GRAPH PRODUCTS OF OPERATOR ALGEBRAS

MARTIJN CASPERS AND PIERRE FIMA

ABSTRACT. Graph products for groups were defined by Green in her thesis [Gr90] as a generalization of
both Cartesian and free products. In this paper we define the corresponding graph product for reduced and
maximal C*-algebras, von Neumann algebras and quantum groups. We prove several stability properties
including permanence properties of IIj-factors, the Haagerup property and under suitable conditions the
property of Rapid Decay for quantum groups.

INTRODUCTION

A graph product is a group theoretic construction starting from a simplicial graph with a discrete group
associated to each vertex. The graph product construction results in a new group and special cases depending
on the graph are free products and Cartesian products. Important examples of graph products are Coxeter
groups and right angled Artin groups.

Graph products preserve many important group theoretical properties. This yields important new examples of
groups having such properties and gives (alternative) proofs of such properties for existing groups. For instance
the graph product preserves soficity [CHR12], Haagerup property [AnDr13], residual finiteness [Gr90], rapid
decay [CHR13], linearity [HsWi99] and many other properties, see e.g. [HeMei95], [AnMill], [Chil2].

Whereas many of the stability properties above have important consequences for operator algebras, the actual
operator algebras of graph products have been unexplored so far. The current paper develops the theory of
reduced and universal/maximal C*-algebraic graph products as well as the graph product of von Neumann
algebras and quantum groups. These objects generalize free products by adding commutation relations that
are dictated by the graph.

We shall relate the basic properties of graph products of operator algebras/quantum groups to the ones of
their vertices. This includes Tomita-Takesaki theory, commutants, GNS-representations, (co)representation
theory, et cetera. We also show that any graph product of von Neumann algebras decomposes inductively into
amalgamated free products of the von Neumann algebras at its edges. For notation we refer to Section 2.

Theorem 0.1. Let I' be a simplicial graph with von Neumann algebras M,,v € VI' and graph product von
Neumann algebra M. Fiz v € VT. Let My be the graph product von Neumann algebra given by Star(v). Let Mgy
be the graph product von Neumann algebra given by T\{v}. Let N be the graph product von Neumann algebra
given by Link(v). Then M ~ My xy M.

There is a corresponding result of Theorem 0.1 for C*-algebras, see Section 2. Theorem 0.1 implies that
any property of a von Neumann algebra that is being preserved by arbitrary amalgamated free products is
automatically preserved by the graph product. However, there is a large number of properties which are not
(or not known to be) preserved by amalgamated free products. For example, the Haagerup property is known
not to be preserved by arbitrary amalgamated free products. But in fact we prove the following.

Theorem 0.2. Let T' be a simplicial graph with von Neumann algebras M,,v € VI'. Let M be the graph
product von Neumann algebra. Then,
(1) Suppose that every M, is o-finite. M has the Haagerup property if and only if for every v € VI', M,
has the Haagerup property.
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(2) M is a IL, factor if for every v € VI, M, is a II; factor.
And in the case of quantum groups:

Theorem 0.3. Let T' be a simplicial graph with compact quantum groups G,,v € VI'. Let G be its graph
product and let G,, G be their duals. Then,

(1) G has the Haagerup property if and only if for every v € VT, @U has the Haagerup property.

(2) Let T be finite. If for every v € VT, @v is a classical group with the property of Rapid Decay (RD) or
a quantum group with polynomial growth, then the graph product G has (RD).

(8) Let T be finite without edges. Then G = x,cyrG,. If for every v € VT, G, has (RD), then G has
(RD). I.e. (RD) is preserved by finite free products.

It must be emphasized that for compact quantum groups with tracial Haar state (i.e. of so-called Kac type)
Theorem 0.3 (1) follows from Theorem 0.2 (1) by [DFSW13, Theorem 6.7]. However, it is unknown if the
result of [DFSW13, Theorem 6.7] extends beyond Kac type quantum groups. In fact [CLR13] shows that the
behaviour of approximation properties outside the Kac case can be quite different. In the group case our result
gives an alternative proof of stability of the Haagerup property under graph products, which was first proved
in [AnDr13].

Structure of this paper. Section 1 introduces the basic notions for graph products. In section 2 we develop
the theory of graph products of operator algebras: graph products of Hilbert spaces, von Neumann algebras
and maximal and reduced graph products of C*-algebras, study their representation theory and develop the
unscrewing technique as explained in Theorem 0.1. We also prove some stability properties such as exactness
for reduced graph product of C*-algebras and the Haagerup property for von Neumann algebras. In Section
3 we define graph products of quantum groups, study their representation theory and prove the stability of
the Haagerup property. Section 4 proves stability of rapid decay for quantum groups under graph products.

General notation. We denote M,, for the n x n matrices over C. We use bold face characters A and M for
operator algebras and calligraphic characters H and K for Hilbert spaces. The symbol ® denotes the tensor
product of Hilbert spaces, C*-algebras (reduced one) or von Neumann algebras and it should be natural from
the context which of these is meant. The symbol ® will denote the maximal tensor product of C*-algebras.

max

1. PRELIMINARIES

Let I" be a simplicial graph with vertex set VI' and edge set ET' C VI' x VI'. Simplicial means that the graph
does not contain double edges and no loops, i.e. (v,v) € ET for any v € VI. We assume that the graph is
non-oriented in the sense that if (v,w) € ET then also (w,v) € ET. For v € VI’ we write Link(v) for the set
of all w € VT such that (v, w) € ET. We set Star(v) = Link(v) U {v}.

Definition 1.1. A clique in the graph T is a subgraph I'g C T" such that for every v,v’ € VT'g with v # v we
have (v,v’") € ET (so a complete subgraph of I'). In particular every single vertex of T’ forms a clique (with
no edges). By convention the empty graph is a clique. We denote Cliq(s) for all cliques in I' with exactly s
vertices.

Definition 1.2. For each v € VT let G, be a discrete group. The graph product Gr is defined as the group
obtained from the free product of G,,,v € VI' by adding the relations

[s,t] =1 for s € G,,t € Gy, for every v # w such that (v, w) € ET.

A word is a finite sequence v = (v1,...,v,) of elements in VI'. We shall commonly use bold face notation for
words and write v; for the entries of v. The collection of words is denoted by W and by convention the empty
word is not included in WW. We say that two words v and w are equivalent if they are equivalent modulo the
equivalence relation generated by the two relations:

12

(Ulv"‘vvivvi+27"'avn) if Vi = Vi1,

(1)1,...7’Ui+1,1}i,...,7}n) if v GLink(’UiJrl).

I (Ulv"‘vvi7vi+17"'avn)

1.1
( ) II (vla--~7vi7vi+17"'avn)
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Moreover, we say that two words v and w are type Il equivalent if they are equivalent modulo the sub-
equivalence relation generated by the relation II. A word v € W is reduced if the following statement holds:
If there is a v € VT such that v, v; = v with [ > k,

1.2
(1.2) then we do not have that all vgy1,...,v-1 € Star(v).

We let Wieq be the set of all reduced words. Observe that if v is reduced and type II equivalent to v’ then
also v’ is reduced.

Lemma 1.3. We have,

(1) Every word v is equivalent to a reduced word w = (wy, ..., wy).
(2) If v is also equivalent to a reduced word w', then the lengths of w and W' are equal.
(3) Moreover, there exists a permutation o of {1,...,n} such that W' = (Wy(1), We(2), -+ s Wo(n))-

(4) There is a unique such o if we impose the condition that if k > 1 and wy = wy, then o(k) > o(l).

Proof. (1) This follows since if a word cannot be made shorter my means of permutations and cancellations
(1.1) then it is reduced.

(2) This is essentially the normal form theorem [Gr90, Theorem 3.9]. It can be derived as follows. For each
v € VI let G, be the group R* with multiplication. For x € R™ we shall explicitly write x, to identify it as
an element of G,,. Associate to the word w of length n the group element gy = 24,24, - . - 24, in the graph
product of the groups G,,v € VT, see Definition 1.2. Since w is reduced it follows that gy is reduced in the
sense of [Gr90]. Assume that w’ has length m. Since w is equivalent to w’, there exists elements z1, ..., Zn,
with z; € G,y and z; > 1 such that g is equivalent to the graph product element gw = 1 ...z (this can
easily be seen by checking this on each step (1.1) to obtain this equivalence, in particular x; is either a power
or a root of 2). Since w’ is reduced it also follows that gy is reduced. In all gy and gy are reduced equivalent
elements in the graph product of G,,v € T and by the normal form Theorem [Gr90, Theorem 3.9], this implies
that m = n. In fact [Gr90, Theorem 3.9] implies also that x; = 2.

(3) Let m be the total number of times that a given v appears in w. We need to show that v appears exactly
m times in w’. Suppose that this is not the case. Since w and w’ have the same word length we may assume
without loss of generality that it appears less than m times in w’ since else we may change v to another vertex
for which this is true. But since w’ is obtained from w through the equivalences (1.1) this means that there
exists some | > k such that w; = wy = v and w41, ..., w;—1 € Star(v) which contradicts the fact that w is
reduced.

(4) The statement follows since it states that o must for every w occuring in w be an increasing bijection
between the sets K, :== {i | w; = w} and K|, = {i | w, = w}. Such a bijection is unique. O

Let Whyin be a complete set of representatives of the reduced words under the equivalence relation described
above. We call an element of Wy, a minimal word. It is then clear that every word v is equivalent to a
unique minimal word w. Note that Wi, excludes the empty word.

2. GRAPH PRODUCTS OF OPERATOR ALGEBRAS

In this section we construct graph products of operator algebras. In case the graph I' does not have edges
the graph product coincides with the free product for which we refer to [Vo85]. In addition it is important
to emphasize that our constructions are different from [FiFr13]: indeed graph products impose commutation
relations on the resulting algebra which in general cannot be written in terms of the amalgamations imposed
by the constructions in [FiFr13].

2.1. The graph product Hilbert space. For all v € VI let H, be a Hilbert space with a norm one vector
& € Hy. Define Hy = H, © C&, and let P, be the orthogonal projection onto H;. For v € W;eq we let,

Hy=Hy, ®...0H, .
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By Lemma 1.3 we see that if v € W,eq is equivalent to w € W,eq then there exists a uniquely determined
unitary map,

(2.1) Quw Hy 2 Hw 160, ® .. @&, = Eupyy @ o @ &y

where o is as in Lemma 1.3 (4). Since every v € W;eq has a unique minimal form v’ we may simply write Qy
for Qv vr.

Define the graph product Hilbert space (H,S)) by:
H=Coa P Hw
WEWhmin
For v € VT, let W, be the set of minimal reduced words w such that the concatenation vw is still reduced
and write WS = Wi \ W, Define
Hw)=Coo P Hu.
weW,,
We define the isometry U, : H, ® H(v) — H in the following way:

U,: H,QH(v) — H
2 Q = Q
HE @ =
o O Hw  — Hw
HOOHw — Quw(HS @ Hy)

Here the actions are understood naturally. Observe that, for any reduced word w, the word vw is not reduced
if and only if w is equivalent to a reduced word that starts with v. It follows that U, is surjective, hence
unitary. Define, for v € VT, the faithful unital normal *-homomorphism \, : B(H,) — B(#) by

M(2) =Uy(zx @ 1)U,y forall x € B(H,).
Observe the A, intertwines the vector states we, and wgq.

Proposition 2.1. For allv € VT and all x € B(H,) one has:
(1) Xo(2)Q = Py(2&0) + (20, £0) Q.
(2) Ao(@)§ = Po(a€) + (€, &) for all § € H.
(8) Xo(2)€ = Quw (Pu(x€y) ® &) + (1€, £0)E for allw € W, and all £ € Hy.
(4) Let w € WE then there exists a unique w,, € W, such that w ~ vw, are II equivalent and, for all
¢ € Hyw, one has

Ao(2)€§ = Quw, (Pyr ® id) QZwuf + (67 ® id) inué

Moreover, the images of A, and X\, commute whenever (v,v") € ET.

Proof. The first part of the proposition is an immediate consequence of the definition of U,,.

(1) One has A\, (2)Q = Uy, (2&, @ Q) = Uy (Py(2€y) @ Q) + (2€,, &)Uy (& @ Q) = Py(2€y) + (a6, £0) S

(2) Let § € Hy, one has A, (7)€ = Uy (2§ @ Q) = Py(x§) + (2, §0)S2

(3) Let w € W, and & € Hy, one has A\, ()€ = Uy (2, ® &) = Quw (Pou(2&,) ® &) + (2, &)E.

