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THE HAAGERUP PROPERTY FOR LOCALLY COMPACT QUANTUM

GROUPS

MATT DAWS, PIERRE FIMA, ADAM SKALSKI, AND STUART WHITE

Abstract. Haagerup property (or a-T-menability) for locally compact groups is generalised
to the context of locally compact quantum groups, with several equivalent characterisations in
terms of the unitary representations and positive-definite functions established. In particular
it is shown that a locally compact quantum group G has the Haagerup property if and only if
its mixing representations form a dense Gδ set in the space of all unitary representations (on
a fixed infinite-dimensional Hilbert space). For discrete G the Haagerup property is proved to
be equivalent to the existence of a symmetric proper conditionally negative functional on the

dual quantum group Ĝ and further, if G is also unimodular, to the Haagerup approximation

property for the von Neumann algebra L∞(Ĝ). These characterisations extend the classical
results of Akemann, Walter and Jolissaint and provide a connection to the recent work of
Brannan, who showed the Haagerup approximation property for von Neumann algebras of
the free orthogonal and free unitary quantum groups. They are then applied to prove that the
Haagerup property is preserved under taking the free product of discrete quantum groups.

The Haagerup property of locally compact groups has its origins in Haagerup’s fundamental
paper [Haa], which establishes that the length function on the free group Fn is conditionally
negative-definite and uses this to prove the surprising result that the reduced group C∗-
algebra, C∗

r (Fn) has the complete metric approximation property. For a locally compact
group G, the key ingredient from [Haa] has subsequently been shown to be equivalent to
a number of conditions (see [AkW, Jo1, CCJGV]) which are used to define the Haagerup
property :

• G has the Haagerup property if it admits a mixing unitary representation which
weakly contains the trivial representation;

• G has the Haagerup property if there is a proper, continuous conditionally negative
definite function G→ C;

• G has the Haagerup property if there is a normalised sequence of continuous, positive
definite functions vanishing at infinity which converges uniformly to 1 on compact
subsets of G;

• G has the Haagerup property if there is a proper continuous affine action of G on a
real Hilbert space.

The Haagerup property can also be defined for von Neumann algebras (see [Jo2], for example)
and Choda has shown that for a discrete group G the Haagerup property is a von Neumann
property of the group: G has the Haagerup property if and only if the group von Neumann
algebra V N(G) has the Haagerup property ([Cho]).
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The Haagerup property is often interpreted as a weak form of amenability. Indeed, the
left regular representation of an amenable group is mixing (i.e. its matrix coefficients van-
ish at infinity) and weakly contains the trivial representation, so amenable groups have the
Haagerup property. Haagerup’s original result shows that free groups have the Haagerup
property. Other examples include finitely generated Coxeter groups, SL(2,Z), SO(1, n) and
SU(1, n); moreover the Haagerup property is preserved under taking free products. Striking
applications include Higson and Kasparov’s proof of Baum-Connes conjecture in the presence
of the Haagerup property ([HK]), and Popa’s deformation-rigidity approach to structural
properties of type II1 factors ([Po1, Po2]). We refer to the book [CCJGV] for the equivalence
of the various formulations of the Haagerup property, examples and applications.

In this paper we undertake a systematic study of the Haagerup property in the setting of
locally compact quantum groups. The theory of topological quantum groups has developed
rapidly in the last twenty years with the satisfactory notion of a compact quantum group
introduced by Woronowicz in [Wo2] and that of a locally compact quantum group by Kuster-
mans and Vaes in [KV1]. The theory of the latter, using the language of operator algebras,
provides a generalisation of the classical theory of locally compact groups, offers a full dual-
ity extending the Pontriagin duality for locally compact abelian groups, and encompasses a
large class of examples. As is familiar in ‘non-commutative mathematics’, a “locally compact
quantum group” G is studied via its “algebras of functions”: depending on the framework
one works either with the von Neumann algebra L∞(G) or with the C∗-algebra C0(G), cor-
responding respectively to the algebra of all essentially bounded (with respect to the Haar
measure) functions on a locally compact group G and to the algebra of continuous functions
on G vanishing at infinity. As the theory has reached a certain level of maturity, it became
natural to investigate questions relating quantum groups to noncommutative probability, non-
commutative geometry, or analysing the actions of quantum groups on classical and quantum
spaces. In particular a study of approximation-type/geometric properties such as amenability
([BeT] and references there) or property (T) ([Fi1], [KSo]) has recently been initiated, often
with a special focus on the case of discrete quantum groups. Recently Brannan proved in [Br1]
that the von Neumann algebras associated to free orthogonal and unitary quantum groups
possess the von Neumann algebraic Haagerup approximation property (an analogous result
was proved by Brannan in [Br2] for the von Neumann algebras associated to certain quantum
automorphism groups, and by Lemeux in [Lem] for quantum reflection groups). Within the

theory of quantum groups, V N(G) is interpreted as the algebra L∞(Ĝ), with Ĝ being the
dual quantum group of G. Thus, by analogy with the fact that the Haagerup property is
a von Neumann property of a discrete group [Cho], Brannan’s result can be viewed as the
statement that the dual quantum groups of the free orthogonal and unitary quantum groups
have the Haagerup property. Note here that recently it was shown in [Voi] that the duals of
free orthogonal groups satisfy an appropriate version of the Baum-Connes conjecture.

The papers [Br1, Br2] study the Haagerup approximation property for L∞(G), where G is a
discrete unimodular quantum group. The preprint [Lem] proposes this property as a definition

of the Haagerup property for Ĝ. This definition is not only not phrased intrinsically in terms
of the properties of G, but, more importantly, is problematic for more general G, as then
L∞(G) will not admit a finite faithful trace. By contrast, our starting point in the study
of the Haagerup property for a locally compact second countable quantum group G is the
classical definition in terms of the existence of a mixing representation which weakly contains
the trivial representation. We translate this definition into the quantum setting and show that
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it is equivalent to the existence of an approximate identity for C0(G) arising from completely
positive multipliers. We also set out how the Haagerup property for a quantum group can
be viewed through the lens of global properties of its representations: G has the Haagerup
property if and only if the mixing representations are dense in the collection RepGH of all
unitary representations of G on a fixed infinite dimensional separable Hilbert space. This
extends the philosophy of [Kec] to the quantum setting and generalises results of Bergelson
and Rosenblatt [BeR] and Hjorth [Hjo].

In the case when G is discrete we give two further characterisations of the Haagerup prop-

erty: the existence of a symmetric proper generating functional on the algebra Pol(Ĝ) and
(when G is in addition assumed to be unimodular – in other words its dual is a Kac com-
pact quantum group) the von Neumann algebraic Haagerup property for the von Neumann

algebra L∞(Ĝ). The first of these equivalences extends a classical result of Jolissaint on the
conditionally-definite functions, whereas the second generalises Choda’s work and provides a
formal justification for our interpretation of the results in [Br1] described above. In the last
section we use the characterisations obtained earlier, together with the theory of conditionally
free products of states, to prove that the Haagerup property is preserved under taking free
products of discrete quantum groups. The techniques used in this article are based on the
analysis of various properties of unitary representations of locally compact quantum groups,
on applications of completely positive multipliers of locally compact quantum groups, as
studied for example in [JNR] and [Da1], and on certain results concerning the convolution
semigroups of states on compact quantum groups and their generating functionals (see [LS3]).
In particular we develop several technical results which should also be of use in different con-
texts.

The detailed plan of the paper is as follows: in Section 1 we introduce necessary notations
and terminology, and prove some technical lemmas related to completely positive multipliers.
Section 2 is devoted to the analysis of containment and weak containment of representations
of a given locally compact quantum group G; then in a short Section 3 we define, by analogy
with the classical context, mixing representations and set out some of their properties. In
Section 4 we describe the topology making RepGH a Polish space and examine topological
aspects of certain subsets of RepGH. Section 5 introduces the Haagerup property for a locally
compact quantum group and presents the first part of the main results of the paper (Theorem
5.5). In Section 6 we specialise to discrete quantum groups and prove further equivalent
characterisations of the Haagerup property in this context (Theorem 6.23). Finally in Section
7 we apply the earlier results and discuss also a construction of conditionally free products
of states to prove that the Haagerup property is preserved under free products of discrete
quantum groups. Here also we discuss certain generalisations of the last result concerning
the free products with amalgamation over a finite quantum subgroup and quantum HNN
extensions.

Acknowledgements. A substantial part of the paper was written during the visit of AS and
SW to the University of Leeds in June 2012, funded by the EPSRC grant EP/I026819/1. PF
was partially supported by the ANR grants NEUMANN and OSQPI. We thank Jan Cameron
and David Kyed for valuable comments and advice.

1. Notation, terminology and some technical facts

Scalar products (both for Hilbert spaces and Hilbert modules) will be linear on the left.
The symbol ⊗ will denote the spatial/minimal tensor products of C∗-algebras, and if A is
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a C∗-algebra then M(A) denotes its multiplier algebra; a morphism between C∗-algebras A

and B is a nondegenerate ∗-homomorphism from A to M(B), and we write Mor(A,B) for the
collection of all these morphisms. Morphisms will be composed in the usual manner (we refer
for example to [Lan] for a treatment of multiplier C∗-algebras and corresponding morphisms).
For a Hilbert space H the symbol K(H) will denote the algebra of compact operators on H

and if ξ, η ∈ H, then ωξ,η ∈ K(H)∗ will be the vector functional, T 7→ (Tξ|η).
For a C∗-algebra A and a Hilbert space H, we form the Hilbert C∗-module A ⊗ H by

completing the algebraic tensor product A⊙H for the A-valued inner-product (a⊗ ξ|b⊗ η) =
(ξ|η)b∗a, (a, b ∈ A, ξ, η ∈ H). Let L(A⊗H) denote the space of “adjointable maps” on A⊗ H

(again see [Lan]).
We will often use the canonical isomorphism between M(A⊗K(H)) and L(A⊗H) and think

of it as mapping an element (usually a unitary) U ∈ M(A ⊗ K(H)) to an adjointable map
U ∈ L(A⊗ H), given by

(1.1) (U(a⊗ ξ)|b⊗ η) = b∗(id⊗ ωξ,η)(U)a (a, b ∈ A, ξ, η ∈ H).

As is standard in the theory of quantum groups, we use the ‘leg’ notation for operators
acting on tensor products of Hilbert spaces or C∗-algebras.

1.1. Locally compact quantum groups. For the theory of locally compact quantum
groups we refer the reader to [KV1] and to the lecture notes [Ku2] (in particular we will
use the conventions of these papers and not for example those of [DKSS]). For a locally com-
pact quantum group G the corresponding C∗-algebra of “continuous functions on G vanishing
at infinity” will be denoted by C0(G). It is equipped with a comultiplication (or coproduct)
∆ ∈ Mor

(
C0(G), C0(G) ⊗ C0(G)

)
and left and right Haar weights, denoted respectively by

ϕ and ψ. The dual locally compact quantum group of G will be denoted by Ĝ. The funda-

mental multiplicative unitary W ∈ M(C0(G) ⊗ C0(Ĝ)) implements the comultiplication by
∆(x) = W ∗(1 ⊗ x)W for all x ∈ C0(G). The “universal” version of C0(G) (see [Ku1]) will
be denoted by Cu0 (G), with the canonical reducing morphism ΛG : Cu0 (G) → C0(G) and the
counit ǫu : Cu0 (G) → C. We usually assume (using the GNS construction with respect to

the left invariant Haar weight) that both C0(G) and C0(Ĝ) act on the Hilbert space L2(G).
The von Neumann algebra generated by C0(G) in B(L2(G)) will be denoted by L∞(G). The
densely defined antipode will be denoted by S; it maps DS ⊂ C0(G) into C0(G). We shall
occasionally use the strict extension of S to M(C0(G)) which has domain DS, see [Ku3]. The
unitary antipode of G, which is a bounded operator on C0(G), will be denoted by R. The
predual of L∞(G) will be denoted by L1(G); the pre-adjoint of the comultiplication (which
extends to L∞(G) → L∞(G)⊗L∞(G)) is denoted by ∗ and this equips L1(G) with the struc-
ture of a completely contractive Banach algebra. In general the respective maps related to
the dual quantum group will be adorned with hats, so that for example the right invariant

weight on Ĝ will be denoted by ψ̂. Similarly the maps acting on the universal algebra Cu0 (G)
will be adorned with a lower index u, so that for example the universal version of the unitary
antipode will be denoted by Ru.

We say that G is coamenable if the reducing morphism ΛG is an isomorphism and amenable
if L∞(G) possesses an invariant mean, i.e. a state m on L∞(G) satisfying m((ω⊗ id)(∆(x)) =
m(id ⊗ ω)(∆(x)) = ω(1)m(x) for all ω ∈ L1(G) and x ∈ L∞(G). If the left and right Haar
weights of G coincide, we say that G is unimodular. In the case when G is compact (so

that C0(G) is unital) recall that G is Kac if its antipode S is bounded, or equivalently, Ĝ is
unimodular. We say that G is finite if C0(G) is finite-dimensional.
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For convenience, throughout this paper we will assume that all locally compact quan-
tum groups considered are second-countable (by which we mean that C0(G) is sep-
arable). However, we only use this assumption in Section 4, and again in Section 6.2 (in
particular Theorem 6.18) and in Section 7.

As shown by Kustermans in [Ku1], the multiplicative unitary W admits a “semi-universal”

version, a unitaryW ∈ M(Cu0 (G)⊗C0(Ĝ)) characterised by the following “universal” property:
for a C∗-algebra B, there is a bijection between:

• unitary elements U ∈ M(B⊗ C0(Ĝ)) with (id⊗ ∆̂)(U) = U13U12; and
• non-degenerate ∗-homomorphisms φU : Cu0 (G) → M(B),

given by (φU ⊗ id)(W) = U . When the unitary U is fixed, we will sometimes write φ rather
than φU .

Similarly, there is a unitary Ŵ ∈ M(C0(G) ⊗ Cu0 (Ĝ)), universal in the sense for every
C∗-algebra B, there is a bijection between:

• unitary elements U ∈M(C0(G)⊗ B) with (∆ ⊗ id)(U) = U13U23; and

• non-degenerate ∗-homomorphisms φU : Cu0 (Ĝ) → M(B).

The bijection is again given by a similar relation: (id⊗ φU )(Ŵ) = U .

Applying the same arguments to Ĝ, we can consider the unitary W
Ĝ
Notice that this is not

equal to Ŵ, but rather to σ(W∗

Ĝ
), where σ : M(Cu0 (Ĝ)⊗C0(G)) → M(C0(G)⊗Cu0 (Ĝ)) is the

“swap map”. (This slight complication arises as we are following the conventions of [Ku1]).
There are various notions of a “closed quantum subgroup” H of a locally compact quantum

group G in the literature and these are analysed in detail in the recent article [DKSS]. The
weakest of them is that there is a surjective Hopf ∗-homomorphism π : Cu0 (G) → C0(H) (that
is, π is a ∗-homomorphism intertwining the coproducts) – we say then that H is a closed
quantum subgroup of G in the sense of Woronowicz. In such a case there is a unique Hopf

∗-homomorphism π̂ : Cu0 (Ĥ) → Cu0 (Ĝ) “dual” to π (see for example [MRW]). In addition

to the unitaries W and Ŵ introduced above, there is also a truly universal bicharacter W ∈

M(Cu0 (G)⊗Cu0 (Ĝ)), which satisfies the conditions W = (id⊗Λ
Ĝ
)(W) and Ŵ = (ΛG⊗ id)(W).

Then π̂ is uniquely determined by the relation

(1.2) (π ⊗ id)(WG) = (ΛH ⊗ π̂)(WH).

These formulas will be used later. If H is compact or discrete (see Subsection 1.3 below),
so in particular if H is finite, this notion is equivalent to the notion of closed quantum
subgroup in the sense of Vaes, i.e. to the existence of an injective normal ∗-homomorphism

θ : L∞(Ĥ) → L∞(Ĝ), intertwining the respective comultiplications (see Section 6 of [DKSS]).
We then say simply that H is a closed quantum subgroup of G.

