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Abstract

We develop the twisting construction for locally compact quantum
groups. A new feature, in contrast to the previous work of M. Enock and
the second author, is a non-trivial deformation of the Haar measure. Then
we construct Rieffel’s deformation of locally compact quantum groups and
show that it is dual to the twisting. This allows to give new interesting
concrete examples of locally compact quantum groups, in particular, de-
formations of the classical az + b group and of the Woronowicz’ quantum
az + b group.

1 Introduction

The problem of extension of harmonic analysis on abelian locally compact (l.c.)
groups, to non abelian ones, leads to the introduction of more general objects.
Indeed, the set G of characters of an abelian l.c. group G is again an abelian
Lc. group - the dual group of G. The Fourier transform maps functions on G to

functions on G‘, and the Pontrjagin duality theorem claims that G is isomorphic
to G. If G is not abelian, the set of its characters is too small, and one should use
instead the set G of (classes of) its unitary irreducible representations and their
matrix coefficients. For compact groups, this leads to the Peter-Weyl theory and
to the Tannaka-Krein duality, where G is not a group, but allows to reconstruct
G. Such a non-symmetric duality was established for unimodular groups by
W.F. Stinespring, and for general l.c. groups by P. Eymard and T. Tatsuuma.

In order to restore the symmetry of the duality, G.I. Kac introduced in 1961
a category of ring groups which contained unimodular groups and their duals.
The duality constructed by Kac extended those of Pontrjagin, Tannaka-Krein
and Stinespring. This theory was completed in early 70-s by G.I. Kac and the
second author, and independently by M. Enock and J.-M. Schwartz, in order
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to cover all l.c. groups. The objects of this category are called Kac algebras
[2]. L.c. groups and their duals can be viewed respectively as commutative
and co-commutative Kac algebras, the corresponding duality covered all known
versions of duality for l.c. groups.

Quantum groups discovered by V.G. Drinfeld and others gave new impor-
tant examples of Hopf algebras obtained by deformation of universal enveloping
algebras and of function algebras on Lie groups. Their operator algebraic ver-
sions did not verify some of Kac algebra axioms and motivated strong efforts to
construct a more general theory. Important steps in this direction were made
by S.L. Woronowicz with his theory of compact quantum groups and a series of
important concrete examples, S. Baaj and G. Skandalis with their fundamental
concept of a multiplicative unitary and A. Van Daele who introduced an impor-
tant notion of a multiplier Hopf algebra. Finally, the theory of l.c. quantum
groups was proposed by J. Kustermans and S. Vaes [8], [9].

A number of ”isolated” examples of non-trivial (i.e., non commutative and
non cocommutative) l.c. quantum groups was constructed by S.L. Woronowicz
and other people. They were formulated in terms of generators of certain Hopf
x-algebras and commutation relations between them. It was much harder to
represent them by operators acting on a Hilbert space, to associate with them
an operator algebra and to construct all ingredients of a l.c. quantum group.
There was no general approach to these highly nontrivial problems, and one
must design specific methods in each specific case (see, for example, [19], [17]).

In [3], [16] M. Enock and the second author proposed a systematic approach
to the construction of non-trivial Kac algebras by twisting. To illustrate it,
consider a cocommutative Kac algebra structure on the group von Neumann
algebra M = L(G) of a non commutative l.c. group G with comultiplication
A(Ag) = Ag ® Ay (Ag is the left translation by g € G). Let us construct on M
another (in general, non cocommutative) Kac algebra structure with comulti-
plication Aq(-) = QA(-)Q*, where Q € M ® M is a unitary verifying certain
2-cocycle condition. In order to find such an €, let us, following to M. Rieffel
[11] and M. Landstad [10], take an inclusion a : L™(K) — M, where K is the
dual to some abelian subgroup K of G such that §|x = 1 (6(-) is the module
of G). Then, one lifts a usual 2-cocycle ¥ of K : Q = (a ® a)¥. The main
result of [3] is that Haar measure on £(G) gives also the Haar measure of the
deformed object.