(4) Let w, € Wy, £ € HO and 1) € Hyy,,. We find A\, () Quw, (§ @ 1) = Quw, (Pu(x€) @ 1)) + (x€,&,)n. Hence,
for all £ € Hyw,, one has Ay (2) Qyw, & = Quw, (Poz ®1d)€+ (€2 ®1d)E. Since Quw, : How, — Hw is unitary,
this gives the result.

We can now finish the proof of the proposition. Let v,v" € VT such that (v,v') € ET. Let € B(H,) and
y € B(H,r). Writing A\, (2) = Ay (2 — (084, &) 1) + (20, &) 1 and Ay (7) = Apr (Y — (Y€, Eor) 1) + (Y&ur, §ur) 1 We
see that we may and will assume that (z&,,&,) = (Y&, &) = 0.

Let w be the unique reduced minimal word equivalent to (vv’). Then w = (vv’) or w = (v'v). In both cases
we find Q= Qyry 03, where ¥ ¢ Hy = Hy @ Hyy = Hy @ Hy = Hyry is the flip map. Hence, we find:

Ao (2) A (Y) Q2 = X () Por (Y6or) = Quur (Po(280) @ Por (Y€ur)) = Quro(Por (¥6ur) @ Po(2€0)) = Ay (y) Ao ()82
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Let £ € HS,. One has Ay (2) Ay ()€ = Ay(2) Py (Y€) = Quur (Py(x€y) @ Py (yE)) and,

Aot (Ao (2)E = A (Y)( Qo (Po(2€0) ® €)) = Ao (¥)( Qo (§ @ Poy(60))) = Quro(Pur (¥E) @ Po(w€y))
- Qm;’ (Pv (Iév) ® Pv’ (yf)) >\v (l')Av’ (y)f
Claim 1. Let (v,v") € ET and W € Wiyin.

(1) Suppose that w € W, N W, and define wi,wo € Wi such that v'w ~ wy and vw ~ wa. Then

w1 € Wy, wo € Wy, vwy ~v'wo and, for all n, € HS, 0y € HS, and & € Hyw one has
Quwl (771) & Qv’w(nv’ & 5)) = Qv’wz (nv’ & va(nv & f)) .

(2) Suppose that w € W, \ W, and define wi € Wy, Wo € Wi such that w ~ v'wy and wy ~ vw.
Then, wi € W, and wo € WE,. Let wg € W, such that wo ~ v'ws. For all § € Hy, y € B(Hy),
ne My,

Ny ® Qu/wl (Pv’y ® Zd) :/w1§ = Q:w Qv’w;; (Pv/y & Zd) Z’Wg va(nv X 5) and7
Quw (nv ® (&Y @ id) Q:/wlg) = (§y ® 1d) Q:’w;; Quw (10 ®§).

(3) Suppose that w € WENWE, and define w1 € Wy, wa € W, such that w ~ v'wy and w ~ vws. Then,
wy € WS and wo € WS, Define wi € W, and wh € W, such that wi ~ vw} and wo ~ v'w). One
has

Quw, (Por ® id) D7, Quiw, (Pury @ id
(€ ®id) Qly, Quw, (Pory @ id

Quw, (Poz ® id) Qs (§3y @ id

(Eor @ id) Q. (§1vy ® id

Qi = Quwy (Pory ® id) Qjr iy, Quw, (Po @ id) Qi
Qs = Qurwy (Pury @ id) Qi (E17 ® id) Qi
Qi = (§5y ®id) Qry, Quws (Poz ® id) Oy,

Qorw, = (Y ®id) QY iy, (7 ® 1d) Dy, -

= = = =

Proof of Claim 1. In each of the subclaims we let uq, ..., u, with u; € VI denote (part of the) letters of w.

(1) We may assume that £ = §,, ® ... ® &,, is a simple tensor product with &,, € H,,. Let [ be such that
u,...,u; € Link(v) and k be such that uq,...,u; € Link(v"). Moreover, we may choose [,k such that the
words (U1, ..., U, Uy Upgdy ..., Up) and (ug, ..., Uk, v, Ugt1, ..., U,) are minimal. Without loss of generality we
may assume that L(v) < L(v"). Then,
val (7711 & Qv’w(nv’ 0y 5)) = va1 (7711 ® ful &...® fuk QR Ny & fuk_H Q...® gun)
:§u1 ®®€ul @ My ®§ul+1 ®®§uk & Ny ®§uk+1 ®®£una
and using the fact that (v,v’) € ET the same computation shows that this expression equals Qrw, (7, &
(2) We may assume that { =&y, ®... @&, @ Ny @&y, @...Q&,, and that uy ... upv ugsy ... uy, is reduced
with uy,...,ug € Link(v’). Then, letting ! be such that uy,...,u; € Link(v) and uy ... wvuiqq . .. u, minimal,
erw Q’U’W3 (Pv'y ® 1d) Qj;/wg Q’UW(T]’U ® 5) = Q:w Q’U’Wg ((Pv’ynu’) ® £U1 ® M gul ® "7v ® €ul+1 ® A ® fun)
:77”0 ® §u1 ® s ® guk ® P’U/yn'u/ ® guk+1 ® e ® gun = T]U ® Q’U’Wl (P’U/y ® ld) Qz/wlf and?
&0y ®1d) Qyrwy, Quw (1 ® ) = (£5y @A) ® Guy @ .. @ &uy DN @ &gy ® - @ &u,
=Y, §o )u, @ ... ® §uy @My ® §UZ+1 Q... ® &, = Qvw, (o @ (YN, §o )uy @ ... @ fun)
=Quw, (1w ® (§yy ®id) qu/wl £).

(3) Assume that £ = &y, ®. . . @&y, @& @Eu,, - - - Ou, Oy Duy, ®. . By, Withuy .. wvur - upVUEL1 .. Uy
minimal and uy,...,u; € Link(v), uy,...u € Link(v’). Then, using (v,v") € ET,

Quw, (Pyz ®1id) QZwQ Qurw, (Pyry @id) Qifwlf
=Quw, (va oY id) QT;waul ® ... ®&u, @ Pyyéy @ §Uk+l ®...0&u,
:§u1 Q... ®§uz & vagv & £u1+1 ®...Q é-Uk ®Pv’y§v’ ®§Uk+1 ... ®£un7
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which equals Qyrw, (Pyy®id) Q5 Quw, (Ppz®id) Q5 by a reverse computation. The other equalities follow
in a similar way.

Remainder of the proof of the proposition. Let w € W, N W,, and consider the minimal words wi, ws
introduced in the first assertion of Claim 1. One has,

Mo () A ()€ = Xo(2) Qurw (Por (Y1) @ &) = Quwy (Po(2€0) @ Qurw (Por (Y€ur) ®E))
= Quw, (Por(¥60) ® Quw (Pu(26,) ® §)) = A (y) Ao (2)E.

Let w € W, \ W, and consider the minimal words wy, wa, w3 introduced in the second assertion of Claim
1. One has,

M (@) ()€ = A(2) Quiw, (Pry ®1id) Q:/W1£ + Ao (2) (& y ®id) QT/wlf
= Quw (Pv (2&0) ® Qurw, (Prry ®id) QT}/ME) + Quw, (Pv (z&) ® (§py ®@1d) Q:/wlé) and,

>\1)’ (y)>\v (56)5 = )‘U’ (y) QUW (PU (ISU) ® 6)
= Qv’W3 (Pv’y ® ld) Q:;'wg, va (Pv (va) ® f) + (f:'y ® ld) QZ’WS va (Pv (33&,) ® 5)

These two expressions are equal by the second assertion of Claim 1. By symmetry, this is also true when
w € W,y \ W,,. Finally, let w € W5 N WS, and consider the minimal words wy, W}, wa, wj introduced in the
third assertion of Claim 1. On has:
Ao(@) A (y) = A() Qurw, (Pury ®1id) :’wlg + Ao () (6 y ®id) Q:/wlf.

= Quw,(Pur ®1id) szz Qurw, (Pyry ®id) QZ'wlg + (§rr @id) Q:wz Qurw, (Pyry ®1id) Q;'wlf
Qg (Pu 1) Qi (65 @ 1) Qi €+ (657 © 1) Dy (€9 © 1) Qg & and,
Ao (¥) Quw, (Por ® id) Q;W2£ + A () (& @id) Qthg
= Quw, (Pyry®id) Q’T)/Wl Quw, (Pur ®1d) Q:w2§ + (&y ®id) ;k)’wl Quw, (Pur ®1d) Q:wzf

+Quiwy (Pory ®1d) Q5 (§52 @1d) Q7 & + (&1, ®1d) QY (§32 ©1d) Q7 €.

These two expressions are equal by the third assertion of Claim 1. It concludes the proof. ]

Ao (Y) Ao (7)€

We can also define the right versions of the unitaries U,. For v € VT, let WY be the set of minimal reduced
words w such that the concatenation wo is still reduced and write (W?)¢ = Wipin \ W?. Define

Hw) =Coo P Hw
weWwv
We define the isometry U, : H'(v) ® H, — H in the following way:

U . ") oM, — H
Q®E, = 0
QR H = U
He @ &, = Hw
Hw @ H, = Qwo(Hw @ Hy)

As before, U] is unitary. Define, for v € VT, the faithful unital normal *-homomorphism p, : B(H,) — B(H)
by pu(z) = U[(1 ® z)(U,)* for all x € B(H,). Observe the p, intertwines the vector states we, and wg. The
analogue of Proposition 2.1 holds. We leave the details to the reader.

Proposition 2.2. For allv € VT and all x € B(H,) one has:

(1) pv(x)Q = ,Pv(xgv) + <JJ§U,§U>Q.

(2) po(x)§ = Py(x€) + (x€,£0)S2 for all § € H3.

(3) po(2)§ = Qwo (€ @ Py(6y)) + (260, £0)€ for all w € WY and all § € Hy.

(4) Let w € (W?)¢ then there exists a unique w. € WY such that w ~ wiv and, for all £ € Hy, one has

po()§ = Quiv(id @ Pyr) Q& + (id © £,7) Qs -

Moreover, the images of p, and p, commute whenever (v,v") € ET.
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Proposition 2.3. Letv,v’ € VI and € B(H,), y € B(H.). One has
Mo () por (Y) = por (W) Ao(x)  whenever (v#v') or (v="1" and xy = yx).
Proof. We may and will assume that (x€,,£,) = 0 = (y&,, & ). By Propositions 2.1 and 2.2, one has
— _ Qu (@& ®yéur) if v#v,
)\v(w)pvl(y)Q = )\v(-r)(ygv’) - { Pq)(xy&;) + <Iy£1)a§U>Q lf v = ’U/.

Morcover, g (A, (00 = p)aty) = { Pt Sven) S vE

To finish the proof we need the following Claim.
Claim. Let v,v' € VI, w € Wyin and £ € Hy,.

