Rapid decay and polynomial growth for bicrossed products

PIERRE FIMA AND HUA WANG

Abstract

We study the rapid decay property and polynomial growth for duals of bicrossed products coming from a matched pair of a discrete group and a compact group.

1 Introduction

In the breakthrough paper paper [Ha78], Haagerup showed that the norm of the reduced C*-algebra $C_r^*(\mathbb{F}_N)$ of the free group on N-generators \mathbb{F}_N , can be controlled by the Sobolev l^2 -norms associated to the word length function on \mathbb{F}_N . This is a striking phenomenon which actually occurs in many more cases. Jolissaint recognized this phenomenon, called Rapid Decay (or property (RD)), and studied it in a systematic way in [Jo89]. Property (RD) has now many applications. Let us mention the remarkable one concerning K-theory. Property (RD) allowed Jolissaint [Jo89] to show that the K-theory and $C_r^*(\Gamma)$ equals the K-theory of subalgebras of rapidly decreasing functions on Γ . This result was then used by V. Lafforgue in his approach to the Baum-Connes conjecture via Banach KK-theory [La00, La02].

In this paper, we view discrete quantum groups as duals of compact quantum groups. The theory of compact quantum groups has been developed by Woronowicz [Wo87, Wo88, Wo98]. Property (RD) for discrete quantum groups has been introduced and studied by Vergnioux [Ve07]. Property (RD) has been refined later [BVZ14] in order to fit in the context of non-unimodular discrete quantum groups.

In this paper, we study the permanence of property (RD) under the bicrossed product construction. This construction was initiated by Kac [Ka68] in the context of finite quantum groups and was extensively studied later by many authors in different settings. The general construction, for locally compact quantum groups, was developed by Vaes-Vainerman [VV03]. In the context of compact quantum groups given by matched pairs of classical groups, an easier approach, that we will follow, was given by Fima-Mukherjee-Patri [FMP17].

Following [FMP17], the bicrossed product construction associates to a matched pair (Γ, G) of a discrete group Γ and a compact group G (see Section 2.2) a compact quantum group \mathbb{G} , called the bicrossed product. Given a length function l on the set of equivalence classes $\operatorname{Irr}(\mathbb{G})$ of irreducible unitary representations of \mathbb{G} one can associate in a canonical way, as explained in Proposition 4.2, a pair of length functions (l_{Γ}, l_{G}) on Γ and $\operatorname{Irr}(G)$ respectively. Such a pair satisfies some compatibility relations and every pair of length functions (l_{Γ}, l_{G}) on $(\Gamma, \operatorname{Irr}(G))$ satisfying those compatibility relations will be called matched (see Definition 4.1). Any matched pair (l_{Γ}, l_{G}) on $(\Gamma, \operatorname{Irr}(G))$ allows one to reconstruct a canonical length function on $\operatorname{Irr}(\mathbb{G})$. The main result of the present paper is the following.

Theorem A. Let (Γ, G) be a matched pair of a discrete group Γ and a compact group G. Denote by \mathbb{G} the bicrossed product. The following are equivalent.

- 1. $\widehat{\mathbb{G}}$ has property (RD).
- 2. There exists a matched pair of length function (l_{Γ}, l_{G}) on $(\Gamma, \operatorname{Irr}(G))$ such that both (Γ, l_{Γ}) and (\widehat{G}, l_{G}) have (RD).

For amenable discrete groups, property (RD) is equivalent to polynomial growth [Jo89] and the same occurs for discrete quantum groups [Ve07]. Hence, for the compact classical group G one has that (\widehat{G}, l_G) has (RD) if and only if it has polynomial growth. Note that a bicrossed product of a matched pair (Γ, G) is co-amenable if and only if Γ is amenable [FMP17]. The following theorem shows the permanence of polynomial growth under the bicrossed product construction.

Theorem B. Let (Γ, G) be a matched pair of a discrete group Γ and a compact group G. Denote by \mathbb{G} the bicrossed product. The following are equivalent.

- 1. $\widehat{\mathbb{G}}$ has polynomial growth.
- 2. There exists a matched pair of length function (l_{Γ}, l_{G}) on $(\Gamma, \operatorname{Irr}(G))$ such that both (Γ, l_{Γ}) and (\widehat{G}, l_{G}) have polynomial growth.

The main ingredient to prove Theorem A and B is the classification of the irreducible unitary representation of a bicrossed product and the fusion rules.

The paper is organized as follows. Section 2 is a preliminary section in which we introduce our notations. In section 3 we classify the irreducible unitary representation of a bicrossed product and describe their fusion rules. Finally, in section 4, we prove Theorem A and Theorem B.

2 Preliminaries

2.1 Notations

For a Hilbert space H, we denote by $\mathcal{U}(H)$ its unitary group and by $\mathcal{B}(H)$ the C*-algebra of bounded linear operators on H. When H is finite dimensional, we denote by Tr the unique trace on $\mathcal{B}(H)$ such that $\operatorname{Tr}(1) = \dim(H)$. We use the same symbol \otimes for the tensor product of Hilbert spaces, unitary representations of compact quantum groups, minimal tensor product of C*-algebras. For a compact quantum group G, we denote by $\operatorname{Irr}(G)$ the set of equivalence classes of irreducible unitary representations and $\operatorname{Rep}(G)$ the collection of finite dimensional unitary representations. We will often denote by [u] the equivalence class of an irreducible unitary representation u. For $u \in \operatorname{Rep}(G)$, we denote by $\chi(u)$ its character, i.e., viewing $u \in \mathcal{B}(H) \otimes C(G)$ for some finite dimensional Hilbert space H, one has $\chi(u) := (\operatorname{Tr} \otimes \operatorname{id})(u) \in C(G)$. We denote by $\operatorname{Pol}(G)$ the unital C*-algebra obtained by taking the Span of the coefficients of irreducible unitary representation, by $C_m(G)$ the enveloping C*-algebra of $\operatorname{Pol}(G)$ and by C(G) the C*-algebra generated by the GNS construction of the Haar state on $C_m(G)$. We also denote by $\varepsilon : C_m(G) \to \mathbb{C}$ the counit and we use the same symbol $\varepsilon \in \operatorname{Irr}(G)$ to denote the trivial representation and its class in $\operatorname{Irr}(G)$. In the entire paper, the word representation means a unitary and finite dimensional representation.

2.2 Compact bicrossed products

In this section, we follow the approach and the notations of [FMP17].

Let (Γ, G) be a pair of a countable discrete group Γ and a second countable compact group G with a left action $\alpha: \Gamma \to \operatorname{Homeo}(G)$ of Γ on the compact space G by homeomorphisms and a right action $\beta: G \to S(\Gamma)$ of G on the discrete space Γ , where $S(\Gamma)$ is the Polish group of bijections of Γ , the topology being the one of pointwise convergence i.e., the smallest one for which the evaluation maps $S(\Gamma) \to \Gamma$, $\sigma \mapsto \sigma(\gamma)$ are continuous, for all $\gamma \in \Gamma$, where Γ has the discrete topology. Here, α is a group homomorphism and β is an antihomomorphism. The pair (Γ, G) is called a matched pair if $\Gamma \cap G = \{e\}$ with e being the common unit for both G and Γ , and if the actions α and β satisfy the following matched pair relations:

$$\forall g,h \in G,\, \gamma,\mu \in \Gamma, \quad \alpha_{\gamma}(gh) = \alpha_{\gamma}(g)\alpha_{\beta_g(\gamma)}(h), \,\, \beta_g(\gamma\mu) = \beta_{\alpha_s(g)}(\gamma)\beta_g(\mu) \quad \text{and} \quad \alpha_{\gamma}(e) = \beta_g(e) = e. \quad (2.1)$$

We also write $\gamma \cdot g := \beta_g(\gamma)$. From now on, we assume (Γ, G) is matched. It is shown in [FMP17] that β is automatically continuous. By continuity of β and compactness of G, every β orbit is finite. Moreover, the sets $G_{r,s} := \{g \in G : r \cdot g = s\}$ are clopen. Let $v_{rs} = 1_{G_{r,s}} \in C(G)$ be the characteristic function of $G_{r,s}$. It is shown in [FMP17] that, for all β -orbits $\gamma \cdot G \in \Gamma/G$, the unitary $v_{\gamma \cdot G} := \sum_{r,s \in \gamma \cdot G} e_{rs} \otimes v_{rs} \in \mathcal{B}(l^2(\gamma \cdot G)) \otimes C(G)$ is a unitary representation of G as well as a magic unitary, where $e_{rs} \in \mathcal{B}(l^2(\gamma \cdot G))$ are the canonical matrix units and the Haar probability measure ν on G is α -invariant.

It is shown in [FMP17] that there exists a unique compact quantum group \mathbb{G} , called the bicrossed product of the matched pair (Γ, G) , such that $C(\mathbb{G}) = \Gamma_{\alpha} \ltimes C(G)$ is the reduced C*-algebraic crossed product, generated by a copy of C(G) and the unitaries u_{γ} , $\gamma \in \Gamma$ and $\Delta : C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G})$ is the unique unital *-homomorphism satisfying $\Delta|_{C(G)} = \Delta_G$ (the comultiplication on C(G)) and $\Delta(u_{\gamma}) = \sum_{r \in \gamma \cdot G} u_{\gamma} v_{\gamma r} \otimes u_r$ for all $\gamma \in \Gamma$. It is also shown that the Haar state on \mathbb{G} is a trace and is given by the formula $h(u_{\gamma}F) = \delta_{\gamma,1} \int_G F d\nu$ for all $\gamma \in \Gamma$ and $F \in C(G)$.

3 Representation theory of bicrossed products

3.1 Classification of irreducible representations

In this section we classify the irreducible representations of a bicrossed product. Let (Γ, G) be a matched pair of a discrete countable group Γ and a second countable compact group G with actions α , β .

For $\gamma \in \Gamma$ we denote by $G_{\gamma} := G_{\gamma,\gamma}$ the stabilizer of γ for the action $\beta : \Gamma \curvearrowleft G$. Note that G_{γ} is an open (hence closed) subgroup of G, hence of finite index: its index is $|\gamma \cdot G|$. We view $C(G_{\gamma}) = v_{\gamma\gamma}C(G) \subset C(G)$ as a non-unital C*-subalgebra. Let us denote by ν the Haar probability measure on G and note that $\nu(G_{\gamma}) = \frac{1}{|\gamma \cdot G|}$ so that the Haar probability measure ν_{γ} on G_{γ} is given by $\nu_{\gamma}(A) = |\gamma \cdot G| \nu(A)$ for all Borel subset A of G_{γ} .

For $\gamma \in \Gamma$ we fix a section, still denoted γ , $\gamma : \gamma \cdot G \to G$ of the canonical surjection $G \to \gamma \cdot G : g \mapsto \gamma \cdot g$. This means that $\gamma : \gamma \cdot G \to G$ is an injective map such that $\gamma \cdot \gamma(r) = r$ for all $r \in \gamma \cdot G$. We choose the section γ such that $\gamma(\gamma) = 1$, for all $\gamma \in \Gamma$. For $r, s \in \gamma \cdot G$, we denote by $\psi_{r,s}^{\gamma}$ the ν -preserving homeomorphism of G defined by $\psi_{r,s}^{\gamma}(g) = \gamma(r)g\gamma(s)^{-1}$. It follows from our choices that $\psi_{\gamma,\gamma}^{\gamma} = id$ for all $\gamma \in \Gamma$. Moreover, for all $g \in G$, one has $\psi_{r,s}^{\gamma}(g) \in G_{\gamma}$ if and only if $g \in G_{r,s}$. It follows that $\psi_{r,r}^{\gamma}$ is an isomorphism and an homeomorphism from G_r to G_{γ} intertwining the Haar probability measures.

Let $u: G_{\gamma} \to \mathcal{U}(H)$ be a unitary representation of G_{γ} and view u as a continuous function $G \to \mathcal{B}(H)$ which is zero outside G_{γ} i.e. a partial isometry in $\mathcal{B}(H) \otimes C(G)$ such that $uu^* = u^*u = \mathrm{id}_H \otimes v_{\gamma\gamma}$. Define, for $r, s \in \gamma \cdot G$, the partial isometry $u_{r,s} := u \circ \psi_{r,s}^{\gamma} := (g \mapsto u(\psi_{r,s}^{\gamma}(g))) \in \mathcal{B}(H) \otimes C(G)$ and note that $u_{r,s}^* u_{r,s} = u_{r,s} u_{r,s}^* = \mathrm{id}_H \otimes 1_{G_{r,s}}$. In the sequel we view $u_{r,s} \in \mathcal{B}(H) \otimes C(G) \subset \mathcal{B}(H) \otimes C(G)$ and we define:

$$\gamma(u) := \sum_{r,s \in \gamma : G} e_{rs} \otimes (1 \otimes u_r v_{rs}) u_{r,s} \in \mathcal{B}(l^2(\gamma \cdot G)) \otimes \mathcal{B}(H) \otimes C(\mathbb{G}),$$

where we recall that e_{rs} , for $r, s \in \gamma \cdot G$, are the matrix units associated to the canonical orthonormal basis of $l^2(\gamma \cdot G)$.

The irreducible unitary representations of \mathbb{G} are described as follows.