1.2. Unitary representations of locally compact quantum groups. Let G be a locally
compact quantum group.

Definition 1.1. A unitary representation of G (or a unitary corepresentation of C0(G)) on
a Hilbert space H is a unitary U ∈ M(C0(G) ⊗ K(H)) with (∆ ⊗ id)U = U13U23. We will
often write HU for the Hilbert space upon which U acts. The trivial representation of G, i.e.
U = 1⊗ 1 ∈ M(C0(G)⊗ C), will be denoted simply by 1.
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Definition 1.2 ([SoW]). The contragradient of a representation U ∈ M(C0(G) ⊗ K(H)) is
defined to be U c = (R ⊗ ⊤)U ∈ M(C0(G) ⊗ K(H)). Here R is the unitary antipode, and

⊤ : K(H) → K(H) is the “transpose” map, defined by ⊤(x)(ξ) = x∗(ξ).

The tensor product of two representations U and V is

(1.3) U ��������⊤V = U12V13,

which acts on HU ⊗ HV . The direct sum of two representations is easy to understand, but
a little harder to write down. Formally, let ιV : HV → HV ⊕ HU be the inclusion, and
pV : HV ⊕ HU → HV be the projection, and similarly for ιU and pU . Then define

(1.4) U ⊕ V = (1⊗ ιU )U(1⊗ pU ) + (1⊗ ιV )V (1⊗ pV ) ∈ M(C0(G)⊗K(HU ⊕ HV )).

The last formula may seem at first sight strange if one thinks of multiplier algebras – but has
a natural interpretation in terms of adjointable operators. Slightly more informally, we first
identify

K(HU ⊕ HV ) =

(
K(HU ) K(HV ,HU )

K(HU ,HV ) K(HV )

)
.

Then it is easy to see how we view M(C0(G)⊗K(HU )) as a subalgebra of M(C0(G)⊗K(HU ⊕
HV )), basically the “upper left corner”, and similarly for M(C0(G)⊗K(HV )), the “lower right
corner”.

A representation of G is called irreducible if it is not (unitarily equivalent to) a direct sum
of two non-zero representations.

1.3. Compact/discrete quantum groups. A locally compact quantum group G is called
compact if the algebra C0(G) is unital (we then denote it simply by C(G)), or, equivalently,
the Haar weight is in fact a bi-invariant state. It is said to be discrete if C0(G) is a direct

sum of matrix algebras (and is then denoted c0(G)), or, equivalently, Ĝ is compact. For a
compact quantum group G the symbol IrrG will denote the family of all equivalence classes
of finite-dimensional unitary representations of G (note that our assumptions imply it is a
countable set). We will always assume that for each α ∈ IrrG a particular representative has
been chosen and moreover identified with a unitary matrix Uα = (uαij)

nα

i,j=1 ∈ Mnα(C(G)).

The span of all the coefficients uαij is a dense (Hopf) *-subalgebra of C(G), denoted Pol(G).
The algebra of functions vanishing at infinity on the dual discrete quantum group is given by

the equality c0(Ĝ) =
⊕

α∈IrrG
Mnα . Thus the elements affiliated to c0(Ĝ) can be identified

with functionals on Pol(G). Note that the Haar state of G is faithful on Pol(G); moreover
in fact Cu(G) is the enveloping C∗-algebra of Pol(G), and thus we can also view the latter
algebra as a subalgebra of Cu(G). The semi-universal multiplicative unitary of G is then
given by the formula

(1.5) W =
∑

α∈Irr(G)

uαij ⊗ eαij ∈
∏

α∈Irr(G)

Cu(G)⊗Mnα = M(Cu(G)⊗ c0(Ĝ)).

By a state on Pol(G) we mean a linear functional µ : Pol(G) → C which is positive in
the sense that µ(a∗a) ≥ 0 for all a ∈ Pol(G). We can follow the usual GNS construction
to obtain a pre-Hilbert space H0, a cyclic vector ξ0 ∈ H0 and a ∗-homomorphism Pol(G) →
L(H0), the collection of adjointable maps on H0, with µ(a) = (π(a)ξ0|ξ0). As argued in [DK,
Lemma 4.2] (compare [LS2, Lemma 8.7]) for the algebra Pol(G), the map π always extends
to a ∗-homomorphism Pol(G) → B(H), where H is the completion of H0. As Cu(G) is the
enveloping C∗-algebra of Pol(G), we see that there is a bijection between states on Cu(G)
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and states on Pol(G). To simplify the notation we will occasionally write simply ǫ to denote
the counit of G understood as a character on Pol(G).

1.4. Multipliers of quantum groups. The notion of (completely bounded) multipliers on
locally compact quantum groups will play a crucial role in the paper. Here we introduce
relevant definitions, recall the characterisation of completely positive multipliers due to the
first-named author and prove an important technical result for later use.

Definition 1.3. A completely bounded left multiplier of L1(Ĝ) is a bounded linear map

L∗ : L1(Ĝ) → L1(Ĝ) such that L∗(ω1 ∗ ω2) = L∗(ω1) ∗ ω2 for all ω1, ω2 ∈ L1(Ĝ), and whose

adjoint L = (L∗)
∗ is a completely bounded map on L∞(Ĝ).

The adjoints of completely bounded left multipliers can be characterised in the following
way.

Proposition 1.4. Let L : L∞(Ĝ) → L∞(Ĝ) be a normal, completely bounded map. Then the
following are equivalent:

(1) L is the adjoint of a left multiplier of L1(Ĝ);

(2) ∆̂ ◦ L = (L⊗ id)∆̂;

(3) there is a ∈ L∞(G) with (L⊗ id)(Ŵ ) = (1⊗ a)Ŵ .

If these hold, then actually a ∈ M(C0(G)), and we have that aλ̂(ω) = λ̂(L∗(ω)) for ω ∈ L1(Ĝ),

where λ : L1(Ĝ) → C0(G) is defined by λ(ω) = (ω ⊗ id)(Ŵ ) for ω ∈ L1(Ĝ). In this way, the
multiplier L∗ is given by left multiplication by the element a in the left regular representation.

Proof. Conditions (1) and (2) are easily seen to be equivalent, and (3) implies (2) is an easy
calculation. For (2) implies (3) see [JNR, Theorem 4.10], or [Da1, Proposition 3.1] for a
quicker proof which also establishes that a ∈ M(C0(G)). �

Remark 1.5. Condition (3) actually implies that L restricts to a map on C0(Ĝ). Indeed,

for ω ∈ B(L2(G))∗, we see that L
(
(id ⊗ ω)(Ŵ )

)
= (id ⊗ ωa)(Ŵ ). As C0(Ĝ) is the closure of

{(id ⊗ ω)(Ŵ ) : ω ∈ B(L2(G))∗} the result follows.

As explained in [Da1], there is a standard way to use a representation U ∈ M(C0(G)⊗K(H))
of G and a bounded functional on K(H) to induce a completely bounded left multiplier L of

Ĝ. For ω ∈ K(H)∗, the map defined by

(1.6) L(x) = (id⊗ ω)
(
U(x⊗ 1)U∗

)
(x ∈ L∞(Ĝ))

is a normal completely bounded map (completely positive if ω is positive) whose pre-adjoint
is a left multiplier. The associated “representing” element a ∈ M(C0(G)) is given by a =
(id ⊗ ω)(U∗). Recall that b = (id ⊗ ω)(U) ∈ DS and satisfies S(b) = a. If ω is self-adjoint,
then b∗ = (id⊗ ω)(U∗) = a.

Since every representation U is of the form U = (id ⊗ φU )(Ŵ) for some non-degenerate

∗-homomorphism φU : Cu0 (Ĝ) → B(H), we can write a = (id ⊗ µ)(Ŵ∗) = (id ⊗ µ∗)(W
Ĝ
),

where µ = ω ◦ φU ∈ Cu0 (Ĝ)∗. In this way, L is of the form

(1.7) L(x) = (id⊗ µ)(Ŵ(x⊗ 1)Ŵ∗) = (µ ⊗ id)(W
Ĝ
(1⊗ x)W∗

Ĝ
).

The converse holds when L is completely positive.
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Theorem 1.6 ([Da1, Theorem 5.1]). Let L : L∞(Ĝ) → L∞(Ĝ) be a completely positive map

which is the adjoint of a left multiplier of L1(Ĝ). Then L(x) = (µ ⊗ id)(W
Ĝ
(1 ⊗ x)W∗

Ĝ
) for

some positive µ ∈ Cu0 (Ĝ)∗.

In the completely positive case, one might call the resulting representing elements a “com-
pletely positive definite”, and a somewhat intrinsic characterisation of such elements is given
in [DaS].

We will now show that completely positive multipliers induce bounded maps on the Hilbert
space L2(G), which have a natural interpretation in terms of U and ω. This result will be of
use in the proof of Theorem 6.4.

Let us first recall certain facts related to weights. For a weight γ on a von Neumann
algebra M we put nγ = {x ∈ M : γ(x∗x) < ∞}. Then we have the GNS construction
(H, π, η) where H is the completion of nγ for the pre-inner-product (η(x)|η(y)) = γ(y∗x) for
x, y ∈ nγ . Let L : M → M be a positive linear map which satisfies the Schwarz inequality
L(x)∗L(x) ≤ L(x∗x), as would be true (see for example [BrO, Proposition 1.5.7]) for any
completely positive L. Assume furthermore that γ(L(x)) ≤ γ(x) for all x ∈ M+ (under the
usual convention that t ≤ ∞ for all 0 ≤ t ≤ ∞). Then there is a contractive linear map
T : H → H which satisfies Tη(x) = η(L(x)) for all x ∈ nγ .

We are ready to formulate the theorem advertised above.

Theorem 1.7. Let G be a locally compact quantum group, let U be a representation of G on
H, let ω ∈ K(H)∗ be a state, and form L as in (1.6). Then L is unital, and satisfies ϕ̂◦L ≤ ϕ̂.

Thus L induces a contractive operator T : L2(Ĝ) → L2(Ĝ). Identifying L2(Ĝ) with L2(G),
the operator T is equal to (id⊗ ω)(U).

Proof. Unitality of L follows directly from (1.6) and the fact that ω is a state.

Let Cu0 (Ĝ) be the universal version of Ĝ, and let Λ̂ : Cu0 (Ĝ) → C0(Ĝ) be the reducing

morphism. Then Λ̂∗ : C0(Ĝ)∗ → Cu0 (Ĝ)∗ is an isometry, an algebra homomorphism, and

identifies C0(Ĝ)∗ with a two-sided ideal in Cu0 (Ĝ)∗, see [Ku1, Proposition 8.3]. Furthermore,

the composition of L1(Ĝ) → C0(Ĝ)∗ with Λ̂∗ identifies L1(Ĝ) with a two-sided ideal in Cu0 (Ĝ)∗,
see [Da2, Proposition 8.3].

We follow [Da1, Section 4.1] to see that if we identify L1(Ĝ) with its image in Cu0 (Ĝ)∗

then there is a state µ ∈ Cu0 (Ĝ)∗ such that Λ̂∗(L∗(ω)) = µΛ̂∗(ω) for all ω ∈ L1(Ĝ). Define

Lµ : Cu0 (Ĝ) → Cu0 (Ĝ);x 7→ (µ ⊗ id)∆̂u(x) so that L∗
µ(λ) = µλ, and hence Λ̂∗ ◦ L∗ = L∗

µ ◦ Λ̂
∗.

Follow [Ku1, Section 8] to see that ϕ̂u = ϕ̂ ◦ Λ̂ is a proper, left-invariant weight on Cu0 (Ĝ).

In particular, [Ku1, Proposition 8.4] shows that for ω ∈ Cu0 (Ĝ)∗+ and x ∈ Cu0 (Ĝ)+ with
ϕ̂u(x) <∞, we have that

ϕ̂u
(
(ω ⊗ id)∆̂u(x)

)
= 〈ω, 1〉ϕ̂u(x).

Define φ = ϕ̂u ◦ Lµ, a weight on Cu0 (Ĝ). If we let

pϕ̂u
= {x ∈ Cu0 (Ĝ)+ : ϕ̂u(x) <∞},

then the above shows that φ(x) = ϕ̂u(x) for all x ∈ pϕ̂u
, and so φ is non-zero and densely-

defined. For t ≥ 0 notice that
{
x ∈ Cu0 (Ĝ)+ : φ(x) = ϕ̂u(Lµ(x)) ≤ t

}
= L−1

µ

{
y ∈ Cu0 (Ĝ)+ : ϕ̂u(y) ≤ t

}
,
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from which it follows that φ is lower-semicontinuous, as Lµ is continuous. Hence φ is a proper
weight (see [KV1, Section 1.1]).

Using that ϕ̂u = ϕ̂ ◦ Λ̂, notice that actually φ(x) = ϕ̂(L(Λ̂(x))) for all x ∈ Cu0 (Ĝ)+, and so

there is a well-defined weight (easily seen to be proper) φ0 : C0(Ĝ)+ → [0,∞] which satisfies

that φ0(x) = ϕ̂(L(x)) for all x ∈ C0(Ĝ)+. Furthermore, we know that if ϕ̂(x) < ∞ then
φ0(x) = ϕ̂(x).

We again follow [KV1, Section 1.1]. Define

F = {ω ∈ C0(Ĝ)∗+ : 〈ω, x〉 ≤ ϕ̂(x) (x ∈ C0(Ĝ)+)}.

Notice that as L restricts to a map C0(Ĝ) → C0(Ĝ), L∗ defines a left multiplier of C0(Ĝ)∗

which extends L∗ under the identification of L1(Ĝ) as an ideal in C0(Ĝ)∗. Let x ∈ C0(Ĝ)+

and ω ∈ F , so that

〈L∗(ω), x〉 = 〈ω,L(x)〉 ≤ ϕ̂(L(x)) = φ0(x).

If ϕ̂(x) <∞ then it follows that 〈L∗(ω), x〉 ≤ ϕ̂(x); if ϕ̂(x) = ∞ then obviously 〈L∗(ω), x〉 ≤
ϕ̂(x). Hence we have shown that L∗(ω) ∈ F for all ω ∈ F .

For each ω ∈ F there is a unique vector ξω ∈ L2(G) with 〈ω, a〉 = (aξω|ξω) for a ∈ C0(Ĝ).

Following [KV1, Section 1.7], if we let ω̃ = ωξω ∈ L1(Ĝ)+ then ω̃ agrees with ω on C0(G).

It follows that, once we identify C0(Ĝ) with a subalgebra of L∞(Ĝ), then F is a subset of

L1(Ĝ)+. Then the extension of ϕ̂ to L∞(Ĝ) is defined by

ϕ̂(x) = sup
{
〈x, ω〉 : ω ∈ F

}
= sup

{
(xξω|ξω) : ω ∈ F

}
(x ∈ L∞(Ĝ)+).

Finally, for any x ∈ L∞(G)+

ϕ̂(L(x)) = sup{〈L(x), ω〉 : ω ∈ F} = sup{〈x,L∗(ω)〉 : ω ∈ F} ≤ sup{〈x, ω〉 : ω ∈ F} = ϕ̂(x),

as required.
Hence, if we denote the GNS inclusion for the dual weight by η̂, so that η̂ : nϕ̂ → L2(G),

there is a contraction T ∈ B(L2(Ĝ)) with

T η̂(x) = η̂
(
L(x)

)
(x ∈ nϕ̂).

Let us now recall the dual weight construction (see [KV2, Section 1.1] or [KV1, Section 8]).
We define

I = {ω ∈ L1(G) : ∃ ξ(ω) ∈ L2(G), (ξ(ω)|η(a)) = 〈a∗, ω〉 (a ∈ nϕ)},

where this time η : nϕ → L2(G) is the GNS inclusion for ϕ. If we let λ : L1(G) → L∞(Ĝ);ω 7→
(ω ⊗ id)(W ) be the left-regular representation, then η̂(λ(ω)) = ξ(ω), under the identification

of L2(Ĝ) with L2(G). A short calculation shows that for x ∈ L∞(G) and ω ∈ L1(G), we have
that ξ(xω) = xξ(ω).