(1) If w e W, N WY Let w1, Wa € Wi such that wi ~ wv' and wo ~ vw.
o Ifvwv' is reduced then wi € W, wy € wv' and, for all n, € H,, Ny € Hy one has
val (771) ® Qwv’(g ® nv’)) = szv’(ng(nv & 5) & 77v’)~
o Ifowv' is not reduced then v =v', w1 = wo =~ vw ~ wo € WEN(WY)C and, for all z,y € B(H,),
va(,va ® Zd) sz Qwo (5 & y&;) = Qwv(id X va) szy va(ZfU & f) and;
(€o7 ® 1d) Qjy Qwo(§ ® Y&u) = (id @ £Jy) Qi Quw (2€0 ® §).
(2) If w e WeN (W“l)c. Let wi,wo € Winin such that w ~ wiv' ~ vws.
o Ifwi €W, thenv=1", wg € W, w~vw; ~wyv and wi = wa and, for all x,y € B(H,),
Quw, (& ® (1d® &y) Q:vlvf) + Quw, (Pu ® id) QZwl Qw,v(id @ Pyy) Q:vlvf
=Qw,v((§7 ® id) Q:wl§ ® Y&u) + Qw0 (1d @ Puy) Q:vlv Quw, (Pyz ® id) Q:wlf,
(fZﬂC Y id) Q:wl wa(id ® va) Qi‘vwﬁ = (id® ny) invaUW1 (va ® id) sz1§~
o Ifwy € WS write wy ~ vws, Wy € Wiy then wo >~ wav' € (W”l)c andVz € B(H,), y € B(H),
Qsz (va ® Zd) Qsz lev’ (Zd@ Pv’y)ijluff = le'u’ (id ® Pv'y) Q:vlv’ QUW2 (va ® id) QT)W2£’
(6;‘%’ ® Zd) Q:Wz le'u’ (ld ® PU'?/) Qi(vl'u’g = QWSU' (Zd ® P’U'y) Q:vy;’ (5395 ® Zd) QZWQ £a
QUWs (va ® Zd) QT}Wg(Zd ® 5:/?1) Q:;vlv’g = (Zd@ E:’y) Q:klvl'u’ QUWz (PUZL’ ® Zd) Q:W2£7
(o @ id) Qi (1d @ &5y) Dy, € = (1d @ Ey) Qo (€57 ® id) Qi €.
(8) If w € W¢ NWY write wy ~ wo', w >~ vwa, Wi, Wa € Wy, Then, wq € WS, wy € wv' and, if
W3 € Winin is such that wi ~ vws then we have wov' ~ w3 and, for all z € B(H,), y € B(H.),
Quws (va ® Z'd) sz3 Qwr (5 by yfv’) = Qwo’ (Qsz (pvx Y Zd) QTszf 0y y&,/) ,
(€or @ id) Q:wa Qwo (€ ® Y&wr) = Qw,w (§7 ® id) Qq*;wzg ®Q Y&y
(4) If w € W, N (W“/)C write w ~ wiv’, Wo ~ vW, W1, Wa € Wyin. Then, wi € W, wa € (W“/)c and,
if W3 € Wi 15 such that wo ~ w3v' then we have w3 ~ vwy and, for all x € B(H,), y € B(H.),
Qow (517{1; ® lev’ (Zd & Pv’y) Q:Vlvlf) = Qw;;v/(id X Pv’y) Q:kﬂav/ va(l’ﬁv & 5))
Quw, (6 @ (1d @ §,y) Oy, v §) = (id ® &Y) Qo Quw (760 @ §).

The proof of the Claim is analogous to the proof of Claim 1 in Proposition 2.1 and we shall leave the details
to the reader.

Remainder of the proof of the proposition. Let w € Wiy, and € € Hy,. We use freely the results and notations
of the Claim and Propositions 2.1 and 2.2.

’ .
Case 1: w € W, N WY . If moreover vwv' is reduced we have,

>\v (x)pv’(y)€ = >‘U (x)(QWU’(S ® yé-v’)) = Q'uwl (mg'u ® QW'U/ (é- ® yé-'u’))a
pv/(y)Av (iﬂ)f = pPu (y)(va (xgv oy f)) = szv’ (va(xgv & 5) & ygv’)-
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These two expressions are equal by the Claim. Suppose now that vwv’ is not reduced. Then v = v’ and,
Mo(@)po()E = A(@)(Qwo(§ ® Y&0)) = Quw(Poz ®1d) Qi Qwo (§ ® Y&o) + (£ ®1d) Qyy Qwo (€ ® Y&y,
PoWA ()€ = pu(y)(Quw (& ®E)) = Qwo(id @ Puy) Qiy Qow (€ ® &) + (1d ® £)y) Qi Quw (€ @ &).

These two expressions are equal by the Claim.

Case 2: we WinN (W”/)C. If moreover wi € W, then v = v/, w; = wo € WY, w ~ vw; ~ wv and,

Ao(@)pe )€ = Ao(@) (Qwro(id ® Puy) Qo€ + (Id @ £5y) Qy, o€)
= Quw, (Puz ®id)Q, Qv (1d ® Puy) Qo€ + (§52 ©1d) Qpyy, Quw, o (id @ Poy) Qg€
+Quw, (28 ® (id ® §1y) Q3 ,8),
PoA(2)E = pu(y) (Quw, (Poz ©1d) Dy, & + (&2 @id) Q5 §)
= Qw,o(ild®@Pyy) Q:,w Qow, (Pur ®1id) Q:wlg + (id® &y) ijly Quw, (Pyr ®1id) Q:wlf
+Qw, (£ ®id) Q7 € @ y).

These two expressions are equal by the Claim. Suppose now that w; € WS, wy >~ vws, w3 € Wiin. We have:
Ao(T)por (W) = Ao() (wa’(id ® Pury) ijlv’g + (id @ &y) Q:vlv’g)
= Quw,(Pur ®id) Q:wz Qw, v (id ® Ppry) Q:vlv’g + (€7 ®@id) QZW2 Qw, v (id @ Ppry) Q:vlv/f
+QUW3 (Pv-r @ ld) QT}Wg (ld ® gqt’y) Q:vl v/§ + (6::5 ® ld) szs, (ld Y E':’y) Q:vl'u’g'

. ’
Moreover, since wo € (WY )¢ and wo ~ w3v', we find
) 3V, ’

po(Ae(@)E = pur(Y) (Quws (Poz ®id) Qi & + (£57 @ 1d) Q). €)
= Qu,v (i@ Pury) Q0 Quw, (Poz @1d) Qyy,, & + (id @ £5y) Qg o Quw, (Poz @ 1d) Q7,6
+Quws (1d @ Pury) Qp 0 (57 ©1d) Q& + (Id @ £5y) Qo (§7 ©1d) Qy €.

These two expressions are equal by the Claim.
Case 3: w e WSN W' . We have,
Ao(@)po (9)E = Au(2)(Qwv (€ © Yu)) = Quws (Pot ®1d) Qo Qwor (€ © y&ur) + (60 ®1d) Qi Qwor (€ © &),
por(Xe(@)E = pur(Y) (Qow, (Po ®1d) Qg & + (§52 ®id) Q7 &)

= Qwv (Quw, (Por ®1d) Q€ @ YEur) + Qo (§52 ©1d) D5y, € © YEor-
These two expressions are equal by the Claim.
Case 4: w € W, N (WY )¢. We have,
Ao(@)por ()6 = Ao(@) (Quyor (id @ Pory) Qg€ + (1 @ €5) Qg 1)

= Quw (26 ® Quyw (Id ® Pury) Q4 €) + Quw, (260 ® (1 ® £5,9) Q4 1€),
po(W)Ao(@)E = por(y)(Quw (€ ®€)) = Quav (Id @ Pory) Qg o Quw (260 ® §) + (1d ® £5:y) Qg o Quw (760 @ €).

These two expressions are equal by the Claim. O
2.2. The graph product C*-algebra. For all v € VT, let A, be a unital C*-algebra.

2.2.1. The mazimal graph product C*-algebra.

Definition 2.4. The maximal graph product C*-algebra Ar ,, is the universal unital C*-aglebra generated
by the C*-algebras A,, for v € VT and the relations

ApQyr = Gy a,  for all  a, € Ay, a, € Ay whenever (v,v’) € ET.
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Remark 2.5. It is clear that Ar,, is not {0} i.e. that the relations admit a non-trivial representation as
bounded operators. Indeed, for any family of representations 7, : A, — B(H,) and any family of norm one
vectors &, € H,, the representations 7, = A, om, : A, = B(H), where H is the graph product Hilbert space of
the family of pointed Hilbert spaces (Hy, &y )vevr and A, @ B(H,) — B(H) are the unital faithful morphisms
defined in Section 2.1, satisfy the relations 7, (a,)Ty (@) = Ty (@ )Ty (ay) for all a, € Ay, a,y € Ay and all
v,v" € VI such that (v,v") € ET by Proposition 2.1. The associated representation 7 : Ar,, — B(#) such
that 7|a, = 7, for all v € VT obtained by the universal property is called the graph product representation.

Example 2.6. Using the universal property of Ar ,, we have:

o Let A, = C} (G,) the maximal C*-algebra of a discrete group G,,, v € VI. Then Ar ,, = C},(Gr).
e Let I' be the graph with two connected vertices v; and ve. Then Ar = A,;, ® A,,.

max

e Let I' be the graph with no edges. Then Ar ,, = *"’;FAU, where " denotes the maximal free product.
ve

o If I' = Star(v) then Ar ., is a quotient of < *M Aw> ® A,.
weELink(v) max
Remark 2.7. Let A C Ar,, be the linear span of elements of the form a;...a, with n > 1 and a, € A,,,
where v = (v1,...,v,) is a reduced word. Observe that A is a dense %-subalgebra of Ar,,. Indeed, the
commutation relations defining Ar ,, show that A is a *-subalgebra. It is dense since it contains all the A,.
Moreover, if ¢ = a1...a, € Apy, with n > 1, a € A, and v = (v1,...,v,) is a reduced word and if
w = (wy,...wy) is a reduced word (type II) equivalent to v it follows from the commutation relations that
a4 = ag(1) - - - Ug(n), Where o € S, is the unique permutation such that w = o(v) defined in Lemma 1.3 (4).

2.2.2. The reduced graph product C*-algebra. From this point we assume that each unital C*-algebra A,,v €
VT is equipped with a GNS faithful state w,. Since the GNS representation is faithful we may assume
that A, C B(H,), where (H,,id,&,) is a GNS construction for w,. Let (H,) be the graph product of
the pointed Hilbert spaces (H,,w,). Recall that H comes with faithful unital normal *-homomorphisms

Ao : B(H,) — B(H).

Definition 2.8. The reduced graph product C*-algebra Ar is defined as the sub-C*-algebra of B(H) generated
by UUEVF Av(Av).

Since the A, are faithful, we may and will assume that A, C Ar and A, |a, is the inclusion for all v € VT.

Remark 2.9. It follows from Proposition 2.1 that there exists a unique unital surjective *-homomorphism
Ar @ Ar,, — Ap such that Ar(a) = a for all @ € A, and all v € VI'. Moreover, if ¢ = a;...a, € A with
n>1 a, € Ay, and v = (v1,...,v,) is a reduced word and if w = (w1, ... w,) is a reduced word (type II)
equivalent to v it follows from the commutation relations that a = a,(1) . .. ag(n), where o € S,, is the unique
permutation such that w = o(v) defined in Lemma 1.3 (4).

Definition 2.10. An operator a = a; ...a, € Ar is called reduced if a; € Ay, with Aj = {z € A,,
0} and the word v = (v1,...,v,) is reduced. The word v is called the associated word.

Wo; (m) =

Observe that the linear span of 1 and the reduced operators in a dense *-subalgebra of Ar.

Remark 2.11. For all v € VT, let w, be a not necessarily GNS faithful state on A,. The notion of reduced
operators, relative to the family of states (w,)yevT, also makes sense in the maximal graph product C*-algebra
and the linear span of 1 and the reduced operators in the maximal graph product C*-algebra is the *-algebra
A introduced in Remark 2.7, which is dense.

It is clear from Proposition 2.1 that, whenever a = a4 ...a, € Ar is a reduced operator (with associated word
in Whin) one has a2 = a1 ® - - - ®a,,. Hence, the vector €2 is cyclic for Ar and (H,id, 2) is a GNS construction
for the (GNS faithful) state wp(-) = (- Q,Q). We call wr the graph product state. It can be characterized
as follows: it is the unique state on Ar satisfying wr(a) = 0 for all reduced operators a € Ar. In particular,
wr|a, = wy for all v € VI. Actually the commutation relations and the properties of the graph product state
determine the graph product C*-algebra.
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Proposition 2.12. Let B be a unital C*-algebra with a GNS faithful state w and suppose that, for allv € VT,
there exists a unital faithful x-homomorphism m, : A, — B such that:

e B is generated, as a C*-algebra, by U,cyrmy,(A,) and the images of m, and m, commute whenever
(v,v") € ET.

e For any operator a = 7y, (a1) ... 7y, (an) € B, where v = (v1,...v,) is a reduced word and a; € A,
one has w(a) =0

Then, there exists a unique *-isomorphism m : Ar — B such that 7|a, = m,. Moreover, 7 intertwines the
graph product state and w.

Proof. The proof is a routine. We include it for the convenience of the reader. The uniqueness being obvious,
let us show the existence. Since w is GNS faithful we may and will assume that B C B(K) and (K,id,n) is a
GNS construction for w. Define V' : H — K by V(Q) = n and,

V(ay...an)Q =my, (a1)...m, (an)n for all reduced a = a; ...a, € Ar with associated word (vy,...,v,).

