group G, if G has the Haagerup property then L°(G) also
has the Haagerup property and the converse holds when G is Kac [DFSW13]. In general, one needs
to assume that G is strongly inner amenable [OOTT15]. Nevertheless, we show that if G and T both
have the Haagerup property and the action of I' on G is compact, then G has the Haagerup property

(Theorem [6.20)).

It is now appropriate to highlight our examples. We point out that it is quite hard to generate
examples of compact matched pairs of groups for which both the actions are non-trivial. Thus,
starting with a bicrossed product arising from a compact matched pair for which any one of the
actions is trivial, we leverage a crossed homomorphism (see Section 7 for definition) to deform the
original matched pair into one for which both the canonical actions become possibly non-trivial (see
discussions in the beginning of Sections 7.1.1 and 7.1.2). The added advantages with this deforma-
tion process are two fold. Firstly, the computations of the spectrum of the maximal C*-algebra and
the intrinsic group of the deformed bicrossed product are still convenient. Secondly, all the approx-
imation properties and notably the relative co-property (7') and the relative co-Haagerup property
are inherited by the deformed bicrossed product. This allows us to provide a concrete infinite family
of pairwise non-isomorphic, non-commutative and non-cocommutative infinite dimensional compact
quantum groups whose duals have the property (T') (Theorem [[I0). We mention that, as far as
we are aware, these are the first explicit non-trivial examples of such compact quantum groups,
since the twisting example of [Fi10] is based on [Fil0, Theorem 3] and the proof of this theorem is
erroneous. Using the same methodology, we also distinguish two compact bicrossed products arising
from compact matched pairs both of which have relative co-property (T') and for both of which
the canonical actions are non-trivial. We are able to distinguish these quantum groups in the most
obvious way, by computing the spectrum of the maximal C*-algebra.

We also provide examples of non-trivial crossed product compact quantum groups by considering
the canonical conjugation action induced by a countable subgroup of the spectrum of the full C*-
algebra of a non-trivial compact quantum group. For these specific crossed products, we compute the
intrinsic groups and the spectrum of the full C*-algebras, estimate the Cowling-Haagerup constants
and characterized the property (RD), the Haagerup property and the property (7') in terms of the
discrete group I" and the compact quantum group G in Corollary [Z.11] and we apply this results to
the free orthogonal and free unitary quantum groups in Example Finally, we provide some
explicit non-trivial examples of crossed product without the Haagerup property but with the relative
Haagerup property in Example

The lay out of the paper is as follows. In Section 2, we jot down all the notations, recall preliminary
facts and basics of compact quantum groups that is used all throughout this paper. In the same
section, we also prove that co-Haagerup property and co-weak amenability of a finite index quantum
subgroup extend to the compact quantum group. Section 3 concentrates on the bicrossed product
construction from compact matched pairs of a discrete group and a compact group. In Section 4
and Section 5, we respectively study (relative) Kazhdan property and (relative) Haagerup property
for the dual of a compact bicrossed products. Section 6 is divided into many subsections, and in this
section, we study the properties of crossed products of compact quantum groups by discrete groups.
Section 7 is dedicated to examples.
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2 Preliminaries

Notations. Throughout the paper, B(H ) denotes the von Neumann algebra of all bounded operators
on the Hilbert space H. The inner products of Hilbert spaces are assumed to be linear in the first
variable. The same symbol ® will denote the tensor product of Hilbert spaces, the minimal tensor
product of C*-algebras and as well as the tensor product of von Neumann algebras.

2.1 Compact group action on countable sets

We first record some facts regarding actions of compact groups on countable sets. This will be
necessary in studying the bicrossed product construction for compact matched pairs of groups.

Let X be a countable infinite set and let S(X) be the group of bijections of X. It is a Polish group
equipped with the topology of pointwise convergence which is the topology generated by the sets
Sey = {a € S(X) : a(z) = y} for z,y € X. Since S5, = U.ex\{y}Sz,z, these sets are clopen in
S(X). Moreover, for any compact subset K C S(X) and for any = € X, the orbit K -« C X is
finite. Indeed, from the open cover K C Uyex Sz, we find yq,--- ,y, € X such that K C U} S, 4,,
which implies that K - = C {y1, -+ ,yn}-

Let 8 : G — S(X) be a continuous right action of G on X. To simplify the notations, we write
x-g=Pg(x)for ge Gand z € X.

Observe that, since f is continuous and G is compact, every S-orbit in X is finite. Fix r,s € X and
denote by A, , the set
As={g€G :r-g=s}=p5"1Srs).

Note that, since (3 is continuous, A, s is open and closed in G for all r,s € X. Hence, 14, , € C(G).
Moreover, 14, , # 0 if and only if 7 and s are in the same orbit and we have the following relations:

—_

a4, =01sla,, forallrsteX.
2. 1a,,1a,, = 0r¢la,, forallrste X.
c Y sex YA, =D sergla,, =1forallre X.
4. > ex1a,, =D coqla,, =1forallre X.

5. If r-G=s-G, then Ag(la,,) =D icocla,, ®1a,,,

w

where Ag is the usual comultiplication on C(G). In other words, for every orbit x - G, the matrix
(14, )rsex-G € Mjp.q|(C) ® C(G) is a magic unitary and a unitary representation of G.

2.2 Compact and discrete quantum groups

In this section, we recall well known and basic facts about compact quantum groups that will be
indispensable. For the general theory of compact quantum groups, we refer the reader to [Wo87,
Wo95].

For a compact quantum group G with comultiplication A (or Ag when there can be ambiguity),
we denote by h (or hg) the Haar state on G and by C(G) (resp. L>°(G)) the C*-algebra (resp. the
von Neumann algebra) generated by the GNS construction of h. Hence we view C(G) C B(L*(G)),



where L?(G) is the GNS space of h. The reader should be cautious that the symbol A (or Ag) will
be used to denote the comultiplications of all three compact quantum groups C(G), the universal
quantum group of C'(G) and L*°(G). For two finite dimensional representations of G, we denote
by Mor(u,v) the space of intertwiners from u to v and by u ® v their tensor product. The trivial
representation is denoted by 1. We also denote by Irr(G) the set of equivalence classes of irreducible
unitary representations of G. For x € Irr(G), we choose a representative u” € B(H,) ® C(G), where
u” is a irreducible representation on the Hilbert space H,.

Recall that there is a natural involution z + T such that u® is the unique (up to equivalence)
irreducible representation of G such that Mor(1, z®%) # {0} #Mor(z®x,1). For any x € Irr(G), take
a non-zero element E, € Mor(1,z ® T) and define an anti-linear map J, : H, — Hz by letting £ —
(¢* ® 1)E,. Define Q, = J,.J; € B(H,). We normalize E,. in such a way that Tr,(Q,) = Tr,(Q; 1),
where Tr, is the unique trace on B(H) such that Tr;(1) = dim(x). This uniquely determines ()5
and fixes E, up to a complex number of modulus 1. The number dimy(z) := Tr,(Q,) = Tr,(Q; 1)
is called the quantum dimension of . Let uZ, = (id ® S%)(u®), where Si denotes the antipode of
G. Tt is well known (see e.g. section 5 of [Wo87]) that @, is also uniquely determined by the fact
that Q, € Mor(u®,u%,) and that @, is invertible and Tr,(Q,) = Tr,(Q; ') > 0.

We denote by Pol(G) the linear span of the coefficients of {u” : x € Irr(G) }, which is a unital dense
x-subalgebra of C'(G). We also denote by Cy,(G) the enveloping C*-algebra of Pol(G), by A (or Ag)
the canonical surjection from C,,(G) to C(G) and by € (or e¢) the counit on C),(G).

For a unital C*-algebra A, we use the standard notation Sp(A) to denote the spectrum of A.

Let G be a compact quantum group and write x(G) := Sp(Cy,(G)). It is a group with the product
defined by gh = (g ® h) o A, for g,h € x(G). The unit of x(G) is the counit e¢ € Cy,,(G)* and the
inverse of g € x(G) is given by g o S, where S is the antipode on C),(G). Viewing x(G) as a
closed subset of the unit ball of C,,(G)*, one can consider the weak* topology on x(G) which turns
X(G) to a compact group.

Finally, let Int(G) = {u € U(Cpn(G)) : Ag(u) = u ® u} denote the intrinsic group of G. It is the
set of all 1-dimensional irreducible unitary representations of G and it is countable (since C,,(G) is
supposed to be separable).

For a classical l.c. group H, we denote by Sp(H) the spectrum of C*(H). It is a l.c. abelian group
(with pointwise multiplication and weak™ topology arising from the inclusion Sp(H) C C*(H)*) and
is compact if H is discrete and mutatis mutandis; we will view it as the group of 1-dimensional
unitary representations of H. It is the Pontryagin dual of H (when H is abelian). We do not use
the standard notation H since we reserve this notation for the dual quantum group and, in the
non-abelian case, it does not correspond to the dual quantum group.

We also denote by Aut(G) the set of quantum automorphisms of a compact quantum group G. More
precisely, Aut(G) = {a € Aut(C),(G)) : Aca = (a®a)o A}.

Hence, Aut(G) as a closed subgroup of the Polish [ group Aut(C,,(Q)), is itself a Polish group.

Observe that each a € Aut(G) induces a bijection o € S(Irr(G)). Indeed, for = € Irr(G), a(x) is the
equivalence class of the irreducible unitary representation (id ® «)(u®). By construction, the map
Aut(G) — S(Irr(G)) is a group homomorphism.

We will need the following auxiliary result which is certainly well known to specialists. We include
a proof since we could not locate any reference in the literature.

Proposition 2.1. The map Aut(G) — S(Irr(QG)) is continuous.

3with respect to the topology of pointwise norm convergence



Proof. We shall need the following well known lemma which is of independent interest. We include
a proof for the convenience of the reader.

Lemma 2.2. Let u,v € B(H) ® Cp,(G) be two unitary representations of G on the same finite
dimensional Hilbert space H. If |[u — v|| < 1, then w and v are equivalent.

Proof. Define z = (id®h)(v*u) € B(H). Since u and v are unitary representations, h being the Haar
state forces (z ® 1)u = v(x ®1). We have u*(z*r ® 1)u = z*z ® 1. Hence, u*|z|® lu = |z|® 1. Now
observe that |1 — z| = ||(id ® h)(1 — v*u)|| < ||[1 — v*ul| = |[Jv — u|| < 1. Hence z is invertible, and
in the polar decomposition = w|z|, the polar part w is a unitary. Consequently, v*(w|z| ® 1)u =
v (weDu(lz|®1) = (w®1)(Jz|®1). By uniqueness of the polar decomposition of x ® 1, we deduce
that v*(w ® 1)u = w ® 1. Hence, u and v are equivalent. g

We can now prove the proposition. Let (ay,), be a sequence in Aut(G) which converges to a €
Aut(G). Let F C Irr(G) be a finite subset and let N € N be such that for all n > N

1
|(id @ o) (u®) — (id ® a)(u”®)]| < 3 for all x € F.

It follows from Lemma that (id ® a,)(u”) and (id ® «a)(u®) are equivalent for all n > N and
for all x € F. This means that o, (z) = a(z) for all x € F whenever n > N. This establishes the
continuity. O

Remark 2.3. We can also define Aut,(G) = {a € Aut(C(G)) : Aoca = (a®a)o A} which is again
a Polish group as it is a closed subgroup of the Polish group Aut(C(G)). Since any o € Aut(G)
preserves the Haar state, it defines a unique element in Aut,(G). Hence, we have a canonical map
Aut(G) — Aut,.(G) which is obviously a group homomorphism. Moreover, it is actually bijective.
The inverse bijection is constructed in the following way. Since any o € Aut,(G) restrict to an
automorphism of Pol(G), it extends uniquely by the universal property to an automorphism in
Aut(G). It is also easy to check that the map Aut(G) — Aut,(G) is continuous.

Also, since any automorphism of C'(G) intertwining A has a unique normal extension to L*°(G), it
induces a map Aut, (G) — Autoo(G), where Auto(G) = {a € Aut(L>®(G)) : Aoca = (a®a)oA}. As
before, this map is a bijective group homomorphism and is continuous (the topology on Aut(L*>(G))
being governed by the pointwise || - ||2 5 convergence).

For a discrete group I' and a compact quantum group G, a group homomorphism « : I' — Aut(G)
is called an action by quantum automorphisms and is denoted by a : T' ~ G, see [Pal3] Section 6].
We call such an action compact if the closure of the image of I' in Aut(G) is compact. By remark
2.3 it follows that for compact actions, the associated actions of I' on the C*-algebra C(G) (and
C(@)) and the von Neumann algebra L°°(G) are compact. By Proposition 2] it follows that for
compact actions the induced action of I" on Irr(G) has all orbits finite. It is shown in [MP15] that
the converse is actually true: I' ~ G is compact if and only if the induced action of I' on Irr(G) has
all orbits finite.

The associated operator algebras of the discrete dual G of G are denoted by

£>° co
G = P B(H,) and (G)= P BH,).

z€lrr(G) zelrr(G)



We denote by Vo = D, erm(q) u” € M(co(G) ® Cp(G)) to be the mazimal multiplicative unitary.

~

Let p, be the minimal central projection of £>°(G) corresponding to the block B(H,). We say that
a € {*°(G) has finite support if ap, = 0 for all but finitely many z € Irr(G). The set of finitely
supported elements of />°(G) is dense in ¢.(G) and the latter is equal to the algebraic direct sum

~ al
CC(G) = @megIrr(G) B(Hx)
The (left-invariant) Haar weight on G is the n.s.f. weight on £°(G) defined by

hala) = > Trg(Qq)Tra(Quaps),

z€lrr(G)

whenever the formula makes sense. It is known that the GNS representation of hg is of the form
(e, LA(G), Ag), where Ag : co(G) = L%(G) is linear with dense range and A¢ : £°(G) — B(L%(G))
is a unital normal *-homomorphism such that Ag(z) = Wg(x @ 1)WS for all € C(G), where
Wg = (XG ® Aq) (V). We call Wg the reduced multiplicative unitary.

2.3 Approximation properties

In this section we recall the definition of the Haagerup property, weak amenability and Cowling-
Haagerup constants for discrete quantum groups. We also show some basic facts we could not
find in the literature: permanence of the (co)-Haagerup property and (co)-weak amenability from a
quantum subgroup of finite index to the ambiance compact quantum group.

Let G be a compact quantum group. For w € Cy,(G)*, define its Fourier transform & = (id@w)(V) €

M(co(G)), where Vi = @, cpp() u” € M(co(G) ® Crn(G)) is the maximal multiplicative unitary.
Observe that w +— & is linear and [|&|r2(q)) < wlle,, @) for all w € Cp (G)*.

When G is a classical compact group with Haar measure 1 and v is a complex Borel measure on G,
then the Fourier transform v € M(C;(@G)) is the operator v = [, A\gdv(g) € M(C;(G)) C B(L*(G)).

Following [DESW13], we say that G has the Haagerup property if there exists a sequence of states

wp, € Cpp(G)* such that w, — £¢ in the weak™ topology and &,, € co(@) for all n € N.

~

For a € (>°(G) with finite support, we define a finite rank map m, : C(G) — C(G) by (id ®
mg)(u®) = u”(apy ® 1). We say that a sequence a; € {>°(G) converges pointwise to 1, if ||a;py —
pellBea,) — 0 for all z € Irr(G).

Recall that G is said to be weakly amenable if there exists a sequence of finitely supported a; € foo(@)
converging pointwise to 1 and such that C' = sup; ||mg, ||cs < co. The infimum of those C' is denoted

~

by Aw(G) (and is, by definition, infinite if G is not weakly amenable). It was proved in [KR99] that,

when G is Kac, we have Ay (G) = Ay (C(G)) = Agp(L=(G)).

Definition 2.4. We say that a compact quantum group H is a (quantum) subgroup of G is there
exists a surjection p : Cp,(G) — Cp,(H) such that (p ® p) o Ag = Ap o p. We define the (left)
coset space by Cp,(G/H) :={a € Cp,(G) | id ® p)Ag(a) = a ® 1}. We say that H is a finite index
subgroup of G if Cp,(G/H) is finite dimensional.

We refer to [DKSS12] for a systematic treatment of the notion of (closed) subgroups of locally
compact quantum groups.

Theorem 2.5. Let H be a finite index quantum subgroup of G. Then the following holds.



1. Ifﬁ has the Haagerup property, then G has the Haagerup property.
2. Acb(é) < Acb(ﬁ)

Proof. We will need the following Claim.

Claim. If H is a finite index quantum subgroup of G with surjective morphism p : Cp(G) — Cy(H)
then the set Nj = {z € Trr(G) : Mor(v?, (id ® p)(u®)) # {0}} is finite for all y € Irr(H), where
{vY : y e Irr(H)} is a complete set of representatives.

Proof of the Claim. We first show that N? is finite. Let 2 € N¥ and £ € H,, be such that ||| = 1 and
(id®p)(u*)¢ ®1 =E® 1. Choose an orthonormal basis (e} )5, of H, such that ef = £. Observe that
the coefficients of u* with respect with this orthonormal basis satisfy p(uf;) =1 and p(u},) = 0 for
all £ # 1. It follows that uj, € C,,(G/H). Since the coefficients of non-equivalent representations
are linearly independent and since C,,,(G/H) is finite dimensional, it follows that the set N7 is finite.

Suppose that there exists y € Irr(H) \ {1} such that N is infinite and let (2,),enugo; be an infinite
sequence of elements in NJ. Since (id ® p)(u®™ ® u*) has a sub-representation isomorphic to v¥ @ vY,
it contains the trivial representation. It follows that, for all 4 > 1, there exists z; € N? such that
zi C Ty @ x;. Hence, z; C 29 ® z; and the set {z; : ¢ > 1} is infinite, a contradiction.

(1). Let (sn)nen be a sequence of states on Cy, (H) such that [, € co(H) for all n € N and p1, — e
in the weak™ topology. Define p, o p € Cy,,(G)*, where p : C,(G) — Cp(H) is the subgroup
surjection. Since eg = ey o p, we have w, o p — £¢ in the weak™ topology. Let n € N and ¢ > 0. We
need to show that the set G, = {z € Irr(G) : ||(id ® wy, ) (u”)|| > €} is finite. Since f, € co(H), the
set Hy e ={y € Irr(H) : ||(id ® pn)(vY)|] > €} is finite, and since Gy, c = Uyem,, Nf, by the previous
claim we are done.