Put again, as in the lines after (1.6), a = (id ⊗ ω)(U∗). Then (L ⊗ id)(Ŵ ) = (1 ⊗ a)Ŵ .
Equivalently, (id ⊗ L)(W ∗) = (a ⊗ 1)W ∗, or as L is completely positive, (id ⊗ L)(W ) =
W (a∗ ⊗ 1). Therefore, for ω ∈ I,

L(λ(ω)) = L((ω ⊗ id)(W )) = (ω ⊗ id)(W (a∗ ⊗ 1)) = (a∗ω ⊗ 1)(W ) = λ(a∗ω).

Thus

Tξ(ω) = T η̂(λ(ω)) = η̂(L(λ(ω)) = η̂(a∗ω) = ξ(a∗ω) = a∗ξ(ω).

However, a∗ = (id ⊗ ω)(U∗)∗ = (id⊗ ω)(U) as ω is positive, which completes the proof. �
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If G is discrete, we can actually show that the left multiplier L preserves the Haar state of

Ĝ. We formulate this below, and leave the easy proof of the state preservation to the reader.

Proposition 1.8. Let G be a discrete quantum group, and denote the Haar state on Ĝ by ϕ̂.
Let U be a representation of G on H, let ω ∈ K(H)∗ be a state, and form L as in (1.6). Then

L is unital, leaves ϕ̂ invariant, and so induces T : L2(Ĝ) → L2(Ĝ). Identifying L2(Ĝ) with
L2(G), the operator T is equal to (id⊗ ω)(U) ∈ M(c0(G)).

2. Containment and weak containment of representations of locally compact

quantum groups

In this section we recall the notions of containment and weak containment for unitary
representations of locally compact quantum groups and study various equivalent character-
isations of these notions. Similar considerations can be found for example in the articles
[BCT] and [KSo]. Weak containment is defined in terms of the corresponding concept for
representations of C∗-algebras, and so we begin by recalling the definition in this context (see
also [Dix, Section 3.4]). A positive functional associated to a representation φ : A → B(H) is
a functional of the form ωx,x ◦ φ for some x ∈ H.

Theorem 2.1. [Fel, Theorem 1.2] Let A be a C∗-algebra, φ : A → B(H) a representation, and
let S be a collection of representations of A. The following are equivalent, and define what it
means for φ to be weakly-contained in S, written φ 4 S:

(1) kerφ contains
⋂
π∈S kerπ;

(2) every positive functional on A associated to φ is the weak∗-limit of linear combinations
of positive functionals associated to representations in S;

(3) every positive functional on A associated to φ is the weak∗-limit of sums of positive
functionals associated to representations in S;

(4) every positive functional ω associated to φ is the weak∗-limit of sums of positive func-
tionals associated to representations in S of norm at most ‖ω‖.

If φ is in addition irreducible, we can avoid linear combinations. The following proof is
adapted from [BHV, Appendix F].

Proposition 2.2. Let A be a C∗-algebra, φ : A → B(H) an irreducible representation, and
let S be a collection of representations of A. Then φ 4 S if and only if every vector state
associated to φ is the weak∗-limit of vector states associated to S.

Proof. We only need to prove “only if”. Let X be the collection of all vector states associated
with S, and let C be the weak∗-closure of the convex hull of X in A

∗. Let µ be a vector
state associated to φ, so by hypothesis, µ can be written as a weak∗-limit of sums of positive
functionals associated to S of norm at most 1. Normalising these functionals, it follows that
µ ∈ C. As φ is irreducible, µ is a pure state. Thus µ is an extreme point of the state space
of A, and so an extreme point of C. By the converse to the Krein-Milman theorem, it follows
that µ is in the weak∗-closure of X, as required. �

Fix now and for the rest of the paper a second countable locally compact quantum group G.
Using the bijection between unitary representations U of G on H and ∗-homomorphisms φU :

Cu0 (Ĝ) → B(H) given by U = (id ⊗ φU )(Ŵ), one can define containment, weak-containment,
equivalence, and weak-equivalence for unitary representations by importing the definitions
for φU as in [KSo, Section 2.3] (see also [BeT, Section 5]).
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Definition 2.3. Let U, V be unitary representations of G on respective Hilbert spaces HU

and HV , with respective ∗-homomorphisms φU and φV . Then

• U is contained in V (that is, U is a sub-representation of V ), which we denote by
U ≤ V , if φU is contained in φV . This means that there is an isometry u : HU → HV

with φV (a)u = uφU (a) for all a ∈ Cu0 (Ĝ). Equivalently, V (1⊗ u) = (1⊗ u)U .
• U and V are (unitarily) equivalent if φU and φV are equivalent, i.e. there is a unitary

u : HU → HV with uφU (a) = φV (a)u for all a ∈ Cu0 (Ĝ).
• U is weakly-contained in V , which we denote by U 4 V if φU 4 φV , see Theorem 2.1
above.

• U and V are weakly-equivalent if both U 4 V and V 4 U .

Definition 2.4. Let U ∈ M(C0(G)⊗K(H)) be a representation of a locally compact quantum
group G. A vector ξ ∈ H is said to be invariant for U if U(η ⊗ ξ) = η ⊗ ξ for all η ∈ L2(G).
We say that U has almost invariant vectors if there exists a net (ξα) of unit vectors in H such
that ‖U(η ⊗ ξα)− η ⊗ ξα‖ → 0 for each η ∈ L2(G).

The following proposition and corollary collect together various reformulations of con-
tainment of representations which are obtained by standard identifications and calculations;
compare with [BeT, Proposition 5.1].

Proposition 2.5. Let U ∈ M(C0(G)⊗K(H)) be a unitary representation of G, with a corre-
sponding adjointable operator U ∈ L(C0(G)⊗ H), and associated C∗-algebraic representation

φU : Cu0 (Ĝ) → B(H). Let ξ ∈ H. Then the following are equivalent:

(1) ξ is invariant for U ;
(2) (id⊗ ωξ,η)(U) = (ξ|η)1 for all η ∈ H;
(3) (ω ⊗ id)(U)ξ = 〈1, ω〉ξ for all ω ∈ L1(G);
(4) U(a⊗ ξ) = a⊗ ξ for all a ∈ C0(G).

(5) φU (a)ξ = ǫ̂u(a)ξ for all a ∈ Cu0 (Ĝ), where ǫ̂u is the counit of Ĝ.

Corollary 2.6. A representation U of a locally compact quantum group has a non-zero in-
variant vector if and only if 1 ≤ U .

We now turn to characterisations of representations U which weakly contain the trivial
representation. We begin with a preparatory technical lemma.

Lemma 2.7. For any a ∈ C0(G) and ω0 ∈ L1(G), the set {(aωa∗)∗ω0 : ω ∈ L1(G), ‖ω‖ ≤ 1}
is relatively compact in L1(G).

Proof. Throughout the proof we use the fact that L∞(G) is in the standard position in
B(L2(G)) (as follows from the fact that the corresponding embedding arises via the GNS
construction for a normal semifinite faithful weight on L∞(G), see Theorem 1.2 in [Tak]), so
that in particular any element ω ∈ L1(G) can be represented in the form ωξ,η for ξ, η ∈ L2(G)
and moreover ‖ω‖ = sup{‖ξ‖ · ‖η‖ : ξ, η ∈ L2(G), ω = ωξ,η}. Let ω0 = ωξ0,η0 for some
ξ0, η0 ∈ L2(G). Choose compact operators θ1, θ2 ∈ KL2(G) with θ1(ξ0) = ξ0 and θ2(η0) = η0.

Let ǫ > 0 and find linear combinations of elementary tensors
∑N

n=1 a
(1)
n ⊗θ

(1)
n ∈ C0(G)⊗KL2(G)

and
∑N

n=1 a
(2)
n ⊗ θ

(2)
n ∈ C0(G)⊗KL2(G) with

(2.1)
∥∥∥W (a⊗θ1)−

N∑

n=1

a(1)n ⊗θ(1)n

∥∥∥ < ǫ,
∥∥∥W (a⊗θ2)−

N∑

n=1

a(2)n ⊗θ(2)n

∥∥∥ < ǫ (x ∈ L∞(G)).
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Then, if ω = ωα,β for some α, β ∈ L2(G) with ‖α‖, ‖β‖ ≤ 1, then

〈x, (aωa∗) ∗ ω0〉 = 〈(a∗ ⊗ 1)∆(x)(a ⊗ 1), ω ⊗ ω0〉

=
(
(a∗ ⊗ 1)W ∗(1⊗ x)W (a⊗ 1)(α⊗ ξ0)

∣∣β ⊗ η0
)

=
(
(1⊗ x)W (a⊗ θ1)(α⊗ ξ0)

∣∣W (a⊗ θ2)(β ⊗ η0)
)
.

It follows that

(2.2)

∣∣∣∣∣〈x, (aωa
∗) ∗ ω0〉 −

∑

n,m

(a(1)n α|a(2)m β)(xθ(1)n ξ0|θ
(2)
n η0)

∣∣∣∣∣ < 2ǫ‖x‖, (x ∈ L∞(G)).

As
(2.3)

N∑

n,m=1

(a(1)n α|a(2)m β)(xθ(1)n ξ0|θ
(2)
n η0) =

N∑

n,m=1

〈(a(2)m )∗a(1)n , ω〉〈x, ω
θ
(1)
n ξ0,θ

(2)
n η0

〉 (x ∈ L∞(G)),

it follows that

(2.4) ‖(aωa∗) ∗ ω0 −
N∑

n,m=1

〈(a(2)m )∗a(1)n , ω〉ω
θ
(1)
n ξ0,θ

(2)
n η0

‖ ≤ 2ǫ.

The set

(2.5)





N∑

n,m=1

〈(a(2)m )∗a(1)n , ω〉ω
θ
(1)
n ξ0,θ

(2)
n η0

: ω ∈ L1(G), ‖ω‖ ≤ 1





is clearly compact and so has a finite ǫ-net, which forms a finite 3ǫ-net for {(aωa∗) ∗ ω0 : ω ∈
L1(G), ‖ω‖ ≤ 1} using (2.4). �

We now give our characterisation of those representations U which weakly contain the
trivial representation. As ǫ̂u is irreducible, these are precisely those for which ǫ̂u is the weak∗-
limit of states of the form ωξ ◦ φU ; this is condition (3) in the following proposition (for an
alternative approach, see [BeT, Theorem 5.1]). Note that the equivalence of (1) and (6) was
shown in [BeT, Theorem 5.1]. In [BCT] and [BeT, Section 5] the terminology U has WCP
(the weak containment property) is used for those representations U with ǫ̂u 4 φU — here
we use the terminology U has almost invariant vectors for this condition.

Proposition 2.8. Let U ∈ M(C0(G)⊗K(H)) be a unitary representation of G, with a corre-
sponding adjointable operator U ∈ L(C0(G)⊗ H), and associated C∗-algebraic representation

φU : Cu0 (Ĝ) → B(H). Let (ξα) be a net of unit vectors in H. The following are equivalent:

(1) ‖U(η ⊗ ξα)− η ⊗ ξα‖ → 0 for each η ∈ L2(G);
(2) The net (id⊗ ωξα)(U) converges weak∗ to 1 in L∞(G);

(3) The net of states (ωξα ◦ φU ) on C
u
0 (Ĝ) converges weak∗ to ǫ̂u in Cu0 (Ĝ)∗;

(4) ‖φU (a)ξα − ǫ̂u(a)ξα‖ → 0 for all a ∈ Cu0 (Ĝ);
(5) ‖U(a⊗ ξα)− a⊗ ξα‖ → 0 for all a ∈ C0(G);

Moreover the existence of a net of unit vectors satisfying the equivalent conditions above is
equivalent to the following statement:

(6) there is a state µ0 ∈ B(H)∗ such that (id⊗ µ0)(U) = 1 ∈ L∞(G).
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Proof. As U is unitary and each ξα is a unit vector, for η ∈ L2(G), we have

(2.6) ‖U(η ⊗ ξα)− η ⊗ ξα‖
2 = 2‖η‖2 − 2ℜ

(
U(η ⊗ ξα)

∣∣η ⊗ ξα
)
.

Furthermore, |(U(η ⊗ ξα)|η ⊗ ξα)| ≤ ‖η‖2. So (1) is equivalent to

(2.7) lim
α

(
U(η ⊗ ξα)

∣∣η ⊗ ξα
)
= lim

α

(
(id ⊗ ωξα)(U)η

∣∣η
)
= ‖η‖2 (η ∈ L2(G)).

By polarisation, this is equivalent to

(2.8) lim
α

(
(id ⊗ ωξα)(U)η1

∣∣η2
)
= (η1|η2) (η1, η2 ∈ L2(G)),

i.e. (id ⊗ ωξα)(U) → 1 in the weak operator topology. As the weak operator and weak∗-
topologies agree on bounded sets, (1) and (2) are equivalent. Further if (ξα) is a net of
vectors satisfying (1), then letting µ be a weak∗-limit point of the net (ωξα), we see that (6)
follows.

We have that U = (id ⊗ φ)(Ŵ). Furthermore, Cu0 (Ĝ) is generated by Ŵ (see [DKSS],
Proposition 2.1 and comments after Lemma 1.6), which is related to the fact that

(2.9)
{
(ω ⊗ id)(Ŵ) : ω ∈ L1(G)

}

is norm dense in Cu0 (Ĝ) (note that a priori, slices of Ŵ are only in M(Cu0 (Ĝ)), so we are

saying both that slices actually end up in Cu0 (Ĝ), and that the resulting collection is dense).
As the net (ωξα ◦ φU )α is bounded, to see if it converges weak∗ to ǫ̂u, it is enough to test this

convergence on elements of the form a = (ω ⊗ id)(Ŵ) for ω ∈ L1(G). Then we see that

〈φU (a), ωξα〉 = 〈U,ω ⊗ ωξα〉 = 〈(id ⊗ ωξα)(U), ω〉.

Recalling that ǫ̂u(a) = 〈1, ω〉, we see immediately that (2) is equivalent to (3).
If (3) holds, we have that

lim
α

‖φU (a)ξα − ǫ̂u(a)ξα‖
2 = lim

α
(φU (a

∗a)ξα|ξα) + ǫ̂u(a
∗a)− 2 lim

α
ℜ
(
ǫ̂u(a

∗)(φU (a)ξα)|ξα)
)

= 2ǫ̂u(a
∗a)− 2ℜ

(
ǫ̂u(a

∗)ǫ̂u(a)
)
= 0 (a ∈ Cu0 (G)),(2.10)

and so (4) holds. Conversely, if (4), then

(2.11) 0 = lim
α

(
φU (a)ξα − ǫ̂u(a)ξα

∣∣ξα
)
= lim

α
〈φU (a), ωξα〉 − ǫ̂u(a) (a ∈ Cu0 (G)),

and so (3) holds.
If (6) holds, then we can find a net of states (ωi) in K(H)∗ with (id⊗ ωi)(U) → 1 weak∗ in

L∞(G). Arguing as above, this implies that the net (ωi◦φU ) converges weak
∗ to ǫ̂u in Cu0 (Ĝ)∗.

As each ωi is a positive trace class operator, we can approximate ωi by a finite sum of vector
states, and so we see from Theorem 2.1 that ǫ̂u 4 φU . As ǫ̂u is irreducible, Proposition 2.2
implies that we can find a net (ξα) verifying (3).