It is easy to check that V is well defined and isometric hence, it extends to an isometry. Since it also has a
dense image, it is a unitary. Then, () =1V - V* does the job. O

Remark 2.13. Proposition 2.12 implies the following.

Let A, = C(G,) be the reduced group C*-algebra of a discrete group G,,v € VI'. Then Ar = C*(Gr).
Let I' be the graph with two vertices v; and vy and no edges. Then Ar = A,, ® A,,.
e Let I' be the graph with no edges. Then Ar ., = ﬂ;/rA”'

ve

If Ty C T is a subgraph and, for all v € Vr,, B, C A, is a unital C*-algebra then the sub-C*-algebra
of Ar generated by U,eyr,By is canonically isomorphic to graph product C*-algebras Br, obtained
from B, v € V.

Remark 2.14. Let I'y C I' be a subgraph and consider the graph product C*-algebras Ar, and Ar. By the
universal property of Proposition 2.12, we may view Ap, C Ar canonically. Denote by W&in C Whnin the subset
of minimal reduced words in I'g and let Ho = CQ & Py ecyp0  Hw C H. Let P be the orthogonal projection
onto Ho. Then it is easy to check that &, : @ — PzP is a graph product state preserving conditional
expectation from Ar onto Ar,. Moreover, &r, is the unique conditional expectation from Ar to Ar, such
that &p,(a) = 0 for all reduced operators a € Ap, with associated reduced word v = (vy,...,v,) satisfying
the property that one of the v; is not in I'g. In particular, for all v € VT, there exists a unique conditional

expectation &, : Ar — A, such that &,(a) = 0 for all reduced operators a € Ar \ A,.

2.2.3. Unscrewing technique. Let v € T', 'y = Star(v), I's = T'\ {v} and set the following graph product C*-
algebras: A; = Ar,, B = Apjuk(v), and Ay = Ar,. Recall that, by the universal property of Proposition 2.12,
we may view B C Ay C Ar and B C Ay C Ar canonically. Moreover, by Remark 2.14, we have conditional
expectations &1 = Erinkw)la, : A1 = B and & = Erinkw)la, : A2 — B. Let us denote by A; xg Ay the
reduced amalgamated free product with respect to these conditional expectations.

Theorem 2.15. There exists a unique *-isomorphism m : Ay xg Ay — Ar such that w|a, (resp. m|a,) is the
canonical inclusion Ay C Ar (resp. Ay C Ar). Moreover, T is state-preserving.

Proof. Observe that Ar is generated by by A; and Ay. Let £ = ELink(v) be the canonical conditional expectation
from Ar onto B. Define, for k = 1,2, Aj = ker(&). By the universal property of amalgamated free products
it suffices to show that for any n > 2, for any aq,...,a, with a; € Ay, and [ # 41, one has E(ay ...a,) =0.
Since Ay, is the closed linear span of reduced operators a € A, with associated reduced word v = (v1,...,vy,),
v; € Iy, satisfying the property that one of the v; is not in Link(v) we may and will assume that each ay is a

reduced operator aj, = ¥ ... mfk € A, with associated reduced word v;, = (vf, ... v,’?k), vF € Ty, satisfying the
property that one of the v¥ is not in Link(v). One has a := a1 ...a, = z} ... xilac% .. .x%g ezt ooxy o with
x’; €AY, Let v= (vi,... ,v%l JU3 L ,vfz, ..,u7, ..., ) be the associated, not necessarily reduced, word.

Letl=r1+---4+mr, >n.
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Let us show, by induction on [, that £(a) = 0. If | = n then ax € A] C Ay, and v € I'y, \ Link(v) for all k.
Then v is reduced and since vy ¢ Link(v) we have £(a) = 0. Indeed, if v is not reduced, there exists i < j
such that v; = v; = w and v, € Link(v) for all i < k < j. Since vy, ¢ Link(v) for all k, it follows that j =i+ 1.
Hence, w € (I'y, \ Link(v)) N (T, \ Link(v)) = {v} N (T'\ {v}) = 0, a contradiction.
Let I > n and a = a1 ...a, is of the form described previously. We use the notations introduced at the
beginning of the proof. If the word v associated to a is reduced then £(a) = 0. Hence, we will assume that v
is not reduced. Then there exists i < j such that v}, = w = v and v} € Link(w) whenever:

(1) i<k<jand 1< s <y,

(2) k=idand s; < s <r;=ryg,

(3) k=jand1<s<s;.
Since we can replace v by a type II equivalent word and since any subword vy, is reduced, we may and will

assume that j = i+ 1 and w = v, = vi“. Hence we have w € I', NIy, =TI, NIy, = T1Nly =
Star(v) N T\ {v} = Link(v). Write, for z € Ay, Pyw(z) =  — wy(z). One has
Elar...an) = Elar...aqiq2y...ak_ Pylal a2ttt ... x’rtll cei iy ... Gp)
twy (2 2T E(ar . agaa L al abth xiﬁl e Qian Q).
The right hand side of this expression is zero by the induction hypothesis.
|

Remark 2.16. Theorem 2.15 is trivially true when we consider the maximal graph product and the maximal
amalgamated free product.

Corollary 2.17. Ar is exact if and only if A, is exact for all v € VT.

Proof. By an inductive limit argument we may suppose the graph I' finite and we conclude by induction using
Theorem 2.15 and the results of [Dy04].

We explain now the inductive limit argument which will be used several time in this paper (even in the von
Neumann algebra context). Let F(I') the set of finite subgraphs of I" ordered by the inclusion. If G;, G, € F(T')
and G C Ga, we view Ag, C Ag, C Ar. Hence, we get an inductive system of unital C*-algebras (Ag)ge#(r)-

Let Ao = Uge}‘(r) Ag C Ar be the inductive limit. We claim that actually Ao = Ar. Indeed, it is enough

to show that every reduced operator a = ay .. .a, € Ar, with associated word v = (v1,...,v,) lies in A,. In
fact, such an operator a lies in Ag, where G is a finite subgrah of I' containing the vertices vy, ... v,. O
Remark 2.18. If I' has n connected component I'y,...,T', then (Ar,wr) =~ (Ap, *---*xAp,,wr, *---*wr, ).

2.3. The graph product of von Neumann algebras. Suppose that for each v € VI' we have a von
Neumann algebra M, with a faithful normal state w,. We may and will assume that M,, C B(H,), where
(Hy,id,&,) is a GNS construction for w,. Let (#H,) by the graph product of the pointed Hilbert spaces
(Hy,wy). Recall that H comes with faithful unital normal *-homomorphisms A, : B(H,) — B(H).

Definition 2.19. The graph product von Neumann algebra is Mr := (U, cyr )\v(l\/lv))” C B(H).

As before, we will assume that M, C Mp and A, |m, is the inclusion, for all v € VT'. We also have the same
notion of reduced operators and the linear span of 1 and the reduced operators is a weakly dense *-subalgebra
of Mr. The graph product state wr(-) = (- Q,Q) is now a normal state on Mr. The graph product state is
characterized as follows: it is the unique normal state on Mr satisfying wr(a) = 0 for all reduced operators
a € Ar. In particular, wr|m, = w, for all v € VT.

Let us construct the right version of Mp. For v € VI, we denote by 7,(a) the right action of M, on H, i.e.
ry(a) = Jya*J, where J, is the modular conjugation of w,. View r, a faithful normal unital *-homomorphism
from MQP to B(H,). Denote by M{. the von Neumann subalgebra of B(H) generated by (J, ey pv © 70(My).
Write pl = p, or, and note that pl is a faithful unital normal *-homomorphism from M to M.
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Observe that, by Proposition 2.3, M[. C M[.

As before, we call an operator a = py, (a1) ... py (an) € M}, reduced if a; € M3, and the word v = (vy,...,vy)
is reduced. It is clear from the definitions that, whenever a = pgl (a1) ... pgn (an) € MJ. is a reduced operator
(with associated word in Wpyin) one has af) = @, ® --- ® a;. Hence, the vector Q is cyclic for M} so it
is separating for Mp and the graph product state wr is faithful with GNS construction (H,id,2). It is
now easy to compute the modular theory of wr. We denote by V,, J, and (0} )icr the ingredients of the
modular theory of w,, for v € VI'. For w € W a reduced word of the form w = (vq,...,v,), let W be
the unique minimal reduced word equivalent to the reduced word w* = (v,,...,v1) and oy the unique
bijection of {1,...,n} such that W = (Vg (n); -+, Vo, (1)). Define the unitary operator ¥y : Hw — Hw by
Yw(é1®..06) =Qw w(n®...0&) =&, (n)®...® &, (1) Finally, denote by Jc the conjugation map
on C.

Proposition 2.20. Let J, V and (0¢)ier be the ingredients of the modular theory of wr. One has

(1) J = JC ® 69w:(vl ..... vn)ewmm(J”ow(m @y, ) B
(2) V= Zd(CQ D @W:(’Ul ,,,,, V) EWinin E:;V(anw(n) ®...® Vvow(n))zw
(8) For any reduced operator a = ay ...a, € Mr with associated word v = (v1,...,v,) one has

or(ar...an) =0y (a1)...0"(an) forall teR.

Proof. (3) follows easily from (2). Let S, (resp. S) be the modular operator for w, (resp. wr). To get (1) and
(2), it suffices to prove, by uniqueness of the polar decomposition, that

S =idcq @ P (Svyim @ - ® Su, ) © B

W=(01,000,0n)EWinin

Denote by T the right handside of the preceding equation. An easy computation gives that, for all reduced
operators a = aj...a, € Ar or for a € CI1, one has S(aQ) = T(af)). Hence, S|pmra = T|mpq, where
M C Mr is the linear span of 1 and the reduced operators and it suffices to show that M is a common
core for S and T'. By definition, Mp2 is a core for S. Since Mr is a weakly dense unital x-subalgebra of Mr,
it follows from the Kaplanski’s density Theorem that Mp{2 is also a core for S. By definition of T', a core for
T is given by the subspace
Coe . M3, &y @ @M &y,
W=(v1,..,9n ) EWmin

where the direct sums and tensor products are the algebraic ones. This subspace is exactly the linear span of
Q and vectors of the form af2, where a is a reduced operator i.e. this is the space Mr{Q. O

Remark 2.21. It follows from the preceding proposition that, for all reduced operator a = a; ...a, € Mr,
with a; € My,, one has JaJ = p}, (a1)...p}, (an). Hence we actually have Mf, = M.

The graph product von Neumann algebra also satisfies a universal property. The following Proposition 2.22
can be proved exactly as Proposition 2.1 since the isomorphism appearing in the proof of Proposition 2.12 is
spacial.

Proposition 2.22. Let N be a von Neumann algebra with a GNS faithful normal state w and suppose that,
for allv € VT, there exists a unital normal faithful x-homomorphism m, : M, — N such that:

e N is generated, as a von Neumann algebra, by U,cvrm,(M,) and the images of m, and m, commute
whenever (v,v') € ET.
e For any operator a = m,, (a1)...m,, (an) € N, where v.= (v1,...v,) is a reduced word and a; € M,
one has w(a) =0
Then, there exists a unique normal x-isomorphism m : Mp — N such that 7|y, = m,. Moreover, T intertwines
the graph product state and w. In particular, w is faithful.

Remark 2.23. The preceding proposition implies the following.
e If M, = L(G,) is the group von Neumann algebra of a discrete group G,,v € VI' then Mpr = L(Gr).
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Let I be the graph with two vertices v; and vy and one edge connecting them. Then Mr = M,;, @ M,,.
Let I" be the graph with no edges. Then Mp = @F(Mv,wv).
ve

If To C T is a subgraph and, for all v € Ty, N, C M, is a unital von Neumann subalgebra then
the graph product von Neumann Nr, obtained from the N,, v € I'g, is canonically isomorphic to
(Uvevro Nv)”. In the sequel we will always do this identification without further explanations.

e There is a unique (state preserving) #-isomorphism Mggar(p) =~ My @ Myink(y) identifying z @ y with
xy, for all z € M, and all y € My,k(y). In particular, M}, N Mggar(v) = Nggar(v), Where

N — M, if w € Link(v),
YT ZMy) i w=w.

Remark 2.24. Let I'g C I' be a subgraph and consider the graph product von Neumann algebras Mr, and
Mr. As in a C*-algebraic case, there exists a unique normal conditional expectation &p, from Mr to Mr,
preserving the graph product states and such that Ep,(a) = 0 for all reduced operator a € Mr, with associated
reduced word v = (v1,...v,) satisfying the property that one of the v; is not in I'y. In particular, for all
v € VT, there exists a unique state preserving normal conditional expectation £, : Mr — M, such that
Ey(a) = 0 for all reduced operator a € Mr \ M,,.