Even though a series of non-trivial Kac algebras was constructed in this way,
the above mentioned ”unimodularity” condition on K was restrictive. Here we
develop the twisting construction for l.c. quantum groups without this condi-
tion and compute explicitly the deformed Haar measure. Thus, we are able
to construct l.c. quantum groups which are not Kac algebras and to deform
objects which are already non-trivial, for example, the az + b quantum group
[19], [17].

A dual construction that we call Rieffel’s deformation of a l.c. group has
been proposed in [11], [12], and [10], where, using a bicharacter on an abelian
subgroup, one deforms the algebra of functions on a group. This construction
has been recently developed by Kasprzak [6] who showed that the dual comul-



tiplication is exactly the twisted comultiplication of £(G). Unfortunately, a
trace that he constructed on the deformed algebra is invariant only under the
above mentioned ”unimodularity” condition. In this paper we construct Rief-
fel’s deformation of l.c. quantum groups without this condition and compute
the corresponding left invariant weight. This proves, in particular, the existence
of invariant weights on the classical Rieffel’s deformation. We also establish the
duality between twisting and the Rieffel’s deformation.

The structure of the paper is as follows. First, we recall some preliminary
definitions and give our main results. In Section 3 we develop the twisting
construction for l.c. quantum groups. Section 4 is devoted to the Rieffel’s
deformations of l.c. quantum groups and to the proof of the duality theorem.
In Section 5 we present examples obtained by the two constructions: 1) from
group von Neumann algebras £(G), in particular, when G is the az + b group;
2) from the az + b quantum group. Some useful technical results are collected
in Appendix.

Acknowledgment. We are grateful to Stefaan Vaes who suggested how
twisting can deform the Haar measure and helped us in the proof of Proposition
5.

2 Preliminaries and main results

2.1 Notations.

Let us denote by B(H) the algebra of all bounded linear operators on a Hilbert
space H, by ® the tensor product of Hilbert spaces or von Neumann algebras
and by X (resp., o) the flip map on it. If H, K and L are Hilbert spaces and
X € B(H®L) (resp., X € BLH®K),X € B(K®L)), we denote by X3 (resp.,
X12, Xa3) the operator (1@ E*)(X ® 1)(1® %) (resp., X ® 1, 1 ® X) defined
on H® K ® L. The identity map will be denoted by «.

Given a normal semi-finite faithful (n.s.f.) weight 6 on a von Neumann
algebra M, we denote: My = {z € M* | 0(z) < +oo}, Ny = {z € M |
¥r € M(j'}, and My = span ./\/lg' All l.c. groups considered in this paper
are supposed to be second countable, all Hilbert spaces separable and all von
Neumann algebras with separable predual.

2.2 Locally compact quantum groups [8], [9]
A pair (M, A) is called a (von Neumann algebraic) l.c. quantum group when

e M is a von Neumann algebra and A : M — M ® M is a normal and unital
x-homomorphism which is coassociative: (A ® 1)A = (1 ® A)A

e There exist n.s.f. weights ¢ and ¢ on M such that

— ¢ is left invariant in the sense that ¢((w ® ¢t)A(z)) = @(z)w(1) for
all z € M} and w € MF,



— 1 is right invariant in the sense that 1 ((: ® w)A(z)) = ¥(z)w(1) for
alleM;L' and w € M.

Left and right invariant weights are unique up to a positive scalar.
Represent M on the G.N.S. Hilbert space H of ¢ and define a unitary W
on H® H:

W*(Ala) @A) = (A® A)(A®D)(a® 1)) foralla,be N, .