Finally we look at (5). If (5) holds, then

(2.12) 0 = lim
α

(
U(a⊗ ξα)− a⊗ ξα

∣∣b⊗ ξα
)
= lim

α
b∗(id⊗ ωξα)(U)a− b∗a a, b ∈ C0(G)),

from which (2) follows.
We prove the converse using Lemma 2.7. For ω ∈ L1(G), let Tω = (ω⊗ id)(U), so as U is a

representation, Tω′Tω = Tω′∗ω. Suppose that (4) holds, so as Tω = φU ((ω ⊗ id)Ŵ), it follows
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that ‖Tωξα − 〈1, ω〉ξα‖ → 0 for all ω ∈ L1(G). Fix a ∈ C0(G) and ξ0 ∈ L2(G) both of norm
one, and set ω0 = ωξ0 ∈ L1(G). Now consider

∥∥U(a⊗ Tω0ξα)− a⊗ ξα
∥∥2 =

∥∥‖Tω0ξα‖
2a∗a+ a∗a− 2ℜ

(
(U(a⊗ Tω0ξα)

∣∣a⊗ ξα
)∥∥.(2.13)

We then see that
(
U(a⊗ Tω0ξα)

∣∣a⊗ ξα
)
= a∗(id⊗ ωTω0ξα,ξα

)(U)a = a∗(id ⊗ ωξα)(U(1 ⊗ Tω0))a

= a∗(id⊗ ω0 ⊗ ωξα)(U13U23)a = a∗(id ⊗ ω0 ⊗ ωξα)((∆ ⊗ id)(U))a

= a∗(id⊗ ω0)∆
(
(id⊗ ωξα)(U)

)
a.(2.14)

As ω0 is a state, limα ‖Tω0ξα − ξα‖ = 0, and so

(2.15) lim
α

∥∥U(a⊗ ξα)− a⊗ ξα
∥∥ = lim

α

∥∥U(a⊗ Tω0ξα)− a⊗ ξα
∥∥,

and by (2.14), this limit will be zero if and only if

(2.16) lim
α
a∗(id⊗ ω0)∆

(
(id⊗ ωξα)(U)

)
a = a∗a.

As (4) holds, and hence (2) holds, it follows that

〈a∗a, ω〉 = 〈1, (aωa∗) ∗ ω0〉 = lim
α
〈(id⊗ ωξα)(U), (aωa∗) ∗ ω0〉

= lim
α
〈a∗(id⊗ ω0)∆

(
(id⊗ ωξα)(U)

)
a, ω〉,(2.17)

for each ω ∈ L1(G). By Lemma 2.7 the set {(aωa∗) ∗ ω0 : ω ∈ L1(G), ‖ω‖ ≤ 1} is relatively
compact in L1(G) and hence the limit in (2.17) holds uniformly over the set {ω ∈ L1(G), ‖ω‖ ≤
1}. This implies the required norm convergence and so (5) holds. �

Corollary 2.9. A representation U of a locally compact quantum group admits almost in-
variant vectors if and only if 1 4 U (equivalently, ǫ̂u is weakly-contained in φU ).

3. Mixing representations

In this section we introduce mixing representations of locally compact quantum groups and
analyse their properties.

Definition 3.1. A representation U ∈ M(C0(G) ⊗ K(H)) is said to be mixing if it has C0–
coefficients, which means that for all ξ, η ∈ H, we have

(3.1) (idG ⊗ ωξ,η)(U) ∈ C0(G).

The origins of the term mixing lie in the theory of dynamical systems – an action of a group
G on a probability space (X,µ) is mixing in the usual dynamical sense (see Definition 3.4.6
in [Gla]) if and only if the associated Koopman-type representation of G on L2(X,µ)0 :=
L2(X,µ) ⊖ C1 is mixing in the above sense. Mixing representations are sometimes called
C0-representations.

Proposition 3.2. Let U, V be representations of G. Then:

(1) If U and V are mixing, then so is U ⊕ V .
(2) If U is mixing, then so are U ��������⊤V , V ��������⊤U and U c.

Proof. Routine; (2) follows by testing on elementary tensors as C0(G) is an ideal in M(C0(G)).
�
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We will need later the following lemma connecting the mixing property of a representation
to the properties of a certain state.

Lemma 3.3. Let µ be a state on Cu0 (Ĝ), and let x = (id⊗µ)(Ŵ) ∈ M(C0(G)). Let (φ,H, ξ) be

the GNS construction for µ, and let U be the representation of G associated to φ : Cu0 (Ĝ) →
B(H). Then U is mixing if and only if x ∈ C0(G).

Proof. We have that U = (id ⊗ φ)(Ŵ). If U is mixing, then x = (id ⊗ ωξ,ξ ◦ φ)(Ŵ) =
(id⊗ ωξ,ξ)(U) ∈ C0(G).

Conversely, let a, b ∈ Cu0 (Ĝ) and set α = φ(a)ξ and β = φ(b)ξ. Then set y = (id⊗ωα,β)(U),
so that

y = (id ⊗ (φ(a)ωξ,ξφ(b)
∗) ◦ φ)(Ŵ) = (id ⊗ ωξ,ξ ◦ φ)

(
(1⊗ b∗)Ŵ(1⊗ a)

)

= (id ⊗ µ)
(
(1⊗ b∗)Ŵ(1⊗ a)

)
.(3.2)

Now suppose that a = (ω1 ⊗ id)(Ŵ) and b∗ = (ω2 ⊗ id)(Ŵ) for some ω1, ω2 ∈ L(G). As Ŵ is
a representation of G on L2(G),

(1⊗ b∗)Ŵ(1⊗ a) = (ω1 ⊗ ω2 ⊗ id⊗ id)
(
Ŵ24Ŵ34Ŵ14

)

= (ω1 ⊗ ω2 ⊗ id⊗ id)
(
(1⊗ (∆ ⊗ id)(Ŵ))Ŵ14

)

= (ω1 ⊗ ω2 ⊗ id⊗ id)
(
(id ⊗∆⊗ id)(Ŵ23Ŵ13)

)

= (ω1 ⊗ ω2 ⊗ id⊗ id)
(
(id ⊗∆⊗ id)(∆op ⊗ id)(Ŵ)

)
.(3.3)

Here ∆op is the opposite coproduct, defined as σ ◦∆, where σ : C0(G) ⊗ C0(G) → C0(G) ⊗
C0(G) is the tensor swap map. Thus

y = (id ⊗ µ)
(
(1⊗ b∗)Ŵ(1⊗ a)

)
= (ω1 ⊗ ω2 ⊗ id⊗ µ)

(
(id ⊗∆⊗ id)(∆op ⊗ id)(Ŵ)

)

= (ω1 ⊗ ω2 ⊗ id)
(
(id⊗∆)∆op(x)

)
.(3.4)

If ω ∈ L1(G), then

〈y, ω〉 = 〈(id ⊗∆)∆op(x), ω1 ⊗ ω2 ⊗ ω〉 = 〈∆op(x), ω1 ⊗ (ω2 ∗ ω)〉 = 〈x, ω2 ∗ ω ∗ ω1〉

= 〈(ω2 ⊗ id)∆(x), ω ∗ ω1〉 = 〈(id ⊗ ω1)∆
(
(ω2 ⊗ id)∆(x)

)
, ω〉.

We claim that it follows that y ∈ C0(G). If so, then as a, b as above are dense in Cu0 (Ĝ), and
thus α, β as above are dense in H, we have shown that U has C0-coefficients, that is, U is
mixing.

To show that y ∈ C0(G), we first note that [KV1, Corollary 6.11] shows that for c, d ∈
C0(G), we have that ∆(d)(c ⊗ 1) ∈ C0(G) ⊗ C0(G). By Cohen Factorisation (see Appendix
A in [MNW]), any ω ∈ L1(G) has the form ω = cω′ for some c ∈ C0(G), ω′ ∈ L1(G). Then

(ω ⊗ id)∆(x) = (ω′ ⊗ id)
(
∆(x)(c⊗ 1)

)
∈ C0(G).

Similarly, we can show that (id⊗ ω)∆(d) ∈ C0(G) for any ω ∈ L1(G), d ∈ C0(G), which uses
that ∆(x)(1⊗ c) ∈ C0(G)⊗ C0(G). �
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4. Space of representations as a metric space

The set of all unitary representations of G on a fixed infinite-dimensional separable Hilbert
space H, denoted RepG(H), has a natural Polish topology. In this section we describe it and
its properties (for the analogous concepts in the classical framework we refer to the book
[Kec]).

Fix an infinite-dimensional separable Hilbert space H, and a unitary u : H → H ⊗ H. Let
RepG(H) denote the collection of unitary representations of G on H. This is a monoidal
category for the product

(4.1) U ⊠ V = (1⊗ u∗)(U ��������⊤V )(1⊗ u).

Note that we need to use u in this definition to make sure U ⊠ V is a representation on H

and not H⊗ H.
When A is a separable C∗-algebra the unitary group U(M(A)) of M(A) is Polish in the

strict topology (see [RW, Page 191] for example). As multiplication is strictly continuous on
bounded sets, RepG(H) is strictly closed in M(C0(G)⊗K(H)) and so is Polish in the relative
strict topology.

The following proposition implies that RepG(H) is a topological W ∗-category in the sense of

[Wo1], equivalent to the W ∗-category Rep(Cu0 (Ĝ,H). Recall that when H is a Hilbert space,
the strict topology on B(H) = M(K(H)) is the strong∗-topology

Proposition 4.1. Under the bijection between RepG(H) and the set of non-degenerate ∗-

representations of Cu0 (Ĝ) on H, say Rep(Cu0 (Ĝ),H), the topology induced on Rep(Cu0 (Ĝ),H)

is the point-ultrastrong∗ topology (so φn
n→∞
−→ φ if and only if, for each â ∈ Cu0 (Ĝ), we have

that φn(â)
n→∞
−→ φ(â) strictly in B(H) = M(K(H))).

Proof. Let (Un)
∞
n=1 be a sequence in RepG(H) with the corresponding sequence (φn)

∞
n=1 in

Rep(Cu0 (Ĝ),H); similarly let U ∈ RepG(H) and φ ∈ Rep(Cu0 (Ĝ),H) correspond. Firstly,

suppose that φn
n→∞
−→ φ in the point-strict topology. Let a ∈ C0(G), â ∈ Cu0 (Ĝ) and θ ∈ K(H),

so that

Un(a⊗ φn(â)θ) = (id⊗ φn)(Ŵ)(a⊗ φn(â)θ) = (id ⊗ φn)
(
Ŵ(a⊗ â)

)
(1⊗ θ).(4.2)

As Ŵ ∈ M(C0(G)⊗ Cu0 (Ĝ)) it follows that Ŵ(a⊗ â) ∈ C0(G)⊗ Cu0 (Ĝ) and so

(4.3) lim
n→∞

(id⊗ φn)
(
Ŵ(a⊗ â)

)
(1⊗ θ) = (id⊗ φ)

(
Ŵ(a⊗ â)

)
(1⊗ θ) = U(a⊗ φ(â)θ).

Finally observe that φn(â)θ
n→∞
−→ φ(â)θ in norm, and so we may conclude that Un(a ⊗

φ(â)θ)
n→∞
−→ U(a⊗ φ(â)θ). Similarly, we can show that (a⊗ φ(â)θ)Un

n→∞
−→ (a⊗ φ(â)θ)U . As

φ is non-degenerate, the collection of such φ(â)θ forms a linearly dense subspace of K(H), and

it follows that Un
n→∞
−→ U strictly, as required.

Conversely, suppose that Un
n→∞
−→ U strictly. Let a ∈ C0(G), ω ∈ L1(G), and set â =

(aω ⊗ id)(Ŵ) ∈ Cu0 (Ĝ). For θ ∈ K(H),

(4.4) φn(â)θ = (aω ⊗ id)(Un)θ = (ω ⊗ id)
(
Un(a⊗ θ)

) n→∞
−→ (ω ⊗ id)

(
U(a⊗ θ)

)
= φ(â)θ.

By Cohen-Factorisation, we can find ω′, a′ with aω = ωa′, and so by repeating the argument

on the other side, it follows that φn(â)
n→∞
−→ φ(â) strictly. As elements â arising in this way

are dense in Cu0 (Ĝ), it follows that φn
n→∞
−→ φ in the point-strict topology, as required. �
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As the multiplicity of representations does not play a role when weak containment is con-
sidered, and we want to consider the trivial representation as an element of RepG(H), we will
use the notation 1 now for the unitary representation U = 1⊗ 1 ∈ M(C0(G)⊗K(H)).

Proposition 4.2. If the mixing representations are dense in RepG(H), then there is a mixing
representation U ∈ RepG(H) with 1 4 U (that is, U has almost invariant vectors).

Proof. By assumption, there is a sequence (Un)
∞
n=1 of mixing representations such that Un

n→∞
−→

1. Fix a unit vector ξ0 ∈ H. Consider U =
⊕

n∈N Un, which is a mixing representation on⊕
n∈NH ∼= H ⊗ ℓ2(N) (as coefficients of U will be norm limits of sums of coefficients of the

representations Un, and so will still be members of C0(G)).
Fixing a unitary v : H → H⊗ ℓ2(N), and define

(4.5) U =
∑

n∈N

(1⊗ v∗)
(
Un ⊗ θδn,δn

)
(1⊗ v) ∈ RepG(H),

where θδn,δn is the rank-one orthogonal projection onto the span of δn ∈ ℓ2(N). Let ξn =
v∗(ξ0 ⊗ δn) for each n ∈ N. Then, for η ∈ L2(G),

‖U(η ⊗ ξn)− η ⊗ ξn‖ = ‖(1⊗ v∗)(Un(η ⊗ ξ0)⊗ δn)− (1⊗ v∗)(η ⊗ ξ0 ⊗ δn)‖

= ‖Un(η ⊗ ξ0)− η ⊗ ξ0‖.(4.6)

Now, strict convergence in M(C0(G) ⊗ K(H)) implies strong convergence in B(L2(G) ⊗ H),
and so

(4.7) lim
n→∞

‖U(η ⊗ ξn)− η ⊗ ξn‖ = ‖V (η ⊗ ξ0)− η ⊗ ξ0‖ = 0,

as ξ0 is invariant for V . Hence U has almost invariant vectors. �

The following lemma abstracts calculations used in the classical situation for establishing
density of mixing representations in [BeR] and weak mixing representations in [KeP].

Lemma 4.3. Let R ⊆ RepG(H) be a collection which is:

(1) stable under unitary equivalence: i.e. for a unitary v on H, we have that (1⊗v∗)U(1⊗
v) ∈ R if and only if U ∈ R;

(2) stable under tensoring with another representation: i.e. if U ∈ R, V ∈ RepG(H) then
U ⊠ V ∈ R;

(3) contains a representation with almost invariant vectors: i.e. by Corollary 2.9 there is

U (0) ∈ R with 1 4 U (0).

Then R is dense in RepG(H).

Proof. Assume that R is a collection as above and fix U (0) ∈ R with 1 4 U (0). We will use
the isomorphism M(C0(G)⊗ K(H)) ∼= L(C0(G)⊗ H). As U has almost invariant vectors, we

can find a net (ξα) of unit vectors in H with ‖U (0)(a⊗ ξα)− a⊗ ξα‖ → 0 for a ∈ C0(G).
Fix V ∈ RepG(H). We will show that V can be approximated by a sequence of elements of

R. Let a ∈ C0(G), let η ∈ H be a unit vector, and let ǫ > 0. Let (en)
∞
n=1 be an orthonormal

basis for H, and let

(4.8) V(a⊗ η) =

∞∑

n=1

xn ⊗ en, V∗(a⊗ η) =

∞∑

n=1

yn ⊗ en.
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for some xn, yn ∈ C0(G), with convergence in the Hilbert module C0(G)⊗ H. Choose N ∈ N

so that

(4.9)
∥∥∥
∑

n>N

xn ⊗ en

∥∥∥ =
∥∥∥
∑

n>N

x∗nxn

∥∥∥
1/2

< ǫ/3,
∥∥∥
∑

n>N

yn ⊗ en

∥∥∥ < ǫ/3.

Further choose α so that for all n ≤ N

(4.10)
∥∥U (0)(xn ⊗ ξα)− xn ⊗ ξα

∥∥ < ǫ/3N,
∥∥U (0)(a⊗ ξα)− a⊗ ξα

∥∥ < ǫ/3.