Proposition 2.25. Let I'g,I'y CI' be subgraphs. One has Mr, N Mr, = Mp,nr, -

Proof. The inclusion Mryar, C Mr, N Mr, being obvious, let us show the other one. Let Mp, be the linear
span of 1 and the reduced operator in Mr,. It suffices to show that Mp, " Mr, C Mr nr,. Indeed, if it is the
case, then Mp,p, contains (Mrp, N Mr,)” = (Mp, U M}l)/ = Mf, NMr, = Mp, N Mr,. Let » € Mr, and
write = wr(z)1 + Zi x;, where the sum is finite and the x; are some reduced operators in Mr,. If x € Mr,
we have © = &, (z) = wr(x)1 + >, &r, (z;). By definition of the conditional expectation, for all 4, &r, (z;) is
either 0 or a reduced operator with associated vertices in I'c N I'y. Hence, € MrAr, . O

Let v € T', 'y = Star(v), I's = T'\ {v} and set the following graph product von Neumann algebras: My = Mr,,
N = MLink(v), and Mg = Mr,. By the universal property of Proposition 2.22, we may view N C M; C Mr and
N C My C Mr canonically. Let us denote by My xny Mo the von Neumann algebraic amalgamated free product
with respect to the graph product states. The following result can be proved exactly as Theorem 2.15, using
the universal property of von Neumann algebraic amalgamated free products.

Theorem 2.26. There exists a unique *-isomorphism m : My xy Mg — Mp such that |y, (resp. m|m,) is the
canonical inclusion My C Mp (resp. My C Mr). Moreover, m is state-preserving.

Before the next Lemma, let us recall some standard notations. Let (M, 7) be a finite von Neumann algebra
and A, B C M two unital von Neumann subalgebras. We write A £ B if there exists a net (u;); of unitaries in

M
A such that Eg(zu;y) — 0 for all z,y € M. We also write My (A) the normalizer of A in M i.e.
Mu(A) ={u e UM) : uAu* = A}.

Lemma 2.27. Suppose that w, is a trace for allv € VI'. Fixv e VI'. If Q C M, is a diffuse von Neumann
subalgebra then

Q 74 MLink('u)
Mstar(v)

and any Q-Mggar(v)-sub-bimodule of L2(|\/|Star(7j)) which has finite dimension as right Mggar(v)-module is con-
tained in Mggar(vy- In particular, @ NMp € M. (Q)” € Msgar()-

Proof. Since Mr = Mgar (o) MLi:’:k(v) Mr\ v}, we may apply [IPP08, Theoreml1.1] and it suffices to show that
that there exists a net u; € U(Q) such that ||Ep ik (Tuy)|[2 — 0 for all 2,y € Mgar(w)-

Since Q is diffuse, let u; be a net of unitaries in Q such that w,(au;b) — 0 for all a,b € M,,.

Let us show that |[Erink(w) (zusy)|l2 — 0 for all z,y € Mgiar(v) © MLink(v)- It suffices to show that

|€Link () (zuiy)|l2 = 0
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for all z = ay...an,y = b1...by € Mgar(y) reduced operators with ax € Mg, by € Mg, | vg, wy, € Star(v) and
such that v;, # v and wj, # v for some iy and jyp. Since = and y are reduced we may and will assume that:

e (v, = v and v € Link(v) for all k& # n) or (v # v for all k),

e (w, =v and wy € Link(v) for all k # n) or (wy # v for all k).
In any case we can write x = z'a and y = by’, where 2',y" € My are reduced operators and a,b € M,.
Hence, for all z € Mg, the operator 2’2y’ € Mgyar(v) is reduced and Epink(v)(2'2y") = 0. It follows that:

[[€Link(e) (@uiy)ll2 = |ELinkw) (@' (auib — wy (au;b)y")||2 + |wy (awib)] |[Erinkw) (Y| ]2
"] [|y/||2]ws (au;b)| — 0.

IN

Suppose now that x,y € Myiyk(y). Then, since u; € My,

ELink(w) (@uay)ll2 = [|2€Link(w) (wa)yllz < 2 Y[l [|€Link(w) (wi)ll2 = [[z[| [|y[| [wy (us)| — 0.
If 2 € Mggar(v) © MLink(v) @and ¥ € Mpiqk(y) We may assume, as before, that » = 2'a, where 2’ € Mripi(.) is a
reduced operator and a € M, and we get

|€Link(o) (uit)ll2 = [[ELink(w) (@u)yll2 < Yl [ELinkw) (@ui)ll2 = Yl 1| ELink(w) (z"aus)||2

= [yl lwo (@) [|Evinke) @)z < [|2"|l2 1yl lwo (aui)] — 0.
The proof that ||Epink () (zuy)||2 — 0 when z € Mpink() and y € Mgiar(v) © Mrink() is the same. O
Corollary 2.28. Suppose that w, is a trace for allv € VT'. Fizv € VT'. For w € Star(v) define
N — My if w € Link(v),
YL ZMy) i w=w.

If My, is diffuse then M, N Mp = Nggar(v)- In particular, Z(Mr) = [, cyp Nstar(v)-

Proof. The inclusion Nggary C M;, N Mr being obvious, let us prove the other inclusion. By Lemma 2.27 and
the last assertion of Remark 2.23 we have, M;, N Mpr C M{, N Mgtar(v) = Nstar(v)- O

Corollary 2.29. If M, is a IIy-factor for all v € VI then Mr is a 11y -factor.

Proof. By the inductive limit argument we may and will assume that T' is finite graph. By Corollary 2.28
we find Z(Mr) = (,cyr MLink(v). It follows from Proposition 2.25 that Z(Mr) = vaevr Link(v)- Since
Nyeyr Link(v) € N,epr T\ {v} = 0 we conclude that Z(Mr) = C1. O

2.3.1. Completely positive maps of graph products. Let (My,, wy)pevr and (Ny, ty)yevr be two families of von
Neumann algebras with faithful normal states.

Proposition 2.30. For allv € VT, let p, : M, — N, be a state-preserving normal ucp map. Then, there
exists a unique normal ucp map ¢ : Mp — Np such that, for all a = ay ...a, € Mrp reduced, with ay € I\/If)k,
olag...an) = @y, (a1) ... @y, (ap).

Moreover, ¢ intertwines the graph product states and its L2-extension is given by

T, : CQa &P L2(M,,)° ®...®L%(M,,)° = CQ® $H L2(Ny,)° ® ... ® L3(N,,)°,
W=(V1,...,0 ) EWnin W=(V1,...,00) EWnin

T, = itdcq ® @ T,,,

Proof. Let (K,,n,) be the pointed M,-N,, bimodule obtained from the GNS construction of ¢, i.e. one has
Ko = Myn,N, and (an,b,n,) = p, (¢, (a)b). Denote by 7l (resp. n") the left (resp. right) action of M, on KC,.
Observe that, since p, is faithful, the map 7, is faithful and, since w, is faithful and ¢, preserves the states,
the maps 7! is also faithful. Let (K,7) be the graph product of the pointed Hilbert spaces (K,,7,) with the
representations \,, p, : B(K,) — B(K) and define 7, = A\, ol and 7 = p, o 7/

L2(M,,)° R...Q T‘Pw; L2(M,, )"

Let M (resp. N) be the von Neumann algebra subalgebra of B(K) generated by U, 7 (M,) (resp. U,7"(N,)).
Consider the vector state u(z) = (xn,n) on M and N. Observe that, for all @ = a;...a, € Mr reduced,
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with associated word v = (vi,...,v,), Proposition 2.1 implies 7}, (a1)... 7, (an)n = a1my, @ -+ ® Ay, -
Also, for all b = by...b, € Nr reduced, with associated word v = (v1,...,v,), Proposition 2.2 implies
T, (b1) ... 7y (D)0 = 10, bn @ -+ @ 1y, by It follows that u(a) = pu(b) = 0 for all a € Mr and b € Np reduced.
Moreover, (Mmn,m,n) (resp. (Nn,p,n)) is a GNS construction for g on M (resp. on N), where m(z) is the
restriction of & to the subspace Mn (resp. p(y) is the restriction of y to the subspace A'n). By Proposition 2.3
the images of 7/ and 7l commute for all v,v" € VI'. Hence, N' C M’ and, by the preceding computations,

we find NMn = MNn = K. It follows that p is GNS faithful on M (resp. on N).

By Proposition 2.22, there exists two unital normal *-homomorphisms 7; : Mp — B(K) and 7, : N — B(K)
such that 7;|m, = 7, and 7|y, = 75. It is easy to check that the images of 7; and 7, commute. Hence, K is
a Mp-Nr bimodule and we will simply write a&b for the element 7;(a)7,(b)¢, for a € M, b € Nr and £ € K.
Define V' : L?(Nr) — K by VZ = n.x. One can easily check that, for all a = a; ...a, € Mr reduced, with
ar € M?

%)
V*T(ay...an)V = @y, (a1) ... 0o, (an).

The fact the ¢ intertwines the graph product states and the L? extension formula are obvious from the formula
defining . |

The ucp map obtained in Proposition 2.30 is called the graph product ucp map, it generalizes Boca’s con-
struction of free product of ucp maps [Bo93]. As a consequence we are able to show that the graph product
preserves the Haagerup property (see [Boc93], [CaSk14] for free products of respectively finite and o-finite
von Neumann algebras). Recall the following definition from [CaSk13]. We refer to [OkTol3] and [COST14]
for alternative (but equivalent) approaches to the Haagerup property and to [Cho83], [Jo02] for the case of a
finite von Neumann algebra.

Definition 2.31. A pair (M, w) of a von Neumann algebra M with normal, faithful state w has the Haagerup
property if there exists a net {¢; };er of cp maps ¢; : M — M such that wop; < w and such that the GNS-maps
T; : 0y — i(x)€, extend to compact operators converging to 1 strongly.

Remark 2.32. In [CaSk14] it was proved that if a pair (M, w) has the Haagerup property, then the cp maps
©; can be chosen unital and such that wo ¢; = w. Let (H,, Q) be the GNS-space with cyclic vector Q,
and H?, the space orthogonal to €. Define ¢}(z) = i((p,(x) +ew(z)),z € M and let T/ be its GNS-map
H. — M determined by €, — ¢} (x)€,. The restriction of T/ to the space H¢ then has norm less than
1%FEHTZH This shows, letting € — 0, that in Definition 2.31 we may assume that || 75|30 || < 1.

Corollary 2.33. Mr has the Haagerup property if and only if M,, has the Haagerup property for allv € VI.

Proof. By considering inductive limits we may assume that the graph I" is finite. Suppose that M, has the
Haagerup property for all v € VI'. Let ¢, ;, : M, = M, be a net of state-preserving ucp maps with compact
LZ-implementation T, ;, and such that ||, (a) —al]lz — 0 for all @ € M,, and all v € VT. By Remark
2.32 we may assume that [T, ;, || < 1. Define the net of ucp map ¢; : Mpr — Mr, each g; is the graph
product of the ¢, ;, , v € VI' and the net structure for ¢; is given by the product of the nets for ¢, ;,. Since
[T, 25| < 1 and T is finite it follows that the L?-implementation of ¢; is compact. Also, |[¢;(a) —allz — 0
for all reduced operators a € Mrp. Since the linear span of 1 and the reduced operators is weakly dense in
Mr, the convergence holds for all a € Mp, from which one easily deduces that Mr has the Haagerup property.
The other implication is an obvious consequence of the fact that M,, C Mr admits a normal state preserving
conditional expectation value. O

3. GRAPH PRODUCTS OF DISCRETE QUANTUM GROUPS

In this paper we need compact and discrete quantum groups both in the C*-algebraic and von Neumann
algebraic framework. We recall their preliminaries here. We define graph products of quantum groups and
give their basic properties.
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3.1. C*-algebraic compact/discrete quantum groups. We write Span for the closed linear span.

Definition 3.1 (Wornonowicz [Wo87]). A compact quantum group G is a pair (A, A) of a unital C*-algebra A
together with a comultiplication A : A — A ® A (minimal tensor product) which is a unital *-homomorphism
such that (A ®id) o A = (id ® A) ® A and such that the following cancellation laws hold:

Span A(A)(A® 1) = Span (1 ® AJA(A) = A® A.