(2). We may and will suppose that His weakly amenable. Let € > 0 and a; € KOO(PAI ) be a sequence

of finitely supported elements that converges to 1 pointwise and such that sup;||mg, || < Acb(f:f )+e.

~

We consider the dual morphism 7 : co(H) — M(co(G)), which is the unique non-degenerate -
homomorphism satisfying (id ® p)(V) = (p® id) (V).

~

We first show that p(a;) € £°°(G) is finitely supported for all ¢ and the sequence (p(a;)); converges to
1 pointwise. Consider the functional w,, € Cp,(H)* defined by (id®wg, )(v¥) = a;p, for all y € Irr(H)
50 (id ® wq,)(Vir) = a; and, by definition of the dual morphism p(a;) = (id ® wg, o p)(Vz), we have
p(ai)pz = (id @ wg, 0 p)(u®) and {z € Irr(G) = plai)ps # 0} = Uyene(#),aip, 20Ny - Hence, pla;) is
finitely supported for all i. Moreover, for all z € Irr(G),

1p(ai)pe = pall = [(id @ wa; 0 p)(u®) = pel| = sup 1(id @ wa, ) (0¥) = py
y€lrr(H) and z€NJ

= sup laipy — pyll =i 0.
y€lrr(H) and 2N

~

We now show that sup; [[ms,)lles < Aewp(H) + €. First let us note that, by Fell’s Absorption
Principle, we have (Wg)12(Va)is = (Va)2s(Wa)12(Va)s3. Thus, there exists a x-homomorphism
Ag : C(G) = C(G) ® C,,(G) which extends the comultiplication Ag on Pol(G). We now define a
unital *-homomorphism 7 : C(G) — C(G) ® C(H) such that

m(z) = (1d ® A 0 p) 0 Ag,

where Ap7 : C,(H) — C(H) denotes the canonical surjection given by the GNS-representation with
respect to the haar state of H. Clearly, 7 extends the map (id ® p) o Ag on Pol(G). Now it not



hard to see that the map 7 is a right quantum homomorphism (see section 1 of [MRW12]); in other
words 7 satisfies the equations -

(Ag®id)or = (id®@7) 0o Ag,

(id® Ag)orm = (r®id) o .

Both of the above equations follow easily from the coassociativity condition of the co-multiplication
of G and H and from the fact that 7 = (id®p)oAg and (pRp)oAg = Agop on Pol(G). This together
with Theorem 5.3 of [MRWI2] implies that there exists a unitary operator V, € B(L*(G)) ® C(H)
such that

Hence, it follows that, 7 is isometric.

It is now not hard to see that (id®@m,, )7 = momy(,,) for all i. Indeed, since my, (7) = (Id®@wq, ) A g (v)
and M, (z) = (id @ wy, © p)Ag(z) = (id ® wy, 0 p)Ag(x) for all x € Pol(G), we find that for

x € Pol(G),

([d@mg)m(zr) = (1d®id®w,)(id ® Ag)on(z) = (Id ®id @ we, ) (T ® p) o Ag(z)
7 (1 @ wa, © P)(Ac(z)) = 70 M) (@),
Since 7 is isometric, we have |[ms(,)llep < ||, ]l < Aey(H) + € for all i. Hence, Ag,(G) < Agy(H) +e.
Since € is arbitrary the proof is complete. O

3 Bicrossed products

This section has two parts. In the first part, we discuss on matched pair of groups of which one
is compact and show an automatic regularity property of such matched pairs (Proposition B.2)). In
the second part, we study bicrossed products of compact matched pair of groups and study their
representation theory and related concepts.

3.1 Matched pairs

Definition 3.1 ([BSV03]). We say that a pair of l.c. groups (G1,G2) is matched if both Gy, G are
closed subgroups of a l.c. group H satisfying G; NGy = {e} and such that the complement of G1G2
in H has Haar measure zero.

From a matched pair (G, G2) as above, one can construct a l.c. quantum group called the bicrossed
product and it follows from [VV03] that the bicrossed product is compact if and only if G is discrete
and G5 is compact. In the next proposition, we show some regularity properties of matched pairs
(G1,G2) with G being compact.

Proposition 3.2. Let (G1,G2) be a matched pair and suppose that Go is compact. Then G1Go = H,
and, for all (v, g) € G1 x Gy there exists unique (o (9), B(g9)) € Ga x G1 such that g = a~(g)Bq(7)-
Moreover,
1. For g,h € Go and r,s € Gy, we have
ar(gh) = ar(g)ag, () (h), Bg(rs) = Ba,(g)(r)Be(s) and ar(e) =e, Byle) =e. (3.1)
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2. « is a continuous left action of G1 on the topological space Go. Moreover, the Haar measure
on Gy is a-invariant whenever Gy is discrete.

3. B is a continuous right action of Go on the topological space G.

4. a is trivial < G1 is normal in H. Also, B is trivial < G is normal in H.

Proof. First observe that, since G2 is compact, H is Hausdorff and Gy is closed, the set G1G>
is closed. Hence, the complement of GG1G9 is open and has Haar measure zero. It follows that
G1Gy = H=H"' = G,'G]" = G2G1. Since G NGy = {e}, the existence and uniqueness of o (g)
and [4(y) for all v € Gy and g € G are obvious. Then, the relations in (1) and the facts that a
(resp. f) is a left (resp. right) action as in the statement easily follow from the aforementioned
uniqueness.

Now let us check the continuity of these actions. Since the subgroup G is closed in the l.c. group H,
so H/Gy is a l.c. Hausdorff space equipped with the quotient topology and the projection map 7 :
H — H/G is continuous. Hence, Mg, G9 — H /@G is continuous and bijective since G1NGy = {e}
and G1G2 = H. Since Gy is compact, g, is an homeomorphism. Let p : H/G1 — G be the inverse
of g, and observe that the map a : G x G2 — G2, (7,9) = a,(g) satisfies a = p o 7o 1), where
1 1 G x Go — H is the continuous map given by ¥ (v, g) = ~vg, for v € G1,g € G3. Consequently,
the action « is continuous. Since for all v € Gy and g € G2, we have B4(y) = a(g9) " 1vg, we deduce
the continuity of 8 : G1 x Ga — G1, (7,9) — Bg(7) from the continuity of o and the continuity of
the product and inverse operations in H.

Moreover, suppose that GG is discrete. Then (7 is a co-compact lattice in H and it follows from the
general theory that H is unimodular and hence there exists a unique H-invariant Borel probability
measure v on H/G;. Consider the homeomorphism Mg, G9 — H/G; and the Borel probability
measure 1 = (7, )«(v) on Ga. Since, for all v € Gy, the map 7|, intertwines the homeomorphism
o, of G with the left translation by v on H/G; and since v is invariant under the left translation by
7, it follows that p is invariant under .. Also, | Gy intertwines the left translation by h on G with
the left translation by h on H/G; for all h € G5. Hence, p is invariant under the left translation by
h for all h € G3. It follows that p is the Haar measure.

Suppose that Gy is normal is H. Then for all v € Gy, g € G, we have g~ 'vg = g, (9)3,(7) € Gi.
Since g~ la,(g) € G2 and Gy NGy = {1}, we deduce that g 'a,(g) = 1 for all v € Gy, g € Ga.
For the reverse implication in (4), suppose that « is trivial. Then for all v € Gy, g € G4, we have
vg = gB4(7) € Gi. Hence, g7'G1g C G for all g € G4 and since we trivially have y~1Gyy C Gy for
all v € Gy and H = G1G49, we deduce that GG is normal in H. The proof of the last assertion of the
Proposition is analogous. [

The next Proposition is well known, it is called the Zappa-Szép product (also known as the Zappa-
Rédei-Szép product, general product or knit product) and it is a converse of Proposition We
include a proof for the convenience of the reader.

Proposition 3.3. Suppose that G1 and G are two l.c. groups with a continuous left action a of
G1 on the topological space Go and a continuous right action 5 of Ga on the topological space G
satisfying the relations B11). Then there exists a l.c. group H for which G1, Gy are closed subgroups
satisfying G1 N Ga = {e}, H = G1Ga, and for all v € G1,9 € Ga, 79 = a(9)Bg(7)-

Proof. Consider the l.c. space H = G; X G5 and define a product on H by the formula:

(r,9)(s,h) = (Bu(r)s, gar(h)) forallr,s € Gi, g,h € Ga.
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It is routine to check that this multiplication turns H into a l.c. group. Moreover, we may identify G
with a closed subgroup of H by the map G; > r — (r,1) € G1 X G2 and G2 with a closed subgroup
of H by the map G2 3 g — (1,9) € G x Gy. After these identifications, we have H = G1G3,
G1 NGy = {e}, and for all v € G1,9 € Ga, vg = ay(g9)By(7). O

3.2 The bicrossed product construction

We first construct the bicrossed product from a compact matched pair and then study its repre-
sentation theory. Along the way we prove some straight forward consequences e.g., amenability,
K-amenability and Haagerup property of the dual of the bicrossed product. We also compute the
intrinsic group and the spectrum of the maximal C*-algebra of the bicrossed product.

Let (I, G) be a matched pair of a countable discrete group I'" and a compact group G. Associated
to the continuous action g of the compact group G on the countable infinite set I', we have a magic
unitary v7'¢ = (Vy)rseqc € M. |(C) ® C(G) for every v -G € I'/G, where v,s = 14, and
A s ={9€G: By(r)=s}

We define the C*-algebra A,, = I', s x C(G) to be the full crossed product and the C*-algebra
A =T, x C(G) to be the reduced crossed product. With abuse of notation, we denote by « the
canonical injective maps from C(G) to A, and from C(G) to A. We also denote by u, v € I, the
canonical unitaries viewed in either A,, or A. Observe that A,, is the enveloping C*-algebra of the
unital *-algebra

A = Span{uya(uj;) : v € ', xw € Irr(G), 1 < 4,5 < dim(z)}.

Let A : A,, — A be the canonical surjection. Since the action a on (G, i) is p-preserving and p is
a probability measure, so there exists a unique faithful trace 7 on A such that

T(uya(F)) = 5%6/Fd,u, vel,FeC(G).

Theorem 3.4. There exists a unique unital x-homomorphism A, : Ay — A @ Ay, such that

Apoa=(a®@a)oAg and Ap(u,y) = Z Uy (Vy,r) @ Uy, Vy €T
rey-G

Moreover, G = (A, Ap,) is a compact quantum group and we have:

1. The Haar state of G is h =71 o A, hence G is Kac.

2. The elements VYC = Zr,sev-G ers @ ura(vrs) € My.q(C) ® Ay, for v € T, are pairwise

non-equivalent irreducible unitary representations of G such that VVG ~ VG and any
irreducible unitary representation of G is a equivalent to a subrepresentation of VV'C @ v* for
some v-G €T /G and x € Irr(G), where v* = (id @ a)(u®).

3. We have Cp,(G) = A, C(G) = A, Pol(G) = A, X is the canonical surjection and L>(G) is
the von Neumann algebraic crossed product.

4. The counit eg : Cp(G) — C is the unique unital x-homomorphism such that eg(a(F)) = F(e)
for all F € C(G) and eg(uy) =1 for all v € T

12



The compact quantum group G associated to the compact matched pair (I', G) in Theorem [B.4] is
called the bicrossed product.

Proof. The uniqueness of A, is obvious. To show the existence, it suffices to check that A,, satisfies
the universal property of A,,.

Let us check that v — Ay, (u,) is a unitary representation of I'. Let v € I'. We first check that
Ay, (uy) is unitary. Observe that, for all g € G and v € T, we have

1= By(v7) = Ba, () (7 1By (7).

Hence, (B4(7))"! = ﬁaq(g (y~1). From this relation it is easy to check that I ~1.G' = {r=! : r € v-G}

and (v, ,-1) = vy-1, for all r € I'. It follows that

Apy(uy)* = Z (V) Uy =1 @ U1 = Z U100y (Vn 1)) @ Uy

rey-G rey-G
= Z Uy-10(Vy=1 ) @ Up = Ay (Uy-1).
rey—1.G
Let 71,72 € I'. We have
A (tyy) A () = Z Uy (V1)U (Vg ) @ Ups = Zuvwz ( 1 (Vyp )7)72,8) @ Ups-

réy1-G,s€y2-G

Observe that a1 (Vyy 7 )Vy0,s = 1B, , ... Where
By s ={9€ G : ﬁaw (’71) =rand By(72) = 5} C Ayiyprs = {9 € G 1 By(m72) = rs},

since B, (9)(71)Bg(12) = By(m172). In particular, By, 4, ;s = 0 whenever rs ¢ 7172 - G; hence

Ay (U ) A (U ) = Z Uy O <1371772’T’T_1t) ® up = Z Unyy 4o O(F) @ g,
tevive-Gyrev -G tevive-G
where Ft - ZT 1BW1v’YZvT’771t - 1UTB“/1,W2,T,r*1t - 1A'V1'¥2,t’ and A’Yl“/%t = {g €G: M2 -9 = t}'

Consequently, 14, = vy ppr and Ay (g, ) Ay (Uy,) = Ap(ty,,). Since Ay (ue) = 1, it follows
that v — A,,(uy) is a unitary representation of T'.

Let us now check that the relations of the crossed product are satisfied. For v € I' and F € Pol(G)
we have:

A A ((F) A (u}) = Y (uy @ up)(@ @ @) (03,0 © DAG(F)) (uy-10(vy-1 ) © us)

T8

= Yy @ un) (@@ 0) (U 01 (1,-1,,) @ DAGE)) (11 © )

TS

= Z(a ® @) ((av(vv,r)vw—l,s ®@1)(ay ® ar)(AG(F))) (1 ®urs)

T,8

= Z(O‘ ®a) ((O"y(vw,r)vw—l,r—lt ® 1)(0‘7 ® ar)(AG(F))) (1®u)

r,t

= > (a®a)(H)(l @ u),

t
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where Hy = 3, (0t (vy,r)vy-1 -1, ® 1) (g ® ) (A (F)).

Observe that a.(vy,)vy-1,-1, = 1B, ,,, where

-
Byri={9€G: 504771(9)(7) =rand By(v 1) =r 't}

Since 5%4(9) (V)Bg(v71) = By(vy™1) = Byle) = e, we deduce that B, ,; = ) whenever t # e, and
it is easy to see that U,cy.gB,,e = G. Hence, H; = 0 for t # e. Again for g € By, . and h € G,
one has He(g,h) = F(ay-1(g9)a,-1(h)) = F(ay-1(g)ag,y-1)(h)) = F(ay-1(gh)). It follows that
He = Ag(a,(F)). Consequently, Ay, (uy)Ap(a(F))Am(u}) = (o ® a)(He). This completes the
proof of the existence of A,,.

It is clear that v* (as defined in the statement) is unitary and since (a ® a)Ag = A,, o «, we have
A (v;) = Dk vf) ® vi;. Observe that V7Y = D, (id ® a)(v7Y) € M},.¢(C) ® A, where D, is the
diagonal matrix with entries u,, r € v - G. Hence, V7'¢ is unitary. Moreover,
Am(VﬂeG) = Ap(ura(vs)) = Z (ura(vre) @ ug) (o ® a)(Ag(vrs))
ter-G=v-G
-G -G
= Y wa(vne) @ walves) = Y upa(ve) @ual(vs) = > VGV
t,zey-G tey-G tevy-G
It follows from [Wa95al Definition 2.1°] that G is a compact quantum group and V'@, v are unitary
representations of G for all v- G € I'/G and x € Irr(G).

(1). Since ), V1% = u,, the linear span of the coefficients of the representations V¢ @ v® for
v € I'/G and = € Irr(G) is equal to A. Hence, it suffices to check the invariance of h on the
coefficients of V7% @ v®. We have

h(‘/rlG ij)) = h(ura(vrsvw)) = 57’,6/Gvesvgjd,uf = 57’,655,6/Gvgjd,uf = 67’,658,661',17

since ves = 041 and v is irreducible. Hence, if x # 1, we have

(id @ h) A (VLE0E) Zvnﬁ LRV C0E) = 0= h(V o)Vl “vf; = (h@id) Ay, (Vi %ol).

zg rSs zg
t,k

And, if z = 1, we have (id @ h)A, (ViE9) = 3, VICh(VY) = 6,01 = (h ®@id) A, (ViEY). Tt follows
that h is the Haar state.

(2). For the unitary representation V' (of G or G, we denote by x(y-G) = > renG Uro(vrr) its
character. One has, for 7,7 € T,

hx(y-G)'x(v-G)) = Z h(a(vr Jup—150(vss)) = Z h(up—1sa(ag—1,(Vpr)vss))

rey-G,sey'-G rey-G,sey'-G
= 'y GH'-G Z / Ur,,d,u = 04.Gy'- G/ (Z Urr)d,u = 04.G'-G>
rey-G G
since f G , Upp)dp is equal to the dimension of the invariant vectors in the representation (v,)., sefy a
which is 1 since the action of G on ~ - G is transitive. This shows that the representations V¢ are

irreducible and pairwise non-isomorphic for v - G € I'/G. Since the linear span of the coefficients of
V¢ @ v® is equal to A and hence dense in A,,, it follows that any irreducible representation of G
is equivalent to some subrepresentation of V7'¢ @ v*. Finally, the bicrossed product relations imply
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that (B,(v))~t = ﬁaw(g)(fyfl) for all g € G, v € T hence, v~ ! -G = (y-G)~! and, the linear map
s, 1 C— ChrCl eCh™"Gl, $y(1) =3 ey €r®ep—1 is well defined. Using the relations u,a(vys)uy =
a(vps 0 1) = av,-1,-1) for all 7,5 € v - G it is easy to check that s, € Mor(1,V7¢ ® VTG
which implies that V7G ~ V7 G,

(3). We have already shown that Pol(G) = A. It follows that C,,(G) = A,,. Since A is surjective and
7 is faithful on A4, it follows that C(G) = A and L°°(G) is the bicommutant of A in B(/2(T") @ L?(G))

i.e., it is the von Neumann algebraic crossed product. Finally, since A is the identity on A = Pol(G),
it follows that A is the canonical surjection.