Finally, set

(4.11) X = {η} ∪ {en : n ≤ N},

a finite subset of H. As H is infinite-dimensional, we can find a unitary v : H → H ⊗ H such
that

(4.12) v(ξ) = ξα ⊗ ξ (ξ ∈ X).

Then
∥∥((1⊗ v∗)(U (0) ��������⊤V)(1⊗ v)− V

)
(a⊗ η)

∥∥ =
∥∥U (0)

12 V13(a⊗ ξα ⊗ η)− (1⊗ v)V(a ⊗ η)
∥∥

=
∥∥U (0)

12

∞∑

n=1

xn ⊗ ξα ⊗ en −

∞∑

n=1

xn ⊗ v(en)
∥∥

≤ 2ǫ/3 +
∥∥U (0)

12

∑

n≤N

xn ⊗ ξα ⊗ en −
∑

n≤N

xn ⊗ v(en)
∥∥

= 2ǫ/3 +
∥∥ ∑

n≤N

(
U (0)(xn ⊗ ξα)− xn ⊗ ξα

)
⊗ en

∥∥

≤ ǫ.(4.13)

Similarly,
∥∥((1⊗ v∗)(U (0) ��������⊤V)∗(1⊗ v)− V∗

)
(a⊗ η)

∥∥ =
∥∥V∗

13U
(0)
12

∗(a⊗ ξα ⊗ η)− (1⊗ v)V∗(a⊗ η)
∥∥

≤ ǫ/3 +
∥∥V∗

13(a⊗ ξα ⊗ η)− (1⊗ v)V∗(a⊗ η)
∥∥

= ǫ/3 +
∥∥∥
∑

n∈N

yn ⊗ ξα ⊗ en − yn ⊗ v(en)
∥∥∥

= ǫ/3 +
∥∥∥
∑

n>N

yn ⊗
(
ξα ⊗ en − v(en)

)∥∥∥

≤ ǫ/3 +
∥∥∥
∑

n>N

yn ⊗ ξα ⊗ en

∥∥∥+
∥∥∥
∑

n>N

yn ⊗ v(en)
∥∥∥ < ǫ.(4.14)

The intertwiner v is not equal to our fixed intertwiner u, so (1⊗ v∗)(U (0) ��������⊤V )(1⊗ v) need
not be equal to U ⊠ V , but it is unitarily equivalent to it. By (1) and (2), it follows that
(1⊗ v∗)(U (0) ��������⊤V )(1 ⊗ v) ∈ R. In this way we can construct a net (Vi)i∈I in R such that

(4.15) Vi(a⊗ η)
i∈I
−→ V(a⊗ η), V∗

i (a⊗ η)
i∈I
−→ V∗(a⊗ η)

for all a ∈ C0(G), η ∈ H. As (Vi − V)i∈I is a bounded net and we are dealing with linear
maps, this is enough to show that Vi → V strictly, as required. �
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5. Haagerup approximation property

This section is central for the whole paper. We introduce here the notion of the Haagerup
property for locally compact quantum groups and provide several equivalent characterisations.

Definition 5.1. A locally compact quantum group G has the Haagerup property if there
exists a mixing representation of G which has almost invariant vectors.

The following statements are an immediate consequence of the definition (recall that a
locally compact quantum group has Property (T) if each of its representations which has
almost invariant vectors has a nontrivial invariant vector – this notion was introduced (for
discrete quantum groups) in [Fi1] and later studied in [KSo]).

Proposition 5.2. If Ĝ is coamenable, then G has the Haagerup property. Further G is
compact if and only if G has both the Haagerup property and Property (T).

Proof. It is easy to see that the left regular representation of G (given by the fundamental

unitary W ∈ M(C0(G) ⊗ C0(Ĝ)) is mixing. By [BeT, Theorem 3.1], W has almost invariant

vectors property if and only if Ĝ is coamenable.
If G has both (T ) and the Haagerup property, then it has a mixing representation with a

non-trivial invariant vector. However, then the corresponding coefficient is a non-zero scalar
multiple of unit in M(C0(G)), which belongs to C0(G). Thus G is compact.

On the other hand if G is compact, then each representation has invariant vectors, so G

has Property (T). Further Ĝ is discrete, so also coamenable (Proposition 5.1 of [BMT]), so
the first part ends the proof. �

Remark 5.3. Note that we do not know whether every amenable locally compact quan-
tum group has the Haagerup property (although it is true for discrete quantum groups, see
Proposition 6.1 below). Formally providing the answer to this question should be easier than

deciding the celebrated issue of the equivalence of amenability of G and coamenability of Ĝ,
but they appear to be closely related.

The above proposition allows us to provide the first examples of non-discrete locally com-
pact quantum groups with the Haagerup property.

Example 5.4. The locally compact quantum groups quantum E(2) ([Wo3]), quantum az + b
([Wo4]) and quantum ax+ b ([WoZ]) have the Haagerup property. Indeed, they are all coa-
menable (see for example Theorem 3.14 of [SaS]) and self-dual, up to ‘reversing the group
operation’, i.e. flipping the legs of the coproduct (see the original papers or [PuS]).

For part (iv) of the following, we recall from Section 1.4 that if L is a completely positive

multiplier of L1(Ĝ) then there is a “representing element” a ∈ M(C0(G)) such that aλ̂(ω̂) =

λ̂(L(ω̂)) for all ω̂ ∈ L1(Ĝ).

Theorem 5.5. Let G be a locally compact quantum group. The following conditions are
equivalent:

(i) G has the Haagerup property;
(ii) mixing representations form a dense subset of RepGH;

(iii) there exists a net of states (µi)i∈I on Cu0 (Ĝ) such that the net ((idG ⊗ µi)(Ŵ))i∈I is
an approximate identity in C0(G);
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(iv) there is a net (ai)i∈I in C0(G) of representing elements of completely positive multi-
pliers which forms an approximate identity for C0(G).

Proof. (i)=⇒(ii): It is enough to check that if G has the Haagerup property, then the collection
of mixing representations in RepGH satisfies the assumptions of Lemma 4.3. That U is mixing
means that (id ⊗ ω)(U) ∈ C0(G) for all ω ∈ K(H)∗. So condition (1) is trivial. Condition
(2) follows immediately from Proposition 3.2. Condition (3) is the hypothesis of having the
Haagerup property.

(ii)=⇒ (i): This is precisely Proposition 4.2.
(iii)=⇒ (i): For each i ∈ I let (φi,Hi, ξi) be the corresponding GNS construction. By

Lemma 3.3, each of the quantum group representations Uφi (associated to φi) is mixing, and

so U :=
⊕

i∈I Uφi will also be mixing. Let xi = (id ⊗ µi)(Ŵ) ∈ C0(G), so that (xi)i∈I is a
bounded approximate identity for C0(G). Then, for a ∈ C0(G),
∥∥U(a⊗ ξi)− a⊗ ξi

∥∥2 =
∥∥2a∗a− 2ℜ

(
U(a⊗ ξi)

∣∣a⊗ ξn
)∥∥ =

∥∥2a∗a− 2ℜ
(
a∗(id⊗ ωξi,ξi)(Ui)a

)
‖

=
∥∥2a∗a− 2ℜ

(
a∗xia

)
‖ =

∥∥a∗(2− xi − x∗i )a
∥∥.

That (xi)i∈I is a bounded approximate identity means that the expression above converges
to 0 for each fixed a ∈ C0(G), so by Proposition 2.8, U has almost invariant vectors. Thus G
has the Haagerup property.

(i)=⇒ (iii): As G has the Haagerup property, there exists a representation U of G which
has C0-coefficients, and almost invariant vectors, say (ξi)i∈I . Let φ be the representation of

Cu0 (Ĝ) associated to U , and for each i ∈ I set µi = ωξi,ξi ◦ φ. Then xi = (id ⊗ µi)(Ŵ) =
(id⊗ ωξi,ξi)(U) ∈ C0(G) for each i. For a, b ∈ C0(G),

0 = lim
i∈I

(
U(a⊗ ξi)− a⊗ ξi

∣∣b⊗ ξi
)
= lim

i
b∗(id ⊗ ωξi,ξi)(U)a− b∗a = lim

i
b∗xia− b∗a.

So for µ ∈ C0(G)∗,

〈µb∗, a〉 = lim
i
〈µb∗, xia〉.

By Cohen Factorisation, every member of C0(G)∗ has the form µb∗, so we conclude that
xia → a weakly. Similarly axi → a weakly. By a standard argument, we can move to a
convex combination of the net (xi)i∈I and obtain a bounded approximate identity for C0(G).

Notice that convex combinations of the xi will arise as slices of Ŵ by convex combinations of
states, that is, by slicing against states. Thus we obtain some new family of states (λi)i∈I′

such that ((id ⊗ λi)(Ŵ))i∈I′ is a bounded approximate identity in C0(G).

(iii)=⇒ (iv): Notice that equivalently ((id⊗µi)(Ŵ)∗)i∈I = ((id⊗µi)(Ŵ
∗))i∈I is an approxi-

mate identity for C0(G). Then, as in Section 1.4, for each i ∈ I the element ai = (id⊗µi)(Ŵ
∗)

represents a completely positive left multiplier of L1(Ĝ).
(iv)=⇒ (iii): This follows immediately from [Da1] as if ai ∈ C0(G) represents a completely

positive left multiplier of L1(Ĝ) then there is a state µi ∈ Cu0 (Ĝ)∗ such that ai = (id ⊗

µi)(Ŵ
∗). �

Remark 5.6. Property (ii) was proved for Z by P.Halmos in [Hal] and later studied in [BeR,
Theorem 2.5]. Recently G.Hjorth characterised in [Hjo] the Haagerup property for a discrete
group Γ by the density of mixing actions of Γ on a standard non-atomic probability space.
The equivalence of (i) and (ii) for classical locally compact groups has likely been known to
the experts in the area.
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Proposition 5.7. Let H be a closed quantum subgroup of G in the sense of Woronowicz. If
G has the Haagerup property then so does H.

Proof. Let (µi)i∈I be a net of states in Cu0 (Ĝ)∗ verifying condition (iii) in Theorem 5.5, and
let π : Cu0 (G) → C0(H) verify that H is a closed quantum subgroup of G. For each i ∈ I set
λi = µi ◦ π̂, so that λi a state in Cu0 (H)∗. Then

(id⊗ λi)(ŴH) = (ΛH ⊗ µiπ̂)(WH) = π
(
(id ⊗ µi)(WG)

)
∈ C0(H).

As π is onto, it follows that ((id⊗λi)(ŴH))i∈I is an approximate identity for C0(H), verifying
that H has the Haagerup property. �

Condition (iii) of Theorem 5.5 corresponds to the classical condition on the existence on
a classical group G of a sequence/net of positive definite functions with certain properties
(see [CCJGV]). Another condition in [CCJGV] is the existence of a suitable conditionally
negative definite function. Schönberg correspondence shows quickly it is equivalent to a
suitable ‘convolution semigroup’ reformulation of condition (iii) of Theorem 5.5.

Definition 5.8. A convolution semigroup of states on Cu0 (G) is a family (µt)t≥0 of states on
Cu0 (G) such that

(i) µs+t = µs ⋆ µt := (µs ⊗ µt)∆ for all s, t ≥ 0;
(ii) µ0 = ǫu;

(iii) µt(a)
t→0+
−→ ǫu(a) for each a ∈ Cu0 (G).

We thus have the following trivial consequence of Theorem 5.5.

Proposition 5.9. Let G be a locally compact quantum group. If there exists a convolution

semigroup of states (µt)t≥0 on Cu0 (Ĝ) such that each at := (idG ⊗ µt)(W) is an element of
C0(G) and at tends strictly to 1 as t→ 0+, then G has the Haagerup property.

Convolution semigroups of states have generating functionals and are determined by them
(see [LS3]). Thus to prove the converse implication it suffices to construct for a given quantum
group with the Haagerup property a generating functional with certain additional properties
guaranteeing that the resulting convolution semigroup satisfies the conditions above. The
problem however is that in the general locally compact case it is difficult to decide whether
a given densely defined functional is the generator of a convolution semigroup of bounded
functionals. The situation is much simpler if G is discrete, and we will return to it in Section 6.
A key task for us in Section 6 will be to see how much choice we have over the states which
appear in Theorem 5.5 (iii). A first step in that programme is the following.

Proposition 5.10. Let G have the Haagerup property. Then there exists a net of states

(µi)i∈I on Cu0 (Ĝ) such that µi◦R̂u = µi for each i ∈ I, and such that the net
(
(idG⊗µi)(Ŵ)

)
i∈I

is an approximate identity in C0(G).

Proof. Pick a net of states (µi)i∈I as in Theorem 5.5 (iii), and let λi =
1
2(µi + µi ◦ R̂u) for

each i ∈ I. As R̂u is a ∗-anti-homomorphism, each λi is state, and clearly λi ◦ R̂u = λi. By

[Ku1, Proposition 7.2] we know that (R̂u ⊗R)(W
Ĝ
) = W

Ĝ
, and so (R ⊗ R̂u)(Ŵ) = Ŵ, again

using that R̂u and R are ∗-maps. It follows that

(idG ⊗ µi ◦ R̂u)(Ŵ) = R
(
(idG ⊗ µi)(Ŵ)

)
∈ C0(G),
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as R is an anti-automorphism of C0(G). Similarly, it follows easily that a net (ai)i∈I in C0(G)
is an approximate identity if and only if (R(ai))i∈I is, if and only if (12 (ai + R(ai)))i∈I is.

Consequently,
(
(idG ⊗ λi)(Ŵ)

)
i∈I

is indeed an approximate identity for C0(G). �

6. Haagerup approximation property for discrete quantum groups

In this section we assume that G is a discrete quantum group, so that Ĝ is compact, and
present certain further equivalent characterisations of the Haagerup property in this case,

with the strongest results obtained when G is in addition unimodular (so that Ĝ is Kac).
Note first the following consequence of Proposition 5.2.

Proposition 6.1. Every amenable discrete quantum group G has the Haagerup property.

Proof. Follows from Proposition 5.2 and the fact that amenability of G implies the coa-

menability of Ĝ, shown in [To1]. �

Recall the notations of Subsection 1.3. We will first provide a simple reinterpretation of
condition (iii) appearing in Theorem 5.5 in the case of discrete G. In Theorem 5.5, for a

state µ, we considered the slice (idG ⊗ µ)(Ŵ). As Ŵ = σ(W∗
G
), we can equivalently look

at (µ ⊗ idG)(WG)
∗, and clearly as far as the hypothesis of Theorem 5.5 are concerned, we

may simply look at Fµ := (µ ⊗ idG)(WG). When G is discrete, for α ∈ Irr
Ĝ
we shall write

(Fµ)α ∈ Mnα for the α-component. Given the discussion in Subsection 1.3 it is easy to see
that (Fµ)α is the matrix with (i, j) entry µ(uαij). Furthermore, this now gives us a natural

interpretation of Fµ for a functional µ on Pol(Ĝ).

Proposition 6.2. A discrete quantum group G has the Haagerup property if and only if there

is a net of states (µi)i∈I on Pol(Ĝ) such that:

(1) for each i ∈ I, we have that ((Fµi)
α)α∈Irr

Ĝ
∈
∏
α∈Irr

Ĝ

Mnα is actually in
⊕

α∈Irr
Ĝ

Mnα;

(2) for each α ∈ Irr
Ĝ
, the net ((Fµi)

α)i∈I converges in norm to the identity matrix in
Mnα.

If the conditions above hold, the indexing set I can be chosen to be simply equal to N.

Proof. As observed in Subsection 1.3, there is a bijection between states on Pol(Ĝ) and states

on Cu(Ĝ). So by Theorem 5.5 condition (iii) we see that G has the Haagerup property if and

only if there is a net of states (µi)i∈I on Pol(Ĝ) such that ((id⊗µi)(Ŵ))i∈I is an approximate
identity in c0(G). Given the discussion above, it is routine to see that this is equivalent to
the two stated conditions.