Any compact quantum group G admits a unique state w on A that satisfies (w ® id) o A(z) = w(x)la =
(id ® w) o A(z). w is called the Haar state. The GNS-space with respect to w shall be denoted by H.

Let G = (A,A) be a compact quantum group. A (finite dimensional) unitary representation is a unitary
operator u € A ® M, such that (A ® id)(u) = wjsuss where ugs = 1 ® u and u13 = (¥ ® id)(ug3) with
Y :A®A = A®A the flip map. We denote Irr(G) for the equivalence classes of irreducible representations of
G and for a € Irr(G) we let u® be a concrete representation that is equivalent to . Note that in the literature
our notion of representation is often also called a corepresentation. We use n,, for the dimenstion of u®, i.e.
u® € A® My,,. We shall write uf'; for the matrix coefficient (id ® we, ¢;)(u®) € A in case e;,1 <i < ng is an
orthonormal basis of C™.

We set Pol(G) C A for the space of matrix coefficients of finite dimensional representations of G. It is well-
known that Pol(G) is a *-algebra. Let v € Irr(G) then we denote p., € B(H) for the projection onto the closed
linear span of the coefficients of " identified within H.

Let G denote the discrete dual quantum group of G. Typically we will write G = (Rﬁ) We have A =

Cactre (@) Mn,. We let € be the counit of G which is the unique *-homomorphism A — C that satisfies
(e®id)o A(z) =z = (id ® €) o A(x).

Every compact quantum group comes with a maximal (= universal) and a reduced version and we shall from
this point fix a compact quantum group G and let (A, A) denote the associated reduced (compact) quantum
group and let (A,,, A,,) denote the associated maximal (compact) quantum group. There exists a canonical
surjection v : A, — A that preserves the comultiplication. We refer to [Ku01] for the definition of maximal
(= universal) quantum groups. There is no distinction between maximal and reduced versions of G= (K, 3)
since for a discrete quantum group these always agree.

Remark 3.2. If G; = (A1, A1) and Gy = (A, Ay) are compact quantum groups then Gy x Gy is the quantum
group whose C*-algebra is given by A; ® Ay and with comultiplication A = (id ® ¥ ® id) o A; ® Ag, where
YA ®A; = Ay ® A is the flip map.

3.2. Von Neumann algebraic quantum groups. Let G be a compact quantum group. Let M be the von
Neumann algebra given by the double commutant of A. A : A — A ® A lifts uniquely to a unital, normal
x-homorphism M — M ® M which we keep denoting by A. Also the Haar state w extends to a normal state
w on M. Then (M, A) forms a von Neumann algebraic quantum group in the sense of [KuVa03] with w both
the left and right Haar state.

We say that G is if Kac type if w is tracial. If G is of Kac type then there exists a x-antihomomorphism
:M — M called the antipode and which satisfies r(ug;) = u$,. We let & : M — M be the dual antipode. It
may be characterized by (k ® K)(W) = W where W is the left multiplicative unitary from [KuVa03] (though
this is not the definition, it suffices for our purposes).

3.3. Graph products, their representation theory and Haar state. For allv € VT, let G,, be a compact
quantum group with full C*-algebra A, ,,,, reduced C*-algebra A,, von Neumann algebra M,,, Haar state w,
and comultiplication A, (on any of these algebras). Let A,,(= Ar ,,,) be the maximal graph product C*-algebra
associated to the family of C*-algebras (A, m)vevr. Since w, is faithful (resp. normal and faithful) on A,
(resp. on M,), we can also consider the reduced graph product C*-algebra A (= Ar) associated to the family
(A, wy)vevr and the graph product von Neumann algebra M (= Mr) associated to the family (M, w,)pevr.
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By the universal property of A,,, there exists a unique unital *-homomorphism A : A,, — A, ® A,, such
that Ala, = A, for all v € VI'. From [Wa95, Definition 2.1°] we can show that G = (A,,, A) is a compact
quantum group. Indeed, for all v € VT, the inclusion A, ,,, C A,, intertwines the comultiplication, it induces
an inclusion Irr(G,) C Irr(G). Since the matrix coefficients of Irr(G,) generate A,, as a x-algebra this shows
that the conditions of [Wa95, Definition 2.1°] are satisfied and hence G is a compact quantum group.

Note that it is at this point not clear that (A,,, A) is the underlying universal quantum group of G in the sense
of [Ku01]. In fact this is true as follows from Theorem 3.4 below. We shall also prove that M and A are the
algebras of the underlying von Neumann and reduced C*-algebraic quantum group. In order to distinguish
notation we shall — only in this section — write C,,(G), C;-(G) and L>°(G) for the full and reduced C*-algebra
associated with G as well as its von Neumann algebra. Also write vg : C,,(G) — C,.(G) for the canonical
surjection and L?(G) for the GNS space of G.

Definition 3.3. A unitary representation u of G is said to be reduced if it is of the form v = u** ® ... @ u®~,
where n > 1, v = (v1,...,vy) is a reduced word and ay, € Irr(G,, ) \ {1} for all 1 <k < n.

Let vy, : Ay — A, be the canonical surjection. By the universal property of A,,, we have a unique surjective
and unital *-homomorphism v : A,, — A such that v|a, = v;,.

Theorem 3.4. We have,

(1) The Haar state w of G is given by w = wr o v.
(2) All the reduced representations are irreducible and any non-trivial irreducible representation of G is
unitarily equivalent to a reduced one.

(3) We have Cp,(G) = A, Cr(G) = A, L®°(G) =M and v = 1;.

Proof. (1). Let P C A, be the linear span of the coefficients of the reduced representations (so 1 ¢ P). Since
P equals the linear span of the reduced operators a € A, relative to the family of states (w, ),evr (see Remark
2.11) and of the form a = a; ... ay,, with ax € Pol(G,,) it follows that the linear span of 1 and P is dense in
A,,. Hence, it suffices to show the invariance of w on P. Since A(P) C P @ P and v(P) is again contained in
P (viewed within Ar) of the reduced operators in Ar we have (id @ w)A(P) C (id @ w)(P @ P) = {0}. In the
same way we find (w®id)A(P) = {0}. Hence, for all a € P, one has (id®@w)A(a) = (w®id)A(a) = 0 = w(a).

(2). This assertion was already proved in (1). Indeed, since w(P) = {0}, we have (w ® id)(u) = 0 for every
reduced representation, which shows that the reduced representations are irreducibles. Moreover, since the
linear span of P and 1 is dense in A,,, every non trivial irreducible representation is equivalent to a reduced
one.

(3). Since v is surjective and wr is faithful on A, it follows from (1) that A = C,(G), H = L*(G) and
M = L*>°(G). It follows from (2) that Pol(G) is the linear span of P and 1. Hence, C,,,(G) is generated, as a
C*-algebra, by |,y Pol(G,) and the relations a,a, = a,ra, are satisfied in Cy,(G), for all a, € Pol(G,),
a, € Pol(G,) and all v,v" € VT such that (v,v") € ET'. From the inclusions Pol(G,) C C,,(G) and the
universal property of C,(G,) we have, for all v € VT, a unital *-homomorphism 7, : Cp,(G,) = Cp(G)
which is the identity on Pol(G,). The morphisms m, are such that m,(a,)my (ay) = 7y (ay )Ty (ay,) for all
a, € Pol(G,), a,r € Pol(G,) and all v,v" € VI and C,,(G) is generated by |, ¢y 70 (Crm(Gy). By universal
property of A,,, we have a surjective unital *-homomorphism from A,, to C,,(G) which is the identity on
Pol(G). Hence, A, = C,,,(G). That v = g follows then since these maps are x-homomorphisms that agree
on Pol(G). O

3.4. Haagerup property of discrete quantum groups. We show that the Haagerup property of discrete
quantum groups is preserved by the graph product. In case the quantum group is of Kac type this follows
from Corollary 2.33 and [DFSW13, Theorem 6.7]. Since it is unknown if the correspondence in [DFSW13,
Theorem 6.7] holds beyond Kac type quantum groups the general case requires a proof. The special case of
free products was proved in [DFSW13, Theorem 7.8] the special case of Cartesian products of quantum groups
can be found in [Fr14, Proposition 3.4].
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3.4.1. General discrete quantum groups. Firstly recall the following equivalent definition of the Haagerup
property for discrete quantum groups, see [DFSW13, Proposition 6.2 and Lemma 6.24].

Proposition 3.5. A discrete quantum group G has the Haagerup property if and only if there is a sequence
of states (pi)ren on Pol(G) such that:

(1) For each k € N we have ((.Fuk)o‘)aem(@) € [ocrn@ Mn. is actually in aerrec)Mn, -

(2) For each o € Irr(G) the net ((Fu)®)ken converges to the identity matriz.
If these conditions hold, then we may moreover impose the following conditions on the net (uk)ken,

(3) For each k € N and o € Irr(G) with a # 1 we have that ||(Fu)®|| < exp(—1).

Recall the following definition from [BLS96] and recall that Pol(G) is a unital *-algebra for every compact
quantum group G.

Definition 3.6. Let A be a unital %-algebra over C. A linear map w : A — C is called a state if w(1) = 1,
w(a*) = w(a) and w(a*a) > 0 for every a € A.

Let A,,v € VT be unital x-algebras, each equipped with a state ;. Let A be its algebraic graph product which
is defined as the unital x-algebra freely generated by A,,v € VI subject to the relation that a,a,, = aya, for
any a, € Ay, a, € Ay, such that (v, w) € ET (and the units of each A, are identified). Using the decomposition
A; = C1oA7 with A; = ker p; we may identify A with the vector space C1&@D,,  , e, As, @A, @. . .QA; .

Suppose that there exists a state 1, on each A,,v € VI, then the algebraic graph product functlonal P =
OuevT Yy, o) on A is defined as ¥(ay ... an) = ¥y, (a1) ... %y, (an) whenever a; € A3 with vy ... v, € Wiin.

Note that ¥ depends on the choice of ¢,,.
Now let again G,,v € VI be a compact quantum group and G be its graph product.

Theorem 3.7. The discrete quantum group G has the Haagerup property if and only if for every v € VI we
have that G, has the Haagerup property.

Proof. Using [Frl4, Proposition 3.7] it suffices to prove the theorem under the condition that the graph T’
is finite. Firstly, suppose that for every v € VI the quantum group @v has the Haagerup property. By
Proposition 3.5 there exists a sequence ({1 )ken of states on Pol(G,) satisfying (1) - (3) of this proposition.
Recall that w, is the Haar state of G,. Let up = opeyr(fy k,wy) denote the graph product functional as
defined in the paragraph before this theorem.

We claim that pg, k € N is again a state. This follows from the following standard argument. For convenience
of notation fix £k € N. From the state p,  on Pol(G,) we may follow the usual GNS-construction to find a
pre-Hilbert space H, ¢ with cyclic unit vector &, and representation m, such that i, x(x) = (7 ()€, &)- Let
A, be the maximal C*-algebra associated with the quantum group G,. As in [DijKo93, Lemma 4.2] the
map 7, extends to a *-homomorphism A, ,,, = B(#,) with #, the completion of #, . Let B be the reduced
graph product C*-algebra of m,(A, ), v € VI' and let £ denotes its cyclic vacuiim vector. Since m,(Ay,m) is
included into B naturally we may regard m, as a *-homomorphism A, ,, = B. The universal property of the
maximal graph product C*-algebra A,, then yields a *-homomorphism 7 : A, — B. Let uj be the state on
A, defined by p(x) = (m(z)€,€) and denote by uy the restriction to Pol(G). It follows from Theorem 3.4
that indeed Pol(G) is the algebraic graph product of Pol(G,),v € VI' and by construction it follows that py
is the graph product of the states p ., v € VI. In particular p, is again a state.

Let a;,1 < j <1 be elements of Irr(G,,) with v; such that viva...v; € Wyin. By definition of the graph
product and the graph product representation a; ® ... ® ay,, see Theorem 3.4, we see that,

(Fp) ™80 = ) (i, 1)

It is then straightforward to verify conditions (1) and (2) of Proposition 3.5. Note that the second condition
follows from the fact that I is finite and that ||(Fpy,)1 €@ || < exp(—4). O
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4. RAPID DECAY

We prove that the property of Rapid Decay (RD) for discrete quantum groups is preserved by taking graph
products of finite graphs under suitable conditions on the vertex quantum groups. In particular our result
holds if every vertex quantum group is either a classical group or a quantum group with polynomial growth.
This generalizes the result of [CHR13] which proves the corresponding result for discrete groups.