(4). The fact that eg(a(F)) = F(e) for all F' € C(G) is obvious since « intertwines the colmultipli-
cations. Fix v € T'. Since V7@ is irreducible, we have that (id ® eg)(V"'%) = 1. Hence,

1= Z ers€c(Ur)vrs(e) = Z errec(Uy).

r,s€y.G rey.G

It follows that eg(uy) = 1. O

Remark 3.5. Let G be the bicrossed product coming from a compact matched pair (I', G) as above.
From the definition, it is easy to check that C,,(G) is commutative if and only if the action « is
trivial and I' is abelian. Moreover, G is cocommutative if and only if the action § is trivial and G
is abelian.

Remark 3.6. The following observation is well known. Let o : I' ~ A be an action of the countable
group I' on the unital C*-algebra A and let C be the full crossed product which is generated by
the unitaries u,, v € I', and by the copy «(A) of the C*-algebra A. If A has a character ¢ € A*
such that e(a,(a)) = e(a) for all a € A and v € I, then the C*-subalgebra B C C generated
by {u, : v € I'} is canonically isomorphic to C*(I'). Indeed, it suffices to check that B satisfies
the universal property of C*(I'). Let v : I' — U(H) be a unitary representation of I" on H.
Consider the unital *-homomorphism 7 : A — B(H) given by 7(a) = (a)idyg, a € A. We have
vy(a)v, -1 = e(a)idy = e(ay(a))idy = m(ay(a)). Hence, we obtain a representation of C' that we
can restrict to B to get the universal property.

Let (I, G) be a matched pair. Since the map € : C(G) — C by F' — F(e) is a a-invariant character,
it follows from the preceding observation that the C*-subalgebra of A, generated by u,, v € I, is
canonically isomorphic to C*(I).

We now give some obvious consequences of the preceding result concerning amenability, K-amenability
and the Hagerup property. The first assertion of the following corollary is already known
but we include an easy proof for the convenience of the reader. We refer to [Ve04] for the definition
of K-amenability of discrete quantum groups.

Corollary 3.7. The following holds:

1. G is co-amenable if and only if I is amenable.

2. If ' is K-amenable, then G is K -amenable.

3. If@ has the Haagerup property, then I' has the Haagerup property.

4. If the action of T' on L>°(G) is compact and T' has the Haagerup property, then G has the
Haagerup property.
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Proof. (1). If T' is amenable, then we trivially have that A is an isomorphism; hence, G is co-
amenable. Conversely, if G is co-amenable, then the Haar state h = 7 o \ is faithful on A4,,. Since
h(uy) = 0y, v € T', we conclude from Remark B.6] that the canonical trace on C*(I') has to be
faithful. Hence, I' is amenable.

(2). Tt is an immediate consequence of [Cu83, Theorem 2.1 (¢)].
(3). Tt follows from [DESW13| Theorem 6.7], since L(I") is a von Neumann subalgebra of L>°(G).
(4). This is a direct consequence of [Jo07, Corollary 3.4] and [DFSW13, Theorem 6.7]. O

We end this section with a description of the Int(G) and x(G) (see Section 22]) in terms of the
matched pair (G,T"). It will be used to distinguish various explicit examples in Section [7

Observe that the relations in Equation () imply that T¥ = {y € I : B,(y) = v Vg € G} and
G* ={g € G : ay(g) = g ¥y € '} are respectively subgroups of I' and G. Moreover, since [ is
continuous, G? is closed, hence compact. Thus, when (T, G) is a compact matched pair, the relations
in Equation (3] imply that the associations

v-w=woa, and g-pu=pof,y, forallyel,ge G ,weSp(G),pneSpl),

define two actions by group homomorphisms, namely: (i) right action of T'? on Sp(G) that we still
denote by «a, and (ii) left action of G* on Sp(I") that we still denote by 8. Also, § is a continuous
action by homeomorphisms.

Proposition 3.8. There are canonical group isomorphisms:
Int(G) ~ Sp(G) xo I?  and x(G) =~ G* 5 x Sp(I).
The second isomorphism is moreover a homeomorphism.

Proof. The irreducible representation V¢ of G is of dimension 1 < |y-G| =1 < v € T'5. By
assertion (2) of Theorem [B:4] there is a bijective map

71 Sp(G) %o TP = Int(G) : (w,7) — uya(w) € Cp(G), w € Sp(G),7 € e

The relations of the crossed product and the group law in the right semi-direct product imply that
7 is a group homomorphism.

Let (g, ) € G* x Sp(T'). Since g € G*, the unital *-homomorphism C'(G) — C given by F — F(g)
and the unitary representation p : I' — S! give a covariant representation. Hence, we get a unique
p(g, 1) € x(G) such that p(g, p)(uya(F')) = p(y)F(g) for all v € T', F € C(G). It defines a map
p: G*3x Sp(I") = x(G) which is obviously injective.

For all g,h € G*y €T and F € C(G), one has

(p(g,w) - p(h, ) (ura(F)) = (p(g,w) ® p(h, 1)) (A (g (F))) = > w(y)vyr(g)p(r)F(gh)
ev-G

= w()uBy(7))F(gh) = (p(gh,w - p o Bg))(uya(F)).
Hence, p is a group homomorphism.

Let us check that p is surjective. Let x € x(G), then x o @ € Sp(C(G)). Let g € G be such that
X(a(F)) = F(g) for all F € C(G). Actually g € G*. Indeed, for all v € I' and all F' € C(G), one
has

Flay-1(9)) = x(a(oy (F))) = x(uya(F)ul) = x(a(F)) = F(g);
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now use the fact that C(G) separates points of G to establish g € G*. Define w = (v — x(uy)) €
Sp(T"). Consequently, x = p(g,w) and p is surjective.

Finally, the map p~! : x(G) — G 53 x Sp(I') is continuous, since p; o p~t : x(G) — Sp(C(G)) = G
by x — xoa and pyo p~t 1 x(G) — Sp(I') by x ~ (v = x(u,)), are obviously continuous, where
p1 and po are the canonical projections. By compactness, p is an homeomorphism. O

4 Property (T) and bicrossed product

This section is dedicated to the relative co-property (1) of the pair (G, G) and Kazhdan property of
the dual of the bicrossed product G constructed in Section 3. The results in this section generalize
classical results on relative property (T") for inclusion of groups of the form (H,T" x H), where H
and I" are discrete groups and H is abelian [CT11].

4.1 Relative property (7') for compact bicrossed product

Definition 4.1. Let G and G be two compact quantum groups with an injective unital x-homomorphism
a : Cp(G) = Cp(G) such that Agoa = (a®a) o Ag. We say that the pair (G, G) has the relative
co-property (T), if for every representation 7 : C,,(G) — B(H) we have eg < m = ¢ C moa.

Observe that, by Proposition 2.3], G has the property (T') in the sense of [Fi10] if and only
if the pair (G, G) has the relative co-property (7') (with a = id). Also, if A,T" are countable discrete
groups and A < T, then the pair (K, f) has the relative co-property (7') if and only if the pair (A,T")
has the relative property (7') in the classical sense.

Let (I', G) be a matched pair of a countable discrete group I' and a compact group G. Let G be the
bicrossed product. In the following result, we characterize the relative co-property (7') of the pair
(G, G) in terms of the action a of " on C'(G). This is a non-commutative version of [CT11, Theorem
1] and the proof is similar. We will use freely the notations and results of Section

Theorem 4.2. The following are equivalent:

1. The pair (G,G) does not have the relative co-property (T').

2. There exists a sequence (fin)nen of Borel probability measures on G such that

(a) pn({e}) =0 for all n € N;
(b) pn — 6 weak™;

(¢) llay(pn) = pinl| = O for all v € T.
Proof. For a representation 7 : Cy,,(G) — B(H), we have e C 7o« if and only if K # {0}, where
K,={{€H :moa(F)=F(e for all F € C(G)}.

Define p = moa : C(G) — B(H), and for all {,n € H, let y¢ , be the unique complex Borel measure
on G such that [, Fdpue, = (p(F)&,n) for all F € C(G). Let B(G) be the collection of Borel subsets
of G and F : B(G) — B(H) be the projection-valued measure associated to p i.e., for all B € B(G),
the projection E(B) € B(H) is the unique operator such that (E(B)&,n) = pe,(B) for all {,n € H.

17



Observe that a vector £ € H satisfies p(F)§ = F(e)§ for all F' € C(G), if and only if g ,, = (€,1)0e
for all n € H, which in turn is true if and only if (E({e})§,n) = (¢, n) for all n € H. Hence, E({e})
is the orthogonal projection onto K.

(1) = (2). Suppose that the pair (G,G) does not have the relative co-property (7'). Let
m @ Cpn(G) — B(H) be a representation such that eg < 7 and K, = {0}. Hence, pu¢,({e}) =

(E({e})&,n) =0 for all £,n € H.

Since e < 7, let (§,)nen be a sequence of unit vectors in H such that ||7 ()&, —eg(2)&,|| — 0 for all
x € Cp(G). Define p, = pg,, ¢,- Then, we have p,,({e}) = 0 for all n € N. Since p, is a probability
measure, 50 |, (F) — 6c(F)| = | [o(F — F(e))dun| < |F — F(e)|l 11 (u) < [IF = F(e)ll22(u,), for all
F € C(G). Moreover,

IF = F()lI72(,) = llp(F = F(e)1)éu|* = [[m(a(F))én — e (a(F))éa|* — 0.
Hence, p, — 0. weak®. Finally, for all v € T and all F' € C(G), we have:
[ Pdestn) = [ s (P, = (plas 1 (P66 = (r(a0)"o(FIm(a 6o )
= (p(F) 7 (uy)&ns m(Uy)En)-

It follows that

'/GFd%(un)—/Gqun

(p(F) 7 (ty )&, (g )En) — (p(F)En, En)l

[o(E) (m(uy)&n — &n), T(uq)&n)| + [{p(F)éns m(uy)&n — &n)l
2| F|| |7 (wy )én — &nl|, for all F e C(G) and v €T

IA A

Hence, ||cv,

(2) = (1

Claim. If (2) holds, then there exists a sequence (Vy)nen of Borel probability measures on G satifying
(a), (b) and (c) and such that a~(vyn) ~ vy for ally €', n € N.

fin) = pin| < 2[[7(uy)n = &nll = 2/ (ur)én — g (uq)énll = 0 (see (4) of Theorem B.4).
We first prove the following claim.

(
)-

Proof of the claim. Denote by £1(I'); 4 the set of positive ¢! functions on I' with ||f||; = 1. For u a
Borel probability measure on G and f € ¢}(I'); 4, define the Borel probability measure f * 1 on G

by the convex combination
Fru=>Y_ f(y)ay(n)
yel

Observe that for all v € T', we have 0, * 1 = (1) and a (f * p) = fy * p, where f, € £4(I) 4 is
defined by f(r) = f(y~1r), r € T.

Moreover, if f € ¢}(T);  is such that f(y) > 0for all v € T, then since (fxu)(F) = > Fr)play-1(E))
(E is Borel subset of G), so we have that (f * p)(E) = 0 if and only if p(a,(E)) = 0 for all v € I.
This last condition does not depend on f. Hence, if f € ¢1(I'); 4 is such that f > 0, then since
fy(r) > 0 for all v, € T, it follows that f % pu ~ a(f * u) = f, % p for all v € I' as they have the
same null sets: the Borel subsets E of G such that u(as(E)) =0 for all s € T

Therefore, since ., (e) = e for all v € T', so

(f *m)({e}) Zf 1({e}) Zf u({ed) = u({e}), for all f € 1)y
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Let (fn)nen be a sequence of Borel probability on G satisfying (a), (b) and (c). For all f € ¢}(T"); +
with finite support we have,

I1Lf * ptn = pnl] < Zf( 1105 % b — || = Zf Moy (pn) = pnll = 0. (4.1)
gl

Since such functions are dense in £1(I"); 4 (in the ¢*-norm), it follows that ||f * f,, — || — 0 for all
fe D)+

Let € € ¢1(T")1 + be any function such that £ > 0 and define v, = £xpu,,. By the preceding discussion,
we know that o (v,,) ~ vy, for all v € T and v,({e}) = pn({e}) = 0 for all n € N. Moreover, by

Equation (4.J]),

oy (n) = vnll = 1€y * i — &% pnll < (1§5 * pin — pinl| + lptn — § * pnl| — 0, for all y € T

Finally, since y,, — d. weak™ and a.(e) = e, one has |p,(F o a) — F(e)| — 0 for all v € I" and for
all F' € C(G). Hence, for all F' € C(G), the dominated convergence theorem implies that

[vn(F) )| = Zf (1n FOO‘V <Zf Mpn( Foa’y) F(e)| — 0.

It follows that v, — d. weak* and this finishes the proof of the claim. O

We now finish the proof of the Theorem. Let (u,)nen be a sequence of Borel probability measures
on G as prescribed in the Claim. For n € N and v € T, let hy(v) = M ; then 0 < hy(y) <1, pp
a.e., and by uniqueness of the Radon-Nikodym derivatives and since a is an action, we have for all
n €N, hn(v,9)hn (v, a-1(9)) =1, pp ae. g € G, and for all v € I'. Define H, = L*(G, p,,) and
let w, : I' — U(H,,) be the unitary representations defined by (u,(7)¢)(g) = §(ar1(g))hn(7,g)%
for vy € I',g € G,¢ € Hy. Also consider the representations p, : C(G) — B(H,), defined by
pn(F)E(g) = F(9)¢(g), for £ € Hy,, g € G and F € C(G). Observe that the projection valued
measure associated to p, is given by (E,(B)¢)(g) = 15(9)&(g) for all B € B(G), £ € H, and g € G.
Using the identity /n (v, )hn(v" ! ay-1(0) = 1, we find un(7)pn(Fun(v™!) = pn(ay(F)) for all
v eI, F e C(G), g €G. Therefore, by the universal property of A,,, for each n € N there is
a unital *-homomorphism m, : A, — B(H,) such that m,(uy) = u,(y) and 7, o « = p,, for all
n € N. Since p,({e}) = 0, we have E,({e}) = 0 for all n € N. Hence, K, = {0} for all n € N.
Consequently, on defining H = &, H,, and 7 = &,,m, : Cpn(G) — B(H), it follows that K, = {0} as
well. Hence, it suffices to show that eg < 7.

Define the unit vectors &, = 1 € L*(G,pu,) C H, n € N. Observe that (u, — a(pn))(F) =
Jo F(1=hn(7))dpy, for all F € C(G). Hence, ||ty — vy (pn) || = 11 =P (V)| 21 (i) — O for all 7 € T
Moreover, as 0 < 1 — V<1 —tforall 0<t<1,it follows that

I )66l = (111, = [ (=ha0))2 i < [ (1=ha)ditn = 1= x> 0
for all v € T'. Since p,, — d. weak*, for all F' € C(G), we also have that,

I (@(F))6, = F(e)alfr = lpalF)1 = Fle)LIE, = [ 1P(0) = F(e)Pdu 0.
Consequently, for all x = uya(F) € Cp,(G), we have

(@) — cc@)éall = Im(us)m(@lF)en — Fle)éal
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17 () (w((F)en — F(e)€n) || + [F(e)] |7 (uy)En — &nll
[m(a(F))En = F(e)&nll + [F(e)] [[7(uq)én = &nll = 0.

IN A

By linearity and the triangle inequality, we have ||7(x)&, — eg(x)&,|| — 0 for all x € A. The proof
is complete by density of A in C),(G). O

4.2 Property (T)

Now we discuss property (T') of G. Let G be the set of fixed points in G under the action « of T'.
It is a closed subset of G, and, by the relations in Equation (B1]) it is also a subgroup of G.

Theorem 4.3. The following holds:

1. If@ has property (T'), then T has property (T') and G* is finite.
2. If@ has property (T') and « is compacﬂ then T has (T') and G 1is finite.

3. If T has property (T) and G is finite, then G has property (T).

Proof. (1). Let p : C(G) — C*(T') be the unital *-homomorphism defined by p(F) = F(e)l and
consider the canonical unitary representation of I' given by I' 3 v — A, € C*(I"). For all v € I' and
F € C(G), we have p(ay (F)) = ay(F)(e)l = F(a,-1(e))1 = F(e)l = Ayp(F)A;. Hence, there exists
a unique unital *-homomorphism 7 : C,(G) — C*(I') such that 7 o o = p and 7(uy) = A, for all
v € I. Observe that 7 is surjective and, for all F' € C(G),

(r@m)Ag((F)) = (p @ p)(Ac(F)) = A(F)(e;e)1l @ 1 = F(e)1 @ 1 = Ap(w(a(F)))-

Moreover, since for all ,7 € " one has 14, (€) = d,,,, we find, for all y € T,

(m@7m)Ag(uy) = Z m(uya(v] ;) @ m(uyr) Z Ala,, (e) @A\ = Ay @ Ay = Ap(m(uy)).

rey-G rey-G

So 7 intertwines the comultiplications and property (7') for T' follows from [Fil0), Proposition 6].

To show that G is finite it suffices, since G¢ is closed in G hence compact, to show that G is discrete.
Let (g,,) be any sequence in G® such that g, — e. Consider the unital *-homomorphism p : C(G) —
B(¢%(N)) defined by (p(F)&)(n) = F(gn)€é(n), for all € € £2(N), and the trivial representation of I' on
¢%(N). Since g, € G° for all n € N it gives a covariant representation. Hence, there exists a unital
*-homomorphism 7 : Cy,(G) — B(£*(N)) such that 7(u,a(F)) = p(F) for all v € I and F € C(G).
Define &, = 6, € ¢*(N). One has ||7(uya(F))én — ec(uya(F)énll = |F(gn) — F(e)] — 0 for all
F € C(G). Hence, m has almost invariant vectors. By property (7'), m has a non-zero invariant
vector and for such a vector ¢ € £2(N) we have F(g,)é(n) = F(e)é(n) for all F € C(G) and all
n € N. Let ng € N for which &(ng) # 0. We have F(gy,,) = F(e) for all ' € C(G), which implies
that g,, = e and shows that G* must be discrete.