Here, A denotes the canonical G.N.S.-map for ¢, A®A the similar map for p® .
One proves that W satisfies the pentagonal equation: WioW13Wa3 = WosWio,
and we say that W is a multiplicative unitary. The von Neumann algebra M
and the comultiplication on it can be given in terms of W respectively as

M={(®@w)(W)|we B(H),} o strons*

and A(z) = W*(1®@ z)W, for all © € M. Next, the l.c. quantum group (M, A)
has an antipode S, which is the unique o-strongly* closed linear map from M
to M satisfying (+ ® w)(W) € D(S) for all w € B(H), and S(t @ w)(W) =
(¢t @ w)(W*) and such that the elements (¢ ® w)(W) form a o-strong™* core for
S. § has a polar decomposition S = R7_;/9, where R is an anti-automorphism
of M and 7; is a one-parameter group of automorphisms of M. We call R the
unitary antipode and 7; the scaling group of (M, A). We have 6(R® R)A = AR,
so @R is a right invariant weight on (M, A), and we take ¢ := ¢R.

There exist a unique number v > 0 and a unique positif self-adjoint operator
oy affiliated to M, such that [Dy : Dyl = v 8%, v is the scaling constant
of (M,A) and 6y is the modular element of (M, A). The scaling constant can
be characterized as well by the relative invariance property ¢ 7 = vt .

For the dual l.c. quantum group (M , A) we have

M ={(w®)(W)|we B(H)} oo

and A(z) = SW (z®1)W*X for all € M. Turn the predual M, into a Banach
algebra with the product wp = (w ® p)A and define

A M, — M:\w) = (w® ) (W),

then A is a homomorphism and A(M,) is a o-strongly* dense subalgebra of M.
A left invariant n.s.f. weight ¢ on M can be constructed explicitly. Let 7 =
{we M,|3C >0, |w(z*)| < C||A(z)||Vz € N,}. Then (H,i,A) is the G.N.S.
construction for ¢ where A\(Z) is a o-strong-*-norm core for A and A(A(w)) is
the unique vector £(w) in H such that

The multiplicative unitary of (M, A) is W = SW*S. .
Since (M, A) is again a l.c. quantum group, denote its antipode by S, its
unitary antipode by R and its scaling group by 7;. Then we can construct



the dual of (M , A)7 starting from the left invariant weight ¢. The bidual l.c.

quantum group (M ,A) is isomorphic to (M,A). Denote by ; the modular
automorphism group of the weight ¢. The modular conjugations of the weights
¢ and ¢ will be denoted by J and J respectively. Let us mention that R(zx) =
Ja*J, for all z € M, and ]:B(y) = Jy*J, forally € M .

(M, A) is a Kac algebra (see [2]) if and only if 7z = ¢ and &,y is affiliated to the
center of M. In particular, (M, A) is a Kac algebra if M is commutative. Then
(M, A) is generated by a usual l.c. group G : M = L>®(G), (A f)(g,h) = f(gh),
(Saf)lg) = f(gil)v ec(f) = ff(g) dg, where f € L>(G), g,h € G and we
integrate with respect to the left Haar measure dg on GG. Then ¢ is given by
Ye(f) = [ f(g™') dg and 6y by the strictly positive function g — dg(g) .

L*(G) acts on H = L*(G) by multiplication and (Wg€)(g,h) = &(g,971h),
for all ¢ € H® H = L*(G x G). Then M = £L(G) is the group von Neumann
algebra generated by the left translations (\y)gec of G and Ag(A,) = Ay @ Ay.
Clearly, A‘ép =colAg = AG7 so A¢ is cocommutative. Every cocommutative
l.c. quantum group is obtained in this way.

2.3 ¢-commuting pair of operators [18]

We will use the following notion of commutation relations between unbounded
operators. Let (7,.5) be a pair of closed operators acting on a Hilbert space
H. Suppose that Ker(T) = Ker(S) = {0} and denote by S = Ph(S5)|S| and
T = Ph(T)|T| the polar decompositions. Let ¢ > 0. We say that (T,5) is a
g-commuting pair and we denote it by T'S = ST, T'S* = ¢?S*T if the following
conditions are satisied

1. Ph(T)Ph(S) = Ph(S)Ph(T') and |T| and |S| strongly commute.
2. Ph(T)|S|Ph(T)* = g|S| and Ph(S)|T|Ph(S)* = ¢|T.

If T and S are g-commuting and normal operators then the product T'S is clos-
able and its closure, always denoted by T'S has the following polar decomposition
Ph(T'S) = Ph(T)Ph(S) and |T'S| = ¢~ |T||S].