4.1. Preliminaries on elements affiliated with a C*-algebra. For unbounded operators affiliated with
a C*-algebra we refer to [Wo91]. In case A is the C*- algebra of a discrete quantum . group G the notion of
affiliated elements simplifies. In that case the x-algebra A" of affiliated elements with A can be identified with
the algebraic product [] acln(G) M, and for each operator in A" the vector space Hpol (the space of matrix

coefficients of finite dimensional representations of G identified as subspace of H) forms a core. For L € A"
we will write Haem(G) L) for this representation. One can apply *-homomorphisms of A to A” such as the

counit € and comultiplication A as well as proper maps such as the antipode # of a Kac type discrete quantum
group.

4.2. Definition of Rapid Decay. Let G = (A, A) be a compact quantum group with discrete dual G =
(K, 3) Then A = Daetrr(G)Mn,, where n, is the dimension of . In case G is of Kac type its Haar weight
W is given by @ = @acnr(@)nalrnr,, where Tryy, —is the normalized trace on M, . For every a € Irr(G)
let u* € A® M, be a corepresentation belonging to the equivalence class o. The Fourier transform F of
T = Daelrr(G)Ta € A with finite direct sum, is defined as the element,

> ([deo)(u*(l @)

a€clrr(G)

Definition 4.1 (Lengths and central lengths). A length on G is an (unbounded) operator affiliated with A
that satisfies the following properties: L > 0, €(L) = 0, K(L)|#p,, = L|#p,, and K(L) <1®L+L®1. Given
such a length we denote ¢, € M(K) (the multiplier algebra of 3\) for the spectral projection of L associated
to the interval [n,n+ 1) with n € N. L is called central if each of its spectral projections are central in M(K)

Definition 4.2. Let L be a central length on the discrete quantum group G = (3\, A). We say that (G, L) has
the property of Rapid Decay (RD) if the following condition is satisfied: there exists a polynomial P € R[X]
such that for every k € N and a € ¢;A and for every m,l € N we have ||¢nF(a)q | < P(k)| al|2-

In fact there are other equivalent formulations of (RD), see [Ve07, Proposition and Definition 3.5] or [Jo90]
for the group case.

4.3. Permanence properties of (RD). We prove permanence properties of (RD) under graph products.
In particular we prove that (RD) is preserved by free products.

Lemma 4.3. Let G be a compact quantum group of Kac type with discrete dual quantum group G= (;&, 3)
Let {u® | a € Irr(G)} denote a complete set of irreducible mutually non-equivalent corepresentations and

let ug'; = (id ® we, ¢;)(u®) denote its matriz coefficients with respect to some orthonormal basis e; of the
representation space Hqo for which,
(4.1) w((ufy) ug ) = dikdjang

(see [Dal0, Proposition 2.1]). The contragredient corepresentation @ is given by ula] =u$,; (and this definition

is consistent with (4.1)). Let E?; € A be the matriz with entry 1 on the i-th row and j-th column of the matriz
block indexed by a € Trr(G) and zeros elsewhere. Then K(E;) = ES;.

Proof. The proof is a consequence of the relation r(ug;) = (uf‘l)* and using duality between G and G. So let
[0

wii(+) = na w((uf;)* ) so that by orthogonality (see [Dal0, p. 1351]) we have,
(4.2) (wi; ®@id)(W) = E7;

l_]?
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where W = @,cnr@)u®. Then we have using that for Kac algebras 2 = id, k is an anti-homomorphism,

wo Kk = w, traciality of the Haar state w and the relation s(ug';) = (u$,)*, see [Ti08],

witj ok = w(k?((ui;) () = wlk(- H((UE’;j)*))) w(+ w((ui;)")) = wk((ui;)") -)
=w(r(ui;)* -) = ( -) = w((ugs)" ),
so that (wf; o k ®@id)(W) = (4.2). This means that using the relation (kx ® &)(W) = W [KuVa03],
E(E;’J) = f(wi'; @id)(W) = (wi; ok @ 1d)(W) = EJEZ
O
Now let us return to graph products. So let I' be again a simplicial graph and for each v € VT let G, be a

compact quantum group with discrete dual @U. Let G be the graph product of G,,v € VI and let G be its
discrete dual. From Theorem 3.4 we see that the C*-algebra A associated to G equals

®a€Irr(G)Mnal Q...® Mnal,
in case @ = a1 ®...® . For k € N we shall use the notation Ay for the subspace defined by
@‘X’EI”(G)7CK=C¥1®“.®O¢;€Mnal ®...0 Mnak,

so the subspace of exactly k-fold tensor products of matrices. Let w € VI'. We shall denote P, : H — H for
the projection onto the linear span of the Hilbert spaces H, with v € Wy a word that is equivalent to a
word that starts with w. The following Lemma 4.4 is well defined now.

Lemma 4.4. For v € VI' suppose that L, = @aem(G)LSﬁ)

@U. Define,

s a central length for the discrete quantum group

()
(4.3) L= 1] Y im, ® @y, L@y, ©. 01y

o4
a€lrr(G) =1

(0

where each o € Irr(G) decomposes as the tensor product representation oy & ... ® qyq) and o € Irr(Gy,).

Then L is a central length function for the discrete quantum group G.
Proof. We first check that A(L) < L ® 1+ 1® L. Recall from [Fil0, Eqn. (1) in Proposition 3] that,

R e®B if vCa® I6]
_) Py try=a®p
(4.4) A(py)(pa @ pg) = { 0 otherwise,

where p;@ﬁ € B(Ho ®Hp) is the projection onto the sum of all subrepresentations of a® 8 that are equivalent
to 7. Since the length functions L,,v € VI are central, we know that L, = ©qcn(G,)fv(®)pa for some
fo : Iir(Gy) — [0,00) and similarly L = @qcnr(c)f(@)pa. In fact, by definition of L we have that f(a) =
for(@1)+ ...+ fo (an) in case @ = a1 ... @ . The condition A(L) < L®1+1® L now becomes equivalent
to the property that for every a, 8 € Irr(G) we have E(L) (Pa ®@pg) < (L®1+4+1® L)p, Q pg, which by (4.4)
is equivalent to,

(4.5) S PSP < (f(@) + £(8)pa @ pp.

velrr(G),yCa®B

Now fix a = 01 ® ...® a, € Irr(G) and f = 1 ® ... ® By € Irt(G). Let v; and w; be such that
a; € Irr(Gy,) and f; € Irr(Gy,). o ® B is not necessarily irreducible, c.f. Theorem 3.4. If (v;,v;+1) € ET
then a; ® ... ® o, is unitarily equivalent to a1 ® ... @ a;—1 ® @41 ® @ @ 2 ® ...y, by intertwining with
the flip map id@”‘*1 ® Y ®id®" ! | Therefore, without loss of generality we may assume that there exists r
such that vy ...v,.wq ... wy, is reduced and vy ... v, W1 ... Wy = V1 ... VW1 ... V. Note that this implies that
Wi, ..., Wy—p commute and {wy,...,wy—r} = {Vr41,...,0m}. Therefore, without loss of generality we may
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assume that v,11 = w1, ..., v, = W,_, (since B is equivalent to a representation for which this is true, again
by intertwining with flip maps). Then o ® 8 is equivalent to

(46) al@---®ar®a7‘+1®ﬂl®a’r+2®62®-~-®an®6n7r®6nfr+l®~--®5m~

Suppose that v € Irr(G) is contained in (4.6). Then by the Peter-Weyl decompositions of ;41 ® 81,..., @, ®
Brn—r, there exist irreducible representations vi,...,Vn—r with 71 C @31 ® B1,-- ., Yn—r C Qp ® Br—r such
that y ¥ a1 @ ... 0 @71 ® ... @ Yy @ Brrt1 @ ... ® By, This implies that f(y) = Y, fu, () +
Yoy fo (V)2 i1 fuw, (Bi) and since f,, ., is alength function, this implies that f(v) < 377, fu, (as)+
it (foren (i) + fu, (B0)) + 221 it fu (Bi) = 201 fo () + 350 fuw, (Bi) and so condition (4.5) holds.

Next we check the relation k(L) = L. Let a € Irr(G) and assume that it decomposes as a reduced tensor
product a3 ®...® ay,. The contragredient representation (see Lemma 4.3) is then given by @, ® ...®a7. This
implies, using Lemma 4.3 and its notion, that K(E;'; ®...® E"; ) = E;‘T",in ®...® E?Tl,il = KB, ®

... ®@R(E. ). Applying the latter observation to (4.3) yields that ®(L) = L.

21,J1

Finally, we have €(L) = f(g)Pagy, With ag € Irr(G) the trivial representation. Since f(ag) = 0 we have
(L) = 0.
]

The following lemma uses the notion of polynomial growth for which we refer to [Ve07]. Examples of
discrete quantum groups with polynomial growth can be found in [BaVe09)].

Lemma 4.5. Let Gy and Gy be compact quantum groups such that (Gy, Ly) has (RD). If either (Gg, L) has
polynomial growth or is a classical discrete group with (RD) then Gy x Gy has (RD).

Proof. Let q,il), q,?) and ¢x be the spectral projections onto [k, k + 1) of respectively L, Lo and L. Also write
q(<12C = Z?:o qj(,l), q(<212 = Z?:o q§2). Let ;‘\\1, A\g and A be the C*-algebras associated to the duals of respectively
G1,Gy and G. Let Py, P; be the polynomials witnessing (RD) for G and Go respectively.

In order to prove that for z € gxA we have || F (2)gm|| < P(k)||z||> for some polynomial P it suffices to prove
for every k the following estimate holds,

IF@)] < P(k)lzllz,  forall z € (¢1) ® ¢C))A,

as follows from the fact that qgg ® q(;,z > qi. Observe that, by definition, we have F(a ® b) = F1(a) ® Fa(b)

for all a € qgg;‘:l and all b € qg,iﬂg.

First assume that (@27 Ls) has polynomial growth (so, in particular it is an amenable discrete Kac algebra
with property (RD) [Ve07]). Let &; be the Haar weight on A;, i = 1,2. By polynomial growth we have
o <q£L2)) < P3(n), where P; is a polynomial with P3(n) > 1 for all n. Let z € (q(gl,z ® qgg);/’-i be a finite

sum z = Y. a; @ b;, where a; € qg,zﬂl with ||ai]|l2 < oo and b; € qggﬂg with ||b;]l2 < oo for all i. We may

and will assume that (a;) is an orthonormal system with respect to the scalar product given by @;. Hence,
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213 =32 [1b:13 and,
[F @I = IIZE a;) @ Fa(bi)|| < lefl a;) || | F2(bi) || < Pr(k leaz\lzllb B

DIP2 () 3 bl < Pi (k) Pl )/ dim(¢ZA, /Zub 13 = Pr(k)Po(k)y/ dim(a2)As) ]

= P®PW®)ela /@ (42) = PP

IN

k
SR | el < Q)2
=0

where @ is a polynomial.

Now assume that (@2,[/2) is a discrete group, denoted by G, with property (RD) so that we may take
x € (q(<,1 ® q(z))A to be a finite sum of the form x =} a, ® d,, where a4 € q(<kA1 with ||agll2 < oo for all
g, 94 € l°°(G) is the Dirac function at g € G and a4 = 0 for all g € G such that La(g) > k. Hence we have
Hx||§ =2 lagl|3 and F(z) = >y Filag) ® Ay, where \g € B(I1?(G)) is the left translation by g € G. Let

¢ € L*(Gy1) ® I*(G) be a finite sum £ = Y, &, ® 6, One has:

IF@EIF = 11 Filaghen ®nll3 =11 Y Filag)ég-1n @ dull3 = Z | Zfl (ag)g-1nl3

g,h g,h
2
> (Z fl(ag)fgthQ) <Pk (Z llagll2 1€4- 1h||2> = Pi(k)? Y * ¢l )
h g h

where 1), ¢ € I?(G) are defined by ¢/(g) = [lag]l2 and ¢(g) = [|&]|. Observe that ¥} gy = 32, llagl3 = ||=I3
and (o]l ) = g 166117 = 122, & ® dg[1> = [|€]|>. Since 4 is supported on elements g € G of length less that
k, we may use (RD) for G and we find:

IF@)EN? < Pr(k)*Po(k)? |9l o 10l () = Prlk)* Po(k)? [l ]311€]1%.
This finishes the proof. (|

Let P, : H — H be the projection onto the closure of the span of the spaces Hy with w a minimal word
of length m € N.