(2). It suffices to show that G is finite. The proof is similar to (1). Let g, € G be any sequence
such that g, — e. We view « as a group homomorphism « : I' = H(G), v — ., where H(G)

“We only need to assume that the closure of the image of I" in the group of homeomorphisms of G is compact for
some Hausdorff group topology for which the evaluation map at e is continuous.
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is the group of homeomorphisms of G and we write K = «(I') C H(G). By assumptions, K is a
compact group and we denote by v the Haar probability on K. Note that, since o (e) = e for all
~v € I, by continuity of the evaluation at e and density, we also have z(e) = e for all z € K. We
define a covariant representation (p,v), p : C(G) — B(L?(K x N)) and v : T' = U(L*(K x N)) by
(p(F)E)(x,n) = F(2(gn))é(z,n) and (v,§)(z,n) = &(ay-12,n). By the universal property of Cp,(G),
we get a unital *-homomorphism 7 : Cy,(G) — B(L*(K x N)) such that 7(u,ya(F)) = vyp(F) for
all y € I and F' € C(G). Define, for k € N, the vector &;(x,n) = k. Since v is a probability it
follows that & is a unit vector in L2(K x N). Moreover, for all v € T and F € C(G),

(0 (F))& — (usal F))E? = /K Fla,12(g8)) — F(e)Pdu(z) — 0,

where the convergence follows from the dominated convergence Theorem since, by continuity, we
have F(a,-1)x(gr)) — F(e) for all ¥ € I', * € K and F' € C(G) and the domination is obvious
since v is a probability. By property (T), there exists a non-zero ¢ € L2(K x N)) such that F(e)¢ =
eg(a(F))E = m(a(F))E = p(F)¢ for all F € C(G). Define Y := {z € K : ¥ ylé(z,n)]* > 0}
and, for F € C(G), Xp :=={z € K : Y, oy |F(2(gn))é(z,n) — F(e)é(x,n)|* # 0}. The condition
on ¢ means that v(Y) > 0 and, for all F' € C(G), v(Xr) = 0. Let Fj, € C(G) be a dense sequence
and X = UgenXp, then v(X) = 0so v(Y \ X) > 0. Hence, Y\ X # . Let x € Y \ X, we have
> [é(z,n]? > 0 and, for all k,n € N, Fy(z(gn))¢(z,n) = Fi(e)é(x,n). By density and continuity,
F(x(gn))é(x,n) = F(e)é(z,n) for all n € N and F € C(G). Since Y, |£(z,n|? > 0, there exists
no € N such that {(x,ng) # 0 which implies that F(z(gn,)) = F(e) for all F' € C(G). Hence,
%(gn,) = € which implies that g,, = e. Hence G must be discrete and, by compactness, G is finite.

(3). Let m : Cpn(G) = 'y p x C(G) — B(H) be a unital *-homomorphism and K be the closed
subspace H given by C'(G)-invariant vectorsi.e. K = {{ € H : woa(F){ = F(e)¢ for all F' € C(G)}.
Then P = 7(a(d,)) is the orthogonal projection onto K which is an invariant subspace of the unitary
representation 7y > m(uy) since m(uy ) Pm(uy)* = m((da, () = m(a(de)) = P for all v € T'. Let
7 + vy be the unitary representation of I' on K obtained by restriction.

Suppose that eg < 7 and let &, € H be a sequence of unit vectors such that ||7(z)&, —eg ()| — 0
for all z € Cp,(G). Since G is finite (hence G has property (T)), so K # {0}. Moreover, since
| P&l — 1| < ||P&n — &nll, we have || P&,|| — 1 and hence we may and will assume that P&, # 0
for all n. Let n, = % € K. We have [[vyn, — 0| = ”P—;”HP(%&L &)l < % — 0.
Hence, v — v, has almost invariant vectors. Since I' has property (7'), let £ € K be a non-zero
invariant vector. Then, for all € C,,(G) of the form z = uya(F'), we have 7(x){ = F(e)m(uy)é =
F(e)¢ = eg(z)¢. By linearity, continuity, and density of A in C,,(G), we have m(z)¢ = eg(z)¢ for
all z € C,(G). O

We mention that the third assertion of the previous theorem appears in [CN1512] when £ is supposed
to be the trivial action.

Remark 4.4. The compactness assumption on « in assertion 2 of the preceding Corollary can not
be removed. Indeed, for n > 3, the semi-direct product H = SL,(Z) x Z™ (for the linear action
of SL,(Z) on Z™) has property (T) and H may be viewed as the dual of the bicrossed product
associated to the matched pair (SL,,(Z), T™) with the non-compact action a : SL,(Z) ~ T™ given
by viewing T™ = Z" and dualizing the linear action SL,(Z) ~ Z™ and the action [ being trivial. In
this example, the compact group G = T" is infinite.
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5 Relative Haagerup property and bicrossed product

In this section, we study the relative co-Haagerup property of the pair (G, G) constructed in Section
3. The main result in this section also generalizes the characterization of relative Haagerup property
of the pair (H,T' x H), where H and T" are discrete groups and H is abelian [CTT11]. We refer to
Section for the definitions of the Fourier transform and the Haagerup property.

Definition 5.1. Let G and G be two compact quantum groups with an injective unital x-homomor-
phism « : Cp,(G) = Cp,(G) such that Agoa = (a® a) o Ag. We say that the pair (G, G) has the
relative co-Haagerup property, if there exists a sequence of states w,, € Cp,(G)* such that w, — g
in the weak* topology and @, o & € ¢o(G) for all n € N.

Observe that, for any compact quantum group G, the dual G has the Haagerup property if and only
if the pair (G, G) has the co-Haagerup property. Moreover, it is clear that if A, I" are discrete groups
with A < T, then the pair (C*(A),C*(T")) has the relative co-Haagerup property if and only if the
pair (A,T") has the relative Haagerup property in the classical sense.

Let (I', G) be a matched pair of a discrete group I' and a compact group G. Let G be the bicrossed
product. In the following theorem, we characterize the relative co-Haagerup property of the pair
(G,G) in terms of the action « of T on C'(G). This is a non commutative version of [CT1I, Theorem
4] and the proof is similar in spirit. However, one of the argument of the classical case does not work
in our context since a. is not a group homomorphism and substitutive ideas are required. Actually,

—

for a general automorphism 7 € Aut(C(G)), there is no guarantee that v € C}(G) = n(v) € C}(G).
However, in the event of automorphisms coming from the action « given by a matched pair the
aforesaid statement turns out to be true. We provide details of this idea in the next lemma. We will
freely use the notations and results of Section [l

Lemma 5.2. Let v be a complex Borel measure on G. If v € C*(G), then m € CHQ) for all
vyel.

Proof. For v € I define G, = Stabg(y) := {9 € G : B4(y) = 7}. Note that G, is a compact open
subgroup of G with index [G : G,] = |y - G|. For gG, € G/G, we denote by Eyc, the completely
bounded map Fyq, = (ild®wiy 1,6 )Ag @ CF(G) = M(CJ(G)), where Ag is the comultiplication
on C} (@), for K C G a borel set, 1 € L?(G) denotes the characteristic function of K and, for
&,n € LYQ), wey € B(L2(G))* denotes the functional T +— (T€,n). For F € C(G), we denote by
MF) := [, F(x)A\edp(z) € CF(G) the convolution operator by G. Note that, for all g,z € G and
v € ' one has (A\;1q,,14c,) = u(zG, N gGy) = u(G4)14a, () hence, for all F' € C(G) and for all
Borel complex measure v on G, one has

By (\F)) = 0(G) [ F@lhadi(@) = m(G)M Ly, F) and By, @) = (@) [ Avdo(@)
9G~y 9G~

The formula Eyg (A(F)) = p(Gy)A(14c, F') implies in particular that Eyq, is actually a cb map
from C}(G) to C¥(G).
Let &,m € L3(G). For x € gG. one has, since p is a-invariant,

<Mmﬁm=A&M@WM@W@=L&%@“%@W%@MM)
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By the bicrossed-product relations we have, for all ¢ € G and = € ¢gG,, S.(y) = By4(v) and
B, (v) (x71y) = g, (+) (z7 Yoy (y) = ay(z) " tay(y) for all y € G hence, for all g € G and z € gG.,,

Aoy @&m = /GEOaﬁgm(fﬂ‘ly)noaw(y)dﬂ(y) = (Az€ 0 ag, (1), 10 ay) = (WyAawp ()€ 7),

where v + w,, is the unitary representation of I' on L2(G) defined by wy§ =¢Eo a;l. It follows that,
forally €T, g € G and x € gG, Ao (2) = wy)\wwgg(v) and, for any complex Borel measure v on G,

ay(v) = /)\ay(m)dy(x): Z Ay (@)dv(z) = Z / Wy AW (ydv(x)
¢ 9G4€G/G, T 9G 9G€G /G 7 9G
1 ~\ ok
= S 2 B 0w
1(Gy) !
9GLEG/G,

Since p is a-invariant, the same computation shows that, for any F' € C'(G), one has

)\(Foav_l) = /(}F(av_l(x)))\gcdu(x) :/GF(x)Aaw(x)du(x) = Z / L)Wy Agwp () dp(x)

9G,E€G/G,,

1 *
= eV 2 Eeo AE)w, ).
v gG~EG /Gy

Now, suppose that v is a complex Borel measure on G such that 7 € C*(G) and let F,, € C(G) be a
sequence such that A\(F5,) — ¥ in norm. By continuity Eyq. (A(F,)) — Eyq, (V) for all g € G. Hence,
it follows from the computations above that A(Fj,oa; ') — a, () in norm so that a, (v) € C}(G). O

Theorem 5.3. The following are equivalent:

1. The pair (G,G) has the relative co-Haagerup property.
2. There exists a sequence (i )nen of Borel probability measures on G such that

(a) iin € CH(G) for alln € N;
(b) pn — 6 weak™;
(¢) llay(pn) = pinl| = O for all v € T

Proof. (1) = (2). Let w, € Cy,(G)* be a sequence of states such that w, — g in the weak™*
topology and @, o & € C*(G). For each n view w, oa € C(G)* as a Borel probability measure y,, on
G. By hypothesis, i, € C(G) for all n € N and p,, — 0, in the weak™ topology. Writing (Hy,, 7y, &)
the GNS construction of wn and doing the same computation as in the proof of (1) = (2) of Theorem
2 we find | [ Fday (jin) — Jy Pitn] < I Ima(u)én — &all = IFIly/2(1 — Rewn(uz). Hence,
|y () = pinll < +/2(1 — Re(wn(uy)) = /2(1 — Re(eg (uy)) = 0.

(2) = (1). We first prove the following claim.

Claim. If (2) holds, then there exists a sequence (vp)nen of Borel probability measures on G satifying
(a), (b) and (c) and such that a~(vy) ~ vy, for ally €T, n € N.

Proof of the claim. By the proof of the claim in Theorem [L2] it suffices to check that whenever v is
a complex Borel measure on G and f € ¢1(G), we have v € C}(G) = f*v € CHG).
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Now suppose that 7 € C(G) and f € ¢.(I'), then fxv =" f(v)a,(p) is a finite sum and by Lemma
B2 we find that f % g = S F()ay(p) € CHG).

Suppose that 7 € C(G) and f € (1(T'). Let f,, € c.(T') be such that ||f — fu|[1 — 0. Since for all
g € {XT) and all v € O(G)* the estimate || f * v| < | f|l1 [|v| hold, we find

If v — fuxvlpaz@y = I(f = fa) x Vlsae@) < 1(f = fu) * Ve < Ivllc@-Ilf = fallh = 0.
Consequently, as m € C}(Q) for all n, it follows that !ﬁk\u € CX(G). O

We can now finish the proof of the Theorem. Let (un)neny be a sequence of Borel probability
measures on G as in the Claim. As in the proof of Theorem 2] we construct a representation
7w : Cpn(G) — B(H) with a sequence of unit vector &, € H such that ||7(x)§, — eg(x)&,| — O for
all z € Cp,(G) and [ Fdu, = we, omoa(F), for all F € C(G). It follows that the sequence of states
Wy, = wg, o € Cpy(G)* satisfies w, — e weak* and w, o a =, € C}(G) for all n € N. O

6 Crossed product quantum group

This section deals with a matched pair of a discrete group and a compact quantum group that arises
in a crossed product, where the discrete group acts on the compact quantum group via quantum
automorphisms. This section is longer and has four subsections. First, we analyze the quantum
group structure and the representation theory of such crossed products which was initially studied
by Wang in [Wa95b], but unlike Wang we do not rely on free products which allows us to shorten the
proofs. We also obtain some obvious consequences related to amenability and K-amenability and
the computation of the intrinsic group and the spectrum of the full C*-algebra of a crossed product
quantum group. The subsections deal with weak amenability, rapid decay, (relative) property (7')
and (relative) Haagerup property.

Let G be a compact quantum group, I' a discrete group acting on G i.e., & : I' ~ G be an action by
quantum automorphisms. We will denote by the same symbol « the action of I on C),,(G) or C(G).
Let A, = I'qm X Cp(G) be the full crossed product and A =T, x C(G) be the reduced crossed
product. By abuse of notation, we still denote by « the canonical injective map from C,,(G) to A,
and from C(G) to A. We also denote by u,, for v € I, the canonical unitaries viewed in either A,,
or A. This will be clear from the context and cause no confusion.

By the universal property of the full crossed product, we have a unique surjective unital x-homomorphism
A : Ay — A such that A(uy) = uy and Aa(a)) = a(Ag(a)) for all v € I' and for all a € Cp,(G).
Finally, we denote by w € A*, the dual state of hq i.e., w is the unique (faithful) state such that

w(uya(a)) = 0eyha(a) for all a € C(G),y €T.

Again by the universal property of the full crossed product, there exists a unique unital *-homomorphism
Ay 0 Ay = Ap, @ Ay such that Ay, (uy) = uy @ uy and Ay o = (0 ® @) 0 Ag.

The following theorem is due to Wang [Wa95b]. We include a short proof.

Theorem 6.1. G = (A, Ay,) is a compact quantum group and the following holds.

1. The Haar state of G is h = w o A, hence, G is Kac if and only if G is Kac.
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2. For ally € I' and all x € Irr(G), uf = (1 ® uy)(id @ a)(u”) € B(Hz) ® Ay, is an irreducible
representation of G and the set {u5 : v € I';xz € Irr(G)} is a complete set of irreducible

representations of G.

3. One has Cy,(G) = Ay, C(G) = A, Pol(G) = Span{u,a(a) : v € I';a € Pol(G)}, X is the
canonical surjection from Cp,(G) to C(G) and L*>°(G) is the von Neumann algebraic crossed
product.

Proof. (1). Write A = Span{u,«a(a) : v € I',a € Pol(G)}. Since, by definition of A,,, A is dense in
A,, it suffices to show the invariance of h on A and one has

(id @ B) (A ( Z e a(uf;)) = 0y.e001
= h(u7 (ui;)) = (h @id)(Ap(uya(ui;))), v € Tz € Irr(G).

(2). By the definition of A,,, it is obvious that u? is a unitary representation of G for all v € I’
and x € Irr(G). The representations uf, for v € I' and z € Irr(G), are irreducible and pairwise
non-equivalent since

h(x(ur)*x(uf)) = Ma(x(@)u-150(x(y))) = hu-1s0(a-1,(x(@))x(¥))) = or.sha (X (T)x(y))
0

Finally, {u5 : v € T,z € Trr(G)} is a complete set of irreducibles since the linear span of the
coefficients of the u7 is A, which is dense in Cy,(G).

(3). We established in (2) that A = Pol(G). Since, by definition, A,, is the enveloping C*-algebra of
A, we have C,,,(G) = A,,. Since X : A,, — A is surjective and w is faithful on A, we have C'(G) = A.
Moreover, since A is identity on A = Pol(G), it follows that A is the canonical surjection. Finally,
L*>(G) is, by definition, the bicommutant of C(G) = A which is also the von Neumann algebraic
crossed product. O

Remark 6.2. Observe that the counit satisfies eg(uya(a)) = eg(a) for any v € I' and a € Pol(G).
This follows from the uniqueness of the counit with respect to the equation (¢ ® id) o A = id =
(id ®e) o A and also the fact that eg o ay(a) = eg(a), for any v € I and a € Pol(G). Similarly,
Sc(uya(a)) = uy-10(Sa(ay-1(a))). Hence, for any v € ', we have o, 0 Sg = Sg o a,.

Remark 6.3. From Section 2.2] we have a group homomorphism I' — S(Irr(G)), v — a~, where
a(z), for z € Irr(G), is the class of the irreducible representation (id® v, )(u”). Let -z € Irr(G) be
the class of u. Observe that, we have y®@z ®~ ! =q,(z) and v-2 = y®x, by viewing I' C Irr(G)
and Irr(G) C Irr(G) Hence, the fusion rules of G are described as follows:

rrRs-y=rs-a,1(r)Qy = @ rs-t, forallrsel, zyelmr(G).
telrr(G)
tCa,_1(2)8y
Moreover, we have 77 =y~ - ay(Z) for all v € I' and = € Irr(G).
Corollary 6.4. The following hold.

1. G is co-amenable if and only if G is co-amenable and I' is amenable.

2. If G is co-amenable and I is K-amenable, then G is K-amenable.
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Proof. (1). Let G be co-amenable and I" be amenable. Then as C,,(G) = C(G) and since the full
and the reduced crossed products are the same for actions of amenable groups, it follows from the
previous theorem that G is co-amenable. Now, if G,, is co-amenable, its Haar state is faithful on
Ap,. In particular, h o A o @« = hg o A\g must be be faithful on C,,(G) which implies that G is
co-amenable. Since h(uy) = 6,6, v € I', we conclude, from Remark (since the counit ¢ is an
« invariant character on C,,(QG)), that the canonical trace on C*(I') has to be faithful. Hence, I" is
amenable.

(2). Follows from [Cu83l Theorem 2.1 (c)] since C,(G) = C(Q). O

Note that, from the action a : T' ~ C),(G) by quantum automorphisms, we have a natural action,
still denoted «, of I" on x(G) by group automorphisms and homeomorphisms. The set of fixed points
X(G)* = {x € x(G),: xoay = xforall y € I'} is a closed subgroup. Also note that we have a
natural action by group automorphisms, still denoted «, of I' on Int(G).

Proposition 6.5. There are canonical group isomorphisms:
Int(G) ~T'y, x Int(G) and x(G) ~ x(G)* x Sp(I).
The second one is moreover an homeomorphism.