The last statement follows easily from the fact that Irr
Ĝ
is countable. �

6.1. The Haagerup property for G via the von Neumann algebraic Haagerup ap-

proximation property for L∞(Ĝ). Recall from Proposition 1.8 the following construction.
Let M be a von Neumann algebra with a normal state φ, and let (π,H, ξ0) be the GNS
construction (when φ is faithful, we shall tend to drop π). Let T : M → M be a uni-

tal normal completely positive map which preserves φ. There there is T (2) ∈ B(H) with

T (2)(π(x)ξ0) = π(T (x))ξ0.
The following definition of the von Neumann algebraic Haagerup approximation property

is usually considered only for a von Neumann algebra equipped with a faithful normal trace,
and in that case, does not depend on the actual choice of such a trace (see [Jo2]). Here we
propose the least restrictive possible extension to the case of general faithful normal states.
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Definition 6.3. A von Neumann algebra M equipped with a faithful normal state φ is said to
have the Haagerup approximation property (for φ) if there exists a family of unital completely

positive φ-preserving maps (Ti)i∈I on M such that each of the respective induced maps T
(2)
i

on L2(M, φ) is compact and for each x ∈ M

Ti(x)
i∈I
−→ x

σ-weakly.

The idea of connecting the Haagerup property for G and the Haagerup approximation

property for L∞(Ĝ) is based on exploiting condition (iii) of Theorem 5.5. On one hand the

states featuring there can be used to construct certain approximating multipliers on L∞(Ĝ);

on the other given approximating maps on L∞(Ĝ) we can attempt to ‘average’ them into
multipliers and thus obtain states with desired properties.

For the following, recall that we denote the Haar state on Ĝ by ϕ̂.

Theorem 6.4. Let G be a discrete quantum group. If G has the Haagerup property, then

L∞(Ĝ) has the Haagerup approximation property for ϕ̂ (in the sense of Definition 6.3).

Proof. Let (µi)i∈I be a net of states in Cu0 (Ĝ)∗ given by the condition (iii) in Theorem 5.5.

For each i ∈ I use the representation Ŵ and the states µi to build completely positive left
multipliers Li, as in Proposition 1.8. By that proposition each map Li is a normal, unital,

ϕ̂-preserving completely positive map, and induces an operator Ti on L2(Ĝ). Furthermore,

Ti = (id⊗µn)(Ŵ) which is a member of C0(G) by the assumption. As G is discrete, C0(G) is
the c0-direct sum of matrix algebras, and so in particular Ti is a compact operator. Finally,
we note that (Ti)i∈I is a bounded approximate identity for C0(G), and so converges strongly
to the identity in B(L2(G)), as required. �

For the converse we need to start with normal, unital, ϕ̂ preserving CP maps Φ : L∞(Ĝ) →

L∞(Ĝ), and “average” these into multipliers. In what follows, we shall not actually use that
Φ is ϕ̂-preserving until Theorem 6.7 below.

Given such a Φ define L : L∞(G) → B(H) by

L(x) = (ϕ̂⊗ id)
(
Ŵ ((Φ ⊗ id)∆̂(x))Ŵ ∗

)
.

By Proposition 1.4, we see that if Φ is already (the adjoint of) a left multiplier then L = Φ.
In general,

Ŵ ∗(1⊗ L(x))Ŵ = (ϕ̂⊗ id⊗ id)
(
Ŵ ∗

23Ŵ13((Φ⊗ id)∆̂(x))13Ŵ
∗
13Ŵ23

)

(L⊗ id)(Ŵ ∗(1⊗ x)Ŵ ) = (ϕ̂⊗ id⊗ id)
(
Ŵ12(Φ⊗ id⊗ id)

(
Ŵ ∗

23Ŵ
∗
13(1⊗ 1⊗ x)Ŵ13Ŵ23

)
Ŵ ∗

12

)

= (ϕ̂⊗ id⊗ id)
(
Ŵ12Ŵ

∗
23((Φ⊗ id)∆̂(x))13Ŵ23Ŵ

∗
12

)

here using that (∆̂ ⊗ id)(Ŵ ) = Ŵ13Ŵ23. Using the Pentagonal equation Ŵ12Ŵ13Ŵ23 =

Ŵ23Ŵ12, we get

= (ϕ̂⊗ id⊗ id)
(
Ŵ ∗

23Ŵ12Ŵ13((Φ⊗ id)∆̂(x))13Ŵ
∗
13Ŵ

∗
12Ŵ23

)

= Ŵ ∗(ϕ̂⊗ id⊗ id)
(
Ŵ12Ŵ13((Φ⊗ id)∆̂(x))13Ŵ

∗
13Ŵ

∗
12

)
Ŵ .
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Lemma 6.5. Let Ĝ be of Kac type, and let c ∈ L∞(Ĝ). Then

(ϕ̂⊗ id)
(
Ŵ (c⊗ 1)Ŵ ∗

)
= ϕ̂(c)1.

Proof. If Ĝ is of Kac type then ϕ̂ is a trace, and so for a, b, c ∈ L∞(Ĝ),
(
Ŵ (c⊗ 1)Ŵ ∗(Λ̂(1)⊗ Λ̂(a))

∣∣Λ̂(1)⊗ Λ̂(b)
)
=

(
(c⊗ 1)(Λ̂ ⊗ Λ̂)∆̂(a)

∣∣(Λ̂⊗ Λ̂)∆̂(b)
)

= (ϕ̂⊗ ϕ̂)
(
∆̂(b)∗(c⊗ 1)∆̂(a)

)
= (ϕ̂⊗ ϕ̂)

(
(c⊗ 1)∆̂(ab∗)

)
= ϕ̂(ab∗)ϕ̂(c) = ϕ̂(c)

(
Λ̂(a)

∣∣Λ̂(b)
)
.

The result follows. �

Proposition 6.6. Let Ĝ be of Kac type. Then L is (the adjoint of) a left multiplier, and so

there is x ∈ M(C0(G)) with (L⊗ id)(Ŵ ) = (1⊗ x)Ŵ . Indeed, x = (ϕ̂⊗ id)((Φ⊗ id)(Ŵ )Ŵ ∗).

Proof. Following on from the above calculation, and using the lemma, we find that for x ∈

L∞(Ĝ),

(L⊗ id)(Ŵ ∗(1⊗ x)Ŵ ) = Ŵ ∗
(
1⊗ (ϕ̂⊗ id)

(
Ŵ ((Φ⊗ id)∆̂(x))Ŵ ∗

))
Ŵ = Ŵ ∗

(
1⊗ L(x)

)
Ŵ

Then

Ŵ ∗
12

(
(L⊗ id)(Ŵ )Ŵ ∗

)
23
Ŵ12 = Ŵ ∗

12

(
(L⊗ id)(Ŵ )

)
23
Ŵ12Ŵ

∗
12Ŵ

∗
23Ŵ12

= ((L⊗ id)∆̂ ⊗ id)(Ŵ )Ŵ ∗
23Ŵ

∗
13

= (L⊗ id⊗ id)(Ŵ13Ŵ23)Ŵ
∗
23Ŵ

∗
13 =

(
(L⊗ id)(Ŵ )Ŵ ∗

)
13
.

It follows from (the left-multiplicative-unitary version of) [MRW, Theorem 2.1] that

(L⊗ id)(Ŵ )Ŵ ∗ ∈ C1⊗ L∞(G).

Hence there is x ∈ L∞(G) with (L⊗ id)(Ŵ ) = (1⊗ x)Ŵ , as claimed. By Proposition 1.4 we
see that L is a left multiplier.

We now calculate that

(L⊗ id)(Ŵ ) = (ϕ̂⊗ id⊗ id)
(
Ŵ12(Φ⊗ id⊗ id)(Ŵ13Ŵ23)Ŵ

∗
12

)

= (ϕ̂⊗ id⊗ id)
(
Ŵ12(Φ⊗ id⊗ id)(Ŵ13)Ŵ

∗
13Ŵ

∗
12

)
Ŵ ,

again using the Pentagonal equation. Hence

1⊗ x = (ϕ̂⊗ id⊗ id)
(
Ŵ12((Φ ⊗ id)(Ŵ )Ŵ ∗)13Ŵ

∗
12

)

= 1⊗ (ϕ̂⊗ id)((Φ⊗ id)(Ŵ )Ŵ ∗),

where the second equality follows from the lemma again. �

The following is a generalisation of Choda’s theorem for classical discrete groups originally
proved in [Cho].

Theorem 6.7. Let G be a discrete quantum group and assume that Ĝ is of Kac type. Then

G has the Haagerup property if and only if L∞(Ĝ) has a Haagerup approximation property.

Proof. It suffices to show that the “if” direction, the “only if” follows from Theorem 6.4.

The argument above started with a normal unital CP map Φ : L∞(Ĝ) → L∞(Ĝ) and
produced a CP left multiplier L with

(id⊗ L)(W ) =W (x0 ⊗ 1), x0 = (id⊗ ϕ̂)(W ∗(id⊗ Φ)(W )).
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Here we used that Ŵ = σW ∗σ, and that L is positive. This means that L is “represented”

by x∗0. By [Da1], as L is CP, there is a unique state µ ∈ Cu0 (Ĝ)∗ with x∗0 = (id⊗ µ)(V̂∗), that

is, x0 = (id ⊗ µ)(V̂).

Suppose that Φ is also ϕ̂ preserving, and hence induces a map T ∈ B(L2(Ĝ))) with T η̂(x) =

η̂(Φ(x)) for x ∈ L∞(Ĝ). This means that for x, y ∈ L∞(Ĝ),
(
yTxη̂(1)

∣∣η̂(1)
)
=

(
T η̂(x)

∣∣η̂(y∗)
)
=

(
η̂(Φ(x))

∣∣η̂(y∗)
)
= ϕ̂

(
yΦ(x)

)
.

As Φ is normal, it follows that

x0 = (id⊗ ωη̂(1),η̂(1))
(
W ∗(1⊗ T )W

)
.

For ξ, η ∈ L2(G) consider the rank-one operator θξ,η. Then

(id⊗ ωη̂(1),η̂(1))
(
W ∗(1⊗ θξ,η)W

)
= (id⊗ ωξ,η̂(1))(W

∗)(id⊗ ωη̂(1),η)(W ) ∈ C0(G).

By continuity, it follows that if T is compact, then x0 ∈ C0(G).
Suppose we now have a net (Φi)i∈I , which gives rise to nets (Li)i∈I , (µi)i∈I , (Ti)i∈I and

(xi)i∈I , with each Ti compact. Then each xi is a member of C0(G). If limi∈I Tiη̂(x) = η̂(x) in

norm, for each x ∈ L∞(Ĝ), then as each Ti is a contraction, it follows that Ti → 1 is the strong
operator topology. As G is discrete, C0(G)∗ = L1(G), and so for x ∈ C0(G), ω ∈ C0(G)∗,

lim
i∈I

〈ω, xix〉 = lim
i∈I

〈W ∗(1⊗ Ti)W,xω ⊗ ωη̂(1),η̂(1)〉 = 〈1, xω ⊗ ωη̂(1),η̂(1)〉 = 〈ω, x〉.

So xix
i∈I
→ x weakly, and similarly xxi

i∈I
→ x weakly. To finish the proof, we apply the same

convex-combination trick as used in the proof of part (iii) in Theorem 5.5. �

Remark 6.8. A C∗-algebraic version of the Haagerup approximation property for a pair
(A, τ), where A is a unital C∗-algebra and τ is a faithful tracial state on A was introduced in
[Don]. Using on one hand the fact that the C∗-algebraic Haagerup approximation property for
(A, τ) passes to the analogous von Neumann algebraic property for the von Neumann algebra
πτ (A)

′′ (see Lemma 4.5 in [Suz]) and on the other the fact that the multipliers we construct

in the proof of Theorem 6.4 leave the C∗-algebra C(Ĝ) invariant (see Remark 1.5) one can
deduce easily from the above theorem the following fact: a discrete unimodular quantum

group G has the Haagerup property if and only if the pair (C(Ĝ), ϕ̂) has the C∗-algebraic
Haagerup approximation property in the sense of [Don].

We can now discuss certain corollaries.

Corollary 6.9 ([Br1], [Br2], [Lem]). The duals of the free orthogonal quantum groups, of
the free unitary quantum groups, of the quantum automorphism groups of certain finite-
dimensional C∗-algebras equipped with canonical traces, and of the quantum reflection groups
Hs+
n (the free wreath products Zs ≀S

+
n , see [Bic]) for n ≥ 4 and 1 ≤ s <∞ have the Haagerup

property.

The second corollary is related to cocycle twisted products of discrete quantum groups
(studied for example in [FiVa]) with the Haagerup property.

Corollary 6.10. Let G be a discrete unimodular quantum group and let Γ be a discrete abelian

group such that C∗(Γ) ⊂ Cu(Ĝ), with the inclusion intertwining the comultiplications. Let

σ : Γ̂× Γ̂ → T be a bicharacter. Then G has the Haagerup property if and only if the twisted
quantum group Gσ has the Haagerup property.
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Proof. As the Haar state of Ĝ is a trace, it follows from [FiVa] that the twisting does not

modify the von Neumann algebra: L∞(Ĝ) = L∞(Ĝσ). The rest follows from the preceding
theorem. �

We finish the subsection by exhibiting another corollary, related to the wreath product of
compact quantum groups ([Bic]) and also to the considerations which will follow in Section 7.

Corollary 6.11. Let G be a discrete unimodular quantum group. Let H denote the dual of

the free wreath product product Ĝ ≀ S+
2 . Then G has the Haagerup property if and only if H

has the Haagerup property.

Proof. Consider the algebra Cu(Ĥ). It is generated by the commuting copies of C∗-algebras

Cu(Ĝ) ⋆ Cu(Ĝ) and C(S+
2 ) = C(Z2). Thus C

u(Ĥ) ≈ (Cu(Ĝ) ⋆ Cu(Ĝ))⊗ C(Z2). Moreover it

follows from [Bic] that the Haar measure of Ĥ is given with respect to this decomposition by

the formula h = h1⊗h2, where h1 is the free product of Haar states of Ĝ and h2 is induced by

the Haar measure of Z2. It follows that L
∞(Ĥ) = (L∞(Ĝ) ⋆L∞(Ĝ))⊗C2. which has the von

Neumann algebraic Haagerup property if and only if L∞(Ĝ) has the von Neumann algebraic
Haagerup property. Theorem 6.7 ends the proof. �

Remark 6.12. The free wreath product of a coamenable compact quantum group by S+
2

is not coamenable in general. For example, taking G = Z, the free wreath product of Ĝ =
T by S+

2 is a non-coamenable compact quantum group (whose fusion rules are even non-
commutative, see [Bic]), and yet the above corollary shows that its dual has the Haagerup
property.

Some more examples of permanence of the Haagerup property with respect to constructions
involving discrete unimodular quantum groups are given in Propositions 7.13 and 7.14.

6.2. The Haagerup property via convolution semigroups of states and condition-
ally negative definite functions. The following definition introduces the quantum coun-
terpart of a conditionally negative definite function.

Definition 6.13. A generating functional on Ĝ is a functional L : Pol(Ĝ) → C which is
selfadjoint, vanishes at 1

Ĝ
and is conditionally negative definite, i.e. negative on the kernel of

the counit (formally: if a ∈ Pol(Ĝ) and ǫ(a) = 0, then L(a∗a) ≤ 0).

The following fact can be viewed as a quantum version of Schönberg’s correspondence
and goes back to the work of Schürmann (see [Sch]). In this precise formulation it can be
deduced for example from [LS2, Section 8]. Indeed, the correspondence between semigroups
of hermitian functions, and self-adjoint L with L(1) = 0 follows easily from one-parameter
semigroup theory, and bialgebra theory, see for example the sketch in [LS3, Section 2]. The
harder part is to show that the extra property of being conditionally negative definite is
enough to ensure a semigroup of states.

Lemma 6.14. There exists a one-to-one correspondence between

(i) convolution semigroups of states on Cu(Ĝ);

(ii) generating functionals on Ĝ.