Proposition 4.6. Let T' be a finite graph and for every v € VT let G, be a compact quantum group such that
(Gy, L) has (RD). Moreover, assume that for every clique To of T' the graph product @Fo has (RD). Let G be
the graph product with respect to I' and let G= (ﬁ, 3) be its discrete dual. There exist a polynomial P € R[X]
such that for every k,l,m € N such that |k —1| <m <k+1 and a € K(k) we have || P F(a)P|| < P(k)||all2.

Proof. For each v € VI we let a, ;,j € J, be elements of A such that @, ; := @, ;Q,,j € J, is an orthonormal
basis of HS. Set &, ; = a §= a;jQU,j € J, which also is an orthonormal basis of H since G, has a tracial
Haar weight [Ve07, Proposition 4.7]. In particular, ||, ;|| = [[@y,;[|. Throughout the proof we shall use the

convention that a summation ) Qv in fact is the summation over j € J,. To prove the proposition it suffices

to assume that,
]:<a) = E E )‘W,jhm,jkawhh o Qo gy s
WEWnin,l(W)=k j1.--Jk

f = Z Z ,U/vjl,m,ilé-'ul,il ®X...Q fvl,ip

VEWnin,l(v)=l141...7;
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Firstly, using the notation introduced before Lemma 4.4,

(4.7)
Pm}—(a)f

=Pm Z Z >‘W:j1,~--’jk(Pw1 +P1{1_1)a‘w1,j1(Pw1 +P’j1_1)(P'UJk +P’j)_k)awk»jk(Pwk +P7j;_k)
WEWnin,l(W)=k j1,.-,Jk

X Z Z ,Uv,il,...,ilfvl,il ®...0 gvlyil

VEWmin, l(V)=l11,...,%1

A large part of the terms in the product of these sums vanishes in fact as follows from the following observations.
Reduction of the operator part. Firstly, consider an expression:

(4.8) QP ay, QW ... QP ay, ;,QW),

with QS} and Qﬁ) equal to either P, or Pji . Assume that (4.8) is non-zero, then this implies the following:

(1) It Q“) PE then QF) = P,
(2) If Q = P,,, then it must be true that QS,},)A = P or (wi—1,w;) € ET.

These observations yield that without loss of generality (4.8) can assumed to be of a specific form.

e We claim that (4.8) can be assumed to be of the form:
(49) Q(2)awl7jl le et Q(2)aw51.]5Q(1)P’j)_5+1aws+lujs+lPws+l e Plf)_kawk7jkPwk7

where for every 1 < ¢ < s we do not have that Q(2) PJ-, and Q(l) P,,. In order to prove this
claim first note that if Q(2) Pz and Q(l) = P, then it follows from (2) that either Q(Q.) = Pt

Wit1 Wit1
dQL,, =P
an wit1 — Twipq

or (w;,w;+1) € ET. It then suffices to show that in the latter case the operators
Py ay, j, Po, and Qwi)+1awi+1,ji+1Q'(wli)l commute. So firstly observe that P, P,,,, is a projection and
hence P,, and P,, , commute. By taking complements any of the projections PwZ,P P, and

Wi41
Ptt . commute. It follows from Lemma 2.3 that Py a,,;, Py, and Qﬁ)ﬂawi 1o +1Qwi)+1 commute.

This concludes (4.9).
e An analogous argument as in the previous bullet point yields that without loss of generality we may
assume that (4.8) has the form,

Wi41

(4 10)

(1) p(2) ) (1) (2) - p)plL )
le awl,h le . QwT au’r7]7 Q Pw,+1a’wr+17jr+1pwr+1 et Pw awstP Puls+1a’ws+17]s+lpws+l . P awk ]kpwk7

and that for every 1 < i <r we do not have that Q(l) Py,.

o I QL) = P then this implies that QP = P, by (1). So (4.10) shows that the expression (4.8) can
be written as,
(4.11)
P, w, jy Pa, - Pu,aw, j, Pa P,

W1 Gwpg1,jrgt

P,

Wr41 *

Py ay, ;. P, Pt

wst w, +1 Ws+1,]s+1

Pws+1 : P o Qi ]kPk

for some 0 < r < s <k (the cases r = 0 and s = k should be understood naturally).
e Moreover, suppose that s > r + 1. Then it follows from (1) that (wy41,wr42) € ET. As in the
first bullet point this implies that Py, ., Gw, 1 j.41 Pw,n 804 Py, G,y g, 40 P, commute. Hence
it follows from (2) that (w,y1,w,1+3) € ET (provided that s > r9) and inductively we find that
(wr41,w;) € ET for every r + 1 < i < s. The same argument yields that actually (w;,w;) € ET for

every r + 1 < 4,57 < s. We conclude that w,41,...,w, are in clique of T'.

Reduction of the vector part. Now suppose that a vector &,, ;; ® ... ® &, 5, is not in the kernel of
(4.11). Then this implies that we may assume (using the commutation relations given by ET to permute
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terms in (4.11)) that v1 = wg, ..., Vg—r = Wyr41, that wy ... w41 is contained in a clique and furthermore that
Vk—r+1 7 Wr. And in that case,
(4.12)

1
Pu o P 5 P )

(Pwlawl,hpil .. 'Pwrawr,jrpj;rpw’f‘#»lawr+1)j7‘+lpw7‘+1 o Py a5, P, Pltﬂawsﬂ,jsﬂ
(fm,il ®...0 fvz,iz) =

awl,jl Q... awr7j7‘ ® Pws a'wsvjsgkasﬁ»lyikfs{»l ®...® PwT+1awr+1’jr+1£vk*7‘7ik*7‘

® gvk—r+17ik—r+1 ®...® fvl,iz X <awk,jk£ﬂ1,i179> ce <aws+17js+lgvk—saik—s7Q>’

where we explicitly mention that some of the indices in the triple dots of the right hand side of this expression
either increase or decrease by steps of 1. Looking at the length of tensor products shows that (4.12) is in the
kernel of P, unless m+k—1l=s+r.

Remainder of the proof. Now we conclude from (4.7) and (4.12) that,

(4.13)
| P F ()3
< > > > > >
m+k—1=s+nru,...,us—) € Cliqp(s — 1) W,V € Wain, Jlyevsdry Alyveylp_g,
0<s,r<k l(w) = Fk,l(v) =1, Jsalsvos Tk Thmrdlye oyl
V1 = Wk ... V—r = Wril,
(/Uktfs+17 sy vk*’l‘) = (ws7 e 7wr+1) = (Ul, e 7“577‘)
(@ o M3 - Ny g3 X s (@i l12 - - - G in— NG o 12
2
Z Awpr,rgr - Qws s Z Evkﬂ-,ikﬂ- Q... kafs+17ik75+1
Jr415--0s G —pyersbh—st1 5

We have, since @po has (RD) by assumption for every clique I'g in T,

2
E Awyg1,jrgr -+ Qws,js E gkamikfr ... gvk75+1>ik—s+1
jT+17~~-7js ik77*7---1ik75+1 2
(4.14) . ,
SP(S - 7‘) E Awyiy,jrgr - Qws,js E E'kaw“»ik—r ®...0 gvk—s«#lyikfs{»l )
Jrt1sesJs 2 Th—ryeylh—s+1 2

for some polynomial P. Let @ be a polynomial such that P(s —r) < Q(k) for any choice of s, € N with
0 < s,r < k. Combining (4.13) and (4.14) we see that,

[P F(a)é]3
< > > > > X
m+k—1=s+nu1,...,us—r) € Cligp(s —r) W,V € Whin, Jlyeevs Tl 01y nvs1y
0<s,r<k I(w)=k1(v) =1,
V1 = Wk - .. Vg—y = Wr41,
(vk—s-i-la s 7Uk—r) = (w87 cee 7wr+1) = (uh B us—r)
Q(k>”aw1’j1 ”3 s H/a\wImjk ||3H§Ul,i1 ||% s ||§’Ul7il ”%

<M (k +1)*Q(k)l|all3I€][3-

where M is the number of cliques in I', which is finite since I is finite. O
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Lemma 4.7. Let G be a compact quantum group and let L be a central length associated with G. Then there
exists a central length L' > L associated with G such that L'p, > 1 for every a € Irr(G) nontrivial.

Proof. Since L is a central length we may write L = ©qcne(c)f(@)pa. We define the central length L' =
Dactrr(@) [ (@)pa, where f'(a) = f(a)+1if o is nontrivial and f'(a) = f(«) in case « is trivial. As in the proof
of Lemma 4.4 the condition A(L') < I’®1+1® L' is equivalent to checking that Yo elin(G) 4 Ca®p f’(fy)pi‘y@ﬁ <
(f'(a) + f'(8))pa ® p3. However, this condition easily follows from the fact that if both o and J are trivial
then a® 8 is trivial and so + is trivial whenever v C a® 8. The condition K(L') = L’ follows as in the proof of
Lemma 4.4, see also Lemma 4.3. And finally by definition of the counit we have €(L') = f'(ag) = f(ap) =0
with o € Irr(G) trivial. O

Theorem 4.8. Let I' be a finite graph and let for every v € VT, @v l/)\e a compact quantum group such that
(GU, L, ) has (RD). Assume that for every clique I'g the graph product Gr, has (RD). Then the graph product
G := Gr has (RD).

Proof. Let L,,v € VT be the lengths for G, and let L be the length defined in Lemma 4.4. Assume by Lemma
4.7 and [Ve07, Remark 3.6] that,

(4.15) Lypa > 1, Yo e VT, a € Irr(Gy,).

This implies that Lp, > [(a) where I(c) the length of the reduced expression a = a3 ® ... ® qya,) With
a € Irr(G).

By Proposition 4.6 there exist a polynomial P such that for every k,l,m € N such that |k — 1| <m < k+1
and a € A(k) we have ||P,, F(a)B|| < P(k)|al|z2

Now, let a € qk,& and write a = Z?:o ag;y with agjy € 3\(]-), which is possible by the first paragraph. Take
a vector v € qyH and write v = Zé:o vy with vy = Pv. Since Z;n:o P, > q,, and the projections P, are
orthogonal, it follows that |[gnF(ajy)avl|3 < Yo [|PrF(agy)qv||3- Next, we have an elementary equality
that follows by considering word lengths and an inequality which follows from Cauchy-Schwarz and the triangle
inequality,

m Jj+r

ZHP}' (a)) @l —ZH > PF(agy)v i
i=|j—r|
m J+r
<Ei+1Y D IPF(ag)vel
r=0i=|j—r|

Now, for |j —i| <r < j+ i we have,
1B Flagyvallz < PG llag 310 12

For other values of r we have || P, F(a¢j))v@)l|3 = 0. Since as we observed |i — j| < r < j + i for any given
value of ¢ this shows that we can estlmate

Jj+m m
Z P Fagy)aolls <PG)? 25 +1) Y Y llagI3lve 113
r=0 =0 r=0
jtm
<SPG5+ 1) lagl3llve 13
=0

<P(j)*(2) +1)lay3llvll3-
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Now, using the triangle inequality and the Cauchy-Schwarz inequality we have
k

lgm F(a)qol3 < ZIIqm (ag)@vll2)® < (k+1) Y llgmF(ag))aoll3
=0

k
<(k+1) 3" P25 + VMl Bllo]3 < (k + 1)k + 2P/ (R)lal3llol3 = P (R)llall3l0l3,
7=0

for some polynomials P, P', P" that satisfy the property that for every 0 < j < k we have P(j)? < P'(k) and
P"(k) = (k + 1)(2k + 1)2P' (k). O

Corollary 4.9. Let ' be a finite graph. For every v inVT let G, be a compact quantum group and assume
that G, has either polynomial growth or is a classical compact group with (RD). Then the discrete dual of the
graph product, i.e. G, has (RD).

Proof. This is a consequence of Theorem 4.8 and Lemma 4.5. ]

Corollary 4.10. Let T" be finite and without edges. Let G = x,cyrG,. If for every v € VT, @v has (RD),
then G has (RD). I.e. (RD) is preserved by finite free products.

Proof. This is a consequence of Theorem 4.8 and Lemma 4.5. O
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