Proof. The proof is the same as the proof of Proposition The dimension of the irreducible
representation (id ® a)(u”)(1 ® u,y) is equal to the dimension of = and such representations, for
x € Irr(G) and v € T', form a complete set of irreducibles of G. Hence we get a bijection

Do xInt(G) = Int(G) : (v,u) = a(u)u, € Crph(G).

Moreover, the relations in the crossed product and the group law in the semi-direct product imply
that it is a group homomorphism.

Let (x,p) € x(G)* x Sp(I'). Since x o ay = x for all v € T, the pair (x,u) gives a covariant
representation in C, hence a unique character p(x, 1) € x(G) such that p(x, p)(uya(a)) = p(v)x(a)
for all v € I', a € C,,(G). It defines a map p : x(G)* x Sp(I') — x(G) which is obviously injective.
A direct computation shows that p is a group homomorphism. Let us show that p is surjective.
Let w € x(G), then x = woa € x(G) and, for all a € Cpn(G), x © ay(a) = w(uya(a)ul) =
w(uy)w(a(a))w(us) = x(a). Hence, x € x(G)* and we have w = p(x, i), where u = (v = w(uy)).
Moreover, as in the proof of Proposition B8] it is easy to see that the map p~! is continuous, hence
p also, by compactness.

O

6.1 Weak amenability

This subsection deals with weak amenability of G constructed in Section Bl We first prove an inter-
mediate technical result to construct finite rank u.c.p. maps from C(G) to itself using compactness
of the action and elements of EOO(@) of finite support. Using this construction, we estimate the
Cowling-Haagerup constant of C'(G) and show that C(G) is weakly amenable when both ' and G
are weakly amenable and when the action is compact. This enables us to compute Cowling-Haagerup
constants in some explicit examples given in Section [ We freely use the notations and definitions

of Section
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Lemma 6.6. Suppose that the action o : T' ~ G is compact. Denote by H < Aut(G) the compact
group obtained by taking the closure of the image of T' in Aut(G). If a € EOO(@) has finite support,
then the linear map ¥ : C(G) — C(G), defined by ¥(z) = [, (h™' o mg o h)(z)dh has finite
dimensional rank and ||| < ||mal|ch, where dh denotes integration with respect to the normalized
Haar measure on H.

Proof. First observe that ¥ is well defined since, for all z € C(G), the map H 3> h + (h=tomg o
h)(z) € C(G) is continuous. Moreover, the linearity of ¥ is obvious. Since a has finite support, the
map m, is of the form my(-) = w1(-)y1 + -+ + wn(-)yn, where w; € C(G)* and y; € Pol(G). Hence,
to show that W has finite rank, it suffices to show that the map ¥y(z) = [;;(h~! o ¢ o h)(z)dh,
z € C(@G), has finite dimensional rank when ¢(-) = w(-)y, with w € C(G)* and y € Pol(G).

In this case, we have Wi(z) = [Lw(h(z))h 1 (y)dh, z € C(G). Write y as a finite sum y =
SN > Nik Uy, where F' = {zq,--- oy} C Irr(G). Since H is compact, the action of H on
Irr(G) has finite orbits. Writing h - x for the action of h € H on z € Irr(G), the set H - F =
{h-x : h € Hz € F} C Irr(Q) is finite and, for all h € H, h™'(y) € F, where F is the fi-
nite dimensional subspace of C(G) generated by the coefficients of the irreducible representations
xr € H - F. Hence, the map h — w(h(z))h~!(y) takes values in F, for all z € C(G). It follows that
Ui(z) = [yw(h(z))h~ (y)dh € F for all z € C(G). Hence, V¥ has finite dimensional rank.

Now we proceed to show that || Ul < ||mgl|e. For n € N, denote by ¥,, the map

V,=ide ¥ : M,(C)® C(G) = M,(C)® C(G).
Observe that W, (X) = [;,(id® (h™' o mg 0 h))(X)dh for all X € M, (C) ® C(G). Hence, for n € N,
one has

[0 (X)) < /H Iid ® (A~ 0 1mq 0 h))(X)|ldh < || X]| /H I(h™" omq o B)llepdh < | X[ [Ima lcb.

It follows that || U]/ < |4l ch- O

Theorem 6.7. We have max(Ax(I'), Ar(C(G))) < Aup(C(G)). Moreover, if the action I' ~ G is
compact, then Ayp(C(G)) < Awp(D)Awp(G).

Proof. The first inequality is obvious by the existence of conditional expectations from C(G) to
Cy(I') and from C(G) to C(G). Let us prove the second inequality. We may and will assume that
I" and G are weakly amenable. Fix € > 0.

~ ~

Let a; € £°°(G) be a sequence of finitely supported elements such that sup||mg,|| < Aep(G) + € and

(2
m,, converges pointwise in norm to identity. Consider the maps W; associated to a; as in Lemma
Observe that the sequence U; converges pointwise in norm to identity. Indeed, for z € C(G),

[Wi(z) — |

H /H (h™Y 0mg, o h)(x) — z)dh]| = | /H (h™ (e, (h(x)) — h(x))dh]
< /H 120, (b)) — h(z) |dh.

Now the right hand side of the above expression is converging to 0 for all x € C'(G) by the dominated
convergence theorem, since ||mg, (h(z)) — h(z)|| —; 0 for all x € C(G) and all h € H, and

I, (b)) = B@)| < (Imalles + Dllall < (An(@) + e+ Vil for all i and all z € C(G).
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By definition, the maps ¥; are I'-equivariant i.e., ¥;0a, = a0 V;. Hence, for all 4, there is a unique
linear extension ¥; : C(G) — C(G) such that ¥;(uya(x)) = uya(¥;(z)) for all z € C(G) and all
v € I'. Moreover, ||W;llcs < [|Willev < Mg, |lcr < Acn(G) + €.

Consider a sequence of finitely supported maps ¢; : I' — C going pointwise to 1 and such that
sup [[my, [ < (Aep(I') +€), and denote by ¢; : C(G) — C(G) the unique linear extension such that

%(uva(x)) = 1 (7)uya(z). Then, we have H{/;chb < Hmwj lleb < Ap(T) + €.

Define the maps ¢; ; = 1;]' oW, : C(G) = C(G). Then for all i,j we have llijlles < (Aep(T) +
€)(Aep(G)+e€). Since @; j(uya(z)) = 9 (v)uya(V;(x)), it is clear that ¢; ; has finite dimensional rank,
and (; ;)i is going pointwise in norm to identity. Since e was arbitrary, the proof is complete. [

6.2 Rapid Decay

In this subsection we study property (RD) for crossed products. We use the notion of property (RD)
developed in [BVZ14] and recall the definition below. Since for a discrete quantum subgroup G < @,
i.e. such that there exists a faithful unital +-homomorphism C,(G) — Cp,(G) which intertwines the
comultiplications, property (RD) for G implies property (RD) for G and, since for a crossed product
G coming from an action I' ~ G of a discrete group I' on a compact quantum group G, both I' and
G are discrete quantum subgroups of G, it follows that property (RD) for G implies property (RD)
for I and G. Hence, we will only concentrate on proving the converse.

For a compact quantum group G and a € Cc(é) we define its Fourier transform as:

Fala) = (hg @ 1)(V( = > dimy(2)(Tr, ® id)((Qr ® u” (ap, @ 1)) € Pol(G),
z€lrr(G)
and its “Sobolev 0-norm” by HaHé’O = () dfmg Tr (Qk(a*a)p, Q).
Let a : I' ~ G be an action by quantum automorphisms and denote by G the crossed product.
Recall that Irr(G) = {y-x : v €I and x € Irr(G)}, where 7 - x is the equivalence class of

uy, = (1®u,)(id @ a)(u”) € B(H,) ® C(G).
Let V.. : Hy.p — H, be the unique unitary such that u?* = (V.7 @ DuZ (V.. ® 1).

Lemma 6.8. For any vy € I' and x € Trr(G), one has Q.. = V., Qz V5 and dimg(y - ) = dimg(z).

Proof. Since V.., is unitary, it suffices to show the first assertion. Recall that Q.. is uniquely de-
termined by the properties that it is invertible, Try.;(Q4.z) = Trfy.x(Q;é) > 0 and that Q... €
Mor(u”*, ule"), where ule® = (id ® SZ)(u”®). It is obvious that Q := V7 ,Q.V,., is invert-
ible and that Tr,,(Q) = Tr,,(Q™1!) > 0. Hence, we will be done once we show that @ €
Mor(u?* ule”). To this end, we first note that we have, by Remark [6.2] for any v € T and
a € Pol(G), S&(uya(a)) = uya(SE(a)). Thus, (id ® SZ)(uf) = (1 ® u,)(id ® a)((id ® Sg)(u")).
It follows that Q, € Mor(u?, (uZ)c.) hence @ € Mor(u?* uzcx) O

Lemma 6.9. Let a € Co(G) and write a = > eSaer Wz, where S C T and T C Irr(G) are finite
subsets. For vy € S, define a, € Cc(@) by ay = Y e VoyaaPya Vo ype. The following holds.

L. Fola) = ¥, s uyalFalar)).
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2. Nlallg o = Xses llayliZo-

Proof. Observe that, since V.., is unitary, Try..(Vy,AV,..B) = Tr,(AV,.,BV,) for all v € T, all
x € Irr(G) and all A € B(H. ) B € B(H,.;). Hence,

Fola) = Y dimg(y-2)(Trye @id)(Qye ® D" (apyo ® 1))

yeS,xeT

= Z dimg (#)(Try.e @ id)((Vy, © 1)(Qe @ 1)(Vy.o @ 1)(V7, © Dui(Vye ® 1)(apy. @ 1))
yES,xeT

= Z dimgy(z)(Tr, ®id)((Qz ® 1)u (V’y zAP~- lBV*ﬂ: ® 1))
yES,xeT

= > wa (Z dimg (2)(Try @ id)((Qr ® 1)u” (Vpapy.o Vi @ 1))) = ual(Falay))
yES xzeT yES

This shows assertion 1. Assertion 2 follows from a similar computation using again Lemma 6.8 O

A function [ : Irr(G) — [0, 00) is called a length function on Irr(G) if [(1) =0, [(Z) = I(z) and that
I(z) <l(y) +1(z) whenever z C y ® z.

Lemma 6.10. Let o : I' ~ G be an action of I' on G by quantum automorphisms and let | be a
length function on Irr(G) which is a-invariant, i.e., l(x) = l(oy(x)) for all v € I' and x € Irr(G).
Let Ip be a length function on T'. Let G be the crossed product. The function ly : Irr(G) — [0, 00),
defined by lo(y - ) =l () + I(z) is a length function on Irr(G).

Proof. We have ly(1) = Ir(e) +1(1) = 0 and, by Remark [6.3]

WTT) = l(v - ay(@) = lr(v7h) + Uy (@) = I (7) + UT) = lo(7 - ).

Again, from Remark[6.3] v-2 Cr-y®s-zif and only if v = rs and # C a,-1(y) ® 2. Hence,

lo(y-xz) = Ir(y) +U=z) <Ip(r) +ir(s) + a1 (y) +1(2)
= Ip(r)+U(y) +ir(s) + 1(z) =lo(r-y) + lo(s - 2).

O

Given a length function [ : Irr(G) — [0,00), consider the element L = > 1) {(z)p, which is
affilated to co(é). Let ¢, denote the spectral projections of L associated to the interval [n,n + 1).
We say that (G,1) has property (RD), if there exists a polynomial P € R[X] such that for every
k€ Nand a € gre.(G), we have || F(a)|lc(q) < P(k)llallg,o. Finally, G is said to have Property (RD)

if there exists a length function ! on Irr(G) such that (G, 1) has property (RD).
We prove property (RD) for the dual of a crossed product in the following Theorem. In case the

action of the group is trivial, i.e., when the crossed product reduces to a tensor product, this result
is proved in [CF14, Lemma 4.5]. For semi-direct products of classical groups, this result is due to

Jolissaint [Jo90].

Theorem 6.11. Let a : I' ~ G be an action by quantum automorphisms. Let I be a a-invariant
length function on Irr(G). If (G,1) has property (RD) and I has property (RD), then (G,ly) has
property (RD), where G is the crossed product and ly is as in Lemma [6.10.
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Proof. Let I be any length function on I' for which (T',ir) has property (RD) and let ly be the
length function on Irr(G) defined by lo(vy - z) = Ir(y) + l(x), for v € T' and = € Irr(G). Let

Ly = ZWEF,mGIrr(G) l0(7 ’ x)p’Y'$ = Z’\/GF,JBEII‘I‘(G) (ZF(V) + l(x))pvx and L = erlrr(G) l(x)pﬂﬂ Finally,
let p, and g, be the spectral projections of respectively Lo and L associated to the interval [n,n+1).
Let a € c.(G) and write a = 3 g 7 @Py-c, Where S C I' and T' C Irr(G) are finite subsets. Now

~

suppose that a € prc.(G). Since pg = Z’YEF,$EITI“(G),/€§1F(’Y)+l($)<k‘+1 P~-z, We must have

Sc{yel :ir(y)<k+1} and T C{zelr(G) : l(z)<k+1}.

It follows that, for all v € S, the element a defined in Lemmal6.9]is in chc(@), where qx = Z?:o qj-

Let P; and P, be polynomials witnessing (RD) respectively for (@,l) and (T',lp). Let, for i=12,
C; € R, and N; € N be such that P;(k) < C;(k + 1)Vi for all k € N. Then, for all b € qrc.(G),

IFaOl < > 1Fata)l <Y Pi)libaleo <Y Cri + 1) bgjlle.o

j<k J<k J<k
< Ci(k+ DM bgsllao = Ca(k + 1) b6 o-

J<k

Similarly, [t * @[l < Co(k + 1)V 4h]l 21y l|@ll 2(ry for all ¢ in £2(T') and all functions ¢ on T
(finitely) supported on words of Ip-length less than equal to k.

Let y be a finite sum y = Y, usa(bs) € Pol(G). We have ||y||? he = s [|bs 1% he and, by Lemma 6.9
and the preceding discussion,

1Fa(@yllsne = | D upsalas(Fala))bs)lons = I D walaiy (Falay)by-10)l5 4,
YES,s YES,t

= DD (Fale)byillang <D D a1y (Fa(ay)by-1llzng
t yeS t yeS
2

< G}k + 1PN S oy llaollby-1illang | = C(k + 12MFD ||« glf2 1,
t vES

where 1, ¢ € £2(T') are defined by ¥(v) = ||a,|lc,0 and ¢(s) = ||bs||2,ne Where 7, s € T. We note that

1612 0y = Ynes a0 = llal and [9]2py = 3, [bel3a, = 913 - But since v is supported
on S i.e., on elements of I' of length less than equal to k, we have

IFe(@)yl3n, < (C1C2)%(k + 1> M2l o 16]7a iy = P(R)llall o llyl3 e

where P(x) = C1Cy(x 4+ 1)N1+N2+2 - Ag y is arbitrary, the proof is complete. O

Remark 6.12. There may not exist an a-invariant length function on Irr(G). However, if ' ~ G
is compact, then the action @ : T' ~ Irr(G) has finite orbits. Hence, for any length function [ on
Irr(G), the length function I, defined by lo(z) = sup,cp l(ay (7)), for z € Trr(G), is a-invariant.

Hence, G has (RD) whenever I' and G have (RD).
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6.3 Property (T)

We characterize relative co-property (T') of the pair (G,G) in a similar way we did characterize
relative co-property (7") for bicrossed product. We study the the property (7') for G.

When 7 : A — B(H) is a unital *-homomorphism from a unital C*-algebra A, we denote by
7 A — B(H) its unique normal extension. Also, we view any state w € A* as a normal state
on A**. Observe that if (H,7, &) is the GNS construction for the state w on A, then (H,7,£) is the
GNS construction for the normal state w on A**.

Let M = C,,,(G)* and py € M be the unique central projection such that poxpg = g (z)p for all
re M.

In the following theorem, we characterize the relative co-property (7') of the pair (G,G) in terms
of the action v of I' on GG. The proof is similar to the proof of Theorem but technically more
involved.

Theorem 6.13. The following are equivalent:

1. The pair (G,G) does not have the relative co-property (T').
2. There exists a sequence (wp)nen of states on Cy,(G) such that

(a) wn(po) =0 for all n € N;
(b) wy, — e weak™;

(¢) llay(wn) —wnl — 0 for ally €T.
Proof. For a representation 7 : Cy,,(G) — B(H), we have e C 7o« if and only if K # {0}, where
K,={(€H : moala) =cg(a) for all a € C,,,(G)}.

Let p = moa : C,,(G) — B(H) and observe that the orthogonal projection onto K is the projection
p(po). Indeed, for all £ € H, a € Cy,(G), we have 7o a(a)p(po)é = plapo)é = ec(a)p(po)€, which
implies that Im(p(pg)) C Kr. Moreover, if £ € K, we have p(a){ = gg(a)¢ for all a € Cp,(G).
Since C,,(Q) is o-weakly dense in M and the representations p and £g are normal, it follows that
the equation p(a)é = £g(a)¢ is valid for all @ € M. Hence, for a = py we get p(po)§ = €a(po)é = &,
which in turn implies that K, C Im(p(po))-

(1) = (2). Suppose that the pair (G,G) does not have the relative co-property (7'). Let
7 : Cn(G) — B(H) be a representation such that eg < 7 and K = {0}. Denote by we , € Cy,(G)*
the functional given by we »(a) = (7o a(a)&, n). Hence, we ,(po) = (p(po)&,n) =0 for all £,n € H.

Since e < 7, let (§,)nen be a sequence of unit vectors in H such that ||7(z)&, —eg(z)&,|| — 0 for all
x € Cy(G). Define wy, = wg, ¢,. Then, we have wy,(pg) = 0 for all n € N. For all a € C,,(G) we have,
lwn(a) —eq(a)] = [(T(aa))é, —ea(a)én, &n)| < ||m(ala))én —ec(ala))éy|| — 0. Moreover, exactly as
in the proof of Theorem .2}, we find ||ay (wp) —wy| < 2|7 (uy)én —&nll = ||7T(uy)én — ec(uqy)énll — 0.
(2) = (1). For a state w € Cpp,(G)* = M, we denote by s(w) € M its support. Recall that
s(w) € M is the unique projection in M such that N, = M(1 — s(w)), where N, is the o-weakly
closed left ideal defined by N, = {x € M : w(z*x) = 0} and note that w is faithful on s(w)Ms(w).
In the sequel, we still denote by «, the unique *-isomorphism of M which extends ., € Aut(C,,(G)).
We first prove the following claim.
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Claim. If (2) holds, then there exists a sequence (wp)nen of states on Cp,(G) satifying (a), (b) and
(¢) and such that oy (s(wn)) = s(wy) for ally € T', n € N.