Theorem 3.1. The following holds.

- 1. For all $\gamma \in \Gamma$ and $u \in \text{Rep}(G_{\gamma})$ one has $\gamma(u) \in \text{Rep}(\mathbb{G})$.
- 2. The character of $\gamma(u)$ is $\chi(\gamma(u)) = \sum_{r \in \gamma \cdot G} u_r v_{rr} \chi(u) \circ \psi_{r,r}^{\gamma}$.
- 3. For all $\gamma \in \Gamma$ and $u, w \in \text{Rep}(G_{\gamma})$ one has $\dim(\text{Mor}_{\mathbb{G}}(\gamma(u), \mu(w))) = \delta_{\gamma \cdot G, \mu \cdot G}\dim(\text{Mor}_{G_{\gamma}}(u, w \circ \psi_{\gamma, \gamma}^{\mu}))$.
- 4. For all $\gamma \in \Gamma$ and $u \in \text{Rep}(G_{\gamma})$ one has $\overline{\gamma(u)} \simeq \gamma^{-1}(\overline{u} \circ \alpha_{\gamma^{-1}})$ (which makes sense since $\alpha_{\gamma^{-1}} : G_{\gamma^{-1}} \to G_{\gamma}$ is a group isomorphism and an homeomorphism).
- 5. $\gamma(u)$ is irreducible if and only if u is irreducible. Moreover, for any irreducible unitary representation u of \mathbb{G} there exists $\gamma \in \Gamma$ and v an irreducible representation of G_{γ} such that $u \simeq \gamma(v)$.

Proof. (1). Writing $\gamma(u) = \sum_{r,s} e_{r,s} \otimes V_{r,s}$, where $V_{r,s} := (1 \otimes u_r v_{rs}) u_{r,s} \in \mathcal{B}(H) \otimes C(\mathbb{G})$, it suffices to check that, for all $r, s \in \gamma \cdot G$ one has $(\mathrm{id} \otimes \Delta)(V_{r,s}) = \sum_{t \in \gamma \cdot G} (V_{r,t})_{12}(V_{t,s})_{13}$. We first claim that, for all $r, s \in \gamma \cdot G$, $(\mathrm{id} \otimes \Delta)(u_{r,s}) = \sum_{t \in \gamma \cdot G} (u_{r,t})_{12}(u_{t,s})_{13}$. To check our claim, first recall that, for all $r, s \in \gamma \cdot G$ one has $\psi_{r,s}^{\gamma}(g) \in G_{\gamma}$ if and only if $r \cdot g = s$. Let $r, s \in \gamma \cdot G$ and $g, h \in G$. For $t = r \cdot g \in \gamma \cdot G$ one has:

$$u_{r,s}(gh) = u(\gamma(r)g\gamma(t)^{-1}\gamma(t)h\gamma(s)^{-1}) = u(\psi_{r,t}^{\gamma}(g)\psi_{t,s}^{\gamma}(h)) = \begin{cases} u_{r,t}(g)u_{t,s}(h) & \text{if } r \cdot gh = s, \\ 0 & \text{otherwise.} \end{cases}$$

Since we also have $u_{t,s}(h) = 0$ whenever $r \cdot gh \neq s$ we find, in both cases, that $u_{r,s}(gh) = u_{r,t}(g)u_{t,s}(h)$. Now, for $t \neq r \cdot g$ we have $u_{r,t}(g) = 0$ so the following formulae holds for any $r, s \in \gamma \cdot G$ and any $g, h \in G$:

$$v_{r,t}(g)u_{r,s}(gh) = u_{r,t}(g)u_{t,s}(h).$$

Hence, for all $r, s, t \in \gamma \cdot G$, $(1 \otimes v_{r,t} \otimes 1)(\mathrm{id} \otimes \Delta)(u_{r,s}) = (u_{r,t})_{12}(u_{t,s})_{13}$. Using this we find:

$$\sum_{t \in \gamma \cdot G} (V_{r,t})_{12} (V_{t,s})_{13} = \sum_{t} (1 \otimes u_r v_{rt} \otimes 1)(u_{r,t})_{12} (1 \otimes 1 \otimes u_t v_{ts})(u_{t,s})_{13}$$

$$= \sum_{t} (1 \otimes u_r v_{rt} \otimes u_t v_{ts})(u_{r,t})_{12} (u_{t,s})_{13} = \left(1 \otimes (\sum_{t} u_r v_{rt} \otimes u_t v_{ts})\right) (\mathrm{id} \otimes \Delta)(u_{r,s}).$$

Since v_{γ} is a unitary representation of G and a magic unitary we also have:

$$\Delta(u_r v_{rs}) = \sum_{t,t'} (u_r v_{rt} \otimes u_t)(v_{rt'} \otimes v_{t's}) = \sum_t u_r v_{rt} \otimes u_t v_{ts}.$$

This shows that $\gamma(u)$ is a representation of \mathbb{G} . We now check that $\gamma(u)$ is unitary. As before, since for all $r, s \in \gamma \cdot G$ one has $\psi_{r,s}^{\gamma}(g) \in G_{\gamma}$ if and only if $r \cdot g = s$ and because u is a unitary representation of G_{γ} , we have, for all $r, t \in \gamma \cdot G$, $(1 \otimes v_{rt})u_{r,t}u_{r,t}^* = 1 \otimes v_{rt}$. Hence,

$$\sum_{t \in \gamma \cdot G} V_{r,t} V_{s,t}^* = \sum_{t} (1 \otimes u_r) (1 \otimes v_{rt}) u_{r,t} u_{s,t}^* (1 \otimes v_{st}) (1 \otimes u_s^*)$$

$$= \delta_{r,s} (1 \otimes u_r) \left(\sum_{t} (1 \otimes v_{rt}) u_{r,t} u_{r,t}^* \right) (1 \otimes u_r^*) = \delta_{r,s} (1 \otimes u_r) \left(\sum_{t} (1 \otimes v_{rt}) \right) (1 \otimes u_r^*)$$

$$= \delta_{r,s}.$$

A similar computations shows that $\sum_{t \in \gamma \cdot G} V_{t,r}^* V_{t,s} = \delta_{r,s}$.

(2). The character of $\gamma(u)$ is given by

$$\chi(\gamma(u)) = \sum_{r \in \gamma : G} (\operatorname{Tr} \otimes \operatorname{id})(V_{r,r}) = \sum_{r} u_r v_{rr} (\operatorname{Tr} \otimes \operatorname{id})(u_{r,r}) = \sum_{r} u_r v_{rr} \chi(u) \circ \psi_{r,r}^{\gamma}.$$

(3). Let $\gamma, \mu \in \Gamma$ and u, w be representations of G_{γ} and G_{μ} respectively. Since the Haar measure on G is invariant under the action α and the homeomorphisms $\psi_{r,r}^{\gamma}$ and $\psi_{r,r}^{\mu}$, we find, by 1,

$$\begin{split} \dim(\mathrm{Mor}(\gamma(u),\mu(w))) &= h(\chi(\gamma(u))\chi(\mu(w))^*) = \sum_{r \in \gamma \cdot G, \, s \in \mu \cdot G} h(u_{rs^{-1}}\alpha_s(v_{rr}v_{ss}\chi(u) \circ \psi_{r,r}^{\gamma}(\chi(w) \circ \psi_{s,s}^{\mu})^*)) \\ &= \delta_{\gamma \cdot G, \mu \cdot G} \sum_{r \in \gamma \cdot G} \int_{G} \alpha_r(v_{rr}(\chi(u) \circ \psi_{r,r}^{\gamma})(\overline{\chi(w)} \circ \psi_{r,r}^{\mu})) d\nu \\ &= \delta_{\gamma \cdot G, \mu \cdot G} \sum_{r \in \gamma \cdot G} \int_{G_r} (\chi(u) \circ \psi_{r,r}^{\gamma})(\chi(\overline{w}) \circ \psi_{r,r}^{\mu}) d\nu \\ &= \delta_{\gamma \cdot G, \mu \cdot G} \sum_{r \in \gamma \cdot G} \int_{G_{\mu}} \chi(u) \circ (\psi_{\gamma,\gamma}^{\mu})^{-1}(\chi(\overline{w}) \circ \psi_{r,r}^{\mu} \circ (\psi_{r,r}^{\gamma})^{-1} \circ (\psi_{\gamma,\gamma}^{\mu})^{-1}) d\nu \end{split}$$

Now, note that $\psi_{r,r}^{\mu} \circ (\psi_{r,r}^{\gamma})^{-1} \circ (\psi_{\gamma,\gamma}^{\mu})^{-1} = \operatorname{Ad}(h)$, where $h = \mu(r)\gamma(r)^{-1}\mu(\gamma)^{-1}$. Moreover it is clear that $\mu \cdot h = \mu$, so $h \in G_{\mu}$. Since the characters of finite dimensional unitary representation of a group Λ are central functions i.e. invariant under $\operatorname{Ad}(\lambda)$ for all $\lambda \in \Lambda$, we have $\chi(\overline{w}) \circ \psi_{r,r}^{\mu} \circ (\psi_{r,r}^{\gamma})^{-1} \circ (\psi_{\gamma,\gamma}^{\mu})^{-1} = \chi(\overline{w}) \circ \operatorname{Ad}(h) = \chi(\overline{w})$. Hence:

$$\dim(\operatorname{Mor}(\gamma(u), \mu(w))) = \delta_{\gamma \cdot G, \mu \cdot G} \sum_{r \in \gamma \cdot G} \int_{G_{\mu}} \chi(u) \circ (\psi_{\gamma, \gamma}^{\mu})^{-1} \chi(\overline{w}) d\nu = \delta_{\gamma \cdot G, \mu \cdot G} \int_{G_{\mu}} \chi(u) \circ (\psi_{\gamma, \gamma}^{\mu})^{-1} \chi(\overline{w}) d\nu_{\mu}$$

$$= \delta_{\gamma \cdot G, \mu \cdot G} \dim(\operatorname{Mor}_{G_{\mu}}(u \circ (\psi_{\gamma, \gamma}^{\mu})^{-1}, w)) = \delta_{\gamma \cdot G, \mu \cdot G} \int_{G_{\gamma}} \chi(u) \chi(\overline{w} \circ \psi_{\gamma, \gamma}^{\mu}) d\nu_{\mu}$$

$$= \delta_{\gamma \cdot G, \mu \cdot G} \dim(\operatorname{Mor}_{G_{\gamma}}(u, w \circ \psi_{\gamma, \gamma}^{\mu}).$$

(4). Note that, by the bicrossed product relations, we have, for all $\gamma \in \Gamma$ and $g \in G$, $(\gamma \cdot g)^{-1} = \gamma^{-1} \cdot \alpha_{\gamma}(g)$. Hence $v_{\gamma^{-1}\gamma^{-1}} \circ \alpha_{\gamma} = v_{\gamma\gamma}$ and $(\gamma \cdot G)^{-1} = \gamma^{-1} \cdot G$. In particular, $\alpha_{\gamma} : G_{\gamma} \to G_{\gamma^{-1}}$ is an homeomorphism and, by the bicrossed product relations, one has, for all $g \in G_{\gamma}$ and $h \in G$, $\alpha_{\gamma}(gh) = \alpha_{\gamma}(g)\alpha_{\gamma \cdot g}(h) = \alpha_{\gamma}(g)\alpha_{\gamma}(h)$ so that $\alpha_{\gamma} : G_{\gamma} \to G_{\gamma^{-1}}$ is also a group homomorphism.

For $r \in \gamma \cdot G$ one has $\gamma^{-1} \cdot \alpha_{\gamma}(\gamma(r)) = (\gamma \cdot \gamma(r))^{-1} = r^{-1} = \gamma^{-1} \cdot \gamma^{-1}(r^{-1})$. This implies that, for all $\gamma \in \Gamma$, there exists a map $\eta_{\gamma} : \gamma \cdot G \to G_{\gamma^{-1}}$ such that, for all $r \in \gamma \cdot G$, one has $\alpha_{\gamma}(\gamma(r)) = \eta_{\gamma}(r)\gamma^{-1}(r^{-1})$.

Let now $r \in \gamma \cdot G$ and $g \in G_r$. One has, using the bicrossed product relations, that $e = \alpha_r(\gamma(r)\gamma(r)^{-1}) = \alpha_r(\gamma(r))\alpha_r(\gamma(r)^{-1})$, hence

$$(\alpha_{\gamma} \circ \psi_{r,r}^{\gamma})(g) = \alpha_{\gamma}(\gamma(r))\alpha_r(g)\alpha_r(\gamma(r)^{-1}) = \alpha_{\gamma}(\gamma(r))\alpha_r(g)(\alpha_{\gamma}(\gamma(r))))^{-1} = \eta_{\gamma}(r)(\psi_{r-1,r-1}^{\gamma-1} \circ \alpha_r)(g)(\eta_{\gamma}(r))^{-1}.$$

Hence, for all $\gamma \in \Gamma$, if $w \in \text{Rep}(G_{\gamma^{-1}})$, since $\chi(w) \in C(G_{\gamma^{-1}})$ is central we have

$$\chi(w) \circ \alpha_{\gamma} \circ \psi_{r,r}^{\gamma}(g) = \chi(w) \circ \psi_{r-1,r-1}^{\gamma-1} \circ \alpha_{r}(g)$$
 for all $r \in \gamma \cdot G$, $g \in G_{r}$.