2.4 The quantum az + b group [19], [17]

Let us describe an explicit example of l.c. quantum group. Let s and m be two
operators defined on the canonical basis (eg)rez of lQ(Z) by ser = er4+1 and
mey = q*er (0 < ¢ < 1). The G.N.S. space of the quantum az + b group is
H =2 (Z*), where we define the operators

a=m®s"®1l®s and b=sdmM®s®1
with polar decompositions a = ula| and b = v|b| given by

la]=m®1®1®1 and u=1®s*"®1®s
bl=1dm®1®1 and v=s®1Q0s® 1.



Then u|b| = ¢|blu, |alv = qu|al, this is the meaning of the relations ab = ¢*ba
and ab* = b*a. Also Sp(|a|) = Sp(|b|) = Sp(m) = ¢* U{0}, Sp(u) = Sp(v) = S,
where Sp means the spectrum. Thus, Sp(a) = Sp(b) = C? U {0}, where C? =
{2 €C, |z| € ¢*}. The von Neumann algebra of the quantum az + b group is

"

M := [ finite sumstk,l(|a|, [b))vFul for fry € L (¢% x ¢*)
k.l

Consider the following version of the quantum exponential function on C?:

too 2k~
1+q¢°"Z

Fy2) =[]
o 14 q*%z

The fundamental unitary of the az 4+ b quantum group is W = XV* where
V=F,(bobx(a®1,1®a),

and x(¢Ft%®, ¢!+ ) = ¢(l¢+k¥) ig a bicharacter on C?. The comultiplication is
then given on generators by

W*(1l®a)W=a®a and W*(1QbW*"=a®bt+b® 1,

where + means the closure of the sum. The left invariant weight is

o) = ZqQ(j_i)fo,o(qi, ¢), where = Z frealal, |b))v*ul.

i, k,l
The G.N.S. construction for ¢ is given by (H,t, A), where

AMa) =D "G e @e with &u(i,5) = ¢ " frid', @)
ol

The ingredients of the modular theory of ¢ are

Jler®es @ep@ep) =erg @esp @e_g ® ey,
V=1®1l®om2m 2,

so 0¢(a) = ¢~2"a and o;(b) = b, and the modular element is § = |a|2,
The dual von Neumann algebra is

M := { finite sums > fr(|al, [B))0" @' for fry € L (¢* x ¢%)
k.l

Here a = 4)a| and b= 17|13| are the polar decompostions of the operators
a=s5"®1lem, b=sm® (—m_1®m_ls* —i—m_ls*@s*) ® s.

The formulas for the dual comultiplication and the dual left invariant weight
are the same, but this time in terms of a and b.



2.5 One-parameter groups of automorphisms of von Neu-
mann algebras

Consider a von Neumann algebra M C B(H) and a continuous group homo-

morphism ¢ : R — Aut(M), t — o;. There is a standard way to construct, for

every z € C, a strongly closed densely defined linear multiplicative in z operator
o, in M. Let S§(z) be the strip {y € C| Im(y) € [0,Im(z)]}. Then we define :

e The domain D(o,) is the set of such elements = in M that the map ¢t —
o¢(x) has a strongly continuous extension to S(z) analytic on S(2)°.

e Consider z in D(o,) and f the unique extension of the map t — oy(z)
strongly continuous on S(z) and analytic on S(2)°. Then, by definition,

o(x) = f(2).
If 2 is not in D(o,), we define an unbounded operator o,(z) on H as follows:

e The domain D(o,(z)) is the set of such £ € H that the map ¢ — o(x)
has a continuous and bounded extension to S(z) analytic on S(z)°.

e Consider £ in D(o,(x)) and f the unique extension of the map ¢ — o(x)§
continuous and bounded on S(z), and analytic on S(z)°. Then, by defi-

nition, o.(z)¢ = f(2).