Proof of the claim. Denote by ¢(I'); 4+ the set of positive ¢! functions f on I' with [|f]j; = 1
For a state w € Cp,(G)* = M, and f € ¢}(T);1 4, define the state f xw € Cp(G)* by the convex
combination

[rw= Zf(')’)av(w)

yel’

Observe that, for all v € T’ we have 0, x w = a,(w) and o (f * w) = f, * w, where f, € (}(I'); 4+
is defined by f,(r) = f(y~'r), r € T. Moreover, if f € ¢}(I'); 4 is such that f(y) > 0 for all
v €T, then since (f xw)(z*z) = >_ f(y)w(ay-1(z*2)), we have that (f *w)(z*z) = 0 if and only if
w(ay-1(r*x)) = 0 for all v € T'. It follows that

Nfsw = Meray(No) = M (Ayer(1 — ay(s(w)))) -

Hence, s(f*w) = 1—Ayer(1—ay(s(w))) = Vyeray(s(w)). Hence, we have o, (s(f*w)) = s(f*w) for
all v € I'. Finally, since e o ay = e, we deduce that, for all v € I', o (po) is a central projection of

M satistying ac (po) = ay(a,-1(a)po) = eal(a,-1(a))ay (po) = ea(a)ay(po), v € I'. By uniqueness
of such a projection, we find av(po) po for all v € I'. Hence, for all f € ¢1(I')y 4,

(f *w)(Po) Zf ~1(po)) = Y F(v)w(po) = w(po)-
ol

Let (wn)nen be a sequence of states on Gy, (G) satisfying (a), (b) and (). We have, for all f € ¢1(T);
with finite support

1F % wn = wnll D FO6, % wn — wall = Zf My (wn) = wall = 0. (6.1)
0l

Since such functions f are dense in £}(T"); + (in the ¢*-norm), it follows that || f * wy, — wy|| — 0 for
all f e (D),

Let € € ¢1(T")1 + be any function such that £ > 0 and define v, = {xw,,. By the preceding discussion,
we know that o (s(vy)) = s(vp) for all v € T" and v, (po) = wn(po) = 0 for all n € N. Moreover, by
Equation (6.10), we have |ay (V) — vn|| = |y ¥ wn — E xwyl| < [[&y * wn — wyl| + [|wn — & *wy|| = 0 for
all v € I'. Since w, — £¢ in the weak™ topology and e o oy = ¢, we have, |wy(ay(a)) —eq(a)] = 0
for all a € C,,,(G) and all v € T'. Hence, the Lebesgue dominated convergence theorem implies that,
for all a € C\,(G),

vn(a) —eala !—Zf ~1(a)) — ecla <Zf Ywn (-1 (a)) — e (a))| — 0.

It follows that v, — e in the weak* topology and this completes the proof of the claim. O

We can now finish the proof of the Theorem. Let (w,)nen be a sequence of states on C,,(G) as
in the Claim. Let M, = s(w,)Ms(w,) and, since w, is faithful on M,,, view M, C B(H,) where
(Hy, &) is the GNS construction of the fan.s. w, on M,,. Define p, : C,,(G) C M — M, C B(H,,)
by a — s(wy)as(wy). By definition, the unique normal extension of p,, is the map p, : M — M,
defined by  — s(wp)zs(wy). Since ay(s(wyp)) = s(wp), the action « restricts to an action, still
denoted by a of I" on M,,. Since M,, C B(H,) is in standard form, we may consider the standard
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implementation (see [TakII Definition 1.6]) of the action of I on M,, to get a unitary representation
uy © I = U(H,) such that o, (x) = up,(v)zu,(y1) for all z € M, and v € T

By the universal property of A,,, for n € N there exists a unique unital *-homomorphism

T @ Apm — B(Hy,) such that m,(uy) =up(y) and 7w, 0a = p,.

Since wy,(po) = 0, we have s(wy,)pos(wy,) = 0. Hence, p,(pg) = 0 and K, = {0} ¥n € N. It follows
that, if we define H = &, H,, and 7 = &,m, : Cp(G) — B(H), then K, = {0} as well. Hence,
it suffices to show that eg < 7. Since &, is in the self-dual cone of w,, and u,(vy) is the standard
implementation of c., it follows from [Ta00, Theorem 1.14] that w, ()&, is also in the self-dual cone of
wy, for all n € N. Hence, we may apply [Ta00, Theorem 1.2] to get ||u, (7)&n —&nl|? < 9w ()€ —Weo
for all n € N, v € T'. Observe that w,, (1), (z) = ay(wy)(7) and we, (z) = wy(z) for all z € M.
Hence,

lun(¥)én = 6 (uy)Enll = ltn(1)én — &nll < llay (Wn) = wallZ = 0.

Since wy, — € in the weak™ topology, it follows that for all z = uya(a) € Cy,(G), we have

[7(2)én —ea(@)énll = lIm(uy)m(a(a))én — ea(a)énl
< lw(uy)(m(e@))én — ec(@)én)ll + lea(a)] |7 (uy)&n — &nll
< Im(ef@))én — ec(a)énll + lea ()] [[un(V)€n = &nll = 0.

By linearity and the triangle inequality, we have ||7(x)&, —eg ()&, | — 0 for all € A. We conclude
the proof using the density of A in C,,(G). O

We now turn to Property (T).

Theorem 6.14. The following holds:

1. If@ has property (T), then T' has property T and x(G)® is finite.
2. If@ has property (T') and « is compact then G and T have property (T).

3. If@ has property (T) and T' has property (T), then G has property (T).

Proof. (1). This is the same proof as of assertion 1 of Theorem 3] First, we use the counit on Cy,(G)
and the universal property of C,,(G) to construct a surjective x-homomorphism C,,(G) — C*(I)
which intertwines the comultiplications. We then use [Fil0), Proposition 6] to conclude that I" has
property (7). To end the proof of (1), we show that x(G)“ is discrete. Let x, € x(G)* be any
sequence such that y,, — g weak® in C,,(G)*. We define a unital x-homomorphism yx : Cy,(G) —
B(I2(N)) by (x(a)é)(n) = xn(a)é(n) for all a € Cy,(G) and € € 12(N). Since x,, € Sp(Cyn(G)) we
have x o o, = x for all v € I'. Hence, considering the trivial representation of I' on 12(N) we obtain
a covariant representation so there exists a unique unital *-homomorphism 7 : C,,(G) — B(I*(N))
such that m(uya(a)) = x(a) for all a € C,,(G) and all v € T'. Since x,, — g weak™ the sequence of
unit vectors defined by &, = 4, € [?(N) is a sequence of almost invariant vectors. By property (T)
we have eg C 7 which easily implies that, for some n € N, x,, = eg.

(2) We repeat again the proof of assertion 2 of Theorem By (1), it suffices to show that
G has Property (T'). Let p : Cp(G) — B(H) with ¢ < 7 and define the compact group K =
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a(T") € Aut(G) with its Haar probability v. Note that any z € Aut(G), in particular any = € K,
satisfies eq o x = eg. Define the covariant representation (pa,v), po : Cm(G) — B(L*(K, H))
and v : T — U(L*(K,H)) by (pa(a)§)(z) = p(z~'(a))é(z) and (v,€)(z) = &(a,-1x). By the
universal property of C,,,(G) we get a unital *-homomorphism 7 : C,,(G) — B(L?(K, H)) such that
m(uya(a)) = vypa(a). Let &, € H be a sequence of unit vectors such that |p(a)é, — eg(a)én| — 0
for all a € C,(G) and define the vectors n,(x) = &, for all z € K, n € N. Since v is a probability,
N is a unit vector in L2(K, H) for all n € N. Moreover, for all a € C,,,(G) and vy € T,

17 (uy(a))nn — e (uya(a))éal* = /K lp(z ™ (e (a)))én — e (a)énlPdv(a) — 0,
where the convergence follows from the dominated convergence Theorem, since

lp(a™ (ay(a)))én — ec(@)énll = llp(z™" (ay(a)))én — ec(z ™ (e (a)))nll = O,

for all @ € C,(G), © € K and v € T and the domination hypothesis is obvious since v is a
probability. Hence, eg < 7 and it follows from Property (7") that there exists a non-zero w-invariant
vector ¢ € L3(G,H). In particular, for all a € C,,(G), m(a(a)é = eg(a)é. Hence, v(Y) > 0
where Y = {z € K : ||{(x)| > 0} and, for all a € C),(G), v(X,) = 0 where X, = {z € K :
p(z71(a))é(z) # eg(a)é(x)}. As in the proof of assertion 2 of Theorem B3, we deduce from the
separability of C,,(G) that there exists * € K for which &(z) # 0 and p(x~1(a))é(z) = eq(a)é(x)
for all a € C,(G). Tt follows that the vector n := &(x) € H is a non-zero p-invariant vector.

(3). We use the notations introduced in the proof of Theorem Let 7 : C(G) — B(H)
be a representation and consider the representation p = moa : C,(G) — B(H) and the unitary
representation v, = m(uy) of I'on H. Let K, = {¢£ € H : p(a) = eg(a) for all a € Cp,(G)} and
recall that the orthogonal projection onto K. is P = p(pg) and that ay(pyg) = po for all v € T".
Hence, v, Pv,-1 = p(a,(po)) = P for all v € T, and it follows that K is an invariant subspace of

v + vy. Suppose that eg < 7. By property (T) of @, the space K is non-zero and we can argue
exactly as in the proof of Theorem to conclude the result. O

Remark 6.15. It follows from the proof of the first assertion of the previous theorem that C*(I") is
a compact quantum subgroup of the compact quantum group G. Now, an irreducible representation
of G of the form uf (with dimension say m), when restricted to the subgroup C*(I'), decomposes
as a direct sum of m copies of 4. It now follows from [Pal3l Theorem 6.3] that C*(I") is a central
subgroup (see [Pal3l Definition 6.1]). Furthermore, I induces an action on the chain group ¢(G)
[Pal3l, Definition 7.4] of G and it follows from Remark that the chain group (and hence the

center, see [Pal3l Section 7]) of G is the semidirect product group ¢(G) x T

Remark 6.16. (Kazhdan Pair for G) Let (E1,d1) be a Kazhdan pair for G and (Es,d2) be a
Kazhdan Pair for I'. Then it is not hard to show that E = (E; U Ey) C Irr(G) and § = min(dq, d2)
is a Kazhdan pair for G. Indeed, let 7 : C},,(G) — B(H) be a *-representation having a (F,0d)-
invariant (unit) vector £. Then restricting to the subalgebra C),(G) (and denoting the corresponding
representation by 7mg), we get an (Fj,01) invariant vector and hence, there is an invariant vector
n € H. We may assume || —n|| < 1 (this follows from a quantum group version of Proposition
1.1.9 of [BDVO0S§|, which can be proved in an exactly similar fashion). Now, by restricting = to T,
denoting the corresponding representation by u, we have that the closed linear u-invariant subspace
generated by u,n,v € I' (which we denote by H,), is a subspace of the space of mg-invariant vectors
(as uymg(a)u;! = mg(ay(a))). Let Py, denote the orthogonal projection onto H,. Now, the vector
Py, &, which is non-zero, as [|§ — || < 1, is an (Fs, d2)-invariant vector for the representation u,
restricted to H,. So, there exists an u-invariant vector nyg € H,. This vector is, of course then,
m-invariant and hence, we are done.
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6.4 Haagerup property

In this section, we study the relative co-Haagerup property of the pair (G,G) given by a crossed
product and provide a characterization analogous to the bicrossed product case. We also extend
a result of Jolissaint on Haagerup property for finite von Neumann algebra crossed product to a
non-finite setting. Thus, we can decide whether L°°(G) has the Haagerup property. Finally, we
provide sufficient conditions for G to posses the Haagerup property.

For the relative Haagerup property of crossed product, we obtain the following result similar to
Theorem 5.3l The proof is even simpler in the crossed product case, since « is an action by quantum
automorphisms.

Theorem 6.17. The following are equivalent:

1. The pair (G,G) has the relative co-Haagerup property.
2. There exists a sequence (wp)nen of states on Cy,(G) such that

(a) &y, € co(@) for all n € N;
(b) wp, — eq weak™;
(c) llay(wn) —wnl — 0 for ally €T.

Proof. (1) = (2). The argument is exactly the same as the proof of (1) = (2) of Theorem
(2) = (1). We first prove the following claim.

Claim. If (2) holds, then there exists a sequence (Vn)nen of states on Cp,(G) satifying (a), (b) and
(¢) and such that oy (s(vn)) = s(vp) for ally € T', n € N.

Proof of the claim. By the proof of the claim in Theorem [G.13], it suffices to check that, whenever v

is a state on Cp,(G) and f € 1(T'), we have v € ¢o(G) = f x v € ¢o(G).

We first show that 7 € ¢(G) = m € ¢o(G). Note that we still denote by a the action of T’ on

Irr(G) (see Remark [63]). Now let v be a state on C),(G) such that ¥ € ¢y(G) and let € > 0. By
assumptions, the set I’ = {z € Irr(G) : |(id ® v)(u®)|5m,) = €} is finite. Hence, the set

{z €Trr(G) : [[([d@w) (™ D)||gu,) > e} = {2 € rr(G) : a,-1(z) € F} = ay(F)

is also finite. Since m = <(id ® V)(uafl(x))) ()’ it follows that m € co(G).

xelrr
From this we can now conclude that for all f € ¢1(T), we have ¥ € ¢o(G) = m € ¢o(G) as in the
proof of the Claim in Theorem O

We can now finish the proof of the Theorem. Let (v, )nen be a sequence of states on C,(G)* as
in the Claim. As in the proof of Theorem [6.13] we construct a representation 7 : C,(G) — B(H)
with a sequence of unit vectors &, € H such that ||7(x)§, — eg(z)&y| — 0 for all x € C,,(G) and
Up = wg, omoa. It follows that the sequence of states wy, = wg, o™ € Cy,(G)*, satisfies w, — ¢ in
the weak* topology and @, o = U, € co(@) for all n € N. O

We now turn to the Haagerup property. We will need the following result which is of independent
interest. This is the non-tracial version of [JoOT, Corollary 3.4] and the proof is similar. We include
a proof for the convenience of the reader. We refer to [CS13| [OT13] for the Haagerup property for
arbitrary von Neumann algebras.
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Proposition 6.18. Let (M,v) be a von Neumann algebra with a f.n.s. v and let o« : T ~ M be an
action which leaves v invariant. If a is compact, I' and M have the Haagerup property, then I' x M
has the Haagerup property.

Proof. Let H < Aut(M) be the closure of the image of " in Aut(M). By assumption H is compact.
Let L2(M) denote the GNS space of v.

We first make an easy observation. Whenever ¢ : M — M is a ucp, normal and v-preserving map,
then for all r €M, the map H > h+ h™l oy oh(x) € M is o-weakly continuous. Hence, we can
define ¥(z) = [, h I ~Lowoh(z)dh, where dh is the normalized Haar measure on H. By construction,
the map \I’ M — M is ucp, v-preserving, I'-equivariant and normal. Moreover, for all ¢ € L2(M),
the map H > h +— Tj-1 0Ty o Tp§ € L2(M), where T, and Ty are respectively the L2-extensions
of h and v, is norm continuous. Consequently, [;; Tj,-1 o Ty o Tpdh € B(L*(M)) and by definition
of U we have that the L%-extension of ¥ is given by Ty = [, Tj-1 0 T, o Tpdh € B(L*(M)). Let B
denote the unit ball of L?(M). Consider the set A = {h — Tj-10TyoTp¢ : £ € B} C C(H,B). It
is easy to check that A is equicontinuous and, since Ty, is compact, the set A(h) = {f(h) : f € A}
is precompact for all h € H. By Ascoli’s Theorem, A is precompact in C'(H,B). Since the map
H x C(H,B) — B, defined by (h, f) ~ f(h) is continuous, the image of H x A is compact and
contains By, = {Tj-1 0Ty o Ty(B),h € H}. Since the image of B under Ty is contained in the closed
convex hull of B_w, it follows that Ty is compact.

We use the standard notations N =T'x M = {uyz : v € T,z € M} C B({*(I')®L%*(M)). We write
v for the dual state of v on N. Let 1; be a sequence of normal, ucp, v-preserving and L?-compact
maps on M which converge pointwise in || - ||2,, to identity. Consider the Sequence of v-preserving,
ucp, normal, L2-compact and I'-equivariant maps ¥; given by W, ( f I Lo 4p o h(x)dh for all
x € M. Note that (;); is still converging pointwise in || - |2, to 1dent1ty since, by the dominated
convergence Theorem we have,

mew—xmyzuﬁglwwmw»—hw»m

By the I'-equivariance, we can consider the normal ucp r-preserving maps on N given by /\I\f;(uwx) =

Uﬁlﬂww@D—MwhmheO

uyW;(z). Observe that the sequence (W) is still converging pointwise in ||-l2,7 to identity and the
L2-extension of U; is given by Ty = 1® Ty, € B({*(I') @ L*(M)).

Let ¢; be a sequence of positive definite and ¢y functions on I' converging to 1 pointwise and
consider the normal ucp v-preserving maps on N given by ¢;(uyx) = ¢;(y)uyx. Observe that the

sequence (¢;) is converging pointwise in || - |25 to identity and the L2-extension of ¢; is given by
T; =Ty, Q1€ B(3(T") ® L2(M)), where Ty, (0,) = ¢i(v)d, is a compact operator on ¢*(T).

Hence, if we define the sequence of normal, ucp, v-preserving maps on N by ¢; j = gzz ) {Ivfi, we have
@i j(uyx) = ¢ (7)uy¥i(x); the sequence (g; ;) is converging pointwise in || - ||o 7 to identity and the
L%-extension of ¢; j is given by Ty, ; = Ty, ® Ty, € B(¢*(I) ® L*(M)) is compact. O

Corollary 6.19. The following holds.