Using the discussion above we find,

$$\chi(\gamma^{-1}(\overline{u} \circ \alpha_{\gamma^{-1}})) = \sum_{r \in \gamma \cdot G} u_{r^{-1}} v_{r^{-1}r^{-1}} \chi(\overline{u}) \circ \alpha_{\gamma^{-1}} \circ \psi_{r^{-1}, r^{-1}}^{\gamma^{-1}}$$

$$= \sum_{r \in \gamma \cdot G} (\chi(\overline{u}) \circ \alpha_{\gamma^{-1}} \circ \psi_{r^{-1}, r^{-1}}^{\gamma^{-1}} \circ \alpha_r) (v_{r^{-1}r^{-1}} \circ \alpha_r) u_{r^{-1}}$$

$$= \sum_{r \in \gamma \cdot G} \chi(\overline{u}) \circ \psi_{r, r}^{\gamma} v_{rr} u_r^* = \sum_{r \in \gamma \cdot G} (\chi(u) \circ \psi_{r, r}^{\gamma} v_{rr})^* u_r^*$$

$$= \chi(\gamma(u))^*$$

(5). By the general theory it suffices to show that the linear span X of coefficients of representations of the form $\gamma(u)$, for $\gamma \in \Gamma$ and u an irreducible unitary representation of G_{γ} , is a dense subset of $C(\mathbb{G})$. Note that, for all $\gamma \in \Gamma$, the relation $1 = \sum_{r \in \gamma \cdot G} v_{\gamma r}$ implies that any function in C(G) is a sum of continuous functions with support in $G_{\gamma,r} := \{g \in G : \gamma \cdot g = r\}$, for $r \in \gamma \cdot G$. Moreover, since $G_{\gamma,r} = (\psi_{\gamma,r}^{\gamma})^{-1}(G_{\gamma})$, any continuous function on G with support in $G_{\gamma,r}$ is of the form $F \circ \psi_{\gamma,r}^{\gamma}$, where $F \in C(G_{\gamma})$. Since the linear span of coefficients of irreducible unitary representation of G_{γ} is dense in $C(G_{\gamma})$, it suffices to show that, for any $\gamma \in \Gamma$, for any irreducible unitary representation of G_{γ} , $u : G_{\gamma} \to \mathcal{U}(H)$, any coefficient $u_{ij} \in C(G_{\gamma}) = v_{\gamma\gamma}C(G) \subset C(G)$ satisfies $u_{\gamma}u_{ij} \in X$. But this is obvious since one has

$$u_{\gamma}u_{ij} = u_{\gamma}v_{\gamma\gamma}u_{i,j} = u_{\gamma}v_{\gamma\gamma}u_{i,j} \circ \psi_{\gamma,\gamma}^{\gamma} = \gamma(u)_{\gamma,\gamma,i,j} \in X.$$

Finally, the fusion rules are described as follows.

Let $\gamma, \mu \in \Gamma$, $u: G_{\gamma} \to \mathcal{U}(H_u)$, $v: G_{\mu} \to \mathcal{U}(H_v)$ by unitary representations of G_{γ} and G_{μ} respectively. For any $r \in (\gamma \cdot G)(\mu \cdot G)$, we define the r-twisted tensor product of u and v, denoted $u \otimes v$ as a unitary representation of G_r on $K_r \otimes H_u \otimes H_v$, where

$$K_r := \operatorname{Span}(\{e_s \otimes e_t : s \in \gamma \cdot G \text{ and } t \in \mu \cdot G \text{ such that } st = r\}) \subset l^2(\gamma \cdot G) \otimes l^2(\mu \cdot G).$$

For $g \in G$, we define:

$$(u \underset{r}{\otimes} v)(g) = \sum_{\substack{s,s' \in \gamma \cdot G \\ t,t' \in \mu \cdot G \\ st = r = s't'}} e_{ss'} \otimes e_{tt'} \otimes v_{ss'}(\alpha_t(g))v_{tt'}(g)u(\psi_{s,s'}^{\gamma}(\alpha_t(g))) \otimes v(\psi_{t,t'}^{\mu}(g)) \in \mathcal{U}(K_r \otimes H_u \otimes H_v).$$

Theorem 3.2. The following holds.

1. For all $\gamma, \mu \in \Gamma$, all $r \in (\gamma \cdot G)(\mu \cdot G)$ and all u, v finite dimensional unitary representations of G_{γ} , G_{μ} respectively the element $u \otimes v$ is a unitary representation of G_r .

- 2. The character of $u \otimes w$ is $\chi(u \otimes v) = \sum_{s \in \gamma \cdot G, t \in \mu \cdot G, s = r} (v_{ss} \circ \alpha_t) v_{tt} (\chi(u) \circ \psi_{s,s}^{\gamma} \circ \alpha_t) (\chi(v) \circ \psi_{t,t}^{\mu})$.
- 3. For all $\gamma_1, \gamma_2, \gamma_3 \in \Gamma$ and all u, v, w unitary representations of G_{γ_1} , G_{γ_2} and G_{γ_3} respectively, the number $\dim(\operatorname{Mor}_{\mathbb{G}}(\gamma_1(u), \gamma_2(v) \otimes \gamma_3(w)))$ is equal to:

$$\begin{cases} \frac{1}{|\gamma_1 \cdot G|} \sum_{r \in \gamma_1 \cdot G \cap (\gamma_2 \cdot G)(\gamma_3 \cdot G)} \dim(\operatorname{Mor}_{G_r}(u \circ \psi_{r,r}^{\gamma_1}, v \otimes w)) & \text{if } \gamma_1 \cdot G \cap (\gamma_2 \cdot G)(\gamma_3 \cdot G) \neq \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

Let us observe that, by the bicrossed product relations, we have, for all $\gamma_1, \gamma_2, \gamma_3 \in \Gamma$,

$$\gamma_1 \cdot G \cap (\gamma_2 \cdot G)(\gamma_3 \cdot G) \neq \emptyset \Leftrightarrow \gamma_1 \cdot G \subset (\gamma_2 \cdot G)(\gamma_3 \cdot G).$$

Proof. (1). Put $w = u \otimes v$ and let $g, h \in G_r$. Then, w(gh) is equal to:

$$\sum_{s,s'\in\gamma\cdot G,t,t'\in\mu\cdot G,st=s't'=r}e_{ss'}\otimes e_{tt'}\otimes v_{ss'}\big(\alpha_t(gh)\big)v_{tt'}(gh)u(\psi_{s,s'}^{\gamma}(\alpha_t(gh)))\otimes v(\psi_{t,t'}^{\mu}(gh)).$$

Since $v_{ty}(g) \neq 0$ precisely when $t \cdot g = y$, the factor $v_{ss'}(\alpha_t(gh))v_{tt'}(gh)u(\psi_{s,s'}^{\gamma}(\alpha_t(gh))) \otimes v(\psi_{t,t'}^{\mu}(gh))$ is equal to:

$$\sum_{x \in \gamma \cdot G, y \in \mu \cdot G} v_{sx}(\alpha_t(g)) v_{xs'}(\alpha_{t \cdot g}(h)) v_{ty}(g) v_{yt'}(h) u(\psi_{s,x}^{\gamma}(\alpha_t(g)) u(\psi_{x,s'}^{\gamma}(\alpha_{t \cdot g}(h))) \otimes v(\psi_{t,y}^{\mu}(g)) v(\psi_{y,t'}^{\mu}(h))$$

$$=\sum_{x\in\gamma\cdot G,y\in\mu\cdot G}v_{sx}(\alpha_t(g))v_{xs'}(\alpha_y(h))v_{ty}(g)v_{yt'}(h)u(\psi_{s,x}^{\gamma}(\alpha_t(g))u(\psi_{x,s'}^{\gamma}(\alpha_y(h)))\otimes v(\psi_{t,y}^{\mu}(g))v(\psi_{y,t'}^{\mu}(h)).$$

Moreover, since for all $g \in G_r$ and all s, t such that st = r, one has, whenever $t \cdot g = y$ and $s \cdot \alpha_t(g) = x$, that $xy = (s \cdot \alpha_t(g))(t \cdot g) = (st) \cdot g = r \cdot g = r$, it follows that the only non-zero terms in the last sum are for $x \in \gamma \cdot G$ and $y \in \mu \cdot G$ such that xy = r. By the properties of the matrix units we see immediately that w(gh) = w(g)w(h). To end the proof of (1), it suffices to check that w(1) = 1, which is clear, and that $w(g)^* = w(g^{-1})$ for all $g \in G_r$. So let $g \in G_r$. One has:

$$w(g)^* = \sum_{s,s' \in \gamma \cdot G, \, t,t' \in \mu \cdot G, \, st = r = s't'} e_{ss'} \otimes e_{tt'} \otimes v_{s's}(\alpha_{t'}(g)) v_{t't}(g) u((\psi_{s',s}^{\gamma}(\alpha_{t'}(g)))^{-1}) \otimes v((\psi_{t',t}^{\mu}(g))^{-1}).$$

Note that for all $t, t' \in \Gamma$ and all $g \in G$, one has $v_{s's}(g) = v_{ss'}(g^{-1})$. Also, using the bicrossed product relations one finds that $\alpha_r(g)^{-1} = \alpha_{r \cdot g}(g^{-1})$ for all $r \in \Gamma$ and $g \in G$. In particular, $v_{s's}(\alpha_{t'}(g))v_{t't}(g) = v_{ss'}(\alpha_t(g^{-1}))v_{tt'}(g^{-1})$ and, when $t' \cdot g = t$, one has $\psi_{s',s}^{\gamma}(\alpha_{t'}(g)))^{-1} = \psi_{s,s'}^{\gamma}(\alpha_t(g^{-1}))$. It follows immediately that $w(g)^* = w(g^{-1})$.

- (2). Is a direct computation.
- (3). One has $\dim(\operatorname{Mor}_{\mathbb{G}}(\gamma_1(u), \gamma_2(v) \otimes \gamma_3(w))) = h(\chi(\gamma_1(u))^*\chi(\gamma_2(v))\chi(\gamma_3(w)))$ which is equal to:

$$\begin{split} &\sum_{r \in \gamma_1 \cdot G, s \in \gamma_2 \cdot G, t \in \gamma_3 \cdot G} h(\chi(\overline{u}) \circ \psi_{r,r}^{\gamma_1} v_{rr} u_r^* u_s v_{ss} \chi(v) \circ \psi_{s,s}^{\gamma_2} u_t v_{tt} \chi(w) \circ \psi_{t,t}^{\gamma_3}) \\ &= \sum_{r,s,t} h(u_{r^{-1}st} \alpha_{t^{-1}s^{-1}r} (\chi(\overline{u}) \circ \psi_{r,r}^{\gamma_1} v_{rr}) \alpha_{t^{-1}} (v_{ss} \chi(v) \circ \psi_{s,s}^{\gamma_2}) v_{tt} \chi(w) \circ \psi_{t,t}^{\gamma_3}) \\ &= \sum_{r \in \gamma_1 \cdot G} \sum_{s \in \gamma_2 \cdot G, t \in \gamma_3 \cdot G, st = r} \int_G \chi(\overline{u}) \circ \psi_{r,r}^{\gamma_1} v_{rr} \alpha_{t^{-1}} (v_{ss} \chi(v) \circ \psi_{s,s}^{\gamma_2}) v_{tt} \chi(w) \circ \psi_{t,t}^{\gamma_3} d\nu \\ &= \sum_{r \in \gamma_1 \cdot G \cap (\gamma_2 \cdot G)(\gamma_3 \cdot G)} \frac{1}{|r \cdot G|} \int_{G_r} \chi(\overline{u}) \circ \psi_{r,r}^{\gamma_1} \chi(v \otimes w) d\nu_r \\ &= \frac{1}{|\gamma_1 \cdot G|} \sum_{r \in \gamma_1 \cdot G \cap (\gamma_2 \cdot G)(\gamma_3 \cdot G)} \dim(\operatorname{Mor}_{G_r}(u \circ \psi_{r,r}^{\gamma_1}, v \otimes w)). \end{split}$$

Note that, whenever $\gamma_1 \cdot G \cap ((\gamma_2 \cdot G)(\gamma_3 \cdot G)) = \emptyset$, there is no non-zero terms in the sum above.

3.2 The induced representation

In this section, we explain how the induced representation maybe viewed as a particular twisted tensor product.

For $\gamma \in \Gamma$ and $u: G_{\gamma} \to \mathcal{U}(H)$ is a unitary representation of G_{γ} we define the induced representation:

$$\operatorname{Ind}_{\gamma}^{G}(u) := \varepsilon_{G_{\gamma^{-1}}} \underset{1}{\otimes} u \, : \, G \to \mathcal{U}(l^{2}(\gamma \cdot G) \otimes H); \, \, g \mapsto \sum_{r,s \in \gamma \cdot G} e_{rs} \otimes v_{rs}(g) u(\psi_{rs}^{\gamma}(g)).$$

It follows from Theorem 3.2 that $\operatorname{Ind}_{\gamma}^{G}(u)$ is indeed a unitary representation of G. We collect some elementary and well known facts about this representation in the following Proposition. Note that, in property 3, we use the symbol $\operatorname{Res}_{G_{\gamma}}^{G}(u)$ for $u \in \operatorname{Rep}(G)$ to denote the restriction of u to a representation of G_{γ} . Hence, property 3 motivates the name induced representation for the representation $\operatorname{Ind}_{\gamma}^{G}(u)$.