It is given by the following formulas: for each a ∈ Pol(Ĝ) ⊂ Cu(Ĝ) we have that

L(a) = lim
t→0+

ǫ(a)− µt(a)

t
,
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µt(a) = exp⋆(−tL)(a) :=

∞∑

n=0

(−t)n

n!
L∗n(a).

It will again be useful to consider the natural basis (uαij) of Pol(G). Given a generating

functional L, let (Lα)i,j = L(uαij) so that Lα is a nα×nα matrix. The following simple lemma
is crucial for what follows.

Lemma 6.15. Let L and (µt)t≥0 be as in the last lemma. Fix s > 0. The following conditions
are equivalent:

(i) the operator as = (µs ⊗ idG)(WĜ
) ∈ M(c0(G)) belongs to c0(G);

(ii) the family of matrices (e−sL
α
)
α∈Irr(Ĝ)

(with Lα defined as above) converges to 0 as α

tends to infinity.

Proof. As the map Cu(Ĝ)∗ → M(c0(G));µ 7→ Fµ = (µ⊗ idG)(WĜ
) is a homomorphism, it is

easy to see that the α-component of as satisfies

(as)
α = e−sL

α

, α ∈ Irr
Ĝ
.

The rest follows. �

Definition 6.16. We call a generating functional L proper and symmetric if the associated
family of matrices (Lα)α∈Irr

Ĝ
consists of self-adjoint matrices and moreover satisfies the follow-

ing condition: for each M > 0 there exists a finite set F ⊂ Irr
Ĝ
such that for all α ∈ Irr

Ĝ
\ F

we have that
Lα ≥MInα .

Note that the fact that the self-adjointness of the matrices Lα is equivalent to the fact L
is S-invariant, because L(uαij) = Lαij while (L ◦ S)(uαij) = L((uαji)

∗) = Lαji. This explains the
use of the word ‘symmetric’ in the definition. Moreover the assumption that a generating
functional L is S-invariant implies immediately that each Lα is in fact a positive matrix. This
follows, as each Lα will be self-adjoint, and as each µs is a state, each matrix (as)

α = e−sL
α

considered in the proof of Lemma 6.15 has norm not greater than 1; then observe that if X
is any self-adjoint matrix with e−sX a contraction for all s > 0, then X must be positive.

In Proposition 5.10 we showed that the net of states (µi)i∈I appearing in Theorem 5.5 (iii)

can be chosen to be R̂u invariant. We next show that, at least when G is discrete, we can

choose the states to be Ŝu invariant.

Proposition 6.17. Let G be a discrete quantum group with the Haagerup property. Then

there exists a net of states (µi)i∈I on Cu(Ĝ) such that µi ◦ Ŝu = µi for each i ∈ I, and
which satisfy the conditions of Proposition 6.2, that is, such that

(
(µi ⊗ idG)(WĜ

)
)
i∈I

is an

approximate identity in c0(G).

Proof. First of all, let µ ∈ Cu(Ĝ)∗ be an R̂u-invariant state. LetM ∈ L∞(R)∗ be an invariant
mean— so M is a state, and if f, g ∈ L∞(R) and t ∈ R are such that f(s) = g(s + t) for all

s ∈ R, then 〈M,f〉 = 〈M,g〉. Define ν ∈ Cu(Ĝ)∗ by

〈ν, a〉 = 〈M,
(
〈µ, τ̂ut (a)〉

)
t∈R

〉 (a ∈ Cu(Ĝ)),

where {τ̂ut : t ∈ R} is the scaling automorphism group on Cu(Ĝ) (see Section 9 of [Ku1]). It
is easy to see that ν is linear, unital and bounded. As each τ̂ut is a ∗-automorphism it follows
that ν is a state. As M is invariant, it follows that ν ◦ τ̂us = ν for all s ∈ R. We now use
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some elementary one-parameter group theory— see [Ku2, Section 4.3] or [Ku3] for example.
As ν is invariant for {τ̂ut : t ∈ R} it follows that ν is analytic, and invariant for its extension

to complex parameters, so in particular ν ◦ τ̂u
−i/2 = ν. As µ is R̂u-invariant, and each τ̂ut

commutes with R̂u, it follows that ν is R̂u-invariant. Thus ν ◦ Ŝu = ν ◦ R̂u ◦ τ̂
u
−i/2 = ν.

Now let (µi)i∈I be a net of R̂u-invariant states, as given by Proposition 5.10 combined
with Proposition 6.2. Thus, for each fixed i ∈ I, we have that (Fµi)

α → 0 as α → ∞,

and for each fixed α ∈ Irr
Ĝ
, we have that (Fµi)

α i∈I
→ Inα . Apply the above argument to

each µi to form a net (νi)i∈I of Ŝu-invariant states. By [Ku1, Proposition 9.1] we have that
(τ̂ut ⊗ τt)(WĜ

) = (W
Ĝ
) for all t ∈ R. Let ω ∈ ℓ1(G), and set a = (id

Ĝ
⊗ ω)(W

Ĝ
), so by the

previous observation,

τ̂ut (a) = (id
Ĝ
⊗ ω)

(
(τ̂ut ⊗ idG)(WĜ

)
)
= (id

Ĝ
⊗ ω)

(
(id

Ĝ
⊗ τ−t)(WĜ

)
)
= (id

Ĝ
⊗ ω ◦ τ−t)(WĜ

).

We shall use that the scaling group {τt : t ∈ R} restricts to each matrix summand Mnα of
c0(G), a fact which is summarised in [To2, Section 2.2], for example. Let {ταt : t ∈ R} be the
resulting group of automorphisms acting on Mnα . Let pα : c0(G) → Mnα be the projection,
so that p∗α : M∗

nα
→ ℓ1(G) is the inclusion. Let ω = p∗α(φ) for some φ ∈ M∗

nα
. It follows that

for all i ∈ I, α ∈ Irr
Ĝ

〈φ, (Fνi)
α〉 = 〈Fνi, ω〉 = 〈νi, (idG ⊗ ω)(W

Ĝ
)〉 = 〈M,

(
〈µi, τ̂

u
t (a)〉

)
t∈R

〉

= 〈M,
(
〈µi, (idĜ ⊗ ω ◦ τ−t)(WĜ

)〉
)
t∈R

〉

= 〈M,
(
〈µi, (idĜ ⊗ p∗α(φ ◦ τα−t))(WĜ

)〉
)
t∈R

〉

= 〈M,
(
〈µi ⊗ φ, (id

Ĝ
⊗ τα−t)(u

α)〉
)
t∈R

〉

= 〈M,
(
〈φ, τα−t((Fµi)

α)〉
)
t∈R

〉

where we consider uα ∈ Cu(G)⊗Mnα . As φ was arbitrary, it follows that ‖(Fνi)
α‖ ≤ ‖(Fµi)

α‖
and so Fνi ∈ c0(G).

Similarly, if ‖(Fµi)
α − Inα‖ ≤ ǫ, then using that τα−t(Inα) = Inα for all t ∈ R, it follows

that

〈φ, (Fνi)
α − Inα〉 = 〈M,

(
〈φ, τα−t((Fµi)

α − Inα)〉
)
t∈R

〉.

Hence ‖(Fνi)
α − Inα‖ ≤ ǫ, and we have verified the second condition of Proposition 6.2, as

required to finish the proof. �

Theorem 6.18. Let G be a discrete quantum group. The following are equivalent:

(i) G has the Haagerup property;

(ii) there exists a convolution semigroup of states (µt)t≥0 on Cu0 (Ĝ) such that each at :=
(µt ⊗ idG)(WĜ

) is an element of c0(G), and at tend strictly to 1 as t→ 0+;

(iii) Ĝ admits a symmetric proper generating functional.

Proof. (iii)=⇒ (ii): It suffices to observe that if L is a symmetric proper generating functional
the condition (ii) in Lemma 6.15 is clearly satisfied and combine it with Lemma 6.14. As G is
discrete, the strict convergence in c0(G) is the same as convergence of the individual entries
of the corresponding matrices, and so it suffices to show that for each fixed α, we have that
(at)

α = e−tL
α
→ 1 as t→ 0+; but this is clear.

(ii)=⇒ (i): Follows from Proposition 5.9.
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(i)=⇒ (iii): Choose (Fn)
∞
n=1, an increasing sequence of finite subsets of Irr

Ĝ
such that⋃∞

n=1 Fn = Irr
Ĝ
, a sequence (ǫn)

∞
n=1 of positive numbers tending to 0 and a sequence (βn)

∞
n=1

of positive numbers increasing to infinity such that
∑∞

n=1 βnǫn < ∞. For each n ∈ N use

the previous proposition to find an Ŝu-invariant state µn such that Fµn ∈ c0(G) and with
‖Inα − (Fµn)

α‖ ≤ ǫn for each α ∈ Fn. It follows that each matrix (Fµn)
α is self-adjoint (it

is always contractive, recall the discussion after Definition 6.16).

Define L : Pol(Ĝ) → C by

L =
∞∑

n=1

βn(ǫ− µn),

with the convergence understood pointwise. We claim that L is a (well-defined) symmetric
proper generating functional. Note first that for any α ∈ Irr

Ĝ
, we have that

(
L(uαij)

)
i,j

=

∞∑

n=1

βn(Inα − (Fµn)
α)

and the convergence of the sum above is guaranteed by the fact that there exists N ∈ N such
that α ∈ Fn for all n ≥ N . The fact that L is a generating functional is also easy to check —
it suffices to observe that it is a sum of self-adjoint functionals and further on the kernel of
the counit it is a sum of states multiplied by non-positive scalar coefficients. Hence it remains
to show that L is symmetric and proper. Observe that for each α ∈ Irr

Ĝ
and n ∈ N we have

that Lα ≥ βn(Inα −µαn). Thus it suffices for a given M > 0 to choose n ∈ N so that βn > 2M
and note that as Fµn ∈ c0(G), there exists a finite set F ⊂ Irr

Ĝ
such that for α ∈ Irr

Ĝ
\ F

we have that ‖(Fµn)
α‖ ≤ 1

2 , so also Inα − (Fµn)
α ≥ 1

2Inα (recall that the matrix (Fµn)
α is

self-adjoint). Hence for α ∈ Irr
Ĝ
\ F ,

Lα ≥ 2M
1

2
Inα ,

and the proof is finished. �

Remark 6.19. Note that the above proof shows in particular that if G has the Haagerup
property, then the convolution semigroup of states (µt)t≥0 satisfying the condition (ii) in the

above theorem can be in addition chosen to be Ŝu-invariant.

Remark 6.20. Each generating functional on Ĝ defines (via a GNS type construction, see

for example [LS1, Section 6]) a representation of Cu(Ĝ) on a Hilbert space k and a cocycle

c : Pol(Ĝ) → k. For what we need the important fact is that we have the following formula:

(6.1) 〈c(b), c(a)〉 = −L(a∗b) + ǫ(a)L(b) + L(a)ǫ(b), a, b ∈ Pol(Ĝ).

Note that c determines L only on (Ker ǫ)2, i.e. on the span of products of elements in Ker (ǫ).
Conversely, a pair as above (a representation plus a cocycle) yields a generating functional

if the cocycle is real (Theorem 4.6 in [Kye] which is attributed to Vergnioux). Reality of the
cocycle means that for all a, b ∈ Pol(G) we have that

〈c(a), c(b)〉 = 〈c(S(b∗)), c(S(a)∗)〉.

It is easy to check (as ǫ = ǫ ◦ S) that it suffices to verify the displayed formula for a, b ∈
Pol(G) ∩Ker(ǫ). Thus a straightforward calculation shows that if c is related to L as in the
formula (6.1) then c is real if and only if L is invariant under S on (Kerǫ)2.
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It is therefore natural to ask how the properness of a given symmetric generating functional
is reflected in the properties of the associated real cocycle. One can easily see that in the
cocommutative case the relevant analysis leads directly to the characterisation of the Haagerup
property for a discrete group Γ in terms of the existence of a proper cocycle on Γ.

We finish this subsection by proving two lemmas which will be needed in the last section
of the paper.

Lemma 6.21. Let G be a discrete quantum group which has the Haagerup property. Then

there exists a sequence of states (µk)k∈N on Pol(Ĝ) such that:

(i) for each k ∈ N the family of matrices (µαk )α∈IrrĜ belongs to
⊕

α∈Irr
Ĝ

Mnα;

(ii) for each α ∈ Irr
Ĝ
, the sequence (µαk )k∈N converges in norm to the identity matrix in

Mnα;
(iii) for each k ∈ N and α ∈ Irr

Ĝ
, α 6= 1we have that ‖µαk‖ ≤ exp(− 1

k ).

Proof. The proof is based on producing a perturbation of Lemma 6.2. Choose then first a

sequence (ωk)k∈N of states on Pol(Ĝ) satisfying the conditions in that lemma.

It is a general fact that if π : Cu(Ĝ) → B(H) is a unital representation and ξ ∈ H,
then the formula a 7→ ((ǫ(a) − π(a))ξ|ξ) defines a bounded (with respect to the norm of

Cu(Ĝ)) generating functional on Pol(Ĝ), a so-called Poisson type generating functional (in
fact all bounded generating functionals are of this form, see [LS2]). Consider then the GNS

representation (πh,Hh,Ωh) of C
u(Ĝ) with respect to the Haar state of Ĝ and put

L(a) = ((ǫ(a) − πh(a))Ωh|Ωh), a ∈ Pol(Ĝ).

As the Haar state annihilates non-trivial matrix coefficients, it is easy to check that Lα = Inα

for all non-trivial α ∈ Irr
Ĝ
. For each k ∈ N put ψk = exp⋆(−

1
nL) : Pol(Ĝ) → C, so that for

all nontrivial α ∈ Irr
Ĝ
we have that ψαk = exp(− 1

k )Inα . Lemma 6.14 implies that each ψk is

a state on Pol(Ĝ). It is easy to check that the sequence (µk)k∈N, where µk = ωk ⋆ ψk, k ∈ N,
satisfies the required conditions (note that the norm of each matrix ωαk is not greater then 1,
as ωk is a state, and that (Fµk)

α = (Fωk)
α(Fψk)

α). �

The above lemma has a natural counterpart for generating functionals on discrete quantum
groups with the Haagerup property.

Lemma 6.22. Let G be a discrete quantum group which has the Haagerup property. Then Ĝ

admits a symmetric proper generating functional L : Pol(Ĝ) → C such that for each α ∈ Irr
Ĝ

we have that

Lα ≥ Inα .

Proof. Let G be as above, let L1 : Pol(Ĝ) → C be a symmetric generating functional and let
L be as in the proof of the above lemma. As the sum of generating functionals is a generating
functional, it suffices to consider L+ L1. �

6.3. Summary. In the next theorem we gather the results established in this section under
the assumption that G is discrete. Together with Theorem 5.5 it is one of the two main points
of the article.

Theorem 6.23. Let G be a discrete quantum group. Then the following conditions are
equivalent:
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(i) G has the Haagerup property;

(ii) there exists a convolution semigroup of states (µt)t≥0 on Cu0 (Ĝ) such that each at :=
(µt ⊗ idG)(WĜ

) is an element of C0(G) and at tends strictly to 1 as t→ 0+;

(iii) Ĝ admits a symmetric proper generating functional.

Futhermore, these conditions imply the following condition, and if G is unimodular, are equiv-
alent to it:

(iv) L∞(Ĝ) has the Haagerup approximation property;

Proof. Follows immediately from Theorems 6.4, 6.7 and 6.18. �

7. Free product of discrete quantum groups with the Haagerup property has

the Haagerup property

In this section we apply the techniques developed earlier to establish an extension of the
result of Jolissaint showing that the Haagerup property for discrete groups is preserved under
taking free products (see [Jo1] or [CCJGV] for two different proofs and note that in fact the
Haagerup property is also preserved under taking a free product with amalgamation over a
finite subgroup) to the context of discrete quantum groups. In the case of discrete unimodular
quantum groups the shortest way to this theorem is via the von Neumann algebraic Haagerup
approximation property and the fact it is preserved under taking free products of finite von
Neumann algebras (see [Jo2]); this method can be also used to establish the quantum version
of the mentioned above result for the free product with amalgamation over finite (quantum)
subgroup (see Proposition 7.13). The proof we present in the general case is closer in spirit
to the classical proof in [CCJGV] and develops certain techniques that can be also of interest
in other contexts.