1. If L>°(G) has the Haagerup property, then L>°(G) and T' both have the Haagerup property.

2. If L*°(G) has the Haagerup property, a : T' ~ L°(G) is compact and T' has the Haagerup
property, then L>°(G) has the Haagerup property. .
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Proof. (1). Follows from the fact that there exists normal, faithful, Haar-state preserving conditional
expectations from L(G) to L(I') and to L*°(G). The former is given by u,a +— hg(a)u, and the
latter is given by u,a +— 04 ca, a € L°(G) and v € T

(2). It is an immediate consequence of Proposition [6.18] O

Theorem 6.20. Suppose G has the Haagerup property and I' has the Haagerup property, and further
suppose that the action of I' on G is compact. Then G has the Haagerup property.

Proof. Since G has the Haagerup property, this assures the existence of states (tin)nen on Cip(Q)
such that (1) i € co(@) for all n € N and (2) pn — e¢ weak*. Our first task is to construct a
sequence of a-invariant states on C,, (G) satisfying (1) and (2) above. This is similar to our arguments
before (while dealing with property (T) and Haagerup property). Since the action of I' is compact,
the closure of I" in Aut(G) is compact, and we denote this subgroup by H. Letting dh denote
the normalized Haar measure on H, we define states v, € Cyn(G)* by vy(a) = [} pn(h™*(a))dh,
for all a € C),(G). It is easily seen that v, is invariant under the action of I' for each n. Now,
since the action is compact, all orbits of the induced action on Irr(G) are finite. We need this to
show that p, satisfy (1) above. So, let € > 0. As pu, satisfied (1), the set L = {z € Irr(G) :
|(id ® ) (u®)]| > §} is finite and the set K = H - L C Irr(G) is also finite, as all the orbits are
finite. For h € H C Aut(G) and « € Irr(G) write V3, , € B(H,) to be the unique unitary such that
([deh ) (u?) = (Vi @ 1)(id@u" " @)(V,,@1). If 2 ¢ K then, for all h € H, h™!(x) ¢ L. Hence,

1(id @ pp) (u" " @) < S for all h € H and it follows that

IGd @ v) ()| = H / (id®un)((id®h1)(um))th§ [ W52 ) )i

< /H 1(Gd @ pn) (" @)||dh < g <e forallz ¢ K.

Hence, {z € Irr(G) : [|(id ® v,)(u”)|| > €} C K is a finite set and (1) holds for v,. To show that
(2) holds, we first note that given any a € C,,(G), one has p,(h~(a)) = eq(h~(a)) = eg(a) for all
h € H (since H acts on G by quantum automorphisms). By the dominated convergence Theorem,
we see that (2) holds for v,. Now, since I" has the Haagerup property, we can construct states 7,
on C*(I') satisfying (1) and (2) above. And since the states p, on Cp,(G) are a-invariant, we can
construct the crossed product states ¢,, = 7, X 1, on Cy,, (G) (see [Wa95bh, Proposition and Definition
3.4] and also [BOOS, Exercise 4.1.4] for the case of c.c.p. maps). The straightforward computations
that need to be done to see that the sequence of states (¢, )nen satisfy (1) and (2) above, are left to
the reader. This then shows that G has the Haagerup property. O

7 Examples

For coherent reading, we have dedicated this section only to examples arising from both matched
pairs and crossed products. It is to be noted that it is not hard to come up with examples of compact
matched pairs of groups for which only one of the actions « or 3 is non-trivial which means that the
other is an action by group homomorphisms. However, it is harder to come up with examples for
which both « and § are non-trivial. We called such matched pairs non-trivial. Starting out with a
compact matched pair for which either a or 3 is trivial, we describe a process to deform the original
matched pair by what we call a crossed homomorphism in such a way that we manufacture a new
compact matched pair for which both actions are non-trivial. For pedagogical reasons, we have made
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two subsections dealing with matched pairs: the first one (Section 7.1.1), in which we describe how
to perturb 8 when it is trivial, followed by Section 7.1.2 in which we construe how to perturb a when
it is trivial. It has to be noted that it is indeed possible to formalize our process of deformation in
a unified way but, since such a formulation would increase the technicalities and would not produce
any new explicit examples, we have chosen to separate the presentation in the two basic deformations
described above. Our deformations are chosen carefully so as to ensure that the geometric group
theoretic properties (that we have studied in detail throughout the paper) passes from the initial
bicrossed product to the one obtained after the deformation very naturally. Such deformations also
allow us to keep track of the invariants x(-) and Int(-) of the associated compact quantum groups.
These explicit constructions allow us to exhibit: (i) a pair of non-isomorphic non-trivial compact
bicrossed products each of which has relative property (7') but the dual does not have property (7'),
(74) an infinite family of pairwise non-isomorphic non-trivial compact bicrossed products whose dual
are non-amenable with the Haagerup property, (i7i) an infinite family of pairwise non-isomorphic
non-trivial compact bicrossed products whose duals have property (7).

We also provide non-trivial examples of crossed products of a discrete group on a non-trivial compact
quantum group in Section 7.2. The action is coming from the conjugation action of a countable
subgroup of x(G) on the compact quantum group G. In this situation we completely understand
weak amenability, (RD), Haagerup property and property (7') in terms of G and I" and we also
discuss explicit examples involving the free orthogonal and free unitary quantum groups.

7.1 Examples of bicrossed products

In this section, we focus on deformation of actions in matched pairs when one of them is trivial. The
analysis involved helps to construct non-trivial examples.

7.1.1 From matched pairs with trivial g

Let a be any action of a discrete group I" on a compact group G by group homomorphisms. Taking 3
to be the trivial action of G on I', the relations in Equation (B.]) are satisfied and we get a compact
matched pair. It is possible to upgrade this example in order to obtain a new compact matched pair
(T, é) for which the associated actions « and /8 are both non-trivial.

Indeed, given an action « of the discrete group I' on the compact group G and a continuous map
x : G = I', we define a continuous map

GxG— G by (g,h) = gxh, where gxh=ga,g(h) forallghegG.

Observe that e x g = gxe = g for all g € G if and only if x(e) € Ker(a). Moreover, it is easy to
check that the map (g, h) = g * h is associative if and only if x(gh) " x(g)x(ayg-1(h)) € Ker(c)
for all g,h € G. Finally, under the preceding hypothesis, the map (g,h) — ¢ * h turns G into a
compact group since the inverse of g € GG exists and is given by Oéx(g)—l(gil) and this inversion is a
continuous map from G to itself.

Hence it is natural to define a crossed homomorphism as a continuous map x : G — ' such that
x(e) = e and x(gh) = x(g)x(ay(g)-1(h)) for all g,h € G. Observe that the continuity of x, the
compactness of G and the discreteness of I' all together imply that the image of x is finite. By the
preceding discussion, any crossed homomorphism x gives rise to a new compact group structure on
G. We denote this compact group by G,. Observe that, since the Haar measure on G is invariant
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under «, so the Haar measure on G, is equal to the Haar measure on G. Hence we have Gy, = G as
probability spaces.

The group G, can also be defined as the graph of x in the semi-direct product H = I'y, X GG. Indeed,
it is easy to check that the graph Gr(x) = {(x(9),9) : g € G} of a continuous map x : G — T,
which is a closed subset of H, is a subgroup of H if and only if x is a crossed homomorphism.
Moreover, the map Gy, — Gr(x), g — (x(9),9), g € G, is an isomorphism of compact groups.

Since G, = G as topological spaces, « still defines an action of I' on the compact space G, by
homeomorphisms. However, o may not be an action by group homomorphisms anymore. Actually,
for v € T, @, is a group homomorphism of Gy, if and only if x(g)"'v x(a,(g))y € Ker(a) for all
g € G which happens for example if x satisfies x o o, = yx(-)y 1.

We define a continuous right action of G, on the discrete space I' by B,(7) = x(a(g9)) " tvx(g) for
all y € T',g € G. Tt is an easy exercise to check that o and 3 satisfy the relations in Equation (B.1),
hence, by Proposition we get a new compact matched pair (I',Gy) with possibly non-trivial
actions a and (. To see that the pair (I, G, ) is matched without using Proposition B3] it suffices
to view I and G, as closed subgroups of H = I', X G via the identification explained before and
check that I'Gy, = H and I' NG, = {e}. It is easy to check that the actions a and § obtained by
this explicit matching are the ones we did define.

Let G, denote the bicrossed product associated with the matched pair (I, Gy).

Proposition 7.1. If the action o : I' ~ Irr(G) has all orbits finite and the group T' has the Haagrup
property, then G, has the Haagerup property for all crossed homomorphisms x : G — T'.

Proof. Recall that if « : I' ~ G is an action by compact group automorphisms, then the action
a : I' ~ L*°(G) is compact if and only if the image of " in Aut(G) is precompact which in turn is
equivalent to the associated action of I' on Irr(G) to have all orbits finite. Now let x : G — T be
a crossed homomorphism. Since G, = G as compact spaces and as probability spaces, the action
a : I' ~ L>®(G) is compact if and only if the action I' ~ L*>(G,) is compact and the former is
equivalent to the action I' ~ Irr(G) to have all orbits finite. Hence, the proof follows from assertion
4 of Corollary B.1 O

Observe that a continuous group homomorphism y : G — I' is a crossed homomorphism if and only
if x oy = x for all v € Im(x).

Now we give a systematic way to construct explicit non-trivial examples of the situation considered
in the first part of this section. So, consider a non-trivial action « of a countable discrete group I" on a
compact group G by group homomorphisms and let A < T be a finite subgroup. Define the action a®
of T'on G* = Ax G by 0/7\(7“, g) = (r,4(g)) and the a-invariant group homomorphism y : G* — T
by x(r,g) =r,r € A,g € G,y € T'. Thus, we get a compact matched pair (T, GQ) where GQ =AxG
as a compact space and the group law is given by (r,g) - (s,h) = (7, g)y(r,g) (s, h) = (75, ga,(h)),
r,s € A and g,h € G. Hence, GQ = A, X GG as a compact group and the action 5 of GQ on I'is
given by B, (7) = r~lyr,r € A,g € G,y € I'. Hence, 8 is non-trivial if and only if A is not in the
center of I'.

One has (GQ)O{ = A x G® and, since the action (8 of (GQ)Q on I' is by inner automorphisms, the
associated action on Sp(I") is trivial. Hence, if we denote by G, the associated bicrossed product,
then Proposition B.8 implies that x(Ga) ~ A x G* x Sp(I'). We claim that there is a canonical
group isomorphism 7 : Sp(GQ) — Sp(A) x Spp(G), where Spy(G) = {w € Sp(G) : woa, =
w for all » € A} is a subgroup of Sp(G). Indeed, denoting by (g : G — GQ, g — (1,9) and
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a2 A — GQ, r +— (r,1) the two canonical injective (and continuous) group homomorphisms, we

may define m(w) = (wop,w o). Using the relations in the semi-direct product and the fact that
w is invariant on conjugacy classes, we see that w ot € Sp,(G). Since GQ is generated by ¢z (A)
and (g (G), so 7 is injective. The surjectivity of 7 follows from the universal property of semi-direct
products.

Observe that T¥ = Cp(A) is the centralizer of A in T. Since, a,(Spy(G)) = Sp,(G) for every
v € Cr(A), so a induces a right action of Cp(A) on Sp,(G) and we have, by Proposition B.8]
Int(Gp) ~ Sp(A) X (Spa(G) xq Cr(A)).

We will write G = Gyy3. We have thus proved the first assertion of the following theorem.

Theorem 7.2. Let A < T be any finite subgroup. Then the following holds.

1. X(Gp) 2 A x G x Sp(I") and Int(Gp) =~ Sp(A) x (Spa(G) xq Cr(A)).
2. The following conditions are equivalent.

e (G,G) has the relative property (T').
o (GQ,GA) has the relative property (T').

3. The following conditions are equivalent.

e (G,G) has the relative Haagerup property.
° (GQ,GA) has the relative Haagerup property.

4. If the action T' ~ Irr(G) has all orbits finite and T has the Haagerup property, then @A has
the Haagerup property.

5. If the action T’ m}rr(G) has all orbits finite and I' is weakly amenable, then @A s weakly
amenable and Aap(Gp) < Agp(T).

Proof. (2). () Suppose that the pair (GQ,GA) does not have the relative property (7'). Let (uy)
be a sequence of Borel probability measures on A x G satisfying the conditions of assertion 2 of
Theorem Since {e} x G is open and closed in A x G, we have 1{,}x¢ € C(A x G), and since
fin = O(c,e) in the weak™ topology we deduce that ju,({e} x G) — 1. Hence, we may and will assume
that u,({e} x G) # 0 for all n € N. Define a sequence (1) of Borel probability measures on G by
vn(A) = %, where A C G is Borel. Then v,({e}) = u,({(e,e)}) = 0 for all n € N and it is
easy to check that, for all F' € C(G), 1;y®F € C(AXG) and [, Fdv, = m Jase Ly @ Fdpin.
It follows from this formula and the fact that ju, — d( ) in the weak™ topology that we also have
Vp — 0. in the weak™ topology. Finally, the previous formula also implies that, for all F' € C(G),

1
(V) (F') — vp(F ziaj\pnle@)F—,unle@F
|y () (F) = v (F)] un({e}xG)|”( J(Ley © F) = pin(lyey @ F)|
e @ FIL -y £ A
—— a2 () — pnl] € — a2 (11n) — ]|
e} G147 ) =l < gy ) =l
M) —
Hence, [jovy(vn) — vnl| < % — 0 and thus (G, G) does not have the relative property (7).
(1) Now suppose that the pair (G,G) does not have the relative property (7). Let (u,) be a
sequence of Borel probability measures on G satisfying the conditions of assertion 2 of Theorem
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For each n define the probability measure yn on GA = Ay X G by vy = 0 ® . We have
vn({e,e}) = un({e}) = 0 and [, Fdv, = [, F(e,g) dun( ) for all F € C(G%). Hence v, — &, in
X

the weak* topology. Moreover, since for all F € C' (G;\), we have

|O/7\(Vn)(F) —w(F)| = '/ F(e O"y 9))dpn (g )_/ F(e, g)dpun| = |av(/‘n)(Fe) — pn(Fe)|
[Fell [looy (pn) = pinll < ||| [ty (pn) = pinl,

where F, = Fl(e,-) € C(G), we have Haf\/(l/n) — Vp|| < |lay(tn) — pen|| — 0.

IN

(3). By Theorem and the proof of (2), it suffices to prove the following claim.

Claim. Let o : A ~ G be an action of a finite group A on a compact group G by group automor-
phisms and define the compact group H = Ao X G. The following holds.

(a) Let u be a Borel probability measure on G and define the Borel probability measure v on H by
v==0.®@u. If i e CHG) thenv € C}(H).

(b) Let p be a Borel probability on H such that u({e} x G) # 0 and define the Borel probability v

on G by v(A) = BUEE for all A € B(G). If ji € C}(H) then D € C(G).

Proof of the claim. Let \¢ and M denote the left regular representations of G and H respectively.
For F € C(G) (resp. F € C(H)), write A\9(F) (resp. A (F)) the convolution operator by F on
L%(G, ug) (resp. L2(H, jupr)), where g (vesp. jupr), is the Haar probability on G (resp. H). Observe
that ug = m ® ug, where m is the normalized counting measure on A.

(a). Recall that, for all F € C(H), [, Fdv = [, F(e,g)du(g). Moreover, using the definition of the

group law in H, we find that )\g g = 10® )\G € B(lQ(A) ® L2(@)), for all g € G. Tt follows that

P= [ M dnto) = [ (193§)dule) =10 7 € MG () € BEA) 9 12(G),

Note that for all F € C(G), 1¢y ® F € C(H), since A is finite. We claim that A (1) ® F) =
|A‘(1®)\G( )). Indeed,

M1, ©F) = /H e F(ONT  dpirg(r,g) = /H 510 F(9)(1 © AS)dpura (1. g)

1
_ /<|A|25MF ®A§;‘)> duc(g) = |A|(1®AG( )-

reA

Suppose that 7i € C#(G) and let F,, € C(G) be a sequence such that ||i — A\(F,)|| — 0. Hence,
1® \9(F,) — ». Since 1 @ \9(F,) = AN (1, ® F,) € CF(H) Vn € N, we have U € Cj (H).

(b). Recall that, for all F € C(G), 1{, ® F € C(Ax G) = C(H) and [, Fdv = eaEze] }><G foG L{ey ®
Fdyu. Using the definition of the group law in H, an easy Computatlon shows that for all r € A,
¢ € L2(Q), )\(Ii )( ®E) =0, ® )\?(50 a,-1). It follows that,

v = ¢ v :71 ¢ r
Gen) = [ OSenave) = s [ 806 ndur.g)
1

N m/ A(1.g)0e @&, 0 @mydp(r, g)  for all £, € L*(G).
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Hence, v = “({e}xc) V*aV, where V : L2(G) — 12(A) ® L?(G) = L2(H) is the isometry defined by

VE=10.®¢& €€ L3G). To end the proof it suffices to show that V*C*(H)V C C(G).