Proposition 3.3. The following holds.

- 1. For all $\gamma \in \Gamma$ and all $u \in \text{Rep}(G_{\gamma})$ one has $\chi(\text{Ind}_{\gamma}^{G}(u))(g) = \sum_{r \in \gamma : G} v_{rr}(g)\chi(u)(\psi_{rr}^{\gamma}(g))$ for all $g \in G$.
- 2. For all $\gamma \in \Gamma$ and all $u, v \in \operatorname{Rep}(G_{\gamma})$ one has $u \simeq v \implies \operatorname{Ind}_{\gamma}^{G}(u) \simeq \operatorname{Ind}_{\gamma}^{G}(v)$.
- 3. For all $\gamma \in \Gamma$, $u \in \operatorname{Rep}(G)$ and $v \in \operatorname{Rep}(G_{\gamma})$ one has $\dim(\operatorname{Mor}_G(u,\operatorname{Ind}_{\gamma}^G(v))) = \dim(\operatorname{Mor}_{G_{\gamma}}(\operatorname{Res}_{G_{\gamma}}^G(u),v)$.

Proof. (1). It is obvious, by definition of $\operatorname{Ind}_{\gamma}^{G}(u)$.

- (2). If $u \simeq v$ then $\chi(u) = \chi(v)$. Hence, $\chi(\operatorname{Ind}_{\gamma}^{G}(u)) = \chi(\operatorname{Ind}_{\gamma}^{G}(v))$ by (1). So $\operatorname{Ind}_{\gamma}^{G}(u) \simeq \operatorname{Ind}_{\gamma}^{G}(v)$.
- (3). Let $\gamma \in \Gamma$, $u \in \text{Rep}(G)$ and $v \in \text{Rep}(G_{\gamma})$. One has,

$$\dim(\operatorname{Mor}_{G}(u,\operatorname{Ind}_{\gamma}^{G}(v))) = \sum_{r \in \gamma \cdot G} \int_{G} \chi(\overline{u}) v_{rr} \chi(v) \circ \psi_{rr}^{\gamma} d\nu = \frac{1}{|\gamma \cdot G|} \sum_{r \in \gamma \cdot G} \int_{G_{r}} \chi(\overline{u}) \chi(v) \circ \psi_{rr}^{\gamma} d\nu_{\gamma}.$$

Since $\psi_{rr}^{\gamma}:G_r\to G_{\gamma}$ is a Haar probability preserving homeomorphism we obtain

$$\dim(\operatorname{Mor}_{G}(u,\operatorname{Ind}_{\gamma}^{G}(v))) = \frac{1}{|\gamma \cdot G|} \sum_{r \in \gamma \cdot G} \int_{G_{\gamma}} \chi(\overline{u}) \circ (\psi_{rr}^{\gamma})^{-1} \chi(v) d\nu_{\gamma}.$$

Finally, since, for all $g \in G$, $\chi(\overline{u}) \circ (\psi_{rr}^{\gamma})^{-1}(g) = \chi(\overline{u})(g)$ (because $\chi(\overline{u})$ is a central function on G) it follows that:

$$\dim(\operatorname{Mor}_{G}(u,\operatorname{Ind}_{\gamma}^{G}(v))) = \frac{1}{|\gamma \cdot G|} \sum_{r \in \gamma \cdot G} \int_{G_{\gamma}} \chi(\overline{u}) \chi(v) d\nu_{\gamma} = \dim(\operatorname{Mor}_{G_{\gamma}}(\operatorname{Res}_{G_{\gamma}}^{G}(u), v). \qquad \Box$$

4 Length functions

Recall that given a compact quantum group \mathbb{H} , a function $l: \operatorname{Irr}(\mathbb{H}) \to [0, \infty)$ is called a *length function on* $\operatorname{Irr}(\mathbb{H})$ if $l([\epsilon]) = 0$, $l(\overline{x}) = l(x)$ and that $l(x) \leq l(y) + l(z)$ whenever $x \in y \otimes z$. A length function on a discrete group Λ is a function $l: \Lambda \to [0, \infty)$ such that l(1) = 0, $l(r) = l(r^{-1})$ and $l(rs) \leq l(r) + l(s)$ for all $r, s \in \Lambda$.

Let (Γ, G) be a matched pair with bicrossed product \mathbb{G} . In view of the description of the irreducible representations of \mathbb{G} , the fusion rules and the contragredient representation, it is clear that to get a length function on $\operatorname{Irr}(\mathbb{G})$, we need a family of maps $l_{\gamma}: \operatorname{Irr}(G_{\gamma}) \to [0, +\infty[$, for $\gamma \in \Gamma$, satisfying the hypothesis of the following definition.

Definition 4.1. Let (Γ, G) be a matched pair, $l: \operatorname{Irr}(G) \to [0, +\infty[$ and $l_{\Gamma}: \Gamma \to [0, +\infty[$ be length functions. The pair (l, l_{Γ}) is matched if, for all $\gamma \in \Gamma$, there exists a function $l_{\gamma}: \operatorname{Irr}(G_{\gamma}) \to [0, +\infty[$ such that

- (i) $l_1 = l$ and $l_{\gamma}(\varepsilon_{G_{\gamma}}) = l_{\Gamma}(\gamma)$.
- (ii) For any $\gamma \in \Gamma$, $r \in \gamma \cdot G$, and $x \in Irr(G_{\gamma})$, we have $l_{\gamma}(x) = l_{r}([u^{x} \circ \psi_{r,r}^{\gamma}])$.
- (iii) For any $\gamma \in \Gamma$, $x \in Irr(G_{\gamma})$, we have $l_{\gamma}(x) = l_{\gamma^{-1}}([\overline{u^x} \circ \alpha_{\gamma^{-1}}])$.
- (iv) For any $\gamma_1, \gamma_2, \gamma_3 \in \Gamma$, $x \in Irr(G_{\gamma_1})$, $y \in Irr(G_{\gamma_2})$, $z \in Irr(G_{\gamma_3})$, if $\gamma_3 \in (\gamma_1 \cdot G)(\gamma_2 \cdot G)$, and

$$\dim \operatorname{Mor}_{G_r}(u^z \circ \psi_{r\,r}^{\gamma_3}, u^x \otimes_r u^y) \neq 0 \tag{4.1}$$

for some $r \in \gamma_3 \cdot G$, then

$$l_{\gamma_3}(z) \le l_{\gamma_1}(x) + l_{\gamma_2}(y).$$
 (4.2)

The next Proposition shows that our notion of matched pair for length functions is the good one, as expected. **Proposition 4.2.** Let (Γ, G) be a matched pair with bicrossed product \mathbb{G} .

- 1. If l is a length function on $\operatorname{Irr}(\mathbb{G})$ then the maps $l_G: \operatorname{Irr}(G) = \operatorname{Irr}(G_1) \to [0, +\infty[, x \mapsto l([1(x)])]$ and $l_{\Gamma}: \Gamma \to [0, +\infty[, \gamma \mapsto l([\gamma(\varepsilon_{G_{\gamma}})])]$ are length functions and the pair (l_{Γ}, l_G) is matched.
- 2. If l_{Γ} is any β -invariant length function on Γ then the map $l': \operatorname{Irr}(\mathbb{G}) \mapsto [0, +\infty[, [\gamma(u^x)] \mapsto l_{\Gamma}(\gamma)]$ is a well defined length function on $\operatorname{Irr}(\mathbb{G})$.
- 3. If (l_{Γ}, l_G) is a matched pair of length functions on $(\Gamma, \operatorname{Irr}(G))$ then l_{Γ} is β -invariant and the maps $l, \widetilde{l} : \operatorname{Irr}(\mathbb{G}) \to [0, +\infty[, l([\gamma(u^x)]) := l_{\gamma}(x) \text{ and } \widetilde{l}([\gamma(u^x)]) := l_{\gamma}(x) + l_{\Gamma}(\gamma) \text{ are well-defined length functions.}$

Proof. (1). Since $1(\varepsilon_G)$ is the trivial representation of \mathbb{G} one has $l_{\Gamma}(1) = 0$. Let $\gamma, \mu \in \Gamma$ and note that $\gamma \mu \in (\gamma \cdot G)(\mu \cdot G)$. Moreover,

$$\dim(\operatorname{Mor}(\varepsilon_{G_{\gamma\mu}}, \varepsilon_{G_{\gamma}} \underset{\gamma\mu}{\otimes} \varepsilon_{G_{\mu}})) = \int_{G_{\gamma\mu}} \chi(\varepsilon_{G_{\gamma}} \underset{\gamma\mu}{\otimes} \varepsilon_{G_{\mu}}) d\nu_{G_{\gamma\mu}} = |\gamma\mu \cdot G| \sum_{s \in \gamma \cdot G, t \in \mu \cdot G, st = \gamma\mu} \int_{G_{\gamma\mu}} (v_{ss} \circ \alpha_{t}) v_{tt} d\nu$$

$$= |\gamma\mu \cdot G| \sum_{s \in \gamma \cdot G, t \in \mu \cdot G, st = \gamma\mu} \nu(\alpha_{t^{-1}}(G_{s}) \cap G_{t} \cap G_{\gamma\mu})$$

$$\geq \nu(\alpha_{\mu^{-1}}(G_{\gamma}) \cap G_{\mu} \cap G_{\gamma\mu}).$$

Hence, since $\alpha_{\mu^{-1}}(G_{\gamma}) \cap G_{\mu} \cap G_{\gamma\mu}$ is open and non empty (it contains 1) we deduce that

$$\dim(\operatorname{Mor}(\varepsilon_{G_{\gamma\mu}},\varepsilon_{G_{\gamma}}\underset{\gamma\mu}{\otimes}\varepsilon_{G_{\mu}}))>0.$$

So $\varepsilon_{G_{\gamma\mu}} \subset \varepsilon_{G_{\gamma}} \underset{\gamma\mu}{\otimes} \varepsilon_{G_{\mu}}$ which implies, by the fusion rules of \mathbb{G} , that $(\gamma\mu)(\varepsilon_{G_{\gamma\gamma\mu}}) \subset \gamma(\varepsilon_{G_{\gamma}}) \otimes \mu(\varepsilon_{G_{\mu}})$. Hence, since l is a length function, $l_{\Gamma}(\gamma\mu) = l([\gamma\mu(\varepsilon_{G_{\gamma\mu}})]) \leq l([\gamma(\varepsilon_{G_{\gamma}})]) + l([\mu(\varepsilon_{G_{\mu}})]) = l_{\Gamma}(\gamma) + l_{\Gamma}(\mu)$. Finally, note that, for all $\gamma \in \Gamma$, $\gamma^{-1}(\varepsilon_{G_{\gamma-1}}) \simeq \overline{\gamma(\varepsilon_{G})}$. Hence,

$$l_{\Gamma}(\gamma^{-1}) = l([\gamma^{-1}(\varepsilon_{G_{\gamma^{-1}})}] = l([\overline{\gamma(\varepsilon_G)}]) = l([\gamma(\varepsilon_G)]) = l_{\Gamma}(\gamma).$$

So l_{Γ} is a length function on Γ . It is obvious that $l_G = l_1$ is a length function on Irr(G). It is also clear that the pair (l_{Γ}, l_G) is matched. Indeed, define $l_{\gamma} : Irr(G_{\gamma}) \to [0, +\infty[$ by $l_{\gamma}(x) = l([\gamma(u^x)])$. Since l is a length function on $Irr(\mathbb{G})$ and by assertion 4 of Theorem 3.1 and Theorem 3.2, it is clear that the family $\{l_{\gamma} : \gamma \in \Gamma\}$ satisfies the conditions of Definition 4.1.