Let  in M, then it is easily seen that the following element is analytic

z(n) = \/f /_ ::O e oy () dt.

The following lemma is a standard exercise:

Lemma 1 1. z(n) — x o-strongly-* and if § € D(o,(x)) we have o,(x(n))€ —

o.(x)E.

2. Let X C M be a strongly-* dense subspace of M then the set {xz(n), n €
N, z € X} is a o-strong-* core for o,.

Proposition 1 Let A be a positive self-adjoint operator affiliated with M and
u a unitary in M commuting with A such that o¢(u) = uA® for all t € R, then
ofé(u) is a mormal operator affiliated with M and its polar decomposition is

o_i(u)= uAz.

Proof. Let a € R and D,, the horizontal strip bounded by R and R — ia.
Let £ € D(A2). There exists a continuous bounded extension F of t — A€ on
D; analytic on DY (see Lemma 2.3 in [13]). Define G(z) = uF(z). Then G(z) is

2 ) .
continuous and bounded on §(—3) = D, and analytic on S (—=%)°. Moreover,
G(t) = uF(t) = uA®¢ = o4(u)€, so € € D(o_;(u)) and o_; (u)§ = G(—%) =

uA%Q“. Then uAz C o_i (u). The other inclusion is proved in the same way. H



2.6 The Vaes’ weight

Let M C B(H) be a von Neumann algebra with a n.s.f. weight ¢ such that
(H,t,A) is the G.N.S. construction for . Let V, oy and J be the objects of the
modular theory for ¢, and § a positive self-adjoint operator affiliated with M
verifying o,(0%) = \¥¥1§%  for all s,¢ € R and some \ > 0.

Lemma 2 [1}] There exists a sequence of self-adjoint elements e,, € M, an-
alytic w.r.t. o and commuting with any operator that commutes with &, and
such that, for all x,z € C, 0%c,(ey,) is bounded with domain H, analytic
w.r.t. o and satisfying 01(0%0,(en)) = 0%01y.(en), and o.(ey) is a bounded
sequence which converges x-strongly to 1, for all z € C. Moreover, the function
(2,2) — 6%0.(en) is analytic from C? to M.

Let N = {a € M, ad? is bounded and ad? € Nw}. This is an ideal o-strongly*

dense in M and the map a — A(ad %) is o-strong*-norm closable; its closure will
be denoted by As.

Proposition 2 [14] There exists a unique n.s.f. weight o5 on M such that
(H,t,As) is a G.N.S. construction for ¢s. Moreover,

e the objects of the modular theory of ps are Js = NiJ and Vs = Jo~LI8V,

o [Dys: Do)y = N'T gt

2.7 Main results

Let (M,A) be a lL.c. quantum group with left and right invariant weights ¢
and ¢y = ¢ o R, and the corresponding modular groups o and o. Let Q €
M ® M be a 2-cocycle, i.e., a unitary such that (2®1)(A®)(Q2) =(102)(t®
A)(2). Then obviously Aq = QA(.)Q* is a comultiplication on M. If (M, A)
is discrete quantum group and  is any 2-cocyle on (M, A), then (M, Agq) is
again a discrete quantum group [1]. If (M, A) is not discrete, it is not known,
in general, if (M,Aq) is a l.c. quantum group. Let us consider the following
special construction of 2. Let G be l.c. group and a be a unital normal faithful
*-homomorphism from L>(G) to M such that a @ o Ag = Ao . In this case
we say that G is a co-subgroup of (M, A), and we write G < (M,A). Then the
von Neumann algebraic version of Proposition 5.45 in [8] gives

noa=a and Rooa(F)=a(F(-Y), VF € L™(G).