Recall first the definition of the free product of discrete quantum groups. It was origi-
nally introduced by S.Wang in [Wan]. Let G1, G2 be compact quantum groups. Then the
C∗-algebra Cu(G1)⋆C

u(G2) (the usual C
∗-algebraic product of unital C∗-algebras with amal-

gamation over the scalars) has a natural structure of the algebra of functions on a compact
quantum group, with the coproduct arising from the universal properties of the free product
applied to the maps (ι1 ⊗ ι1)∆1 and (ι2 ⊗ ι2)∆2, where ∆1,∆2 denote the respective coprod-
ucts of G1 and G2 and ι1 : C(G1) → Cu(G1)⋆C

u(G2), ι2 : C(G2) → Cu(G1)⋆C
u(G2) are the

canonical injections. We call the resulting compact quantum group the dual free product of
G1 and G2 and denote it by G1⋆̂G2, so that Cu(G1) ⋆ C

u(G2) = Cu(G1⋆̂G2). The following
result of Wang is crucial for working with the dual free products.

Theorem 7.1 (Theorem 3.10 of [Wan]). Let G1, G2 be compact quantum groups. Then
Pol(G1⋆̂G2) = Pol(G1) ⋆ Pol(G2) (where on the right hand side we have the ∗-algebraic free
product of unital algebras, identifying the units) and

IrrG1⋆̂G2
= 1 ∪ {Uα1 ��������⊤ · · · ��������⊤Uαk : k ∈ N, i(j) ∈ {1, 2}, i(j) 6= i(j + 1), αj ∈ IrrGi(j)

, Uαj 6= 1},

where Uα1 ��������⊤ · · · ��������⊤Uαk ∈Mnα1
⊗ · · · ⊗Mnαk

⊗ (Pol(G1) ⋆ Pol(G2)),

(Uα1 ��������⊤ · · · ��������⊤Uαk)(l1,...,lk),(m1,...,mk) = uα1
l1,m1

· · · uαk

lk,mk
.

The Haar state of G1⋆̂G2 is the free product of the Haar states of G1 and G2.

Note that the last statement of the above theorem implies in particular that L∞(G1⋆̂G2) ≈
L∞(G1) ⋆ L

∞(G2), where this time ⋆ denotes the von Neumann algebraic free product (with
respect to the Haar states of the respective L∞-algebras, see for example [VDN]).
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Definition 7.2. Let now G1, G2 be discrete quantum groups. The free product of G1 and
G2 is the discrete quantum group G1 ⋆G2 defined by the equality

G1 ⋆G2 = ̂̂G1⋆̂ Ĝ2.

One may check that the notion introduced above is compatible with the notion of the free

product of classical discrete groups (recall that of Γ1,Γ2 are discrete groups, then C(Γ̂i) =
C∗(Γi) and C

∗(Γ1 ⋆ Γ2) ≈ C∗(Γ1) ⋆ C
∗(Γ2)). It is also easy to observe that the free product

of unimodular discrete quantum groups is unimodular. Finally we record the following well-
known and easy observation.

Proposition 7.3. Let G1, G2 be discrete quantum groups. Then both G1 and G2 are closed
quantum subgroups (in the sense of Woronowicz) of G1 ⋆G2.

Proof. Recall that L∞(Ĝ1⋆̂ Ĝ2) ≈ L∞(Ĝ1) ⋆ L
∞(Ĝ2). It is easy to check that the canonical

injection of L∞(Ĝ1) into L
∞(Ĝ1) ⋆ L

∞(Ĝ2) is a normal unital ∗-homomorphism intertwining
the respective coproducts. This means that G1 is a closed subgroup of G1 ⋆ G2. The case of
G2 follows identically. �

Remark 7.4. Note that the terminology introduced here, used earlier for example in [BaS],
is different from that of [Wan], where the author called the free product what we call the dual
free product of compact quantum groups. The advantage of the notation and nomenclature
employed here is that it is consistent with the free product of classical discrete groups and
also with the results such as the one stated above.

Before we begin the proof of the main theorem of this section we need to introduce another
construction: that of a c-free (conditionally free) product of states, introduced in [BoS] and
later studied for example in [BLS]. Here we describe it only in the case of two algebras.
Observe first that ifA1,A2 are unital

∗-algebras equipped respectively with states (normalised,
hermitian, positive functionals) ψ1 and ψ2, then the ∗-algebraic free product A1 ⋆A2 can be
identified (as a vector space) with the direct sum

C1⊕
∞⊕

n=1

⊕

i(1)6=···6=i(n)

A◦
i(1) ⊗ · · · ⊗ A◦

i(n),

where i(j) ∈ {1, 2} and A◦
1 = Kerψ1, A

◦
2 = Kerψ2. This explains that the following definition

makes sense.

Definition 7.5. Let A1,A2 be unital ∗-algebras equipped respectively with states ψ1 and
ψ2, Let φ1 and φ2 be two further states respectively on A1 and on A2. Their conditional free
product is the functional ω := φ1 ⋆(ψ1,ψ2) φ2 on A1 ⋆A2 defined by the prescription ω(1) = 1
and

ω(a1 · · · an) = φi(1)(a1) · · ·φi(n)(an)

for all n ∈ N, i(1) 6= · · · 6= i(n) elements in {1, 2} and aj ∈ Kerψi(j) for j = 1, . . . , n.

The crucial property of the conditional free product of states is that it is again a state
(Theorem 2.2 of [BLS]). Recall that if G is a compact quantum group then there is a 1-1
correspondence between states on Cu(G) and states on Pol(G). The next two lemmas form
crucial steps in the proof of the main theorem; before we formulate them we introduce some
more notation: given two compact quantum groups G1 and G2 with Haar states h1 and h2,
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and two further states φ1, φ2 respectively on Pol(G1) and Pol(G2) write φ1⋄φ2 for a respective
conditionally free product:

φ1 ⋄ φ2 := φ1 ⋆(h1,h2) φ2 − a state on Pol(G1⋆̂G2).

Recall Theorem 7.1, where we described the representation theory of G1⋆̂G2.

Lemma 7.6. Let G1, G2 be compact quantum groups and let φ1, φ2 be states respectively on
Pol(G1) and Pol(G2). Then their conditionally free product, the state φ1 ⋄ φ2 on Pol(G1⋆̂G2)
satisfies (and is determined by) the formulas

(7.1) (φ1 ⋄ φ2)(1) = 1,

(7.2) (φ1 ⋄ φ2)
((
Uα1 ��������⊤ · · · ��������⊤Uαk

)
(l1,...,lk),(m1,...,mk)

)
= φi(1)(u

α1
l1,m1

) · · · φi(1)(u
α1
lk ,mk

)

for any k ∈ N, i(j) ∈ {1, 2}, i(j) 6= i(j + 1), αj ∈ IrrGi(j)
, αj 6= 1, lj ,mj ∈ {1, . . . , nαj

}.

Moreover if ω1, ω2 are two further states respectively on Pol(G1) and Pol(G2) then we have

(7.3) (φ1 ⋄ φ2) ⋆ (ω1 ⋄ ω2) = (φ1 ⋆ ω1) ⋄ (φ2 ⋆ ω2),

where ⋆ above denotes respectively convolution of functionals on Pol(G1⋆̂G2), Pol(G1) and
Pol(G2).

Proof. The fact that the formulas (7.1)-(7.2) determine φ1⋄φ2 uniquely follows from Theorem
7.1 and the definition of Pol(G) for a compact quantum group G. To show that these formulas
hold it suffices to observe that for each i = 1, 2 and a nontrivial α ∈ IrrGi

and any l,m ∈
{1, . . . , nα} there is hi(u

α
l,m) = 0 and use the definition of the conditionally free product.

The second part of the proof is then an explicit check of the equality in (7.3) on the elements
of the form appearing in (7.2) (recall that they span Pol(G1⋆̂G2)), based on applying the
fact that the coproduct acts on the entries of a finite-dimensional unitary representations as
‘matrix multiplication’: ∆(ui,j) =

∑nU

k=1 ui,k ⊗ uk,j. �

Recall the definition of the convolution semigroups of states on a locally compact quantum
group, Definition 5.8. The last lemma implies the following result, which can be interpreted
as providing a source of an interesting construction of quantum Lévy processes ([LS2]) on
dual free products of compact quantum groups.

Theorem 7.7. Let G1, G2 be compact quantum groups be equipped with respective convolution
semigroups of states (φt)t≥0 and (ωt)t≥0. Then (φt⋄ωt)t≥0 is a convolution semigroup of states
on Cu(G1⋆̂G2).

Moreover if L1 : Pol(G1) → C and L2 : Pol(G1) → C are generating functionals respectively
of (φt)t≥0 and (ωt)t≥0, then the generating functional of (φt ⋄ ωt)t≥0 is determined by the
formula
(7.4)

L
((
Uα1 ��������⊤ · · · ��������⊤Uαk

)
(l1,...,lk),(m1,...,mk)

)
=

k∑

j=1

δl1,m1 · · · δlj−1,mj−1
Li(j)(u

αj

lj ,mj
)δlj+1,mj+1

· · · δlk,mk
,

again for any k ∈ N, i(j) ∈ {1, 2}, i(j) 6= i(j + 1), αj ∈ IrrGi(j)
, αj 6= 1, lj ,mj ∈ {1, . . . , nαj

}.

Proof. Put (for each t ≥ 0) µt := φt ⋄ ωt and consider the family of states (µt)t≥0. The fact
that it satisfies the first property in Definition 5.8 follows from Lemma 7.6. Further, as for
any finite-dimensional unitary representation U = (ui,j) of a compact quantum group we have
that ǫ(ui,j) = δi,j , the formulas (7.1)–(7.2) imply that we have ǫ1 ⋄ ǫ2 = ǫ (these denote of
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course counits of respective algebras), so that µ0 = ǫ. Finally note that as we know that each
µt is a state, it suffices to check the convergence in Definition 5.8 on the elements of the type
appearing in (7.2), where it follows from the formulas describing the counits.

Taking once again into account the equality (7.2), the formula (7.4) is now an exercise in
differentiation. �

We return now to the main point of this Section.

Theorem 7.8. Let G1, G2 be discrete quantum groups. Then their free product G1 ⋆G2 has
the Haagerup property if and only if both G1 and G2 have the Haagerup property.

Proof. If G1⋆G2 has the Haagerup property, then both G1 and G2 have the Haagerup property
by Propositions 5.7 and 7.3.

Assume then that both G1 and G2 have the Haagerup property. Let (φ1k)k∈N and (φ2k)k∈N
be sequences of states respectively on Pol(Ĝ1) and Pol(Ĝ2) satisfying the conditions in Lemma

6.21. Define, for each k ∈ N, the state µk on Pol(Ĝ1⋆̂ Ĝ2) by the formula µk = φ1k ⋄ φ
2
k. Note

that the formula (7.2) interpreted matricially says that for any l ∈ N, i(j) ∈ {1, 2}, i(j) 6=
i(j + 1), αj ∈ IrrGi(j)

, αj 6= 1

ωα1···αl

k =

l⊗

j=1

(φ
i(j)
k )αj .

It is then elementary to check that the sequence (µk)k∈N satisfies the conditions of Lemma 6.2
(the fact that the respective matrices belong to

⊕
β∈Irr

Ĝ1⋆̂ Ĝ2

Mnβ
follows from the fact that

‖ωα1···αl

k ‖ ≤ exp(− l
k )). �

Remark 7.9. We could also prove the backward implication of the above theorem using
Lemma 6.22 and the equivalence of conditions (i) and (iii) in Theorem 6.23; we now sketch

the argument. Let L1 : Pol(Ĝ1) → C and L2 : Pol(Ĝ2) → C be proper symmetric generating
functionals having the property described in Lemma 6.22. Denote the convolution semigroups
of states associated with L1 and L2 via Lemma 6.14 respectively by (φt)t≥0 and (ωt)t≥0 and let

L : Pol(Ĝ1⋆̂ Ĝ2) → C be the generator of the convolution semigroup of states (φt⋄ωt)t≥0. Then
using the arguments similar to these in the proof of Theorem 7.8 and exploiting Theorem 7.7
one can show that L is a proper symmetric generating functional.

Remark 7.10. Note that recently A. Freslon showed in [Fre] that weak amenability is pre-
served under taking free products of discrete quantum groups, extending thus a result of
E.Ricard and Q.Xu for discrete groups ([RXu]).

Example 7.11. Theorem 7.8 offers a method of constructing non-amenable, non-unimodular
discrete quantum groups with the Haagerup property: it suffices to take the free product of a

non-amenable discrete quantum group with the Haagerup property (such as for example Û+
N

for N ≥ 2, see [Br1]) and a non-unimodular amenable discrete quantum group (such as for

example ŜUq(2) for q ∈ (0, 1)).

For the rest of the section we return to the framework of discrete unimodular quantum
groups.

Remark 7.12. As mentioned in the introduction to this section, the more difficult implication
of Theorem 7.8 for discrete unimodular quantum groups can be proved via exploiting condition
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(iv) of Theorem 6.23. Indeed, assume that G1, G2 are discrete unimodular quantum groups

with the Haagerup property. Then both finite von Neumann algebras L∞(Ĝ1) and L
∞(Ĝ2)

have the Haagerup approximation property. By Theorem 2.3 of [Jo2] so does the finite von

Neumann algebra L∞(Ĝ1) ⋆ L
∞(Ĝ2) ≈ L∞(Ĝ1 ⋆G2).

Using an extension of the method described in the above remark and the results of Boca
from [Bo93] we can prove the following results: the first related to the free products of
unimodular discrete quantum groups with amalgamation over a finite quantum subgroup
([Ve1]) and the second to HNN extensions of unimodular discrete quantum groups ([Fi2]).
Note that both these constructions leave the class of discrete and unimodular quantum groups
invariant, as can be deduced from the explicit formulas for the Haar states of the dual quantum
groups, which imply that these Haar states remain tracial (we refer for the details to [Ve1] and
[Fi2]). The corresponding results for classical groups can be found for example in [CCJGV].

Proposition 7.13. If G1 and G2 are unimodular discrete quantum groups with a common
finite closed quantum subgroup H, then the amalgamated free product G = G1 ∗

H
G1 (see [Ve1])

has the Haagerup property if and only if both G1 and G2 have the Haagerup property.

Proof. By the results of [Ve1], the dual von Neumann algebra L∞(Ĝ) is M =M1 ∗
B
M2 where

Mi = L∞(Ĝi) for i = 1, 2 and B = L∞(Ĥ). Since B is finite dimensional, it follows from the
results of [Bo93] that M has the (von Neumann algebraic) Haagerup approximation property
if and only if both M1 and M2 have the Haagerup approximation property. �

Proposition 7.14. If G is a discrete quantum group with a finite closed quantum subgroup

H, so that θ : C(Ĥ) → C(Ĝ) is an injective unital ∗-homomorphism which intertwines the
comultiplications, then the HNN extension HNN(G,H, θ) (see [Fi2]) has the Haagerup property
if and only if G has the Haagerup property.

Proof. From the computation of the Haar state in [Fi2] we know that the dual von Neumann

algebra of the HNN extension is equal to P = HNN(M,N, θ) where M = L∞(Ĝ) and N =

L∞(Ĥ) and θ is the induced unital normal *-homomorphism at the von Neumann algebraic
level (see [FiV] for the HNN construction of von Neumann algebras). By [FiV, Remark 4.6] P
is isomorphic to a von Neumann algebra of the form p(M2(C)⊗M) ∗

N⊕N
(M2(C)⊗N)p which

has the Haagerup approximation property whenever M has the Haagerup approximation
property (by the results of [Bo93] and [Jo2], Theorem 2.3 (i)). The other implication follows
from Proposition 5.7, since G is a closed quantum subgroup of the HNN extension in question.

�
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