(2). Since l_{Γ} is β -invariant, the map l' is well defined by point 3 of Theorem 3.1. It is clear that $l'(\varepsilon_{\mathbb{G}}) = 0$ and, by point 4 (and 5) of Theorem 3.1 and since l' is a length function we also have that $l'(z) = l'(\overline{z})$ for all $z \in \operatorname{Irr}(\mathbb{G})$. Let now $\gamma_1, \gamma_2, \gamma_3 \in \Gamma$, $x \in \operatorname{Irr}(G_{\gamma_1})$, $y \in \operatorname{Irr}(G_{\gamma_2})$ and $z \in \operatorname{Irr}(G_{\gamma_3})$ be such that $\gamma_1(u^x) \subset \gamma_2(u^y) \otimes \gamma_3(u^z)$ then, by point 3 in Theorem 3.2, there exists $r \in \gamma_1 \cdot G$, $s \in \gamma_2 \cdot G$ and $t \in \gamma_3 \cdot G$ such that r = st (and $u^x \circ \psi_{r,r}^{\gamma_1} \subset u^y \otimes u^z$). Then,

$$l'([\gamma_1(u^x)]) = l_{\Gamma}(\gamma_1) = l_{\Gamma}(r) \le l_{\Gamma}(s) + l_{\Gamma}(t) = l_{\Gamma}(\gamma_2) + l_{\Gamma}(\gamma_3) = l'([\gamma_2(u^y)]) + l'([\gamma_3(u^z)]).$$

(3). Let (l_{Γ}, l_{G}) be a matched pair of length functions. By points 1 and 2 of Definition 4.1 we have, for all $\gamma \in \Gamma$ and all $r \in \gamma \cdot G$, $l_{\Gamma}(\gamma) = l_{\gamma}(\varepsilon_{G_{\gamma}}) = l_{r}([\varepsilon_{G_{\gamma}} \circ \psi_{r,r}^{\gamma}]) = l_{r}(\varepsilon_{G_{r}}) = l_{\Gamma}(r)$. Hence, l_{Γ} is β -invariant. By point 2, we get a length function l' on $Irr(\mathbb{G})$. Now, it is clear from Definition 4.1, the fusion rules and the adjoint representation of a bicrossed product (point 3 of Theorem 3.2 and point 4 of Theorem 3.1) that $l: [\gamma(u^{x})] \mapsto l_{\gamma}(x)$ is a length function on $Irr(\mathbb{G})$. Since $\tilde{l} = l + l'$, \tilde{l} is also a length function on $Irr(\mathbb{G})$.

5 Rapid decay and polynomial growth

In this section we study property (RD) and polynomial growth for bicrossed-products.

5.1 Generalities

We use the notion of property (RD) developed in [BVZ14] and recall the definition below. Since we are only dealing with Kac algebras, we recall the definition of the Fourier transform and rapid decay only for Kac algebras.

Let \mathbb{H} be a compact quantum group. We use the notation $l^{\infty}(\widehat{\mathbb{H}}) := \bigoplus_{x \in \operatorname{Irr}(\mathbb{H})} \mathcal{B}(H_x)$ to denote the l^{∞} direct sum. The c_0 direct sum is denoted by $c_0(\widehat{\mathbb{H}}) \subset l^{\infty}(\widehat{\mathbb{H}})$ and the algebraic direct sum is denoted by $c_c(\widehat{\mathbb{H}}) \subset c_0(\widehat{\mathbb{H}})$. An element $a \in c_c(\widehat{\mathbb{H}})$ is said to have finite support and its finite support is denoted by $\operatorname{Supp}(a) := \{x \in \operatorname{Irr}(\mathbb{H}) : ap_x \neq 0\}$, where p_x , for $x \in \operatorname{Irr}(\mathbb{H})$ denotes the central minimal projection of $l^{\infty}(\widehat{\mathbb{H}})$ corresponding to the bloc $\mathcal{B}(H_x)$.

For a compact quantum group \mathbb{H} which is always supposed to be of Kac type, and $a \in C_c(\widehat{\mathbb{H}})$ we define its Fourier transform as:

$$\mathcal{F}_{\mathbb{H}}(a) = \sum_{x \in \operatorname{Irr}(\mathbb{H})} \dim(x) (\operatorname{Tr}_x \otimes \operatorname{id}) (u^x (ap_x \otimes 1)) \in \operatorname{Pol}(\mathbb{H}),$$

and its "Sobolev 0-norm" by $||a||_{\mathbb{H},0}^2 = \sum_{x \in \mathrm{Irr}(\mathbb{H})} \dim(x) \mathrm{Tr}_x((a^*a)p_x)$.

Given a length function $l: \operatorname{Irr}(\mathbb{H}) \to [0, \infty)$, consider the element $L = \sum_{x \in \operatorname{Irr}(\mathbb{H})} l(x) p_x$ which is affilated to $c_0(\widehat{\mathbb{H}})$. Let q_n denote the spectral projections of L associated to the interval [n, n+1).

The pair $(\widehat{\mathbb{H}}, l)$ is said to have:

• Polynomial growth if there exists a polynomial $P \in \mathbb{R}[X]$ such that for every $k \in \mathbb{N}$ one has

$$\sum_{x \in Irr(\mathbb{H}), k \le l(x) < k+1} \dim(x)^2 \le P(k)$$

• Property (RD) if there exists a polynomial $P \in \mathbb{R}[X]$ such that for every $k \in \mathbb{N}$ and $a \in q_k c_c(\widehat{\mathbb{H}})$, we have $\|\mathcal{F}(a)\|_{C(\mathbb{H})} \leq P(k)\|a\|_{\mathbb{H},0}$.

Finally, $\widehat{\mathbb{H}}$ is said to have polynomial growth (resp. property (RD) if there exists a length function l on $Irr(\mathbb{H})$ such that $(\widehat{\mathbb{H}}, l)$ has polynomial growth (resp. property (RD)).

It is known from [Ve07] that if $(\widehat{\mathbb{H}}, l)$ has polynomial growth then $(\widehat{\mathbb{H}}, l)$ has rapid decay and the converse also holds when we assume \mathbb{H} to be co-amenable. Moreover, it is shown also shown in [Ve07] that duals of compact connected real Lie groups have polynomial growth. The fact that polynomial growth implies (RD) can easily be deduced from the following lemma.

Lemma 5.1. Let \mathbb{H} be a CQG, $F \subset Irr(\mathbb{H})$ a finite subset and $a \in l^{\infty}(\widehat{\mathbb{H}})$ with $ap_x = 0$ for all $x \notin F$. Then,

$$\|\mathcal{F}_{\mathbb{H}}(a)\| \le 2\sqrt{\sum_{x \in F} \dim(x)^2} \|a\|_{\mathbb{H},0}.$$

Proof. One can copy the proof of Proposition 4.2, assertion (a), in [BVZ14] or the proof of Proposition 4.4, assertion (ii), in [Ve07].

5.2 Technicalities

Let (Γ, G) be a matched pair with actions (α, β) and denote by \mathbb{G} the bicrossed product.

Recall that $\operatorname{Irr}(\mathbb{G}) = \sqcup_{\gamma \in I} \operatorname{Irr}(G_{\gamma})$, where $I \subset \Gamma$ is a complete set of representatives for Γ/G . For $\gamma \in I$ and $x \in \operatorname{Irr}(G_{\gamma})$, we denote by $\gamma(x)$ the corresponding element in $\operatorname{Irr}(\mathbb{G})$. If a complete set of representatives of $\operatorname{Irr}(G_{\gamma})$, $x \in \operatorname{Irr}(G_{\gamma})$ is given by $u^x \in \mathcal{B}(H_x) \otimes C(G_{\gamma})$ then a representative for $\gamma(x)$ is given by

$$u^{\gamma(x)} := \sum_{r,s \in \gamma \cdot G} e_{rs} \otimes (1 \otimes u_r v_{rs}) u \circ \psi_{r,s} \in \mathcal{B}(l^2(\gamma \cdot G)) \otimes C(\mathbb{G}).$$

The lemma below gives a way of obtaining an element $\widetilde{a} \in c_c(\widehat{G})$ from an $a \in c_c(\widehat{G}_{\gamma})$ in a suitable way so that they are compatible with the Fourier transforms.

Lemma 5.2. Let $\gamma \in \Gamma$ and $a \in c_c(\widehat{G}_{\gamma})$. Define $\widetilde{a} \in c_c(\widehat{G})$ by:

$$\widetilde{a}p_y = \sum_{x \in \operatorname{supp}(a) \ and \ y \subset \operatorname{Ind}_{\sim}^G(x)} \frac{\dim(x)}{\dim(y)} \sum_{i=1}^{\dim(\operatorname{Mor}_G(y,\operatorname{Ind}_{\gamma}^G(x)))} (S_i^y)^* (e_{\gamma\gamma} \otimes ap_x) S_i^y,$$

where $S_i^y \in \text{Mor}(y, \text{Ind}_{\gamma}^G(x))$ is a basis of isometries with pairwise orthogonal images. The following holds.

1. If (l_{Γ}, l) is a matched pair of length functions on $(\Gamma, \operatorname{Irr}(G))$ then, for all $y \in \operatorname{supp}(\widetilde{a})$ one has

$$l(y) \le \max(\{l_{\gamma}(x) : x \in \text{supp}(a)\}) + l_{\Gamma}(\gamma),$$

where $(l_{\gamma})_{\gamma \in \Gamma}$ is any family of maps realizing the compatibility relations of Definition 4.1.

- 2. $\mathcal{F}_{G_{\gamma}}(a) = v_{\gamma\gamma}\mathcal{F}_{G}(\widetilde{a}).$
- 3. $\|\widetilde{a}\|_{G,0} \leq \|a\|_{G_{\infty},0}$.

Proof. (1). Since any $y \in \operatorname{supp}(\widetilde{a})$ is such that $y \subset \operatorname{Ind}_{\gamma}^G(x) = \varepsilon_{G_{\gamma^{-1}}} \underset{1}{\otimes} x$ for some $x \in \operatorname{supp}(a)$, it follows that any $y \in \operatorname{supp}(\widetilde{a})$ satisfies $l(y) = l_1(y) \leq l_{\gamma^{-1}}(\varepsilon_{G_{\gamma^{-1}}}) + l_{\gamma}(x) = l_{\Gamma}(\gamma^{-1}) + l_{\gamma}(x) = l_{\Gamma}(\gamma) + l_{\gamma}(x)$ for some $x \in \operatorname{supp}(a)$.

(2). One has:

$$v_{\gamma\gamma}\mathcal{F}_{G}(\widetilde{a}) = v_{\gamma\gamma} \sum_{y} \dim(y)(\operatorname{Tr}_{y} \otimes \operatorname{id})(u^{y}\widetilde{a}p_{y} \otimes 1)$$

$$= v_{\gamma\gamma} \sum_{x \in \operatorname{supp}(a), y \subset \operatorname{Ind}_{\gamma}^{G}(x)} \sum_{i=1}^{\dim(\operatorname{Mor}(y,\operatorname{Ind}_{\gamma}^{G}(x)))} \dim(x)(\operatorname{Tr}_{y} \otimes \operatorname{id})(u^{y}((S_{i}^{y})^{*}(e_{\gamma\gamma} \otimes ap_{x})S_{i}^{y}) \otimes 1)$$

$$= v_{\gamma\gamma} \sum_{x,y,i} \dim(x)(\operatorname{Tr}_{y} \otimes \operatorname{id})(((S_{i}^{y})^{*} \otimes 1)\operatorname{Ind}_{\gamma}^{G}(u^{x})(e_{\gamma\gamma} \otimes ap_{x} \otimes 1)(S_{i}^{y} \otimes 1))$$

$$= v_{\gamma\gamma} \sum_{x,y,i} \dim(x)(\operatorname{Tr}_{l^{2}(\gamma \cdot G) \otimes H_{x}} \otimes \operatorname{id})(\operatorname{Ind}_{\gamma}^{G}(u^{x})(e_{\gamma\gamma} \otimes ap_{x} \otimes 1)(S_{i}^{y}(S_{i}^{y})^{*} \otimes 1))$$

$$= v_{\gamma\gamma} \sum_{x \in \operatorname{supp}(a)} \dim(x)(\operatorname{Tr}_{l^{2}(\gamma \cdot G) \otimes H_{x}} \otimes \operatorname{id})(\operatorname{Ind}_{\gamma}^{G}(u^{x})(e_{\gamma\gamma} \otimes ap_{x} \otimes 1))$$

$$= v_{\gamma\gamma} \sum_{x \in \operatorname{supp}(a)} \dim(x)(\operatorname{Tr}_{l^{2}(\gamma \cdot G) \otimes H_{x}} \otimes \operatorname{id})(\operatorname{Ind}_{\gamma}^{G}(u^{x})(e_{\gamma\gamma} \otimes ap_{x} \otimes 1))$$

$$= v_{\gamma\gamma} \sum_{x \in \operatorname{supp}(a)} \dim(x)(\operatorname{Tr}_{x} \otimes \operatorname{id})(u^{x}ap_{x} \otimes 1) = \mathcal{F}_{G_{\gamma}}(a).$$

(3). One has:

$$\|\widetilde{a}\|_{G,0}^2 = \sum_y \dim(y) \operatorname{Tr}_y(\widetilde{a}^* \widetilde{a} p_y)$$

$$= \sum_{x \in \text{supp}(a), y \subset \text{Ind}_{\gamma}^{G}(x)} \sum_{i,j=1}^{\dim(\text{Mor}(y, \text{Ind}_{\gamma}^{G}(x)))} \dim(y) \frac{\dim(x)^{2}}{\dim(y)^{2}} \text{Tr}_{y}((S_{i}^{y})^{*}(e_{\gamma\gamma} \otimes a^{*}p_{x}) S_{i}^{y}(S_{j}^{y})^{*}(e_{\gamma\gamma} \otimes ap_{x}) S_{j}^{y})$$

$$= \sum_{x,y,i} \dim(x) \left(\frac{\dim(x)}{\dim(y)}\right) \text{Tr}_{y}((S_{i}^{y})^{*}(e_{\gamma\gamma} \otimes a^{*}p_{x}) S_{i}^{y}(S_{i}^{y})^{*}(e_{\gamma\gamma} \otimes ap_{x}) S_{i}^{y})$$