Let FF € C(H) and define F. € C(G) by Fe(g9) = Fl(e,g), g € G. We will actually show that
VAPV = ‘/1\|)\G( F.) and this will finish the argument. For ¢, € L?(G), we have

(VANE)WE ) = (AH(F)5e®£,6e®n>Z/HF(T,Q)O\g 8e © &, 6 @ n)dpn (r,g)

= / OreF (e, 9)(AS &, m)dpp (r, g) / wzéreF e, 9) (A€, mduc(g)

= ]A] / F(e,9) <)\G£, n)dua(g) = ’A’< G(Fe)5,77>-

O

(4). Tt is easy to check that, if @ : T'~ G is compact then o® =id® o : I' ~ A x G is compact,
for all finite group A. Hence, the proof follows from Proposition [7.11

(5). Observe that, for a general compact matched pair (I', G) with associated actions a and 3, the
continuity of 3 forces each stabilizer subgroup G, for v € I', to be open, hence finite index by
compactness of G. Consider the closed normal subgroup Gy = NyerG,, = Ker(f) < G. Equation 311
implies that G is globally invariant under o and the a-action of I' on Gy is by group automorphisms.
Hence, we may consider the crossed product quantum group Go, with C,,(Gg) = Iy x C(Gh),
which is a quantum subgroup (in fact normal subgroup in the sense of Wang [Wa09]) of the bicrossed
product quantum group G with C,,(G) = T'y s x C(G). This is because Gy is globally invariant under
the action « of I' and hence, by the universal property, we have a surjective unital *-homomorphism
p:Lapx C(G) = Ty x C(Go) which is easily seen to intertwines the comultiplications. Since p
acts as identity on C,(I'), it follows using Theorem B.4(2) that C,,(G/Go) = a(Cpn(G/Go)) (see
Definition 2.4]). Hence, if we assume that Gy is a finite index subgroup of G, then Gg is a finite
index subgroup of G. If we further assume that I' is weakly amenable and the action o of I' on G is
compact then the action « of I' restricted to Gy is also compact and Theorem [6.7] (with the fact that
Gy is Kac) implies that Gy is weakly amenable with Acb(GO) < Awp(T"). Using part (2) of Theorem
25 we conclude that G is weakly amenable and Acb(G) < Agp(T). In our case, with G = GQ, the
finiteness of A forces Gy to be always of finite index in . Since, by assumption, the action of I'
on Irr(G) has all orbits finite, we conclude, as in the proof of Proposition [l that the action « is
compact. [l

Example 7.3. (Relative Property (T)) Take n € N, n > 2, I' = SL,(Z), G = T" and « the
canonical action of SL,(Z) on T™ = Sp(Z™) coming from the linear action of SL,,(Z) on Z". Taking
a finite subgroup A < SL,,(Z), we manufacture a compact bicrossed product G, with non-trivial
actions « and (8 (described in the beginning of this section) whenever A is a non-central subgroup.
Note that (']I'")SL" = {e} hence x(Gp) ~ A x Sp(SL,(Z)).

Suppose n > 3. In this case, D(SL,,(Z)) = SL,(Z), where D(F) denotes the derived subgroup of a
group F. Since every element of Sp(SLy,(Z)) is trivial on commutators, we have Sp(SL,,(Z)) = {1},
for all n > 3. It follows that x(G,) ~ A. Hence, for all n,m > 3 and all finite subgroups A < SL,,(Z),
A < SL,,(Z), we have Gp ~ G/ implies A ~ A’

However, for n = 2, the group Sp(SL2(Z)) is non-trivial. Actually, we have

Sp(SLa(Z)) ~ {(k,1) € ZJAZ x Z.J6Z : k = mod 2}, (7.1)
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which is a finite group of order 12. Indeed, by the well known isomorphism SLy(Z) ~ Z/ 4ZZ/* ZZ /6Z,
2

it suffices to compute the group of 1-dimensional unitary representations of an amalgamated free
product I'y ;I’g. It is easy to check that the map ¢ : Sp(I'; ;Fg) — T defined by ¥ (w) = (w|r,,w|r,),

where T is the subgroup of Sp(I'1) x Sp(I'2) defined by T' = {(w, 1) € Sp(I'1) x Sp(I'2) : w|x = |},
is an isomorphism of compact groups. Hence, using the canonical identification Sp(Z/mZ) ~ Z/mZ,
we obtain the isomorphism in Equation (ZT]).

Since the pair (Z2,SLa(Z) x Z?) has the relative property (T), we deduce from Theorem that,

for any finite subgroup A < SLg(Z), the pair (GQ,GA) has the relative property (7'). Identifying

SLo(Z) with Z/AZ /* Z/6Z, one finds that every finite subgroup is conjugated to {1} or Z/27Z
7/27

or Z/AZ or Z/6Z. The only non-central subgroups are conjugated to Ay = Z/4Z or Ay = Z/6Z.
Hence, we get two non-trivial compact bicrossed products Gy,, ¢ = 1,2, such that (GQZ’,G A;) has the
relative property (7') and @Z does not have property (T") since SLy(Z) has the Haagerup property.
Moreover, G, and Gy, are not isomorphic since |A;| # |Ag].

Remark 7.4. (Haagerup Property and Weak Amenability) We depict here a procedure to
construct compact bicrossed products with the Haagerup property and Weak Amenability. Suppose
that I' is a countable subgroup of a compact group G and consider the action o : I' ~ G by inner
automorphisms i.e. a,(g9) = vgy ' forall y €T, g € G. Let A < T be any finite subgroup and
consider the matched pair (GQ, I') introduced earlier in this section. Let G be the bicrossed product.
Observe that, since the action « is inner, the associated action on Irr(G) is trivial. Indeed, for any
unitary representation 7 of G, the unitary m(v) is an intertwiner between o (7) and 7 for all v € T".
Hence, if I has the Haagerup property, then for any finite subgroup A < I' the bicrossed product G A
has the Haagerup property. Similarly, if I' is weakly amenable, then for any finite subgroup A < TI'
the bicrossed product G, is weakly amenable and Acb(G A) < Agp(T).

7.1.2 From matched pair with trivial «

In this section, we consider the dual situation, i.e., starting with a matched pair with a being trivial
and modifying it to some non-trivial action for a probably different matched pair.

Let B be any continuous right action of the compact group G on the discrete group I' by group
automorphisms. Taking « to be the trivial action of I' on G, the relations in Equation (BII) are
satisfied and we get a matched pair.

Remark 7.5. Note that if the group I' is finitely generated then the right semi-direct product group
H =T xg G is virtually a direct product. In other words, there is a finite index subgroup of H
which is a direct product of a subgroup of G (which acts trivially on I') and T'.

Indeed, since I is discrete and f is continuous, the stabilizer subgroup G :={g € G :v-g=~}1is
open in G for all v € I'. Since G is compact, G has finite index in G. Now consider the subgroup
G = NyerG,, which acts trivially on I'. In case I is finitely generated, it follows that G is also
finite index in G and thus the direct product I' X G/g is a finite index subgroup of H.

However, if the discrete group is not finitely generated then this need not be the case. For instance,
let a compact group K act on a finite group F' non-trivially. Let K, = K for n € N. One can then
induce, in the natural way, an action of the compact group G = [], .y Kn on the discrete group
I' = ®penky, where F,, = I for all n. In this case, it is easy to see that the subgroup G is not of
finite index.
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Getting back to the process of modifying «, we call a map y : I' = G a crossed homomorphism
if x(e) = e and x(rs) = x(By(s)-1(r))x(s) for all 7,5 € T'. Given a crossed homomorphism, we
define a new discrete group I'y which is equal to I' as a set and the group multiplication is given
by 7% s = fB,(s(r)s for all r,s € I'. As before, I'y is canonically isomorphic to the graph Gr(x) =
{(v,x(7)) : v €'} of x, which is a subgroup of the right semi-direct product H =T x5 G (since x
is a crossed homomorphism).

Observe that [ still defines a continuous right action of G' on the countable set I'y, and for g € G, 3,
is a group homomorphism of Ty, if and only if g7 x(v)"tgx(8,(7)) € Ker(8,) for all v € T, which
happens for example if x o B, = g71x(-)g. Moreover, the formula a.(g) = x(7)gx(8,(7)) "}, for all
v €I, g € G, defines an action of I'y on the compact space G' by homeomorphisms and in addition «
and (3 satisfy the relations in Equation (B.I]). Consequently, we get a new matched pair (I'y, G) with
possibly non-trivial actions « and 3. As before, one can describe this new matched pair explicitly
by viewing I'y, and G as closed subgroups of the right semi-direct product H =1" x5 G.

Observe that a group homomorphism x : I' = G is a crossed homomorphism if and only if x = x o/,
for all g € Im(x).

Remark 7.6. Suppose that the crossed homomorphism satisfies x o 8, = x for all g € Im(x) and
let G be the associated bicrossed product. Then the following are equivalent.

1. " has the Haagerup property.

2. ;(\} has the Haagerup property.

Indeed, by Corollary 3.7, it suffices to show that the action a of I'y on G is compact when viewed
as an action of I'y on L®(G). Since ay(g) = x(7)gx(y)~* for g € G and v € Ty, « is an action by
inner automorphisms, thus it is always compact since it is trivial on Irr(G). Indeed, for any unitary
representation u of G, the unitary u(x()) is an intertwiner between a.(u) and u for v € T',.

A systematic way to construct explicit examples using the deformation above is to consider any
countable discrete group I'g which has a finite non-abelian quotient G and take I' = I'g x G with the
right action of G on T given by B,(v,h) = (7,9 'hg), g,h € G and v € I'y. Since G is non-abelian,
B is non-trivial. Let ¢ : I'¢ — G be the quotient map and define the morphism y : I' — G by
X(7,h) =q(v), v € I'g, h € G. Then, we obviously have x o 3, = x for all g € G . Therefore, x is
a crossed homomorphism and the action a of I'y on G is given by a(, ,)(9) = q(v)gq(v 1), v € o,
h,g € G, which is also non-trivial since G is non-abelian. Thus (I'y, G) is a compact matched pair.
Let G denote the bicrossed product.

Proposition 7.7. We have x(,G) ~ Z(G) x Sp(I'g) x Sp(G) and Int(,G) = Sp(G) x 'y x Z(G).

Proof. Note that I'y, = I'g x G as a set and the group law is given by (r, g)(s, h) = (rs, q(s)"*gq(s)h)
for all r,s € Tg and g,h € G. Since the action 8 of G on I'y is given by SB4(s,h) = (s,g 1 hg),
s € Tg,g,h € G, we have I‘ﬁ = I'op x Z(G) and the action of Z(G) on Iy is trivial. Since the
action « of I’g on G is given by o) (h) = q(r)hq(r)™, 7 € To,9,h € G, we find G* = Z(G).
Again, since the action « is by inner automorphisms, the associated action on Sp(G) is trivial. It
follows from Proposition B8 that x(,G) ~ Z(G) x Sp(I'y) and Int(,G) = Sp(G) x I'g x Z(G). Let
irg : I'o = Iy, 7= (r,1) and 1 : G = I'y, g — (1,9). Observe that tr, and vg are group
homomorphisms. To finish the proof, we claim that the map ¢ : Sp(I'y) — Sp(I'g) x Sp(G), defined
by w = (wotry,wotg), w € Sp(I'y), is a group isomorphism. Indeed, it is obviously a group
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homomorphism. Since Iy is generated by ur, (I'o) and ¢ (G), so ¥ is injective. Let wy € Sp(I'g) and
wy € Sp(G). Define the continuous map w : I'yy — S by w(r, g) = wi(r)wa(g), r € To,g € G. Then,
for all r,s € Ty, g,h € G,

w((r,9) - (s,h)) = wlrs,q(s) " gq(s)h) = wi(r)wi(s)wz(q(s) ™ wa(g)wz(g(s))wa(h)
= wi(r)w2(g)wi(s)wa(h) = w(r, g)w(s, h).

Hence, w € Sp(I'y) and ¥ (w) = (w1,w2), so ¥ is surjective. O

Example 7.8. (Haagerup Property) Observe that any finite non-abelian group G provides an
example with I'g = IF),, where n is bigger than the number of generators of G, so that G is a quotient
of I'g in the obvious way. All bicrossed products obtained in this way are not co-amenable but their
duals do have the Haagerup property by Remark

To get explicit examples we take, for n > 4, G = A, the alternating group which is simple, has only
one irreducible representation of dimension 1 (the trivial representation) so that Z(G) = {1} and
Sp(G) = {1}. Moreover, viewing A, generated by the n — 2 3-cycles, we have a surjection 'y =
F,_o — A, = G. Associated to this data, we get a non-trivial compact bicrossed product G, non
co-amenable and whose dual has the Haagerup property and such that x(G,) ~ Sp(F,_») = T" 2.
In particular G,, and G, are not isomorphic for n # m. It shows the existence of an infinite family
of pairwise non-isomorphic non-trivial compact bicrossed product whose dual are non amenable with
the Haagerup property.

We now consider more explicit examples on property (7).

Example 7.9. (Property (T')) Let n > 3 be a natural number and p > 3 be a prime number. Let
[F,, denote the finite field of order p. Define I'y = SL,,(Z), G = SL,,(F,) and let ¢ : SL,,(Z) — SL,(FF,)
be the canonical quotient map. We get a matched pair (I'y, G) with both actions a and 3 non-trivial
and we denote the bicrossed product by G,, ;. Since for n,p > 3, we have D(SL,(Z)) = SL,(Z) and
D(SL,,(F,)) = SL,(F,), we deduce as in Example that Sp(SL,(F,)) = {1} = Sp(SL,(Z)). It
follows from Proposition [.7] that

Int(Gy, ) >~ SL,(Z) x Z(SLy,(Fp)) ~ SL,(Z) x Z/dZ and x(G,,p) = Z(SL,(F,)) ~ Z/dZ,

where d = ged(n,p — 1). In particular, the quantum groups G, = G, for p prime and p > 3,
are pairwise non-isomorphic. They are non-commutative and non-cocommutative by Remark
Moreover, assertion 2 of Theorem 3] implies that @p have property (7'). We record this in the form
of a theorem.

Theorem 7.10. There exists an infinite family of pairwise non isomorphic non-trivial compact
bicrossed products whose duals have property (T).

These are the first explicit examples of non-trivial discrete quantum groups with property (7).

One can also consider a similar but easier family of examples with § being trivial. We still take a
natural number n > 3 and a prime number p > 3. But we consider I' = SL,,(Z) and G = SL,,(F))
with the action a being given by ., (g9) = [v]g[y]™!, v € I', g € G, and 8 being the trivial action. Let
H,, , denote the bicrossed product associated to the matched pair (I', G). One can check, as before,
that Int(H, ;) ~ SL,(Z) and Sp(C,,(H,, ,)) ~ Z/dZ, where d = gcd(n,p — 1). Hence, the quantum
groups H, = H,, for p prime and p > 3, are pairwise non-isomorphic. They arise from matched
pairs for which the § action is trivial but still they are non-commutative and non-cocommutative
since I" and G are both non-abelian. Also, their duals have property (7).

45



7.2 Examples of crossed products

In this section, we provide non-trivial examples of crossed products. Our examples are of the type
considered in [Wa95b]. Let G be a compact quantum group and define, for all g € x(G), the map
ag= (g '®id®g)o A®) | Tt defines a continuous group homomorphism x(G) 3 g — ay € Aut(G).
Since x(G) is compact, it follows that the action I' ~ G is always compact, for any countable
subgroup I' < x(G). Actually, the action of x(G) on Irr(G) is trivial since, for ¢ € x(G) and
r € Irr(G) a straightforward computation gives (id ® ay)(u”) = (V; @ 1)u®(Vy ® 1), where V, =
(id ® g)(u”). Let Gr denote the crossed product. For a subgroup ¥ < H, we denote by Cy(X) the
centralizer of ¥ in H. Applying our results on crossed products to Gr we get the following Corollary.

Corollary 7.11. The following holds.

1. Int(Gr) =~ Int(G) x I' and x(Gr) =~ Cy() (") x Sp(L').

~

2. max(Ae, (C(G)), A (T) < Aep(C(Gr)) < A (G)Acp ().
3. G and T have (RD) if and only if Gr has (RD).
4. C/J} has the Haagerup property if and only zf@ and I' have the Haagerup property.

5. Gr has property (T') if and only zf@ and T have property (T).

Proof. All the statements directly follow from the results of section 6 and the discussion preceding
the statement of the Corollary except assertion 1 for which there is something to check: the action
of x(G) on Int(G) associated to the action « is trivial indeed, for all unitary v € C,,(G) for which
A(u) = u ® u, one has ag(u) = g(u)ug(u*) = u. Moreover, the action of x(G) on itself associated
to the action « is, by definition, the action by conjugation. Hence assertion 1 directly follows from
Proposition O

Example 7.12. We consider examples with G = U]'\,F7 the free unitary quantum group or G = OK,,
the free orthogonal quantum group. It is well known that y(Uy) = U(N) and x(O%;) = O(N) and
that Int(Uy;) = Int(On) " = {1}. It is also known that the Cowling-Haagerup constant for O}, and

Uy are both 1 [Et13], and OF; and Uy have (RD) [Ve07] and the Haagerup property [Br12]. Hence,
for any N > 2 and any subgroups ¥ < O(N) and I' < U(N) the following holds.

e Int((O})s) ~ % and Int((Uy)r) ~T.

* X((O})x) = Comy(2) x Sp(%) and x((Ux)r) = Cyn)(T) x Sp(T).

— —

o A ((OF)s) = Ah () and Aeh(UF)r) = Ae(T).

e (O%)s (resp. (Uy)r) has (RD) if and only if & (resp. I') has (RD).

e (Oy)s (resp. ((Un)r) has the Haagerup property if and only if ¥ (resp. I') has the Haagerup
property.

e (O%)s and ((Uf)r do not have Property (7).
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Example 7.13. (Relative Haagerup Property) Since the action of x(G) on Cy,(G) is given by
(id ® ag)(u®) = (V; @ 1)u®(Vy @ 1), where V;, = (id ® g)(u”), we have,

ag(w)(ufy) =Y gluf )w(uiy)g((uf,)), for all w € Cry(G)". (7.2)

Define the sequence of dilated Chebyshev polynomials of second kind by the initial conditions
Py(X) =1, P(X) = X and the recursion relation X Py(X) = Pry1(X) + Pr—1(X), &k > 1. Tt is

proved in [Br12] (see also [FV14]) that the net of states w; € Cp,(O%)* defined by wt(ufj) = Ii’“((f\,)) i j,

for k € Irr(OF;) = N and ¢t € (0,1) realize the co-Haagerup property for O, i.e., @; € co(O};) for

t close to 1 and wy — o, in the weak™ topology when t — 1. Now let g € X(O]J\r,). By Equation
Py (t Py (t

T, we have ay(wi) () = 2L 5, g(uh)g((ut)7) = 25055 = ). Hence, agle) = wy for

all g € x(G) and all ¢t € (0,1). It follows that for any N > 2 and any subgroup I' < O(N), the pair

) r) has the relative co-Haagerup property however, the dual o r) does not have the
O, (OF)r) has the relati Haag ty h the dual of (OF;)r) d t have th
Haagerup property whenever I' does not have the Haagerup property.
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