Since, for all $y, i, S_i^y(S_i^y)^*$ is a projection, one has $S_i^y(S_i^y)^* \leq 1$ hence.

$$\operatorname{Tr}_y((S_i^y)^*(e_{\gamma\gamma}\otimes a^*p_x)S_i^y(S_i^y)^*(e_{\gamma\gamma}\otimes ap_x)S_i^y)\leq \operatorname{Tr}_y((S_i^y)^*(e_{\gamma\gamma}\otimes a^*ap_x)S_i^y).$$

Moreover, note that $y \subset \operatorname{Ind}_{\gamma}^{G}(x)$ if and only if $\dim(\operatorname{Mor}_{G_{\gamma}}(\operatorname{Res}_{G_{\gamma}}^{G}(y), x)) = \dim(\operatorname{Mor}_{G}(y, \operatorname{Ind}_{\gamma}^{G}(x))) \neq 0$. Since x is irreducible, we find that $y \subset \operatorname{Ind}_{\gamma}^{G}(x) \Leftrightarrow x \subset \operatorname{Res}_{G_{\gamma}}^{G}(y)$. In particular, for any $y \subset \operatorname{Ind}_{\gamma}^{G}(x)$ one has $\dim(x) \leq \dim(y)$. Hence,

$$\|\widetilde{a}\|_{G,0}^{2} \leq \sum_{x,y,i} \dim(x) \operatorname{Tr}_{y}((S_{i}^{y})^{*}(e_{\gamma\gamma} \otimes a^{*}ap_{x})S_{i}^{y}) = \sum_{x,y,i} \dim(x) \operatorname{Tr}_{l^{2}(\gamma \cdot G) \otimes H_{x}}(e_{\gamma\gamma} \otimes a^{*}ap_{x}(S_{i}^{y})^{*}S_{i}^{y})$$

$$= \sum_{x \in \operatorname{supp}(a)} \dim(x) \operatorname{Tr}_{l^{2}(\gamma \cdot G) \otimes H_{x}}(e_{\gamma\gamma} \otimes a^{*}ap_{x}) = \sum_{x \in \operatorname{supp}(a)} \dim(x) \operatorname{Tr}_{x}(a^{*}ap_{x}) = \|a\|_{G_{\gamma},0}^{2}. \quad \Box$$

Lemma 5.3. Let (l_{Γ}, l) be a matched pair of length functions on $(\Gamma, \operatorname{Irr}(G))$. If (\widehat{G}, l) has polynomial growth then, there exists C > 0 and $N \in \mathbb{N}$ such that:

- $\|\mathcal{F}_G(a)\| \le C(k+1)^N \|a\|_{G,0}$ for all $a \in c_c(\widehat{G})$ with $\operatorname{supp}(a) \subset \{x \in \operatorname{Irr}(G) : l(x) < k+1\}$.
- $|\gamma \cdot G| \dim(x) \le C(l_{\Gamma}(\gamma) + l_{\gamma}(x) + 1)^N \text{ for all } \gamma \in \Gamma, \ x \in \operatorname{Irr}(G_{\gamma}).$
- For all $\gamma \in \Gamma$, $\sum_{x \in \operatorname{Irr}(G_{\gamma}), l_{\gamma}(x) < k+1} \dim(x)^2 \le C^2 (k + l_{\Gamma}(\gamma) + 1)^{2N}$.

Proof. Let $P \in \mathbb{R}[X]$ be such that $\sum_{x \in \operatorname{Irr}(G), k \leq l(x) < k+1} \dim(x)^2 \leq P(k)$ for all $k \in \mathbb{N}$ and et $C_1 > 0$ and $N_1 \in \mathbb{N}$ be such that $P(k) \leq C_1(k+1)^{N_1}$ for all $k \in \mathbb{N}$. By Lemma 5.1 one has, for all $a \in c_c(\widehat{G})$, with $\sup(a) \subset \{x \in \operatorname{Irr}(G) : k \leq l(x) < k+1\}$, $\|\mathcal{F}_G(a)\| \leq 2\sqrt{P(k)}\|a\|_{G,0} \leq \sqrt{C_1}(k+1)^{\frac{N_1}{2}}\|a\|_{G,0}$. Now, suppose that $\sup(a) \subset \{x \in \operatorname{Irr}(G) : l(x) < k+1\}$ so that $a \in q_k c_c(\widehat{G})$, where $q_k = \sum_{j=0}^k p_j$ and $p_j = \sum_{x \in \operatorname{Irr}(G), k \leq l(x) < k+1}$. One has,

$$\|\mathcal{F}_{G}(a)\| = \sum_{j=0}^{k} \|\mathcal{F}_{G}(ap_{j})\| \le \sum_{j=0}^{k} \sqrt{C_{1}} (j+1)^{\frac{N_{1}}{2}} \|a\|_{G,0} \le \sqrt{C_{1}} (k+1)^{\frac{N_{1}}{2}+1} \|a\|_{G,0}.$$
 (5.1)

Now, let $\gamma \in \Gamma$ and $x \in Irr(G_{\gamma})$. By Proposition 3.3 one has:

$$\begin{aligned} |\gamma \cdot G| \dim(x) &= \dim(\operatorname{Ind}_{\gamma}^{G}(x)) = \sum_{y \in \operatorname{Irr}(G)} \dim(\operatorname{Mor}_{G}(y, \operatorname{Ind}_{\gamma}^{G}(x))) \dim(y) \\ &= \sum_{y \in \operatorname{Irr}(G), \ y \subset \operatorname{Ind}_{\gamma}^{G}(x)} \dim(\operatorname{Mor}_{G_{\gamma}}(\operatorname{Res}_{G_{\gamma}}^{G}(y), x)) \dim(y). \end{aligned}$$

Note that $\dim(\operatorname{Mor}_{G_{\gamma}}(\operatorname{Res}_{G_{\gamma}}^{G}(y), x)) \leq \dim(y)$ for all x, y. Moreover, since $\operatorname{Ind}_{\gamma}^{G}(x) \simeq \varepsilon_{G_{\gamma^{-1}}} \underset{1}{\otimes} x$ and the pair (l_{Γ}, l) is matched, one has $\{y \in \operatorname{Irr}(G), y \subset \operatorname{Ind}_{\gamma}^{G}(x)\} \subset \{y \in \operatorname{Irr}(G) : l(y) \leq l_{\Gamma}(\gamma) + l_{\gamma}(x)\}$. Hence,

$$|\gamma \cdot G| \dim(x) \leq \sum_{y \in \operatorname{Irr}(G), \, l(y) < l_{\Gamma}(\gamma) + l_{\gamma}(x) + 1} \dim(y)^2 = \sum_{j=0}^{l_{\Gamma}(\gamma) + l_{\gamma}(x)} \sum_{y \in \operatorname{Irr}(G), \, j \leq l(y) < j + 1} \dim(y)^2$$

$$\leq \sum_{j=0}^{l_{\Gamma}(\gamma)+l_{\gamma}(x)} P(j) \leq C_{1} \sum_{j=0}^{l_{\Gamma}(\gamma)+l_{\gamma}(x)} (j+1)^{N_{1}} \leq C_{1} (l_{\Gamma}(\gamma)+l_{\gamma}(x)+1)^{N_{1}+1}.$$
 (5.2)

It follows from Equations (5.1) and (5.2) that $C := \text{Max}(C_1, \sqrt{C_1})$ and $N := N_1 + 1$ do the job.

Let us show the last point. Fix $\gamma \in \Gamma$ and let $F \subset \operatorname{Irr}(G_{\gamma})$ a finite subset. Define $p_F \in c_c(\widehat{G}_{\gamma})$ by $p_F = \sum_{x \in F} p_x$ and note that $\mathcal{F}_{G_{\gamma}}(p_F) = \sum_{x \in F} \dim(x)\chi(x)$ and $\|a\|_{G_{\gamma},0}^2 = \sum_{x \in F} \dim(x)^2$. Suppose that $F \subset \{x \in \operatorname{Irr}(G_{\gamma}) : l_{\gamma}(x) < k+1\}$. Using Lemma 5.2 and the first part of the proof we find, since $\widetilde{p_F} \in c_c(\widehat{G})$ with $\sup(\widetilde{p_F}) \subset \{x \in \operatorname{Irr}(G) : l(x) < l_{\Gamma}(\gamma) + k+1\}$,

$$\left\| \sum_{x \in F} \dim(x) \chi(x) \right\|^{2} = \|\mathcal{F}_{G_{\gamma}}(p_{F})\| = \|v_{\gamma\gamma} \mathcal{F}_{G}(\widetilde{p_{F}})\|^{2} \le \|\mathcal{F}_{G}(\widetilde{p_{F}})\|^{2} \le C^{2} (k + l_{\Gamma}(\gamma) + 1)^{2N} \|\widetilde{p_{F}}\|_{G,0}^{2}$$

$$\le C^{2} (k + l_{\Gamma}(\gamma) + 1)^{2N} \|p_{F}\|_{G_{\gamma},0}^{2} = C^{2} (k + l_{\Gamma}(\gamma) + 1)^{2N} \sum_{x \in F} \dim(x)^{2}.$$

It follows that:

$$\left(\sum_{x \in F} \dim(x)^2 \right)^2 = \left(\sum_{x \in F} \dim(x) \chi(x)(1) \right)^2 \le \left\| \sum_{x \in F} \dim(x) \chi(x) \right\|_{C(G)}^2 \le C^2 (k + l_{\Gamma}(\gamma) + 1)^{2N} \sum_{x \in F} \dim(x)^2.$$

Hence, for all non empty finite subset $F \subset \{x \in \operatorname{Irr}(G_\gamma) : l_\gamma(x) < k+1\}$ one has $\sum_{x \in F} \dim(x)^2 \le C^2(k+l_\Gamma(\gamma)+1)^{2N}$. The last assertion follows.

5.3 Polynomial growth for bicrossed product

We start with the following result.

Theorem 5.4. Suppose that that (l_G, l_{Γ}) is a matched pair of length functions on (Γ, G) . If both (Γ, l_{Γ}) and (\widehat{G}, l_G) has polynomial growth then $(\widehat{\mathbb{G}}, \widetilde{l})$ have polynomial growth.

Proof. Let $I \subset \Gamma$ be a complete set of representatives for Γ/G so that $Irr(\mathbb{G}) = \sqcup_{\gamma \in I} Irr(G_{\gamma})$. Let $k \geq 1$ and define

$$F_k := \{ z \in \operatorname{Irr}(\mathbb{G}) : \widetilde{l}(z) < k \} \subset \sqcup_{\gamma \in I_k} T_{\gamma,k},$$

where $I_k := \{ \gamma \in \Gamma : l_{\Gamma}(\gamma) < k+1 \} \cap I$ and $T_{\gamma,k} := \{ x \in \operatorname{Irr}(G_{\gamma}) : l_{\gamma}(x) < k+1 \}$. Since (Γ, l_{Γ}) has polynomial growth, there exists a polynomial P_1 such that, for all $k \in \mathbb{N}$, $|I_k| \leq P_1(k)$. Moreover, since (\widehat{G}, l_G) has polynomial growth, we can apply Lemma 5.3 to get C > 0 and $N \in N$ such that, for all $k \in \mathbb{N}$ and all $\gamma \in I_k$, one has $\sum_{x \in T_{\gamma,k}} \dim(x)^2 \leq C^2(2k+2)^{2N}$ and, $|\gamma \cdot G| = |\gamma \cdot G| \dim(\varepsilon_G) \leq C(2k+3)^N$. Hence, for all $k \geq 1$,

$$\sum_{z \in F_k} \dim(z)^2 = \sum_{\gamma \in I_k} |\gamma \cdot G|^2 \sum_{x \in T_{\gamma,k}} \dim(x)^2 \le C^2 (2k+2)^{2N} \sum_{\gamma \in I_k} |\gamma \cdot G|^2 \le C^4 (2k+2)^{2N} (2k+3)^{2N} |I_k|$$

$$\le C^4 (2k+2)^{2N} (2k+3)^{2N} P_1(k).$$

To complete the proof of Theorem B, we need the following Proposition.

Proposition 5.5. Assume that there exists a length function l on $Irr(\mathbb{G})$ such that $(\widehat{\mathbb{G}}, l)$ has polynomial growth and consider the matched pair of length functions (l_{Γ}, l_{G}) associated to l given in Proposition 4.2. Then (Γ, l_{Γ}) and (\widehat{G}, l_{G}) both have polynomial growth.

Proof. Assume that $(\widehat{\mathbb{G}}, l)$ has polynomial growth. Since the map $Irr(G) \to Irr(\mathbb{G})$, $x \mapsto 1(x)$ is injective, dimension preserving and length preserving (by definition of l_G), it is clear that (\widehat{G}, l_G) has polynomial

growth. Let us show that (Γ, l_{Γ}) also has polynomial growth. Let P be a polynomial witnessing (RD) for $(\widehat{\mathbb{G}}, l)$ and $k \in \mathbb{N}$. Define $F_k := \{ \gamma \in \Gamma : k \leq l_{\Gamma}(\gamma) < k+1 \}$. One has, for all $k \in \mathbb{N}$,

$$|F_k| = \sum_{k \le l([\gamma(\varepsilon_G)]) < k+1} 1 \le \sum_{k \le l([\gamma(\varepsilon_G)]) < k+1} |\gamma \cdot G|^2 = \sum_{k \le l([\gamma(\varepsilon_G)]) < k+1} \dim([\gamma(\varepsilon_G)])^2$$

$$\le \sum_{z \in \operatorname{Irr}(\mathbb{G}), \ k \le l(z) < k+1} \dim(z)^2 \le P(k).$$

5.4 Rapid decay for bicrossed product

Recall that $l^{\infty}(\widehat{\mathbb{G}}) = \bigoplus_{\gamma \cdot G \in \Gamma/G} \bigoplus_{x \in \operatorname{Irr}(G_{\gamma})} \mathcal{B}(l^{2}(\gamma \cdot G) \otimes H_{x})$. Let us denote by $p_{\gamma(x)}$ the central projection of $l^{\infty}(\widehat{\mathbb{G}})$ corresponding to the block $\mathcal{B}(l^{2}(\gamma \cdot G) \otimes H_{x})$ and define, for $\gamma \cdot G \in \Gamma/G$, the central projection:

$$p_{\gamma} := \sum_{x \in Irr(G_{\gamma})} p_{\gamma(x)} \in l^{\infty}(\widehat{\mathbb{G}}).$$

Note that $p_{\gamma}l^{\infty}(\widehat{\mathbb{G}}) = \bigoplus_{x \in \operatorname{Irr}(G_{\gamma})} \mathcal{B}(l^{2}(\gamma \cdot G) \otimes H_{x}) \simeq \mathcal{B}(l^{2}(\gamma \cdot G)) \otimes L(G_{\gamma})$, where $L(G_{\gamma}) = \bigoplus_{x \in \operatorname{Irr}(G_{\gamma})} \mathcal{B}(H_{x})$ is the group von-Neumann algebra of G_{γ} (which is also the multiplier C*-algebra of $C_{r}^{*}(G_{\gamma}) = \bigoplus_{x \in \operatorname{Irr}(G_{\gamma})}^{c_{0}} \mathcal{B}(H_{x})$). Using this identification, we define $\pi_{\gamma} : c_{0}(\widehat{\mathbb{G}}) \to \mathcal{B}(l^{2}(\gamma \cdot G)) \otimes C_{r}^{*}(G_{\gamma}) \subset c_{0}(\widehat{\mathbb{G}})$ to be the *-homomorphism given by $\pi_{\gamma}(a) = ap_{\gamma}$, for all $a \in c_{0}(\widehat{\mathbb{G}})$. We also write, for $a \in c_{0}(\widehat{\mathbb{G}})$, $\pi_{\gamma}(a) = \sum_{r,s \in \gamma \cdot G} e_{rs} \otimes \pi_{r,s}^{\gamma}(a)$, where we recall that (e_{rs}) are the matrix units associated to the canonical orthonormal basis $(e_{r})_{r \in \gamma \cdot G}$ of $l^{2}(\gamma \cdot G)$ and $\pi_{r,s}^{\gamma} : c_{0}(\widehat{\mathbb{G}}) \to C_{r}^{*}(G_{\gamma})$ is the completely bounded map defined by $\pi_{r,s}^{\gamma} := (\omega_{e_{s},e_{r}} \otimes \operatorname{id}) \circ \pi_{\gamma}$ and $\omega_{e_{s},e_{r}} \in \mathcal{B}(l^{2}(\gamma \cdot G))$, $\omega_{e_{s},e_{r}}(T) = \langle Te_{s},e_{r} \rangle$.

We start with the following result.

Theorem 5.6. Let (l_{Γ}, l_{G}) be a matched pair of length functions on $(\Gamma, \operatorname{Irr}(G))$. Suppose that (\widehat{G}, l_{G}) has polynomial growth and (Γ, l_{Γ}) has (RD). Then $(\widehat{\mathbb{G}}, \widetilde{l})$ has (RD).

Proof. Let $a \in c_c(\widehat{\mathbb{G}})$ and write $a = \sum_{\gamma \in S} \sum_{x \in T_{\gamma}} ap_{\gamma(x)}$, where $S \subset I$ and $T_{\gamma} \subset Irr(G_{\gamma})$ are finite subsets. Claim. The following holds.

1.
$$\mathcal{F}_{\mathbb{G}}(a) = \sum_{\gamma \in S} |\gamma \cdot G| \left(\sum_{r,s \in \gamma \cdot G} u_r v_{rs} \mathcal{F}_{G_{\gamma}}(\pi_{s,r}^{\gamma}(a)) \circ \psi_{r,s}^{\gamma} \right).$$

2.
$$||a||_{\mathbb{G},0}^2 = \sum_{\gamma \in S} |\gamma \cdot G| \left(\sum_{r,s \in \gamma \cdot G} ||\pi_{r,s}^{\gamma}(a)||_{G_{\gamma},0}^2 \right)$$

Proof of the Claim.(1). A direct computation gives:

$$\mathcal{F}_{\mathbb{G}}(a) = \sum_{\gamma \in S, x \in T_{\gamma}} |\gamma \cdot G| \dim(x) (\operatorname{Tr}_{l^{2}(\gamma \cdot G) \otimes H_{x}}(\gamma(u^{x}) a p_{\gamma(x)} \otimes 1)$$

$$= \sum_{\gamma \in S, x \in T_{\gamma}} |\gamma \cdot G| \dim(x) \sum_{r, s \in \gamma \cdot G} u_{r} v_{rs} (\operatorname{Tr}_{x} \otimes \operatorname{id}) (u^{x} \circ \psi_{r, s}^{\gamma} \pi_{s, r}^{\gamma}(a) p_{x} \otimes 1)$$

$$= \sum_{\gamma \in S} |\gamma \cdot G| \sum_{r, s \in \gamma \cdot G} u_{r} v_{rs} \mathcal{F}_{G_{\gamma}}(\pi_{s, r}^{\gamma}(a)) \circ \psi_{r, s}^{\gamma}.$$

(2). Since π_{γ} is a *-homomorphism, we have $\pi_{r,s}^{\gamma}(a^*a) = \sum_{t \in \gamma \cdot G} \pi_{t,r}^{\gamma}(a)^* \pi_{t,s}^{\gamma}(a)$ hence,

$$||a||_{\mathbb{G},0}^2 = \sum_{\gamma \in S, x \in T_{\gamma}} |\gamma \cdot G| \operatorname{dim}(x) \sum_{r,s \in \gamma \cdot G} (\operatorname{Tr}_x \otimes \operatorname{id}) (\pi_{s,r}^{\gamma}(a)^* \pi_{r,s}^{\gamma}(a))$$
$$= \sum_{\gamma \in S} |\gamma \cdot G| \sum_{r,s \in \gamma \cdot G} ||\pi_{r,s}^{\gamma}(a)||_{G_{\gamma},0}^2.$$

Let us now prove the theorem. Let $b = \sum_{\gamma \in S'} \sum_{t,t' \in \gamma \cdot G} u_t v_{tt'} F_\gamma \circ \psi_{t,t'}^\gamma \in C(\mathbb{G})$, where $F_\gamma \in C(G_\gamma)$ and $S' \subset I$ is a finite subset. For all $r \in \Gamma$, we denote by γ_r the unique element in I such that $\gamma_r \cdot G = r \cdot G$. We may re-order the sums and write:

$$\mathcal{F}_{\mathbb{G}}(a) = \sum_{r \in \Gamma} 1_{S \cdot G}(r) |r \cdot G| \left(\sum_{s \in r \cdot G} u_r v_{rs} \mathcal{F}_{G_{\gamma_r}}(\pi_{s,r}^{\gamma_r}(a)) \circ \psi_{r,s}^{\gamma_r} \right) \text{ and } b = \sum_{t \in \Gamma} u_t 1_{S' \cdot G}(t) \left(\sum_{t' \in t \cdot G} v_{tt'} F_{\gamma_t} \circ \psi_{t,t'}^{\gamma_t} \right).$$

Also, $||a||_{\mathbb{G},0}^2 = \sum_{r \in \Gamma} 1_{S \cdot G}(r) |r \cdot G| \left(\sum_{s \in r \cdot G} ||\pi_{r,s}^{\gamma_r}(a)||_{G_{\gamma_r},0}^2 \right)$. Then, $||\mathcal{F}_{\mathbb{G}}(a)b||_{2,h_{\mathbb{G}}}^2$ is equal to :

$$\begin{split} & \left\| \sum_{r,t \in \Gamma} u_{rt} 1_{S \cdot G}(r) 1_{S' \cdot G}(t) | r \cdot G| \left(\sum_{s \in r \cdot G, t' \in t \cdot G} v_{rs} \circ \alpha_t \mathcal{F}_{G_{\gamma_r}}(\pi_{s,r}^{\gamma_r}(a)) \circ \psi_{r,s}^{\gamma_r} \circ \alpha_t v_{tt'} \mathcal{F}_{\gamma_t} \circ \psi_{t,t'}^{\gamma_t} \right) \right\|_{2,h_G}^2 \\ &= \sum_{x \in \Gamma} \left\| \sum_{\substack{r,t \in \Gamma \\ rt = x}} 1_{S \cdot G}(r) 1_{S' \cdot G}(t) | r \cdot G| \left(\sum_{s \in r \cdot G, t' \in t \cdot G} v_{rs} \circ \alpha_t \mathcal{F}_{G_{\gamma_r}}(\pi_{s,r}^{\gamma_r}(a)) \circ \psi_{r,s}^{\gamma_r} \circ \alpha_t v_{tt'} \mathcal{F}_{\gamma_t} \circ \psi_{t,t'}^{\gamma_t} \right) \right\|_{2}^2 \\ &= \sum_{x \in \Gamma} \left\| \sum_{\substack{r,t \in \Gamma \\ rt = x}} 1_{S \cdot G}(r) 1_{S' \cdot G}(t) | r \cdot G| \left(\sum_{s \in r \cdot G} v_{rs} \circ \alpha_t \mathcal{F}_{G_{\gamma_r}}(\pi_{s,r}^{\gamma_r}(a)) \circ \psi_{r,s}^{\gamma_r} \circ \alpha_t \right) \left(\sum_{t' \in t \cdot G} v_{tt'} \mathcal{F}_{\gamma_t} \circ \psi_{t,t'}^{\gamma_t} \right) \right\|_{2}^2 \\ &\leq \sum_{x} \left(\sum_{\substack{r,t \in \Gamma \\ rt = x}} 1_{S \cdot G}(r) 1_{S' \cdot G}(t) | r \cdot G| \left\| \sum_{s \in r \cdot G} v_{rs} \circ \alpha_t \mathcal{F}_{G_{\gamma_r}}(\pi_{s,r}^{\gamma_r}(a)) \circ \psi_{r,s}^{\gamma_r} \circ \alpha_t \right\|_{\infty} \left\| \sum_{t' \in t \cdot G} v_{tt'} \mathcal{F}_{\gamma_t} \circ \psi_{t,t'}^{\gamma_t} \right\|_{2}^2 \right)^2 \\ &= \sum_{x} \left(\sum_{\substack{r,t \in \Gamma \\ rt = x}} \left(1_{S \cdot G}(r) | r \cdot G| \left\| \sum_{s \in r \cdot G} v_{rs} \mathcal{F}_{G_{\gamma_r}}(\pi_{s,r}^{\gamma_r}(a)) \circ \psi_{r,s}^{\gamma_r} \right\|_{\infty} \right) \left(1_{S' \cdot G}(t) \left\| \sum_{t' \in t \cdot G} v_{tt'} \mathcal{F}_{\gamma_t} \circ \psi_{t,t'}^{\gamma_t} \right\|_{2}^2 \right)^2 \\ &= \| \psi * \phi \|_{L^2(\Gamma)}^2, \end{split}$$

where $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$ denote respectively the L²-norm and the supremum norm on C(G) and $\psi, \phi: \Gamma \to \mathbb{R}_+$ are finitely supported functions defined by:

$$\psi(r) := 1_{S \cdot G}(r) |r \cdot G| \left\| \sum_{s \in r \cdot G} v_{rs} \mathcal{F}_{G_{\gamma_r}}(\pi_{s,r}^{\gamma_r}(a)) \circ \psi_{r,s}^{\gamma_r} \right\|_{\infty} \text{ and } \phi(t) := 1_{S' \cdot G}(t) \left\| \sum_{t' \in t \cdot G} v_{tt'} F_{\gamma_t} \circ \psi_{t,t'}^{\gamma_t} \right\|_{2},$$

Note that $\|\phi\|_{l^2(\Gamma)}^2 = \|b\|_{2,h_{\mathbb{G}}}^2$. Moreover, one has, since $\psi_{r,s}^{\gamma}: G_{r,s} \to G_{\gamma}$ is an homeomorphism,

$$\begin{aligned} \|\psi\|_{l^{2}(\Gamma)}^{2} &= \sum_{r \in \Gamma} 1_{S \cdot G}(r) |r \cdot G|^{2} \left\| \sum_{s \in r \cdot G} v_{rs} \mathcal{F}_{G_{\gamma_{r}}}(\pi_{s,r}^{\gamma_{r}}(a)) \circ \psi_{r,s}^{\gamma_{r}} \right\|_{\infty}^{2} \\ &\leq \sum_{r \in \Gamma} 1_{S \cdot G}(r) |r \cdot G|^{3} \sum_{s \in r \cdot G} \left\| v_{rs} \mathcal{F}_{G_{\gamma_{r}}}(\pi_{s,r}^{\gamma_{r}}(a)) \circ \psi_{r,s}^{\gamma_{r}} \right\|_{\infty}^{2} \\ &= \sum_{r \in \Gamma} 1_{S \cdot G}(r) |r \cdot G|^{3} \sum_{s \in r \cdot G} \left\| \mathcal{F}_{G_{\gamma_{r}}}(\pi_{s,r}^{\gamma_{r}}(a)) \right\|_{C(G_{\gamma_{r}})}^{2}. \end{aligned}$$

For $k \in \mathbb{N}$ let $p_k = \sum_{\gamma \in I, x \in \operatorname{Irr}(G_\gamma) : k \leq l(\gamma(x)) < k+1} p_{\gamma(x)} \in l^\infty(\widehat{\mathbb{G}}), \ p_k^{G_\gamma} = \sum_{x \in \operatorname{Irr}(G_\gamma) : k \leq l_{G_\gamma}(x) < k+1} p_x \in l^\infty(\widehat{G}_\gamma)$ and suppose from now on that $a \in p_k c_c(\widehat{\mathbb{G}})$. Hence, we must have $S \subset \{\gamma \in \Gamma : l_\Gamma(\gamma) < k+1\}$ and, for all $\gamma \in S$, $T_\gamma \subset \{x \in \operatorname{Irr}(G_\gamma) : l_{G_\gamma}(x) < k+1\}$. Hence, for all $\gamma \in S$ and all $r, s \in \gamma \cdot G$ one has $\pi_{r,s}^\gamma(a) \in q_k^\gamma c_c(\widehat{G}_\gamma)$, where $q_k^\gamma = \sum_{j=0}^k p_j^{G_\gamma}$.

Since (\widehat{G}, l_G) has polynomial growth, there exists C > 0 and $N \in \mathbb{N}$ satisfying the properties of Lemma 5.3. In particular, one has, for all $\gamma \in \Gamma$, $|\gamma \cdot G| \leq C(2l_{\Gamma}(\gamma) + 1)^N$. Moreover, since $S \subset \{g \in \Gamma : l_{\Gamma}(g) < k + 1\}$ and l_{Γ} is β -invariant, it follows that $S \cdot G \subset \{g \in \Gamma : l_{\Gamma}(g) < k + 1\}$. By Lemma 5.2 (and Lemma 5.3) we deduce that:

$$\begin{split} \|\psi\|_{l^{2}(\Gamma)}^{2} & \leq \sum_{r \in \Gamma} 1_{S \cdot G}(r) |r \cdot G|^{3} \sum_{s \in r \cdot G} \left\| v_{\gamma_{r} \gamma_{r}} \mathcal{F}_{G}(\widetilde{\pi_{s,r}^{\gamma_{r}}}(a)) \right\|^{2} \leq \sum_{r \in \Gamma} 1_{S \cdot G}(r) |r \cdot G|^{3} \sum_{s \in r \cdot G} \left\| \mathcal{F}_{G}(\widetilde{\pi_{s,r}^{\gamma_{r}}}(a)) \right\|^{2} \\ & \leq \sum_{r \in \Gamma} 1_{S \cdot G}(r) |r \cdot G|^{3} \sum_{s \in r \cdot G} C^{2} (k + l_{\Gamma}(\gamma_{r}) + 1)^{2N} \left\| \widetilde{\pi_{s,r}^{\gamma_{r}}}(a) \right\|_{G,0}^{2} \\ & \leq C^{2} (2k + 2)^{2N} \sum_{r \in \Gamma} 1_{S \cdot G}(r) |r \cdot G|^{3} \sum_{s \in r \cdot G} \left\| \pi_{s,r}^{\gamma_{r}}(a) \right\|_{G_{\gamma_{r}},0}^{2} \\ & \leq C^{4} (2k + 3)^{4N} \sum_{r \in \Gamma} 1_{S \cdot G}(r) |r \cdot G| \sum_{s \in r \cdot G} \left\| \pi_{s,r}^{\gamma_{r}}(a) \right\|_{G_{\gamma_{r}},0}^{2} = C^{4} (2k + 3)^{4N} \|a\|_{\mathbb{G},0}^{2}. \end{split}$$

Since (Γ, l_{Γ}) has (RD), let $C_2 > 0$ and $N_2 \in \mathbb{N}$ such that for all $k \in \mathbb{N}$, for all function ξ on Γ supported on $\{g \in \Gamma : l_{\Gamma}(g) < k+1\}$, we have $\|\xi * \eta\|_{l^2(\Gamma)} \le C_2(k+1)^{N_2} \|\xi\|_{l^2(\Gamma)} \|\eta\|_{l^2(\Gamma)}$. Note that ψ is supported on $S \cdot G$ and $S \cdot G \subset \{g \in \Gamma : l_{\Gamma}(g) < k+1\}$. Hence, it follows from the preceding computations that:

$$\begin{split} \|\mathcal{F}_{\mathbb{G}}(a)b\|_{2,h_{\mathbb{G}}}^2 & \leq & \|\psi*\phi\|_{l^2(\Gamma)}^2 \leq C_2^2(k+1)^{2N_2} \|\psi\|_{l^2(\Gamma)} \|\phi\|_{l^2(\Gamma)} \leq C^4(2k+3)^{4N} C_2^2(k+1)^{2N_2} \|a\|_{\mathbb{G},0}^2 \|b\|_{2,h_{\mathbb{G}}}^2 \\ & = & (P(k)\|a\|_{\mathbb{G},0}^2 \|b\|_{2,h_{\mathbb{G}}})^2. \end{split}$$

where
$$P(X) = C^2 C_2^2 (2X + 3)^{2N} (X + 1)^{N_2}$$
. It concludes the proof.

To complete the proof of Theorem A, we need the following Proposition.

Proposition 5.7. Assume that there exists a length function l on $Irr(\mathbb{G})$ such that $(\widehat{\mathbb{G}}, l)$ has (RD) and consider the matched pair of length functions (l_{Γ}, l_{G}) associated to l given in Proposition 4.2. Then (Γ, l_{Γ}) has (RD) and (\widehat{G}, l_{G}) has polynomial growth.

Proof. Suppose that $(\widehat{\mathbb{G}}, l)$ has (RD). The fact that (\widehat{G}, l_G) has (RD) follows from the general theory (since $C(G) \subset C(\mathbb{G})$ intertwines the comultiplication and the associated injection $\operatorname{Irr}(G) \to \operatorname{Irr}(\mathbb{G})$, actually given by $(x \mapsto 1(x))$, preserves the length functions). Let us show that (Γ, l_Γ) has (RD). Let $k \in \mathbb{N}$ and $\xi : \Gamma \to \mathbb{C}$ be a finitely supported function with support in $\{\gamma \in \Gamma : k \leq l_\Gamma(\gamma) < k+1\}$. Define $\widetilde{\xi} \in c_c(\widehat{\mathbb{G}})$ by $\widetilde{\xi} = \sum_{\gamma \in I} \frac{1}{|\gamma \cdot G|} \left(\sum_{r \in \gamma \cdot G} \xi(r) e_{rr}\right) p_{\gamma(1)}$, where we recall $e_{rs} \in \mathcal{B}(l^2(\gamma \cdot G))$ for $r, s \in \gamma \cdot G$ are the matrix units associated to the canonical orthonormal basis. Then,

$$\mathcal{F}_{\mathbb{G}}(\widetilde{\xi}) = \sum_{\gamma \in I} \sum_{r \in \gamma \cdot G} \xi(r) (\operatorname{Tr}_{l^{2}(\gamma \cdot G)} \otimes \operatorname{id}) (u^{\gamma(1)}(e_{rr} \otimes 1)) = \sum_{\gamma \in I} \sum_{r \in \gamma \cdot G} \xi(r) u_{r} v_{rr} \quad \text{also,}$$

$$\|\widetilde{\xi}\|_{\mathbb{G},0}^{2} = \sum_{r \in I} |\gamma \cdot G| \operatorname{Tr}_{l^{2}(\gamma \cdot G)} (\sum_{r \in \gamma \cdot G} \frac{|\xi(r)|^{2}}{|\gamma \cdot G|^{2}} e_{rr}) = \sum_{r \in I} \frac{1}{|\gamma \cdot G|} \sum_{r \in \gamma \cdot G} |\xi(r)|^{2} \leq \sum_{r \in I} \sum_{r \in \gamma \cdot G} |\xi(r)|^{2} = \|\xi\|_{2}^{2}.$$

Since ξ is supported in $\{\gamma \in \Gamma : k \leq l_{\Gamma}(\gamma) < k+1\}$ and l_{Γ} is β -invariant, it follows that $\sup(\widetilde{\xi}) \subset \{z \in \operatorname{Irr}(\mathbb{G}) : k \leq l(z) < k+1\}$. Hence, denoting by P a polynomial witnessing (RD) for $(\widehat{\mathbb{G}}, l)$, we have:

$$\left\| \sum_{\gamma \in I} \sum_{r \in \gamma \cdot G} \xi(r) u_r v_{rr} \right\| \le P(k) \|\xi\|_2.$$

Denote by Ψ the unital *-morphism $\Psi: C(\mathbb{G}) = \Gamma \ltimes C(G) \to C_r^*(\Gamma)$ such that $\Psi(u_\gamma F) = \lambda_\gamma F(1)$ for all $\gamma \in \Gamma$ and $F \in C(G)$. Since Ψ has norm one, denoting by $\lambda(\xi) \in C_r^*(\Gamma)$ the convolution operator by ξ , we have

$$\|\lambda(\xi)\| = \left\| \sum_{\gamma \in I} \sum_{r \in \gamma \cdot G} \xi(r) \lambda_r \right\| = \left\| \Psi\left(\sum_{\gamma \in I} \sum_{r \in \gamma \cdot G} \xi(r) u_r v_{rr} \right) \right\| \le \left\| \sum_{\gamma \in I} \sum_{r \in \gamma \cdot G} \xi(r) u_r v_{rr} \right\| \le P(k) \|\xi\|_2.$$

This concludes the proof.

References

- [BSV03] S. Baaj, G. Skandalis and S. Vaes, Non-semi-regular quantum groups coming from number theory, *Comm. Math. Phys.* **235** (2003), 139–167.
- [BVZ14] J. Bhowmick, C. Voigt, J. Zacharias, Compact quantum metric spaces from quantum groups of rapid decay, *To appear in J. Noncomm. Geom.*, arXiv:1406.0771.
- [FMP17] P. Fima, K. Mukherjee and I. Patri, On compact bicrossed products, J. Noncommut. Geom. 11 (2017), no. 4, 1521-1591.
- [Ha78] U. Haagerup, An example of a nonnuclear C*-algebra which has the metric approximation property, *Invent. Math.* **50** (1978/79), 279–293.
- [Jo89] P. Jolissaint, K-theory of reduced C*-algebras and rapidly decreasing functions on groups, K. theory 2 (1989), 723–735.
- [Jo89] P. Jolissaint, Rapidly decreasing functions in reduced C*-algebras of groups, *Trans. Amer/ Math. Soc.* **317** (1990), 167–196.
- [Ka68] G.I. Kac, Extensions of Groups to Ring Groups, Mat. USSR Sbornik 5 (1968), 451–474.
- [La00] V. Lafforgue, A proof of property (RD) for cocompact lattices of $SL(3, \mathbb{R})$ and $SL(3, \mathbb{Z})$, J. Lie Theory **10** (2000), 255–267.
- [La02] V. Lafforgue, K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes, *Invent. Math.* **149** (2002), 1–95.
- [VV03] S. Vaes and L. Vainerman, Extensions of locally compact quantum groups and the bicrossed product construction, Adv. in Math. 174 (2003), 1?101.
- [Ve07] R. Vergnioux, The property of Rapid Decay for Discrete Quantum Groups, J. operator theory 57 (2007), no. 2, 303-324.
- [Wo87] S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613–665.
- [Wo88] S.L. Woronowicz, Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math. 931 (1988), 35–76.
- [Wo98] S.L. Woronowicz, Compact quantum groups, in *Symétries quantiques (Les Houches 1995)*, North-Holand, Amsterdam (1998), 845–884.

PIERRE FIMA

Univ Paris Diderot, Sorbonne Paris Cité, IMJ-PRG, UMR 7586, F-75013, Paris, France Sorbonne Universités, UPMC Paris 06, UMR 7586, IMJ-PRG, F-75005, Paris, France CNRS, UMR 7586, IMJ-PRG, F-75005, Paris, France E-mail address: pierre.fima@imj-prg.fr

Hua WANG

Univ Paris Diderot, Sorbonne Paris Cité, IMJ-PRG, UMR 7586, F-75013, Paris, France Sorbonne Universités, UPMC Paris 06, UMR 7586, IMJ-PRG, F-75005, Paris, France CNRS, UMR 7586, IMJ-PRG, F-75005, Paris, France E-mail address: hua.wang@imj-prg.fr