Let ¥ be a continuous bicharacter on G. Then Q = (a®«)(¥) is a 2-cocycle
on (M,A). In [3] it was supposed that o; acts trivially on the image of a and it
was shown that in this case, ¢ is also Agq-left invariant. Here we suppose that
o; acts by translations, i.e., that there exists a continuous group homomorphism
t >, from R to G such that o;(a(F)) = a(F(y;')). In this case we say that
the co-subgroup G is stable. Then 0‘; also acts by translations:

0y0a(F)=Roo_;oRoa(F) = a(F(+; ) =aioa(F). (1)



In particular, §a(F) = a(F)6%,V t € R, F € L*(G). In our case ¢ is not
necessarily Agq-left invariant, and one has to construct another weight on M.
Note that (t,s) — U(v,7s) is a bicharacter on R. Thus, there exists A > 0 such
that W(vs,vs) = A for all s, € R. Let us define the following unitaries in M:

Uy = )\’éa (\P(-,’yfl)) and v = /\iéa (\11(7;1, )) .

Then equation (1) and the definition of a bicharacter imply that u; is a o-cocycle
and v, is a o -cocycle. The converse of the Connes’ Theorem gives then n.s.f.
weights pq and g on M such that:

uy = [Doq : Dply and v = [Dipg : D).

The main result of Section 3 is the following. We denote by W the multiplicative
unitary of (M, A), and put Wg, = Q(J @ J)WQ(J & J).

Theorem 1 (M, Agq) is a l.c. quantum group :

pq is left invariant,

Pq 1s right invariant,

Wgq is the fundamental multiplicative unitary.

e The scaling group and the scaling constant are 7, = 74, v = V.

If G is abelian, we compute explicitly the modular element and the antipode.

In section 4 we construct the Rieffel’s deformation of a l.c. quantum group
with an abelian stable co-subgroup G < (M, A) and prove that this construction
is dual to the twisting. Switching to the additive notations for G, define L, =
a(uy) and R, = JL.J, where v € G, uy, = (7,9) € L™(G), and J is the
modular conjugation of ¢. Then Proposition 3 shows that G2 acts on M by
conjugation by the unitaries L., R,,. We call this action the left-right action.
Let N = G2 x M be the crossed product von Neumann algebra generated by
A1 ve and m(x), where v; € G and € M, and let 6 be the dual action of G? on
N. We show that there exists a unique unital normal *-homomorphism I' from
N to N® N such that T(\y, 1,) = Ay,.0® Ao, and T(n(z)) = (1@ 7)A(z). Let
¥ be a continuous bicharacter on G. Note that, for all g € G, we have ¥, CA;',
where W, (h) = U(h,g). We denote by 0¥ the twisted dual action of G* on N:

9?;1792)(1‘) = Ay, v, 9(91’92)(@)\3“7%2, for any g1,90 € G, v € G* x M,

2)
and by N the fixed point algebra under this action (we would like to point out
that Ng is not a deformation of IV, it is just a fixed point algebra with respect
to the action #Y related to Q). Put T = (Ag ® A\1)(¥*) € N ® N, where A
and Ay, are the unique unital normal *-homomorphisms from L>(G) to N such
that Az (uy) = Ay 0 and Ag(uy) = Aoy, and put I'g(-) = YI'(-)T*. Then we
show that I'q is a comultiplication on N and construct a left invariant weight



1 (NQ,FQ)' Because 991 92()"71’72) = 991;92( 71’72) <’)’1,gl><72792>)\71,'72,
we have a canonical isomorphism N = G2 x M — G2 x Nq intertwining the
twisted dual action on N with the dual action on G2 x Ng. Denoting by ¢
the dual weight of ¢ on N and by & its modular group, we show that w; =
A—it? Ar(¥ (=, .)) is a 6-cocycle. This implies the existence of a unique n.s.f.
fig on N such that wy = [Dfig : Dé]t. Moreover, one can show that fiq is 8%
invariant. Thus, there exists a unique n.s.f. po on Ng such that the dual weight

of/yg is fiq. In order to formulate the main result of Section 4, let us denote by
(MQ, AQ) the dual of (M AQ)

Theorem 2 (Ng,T'q) is a l.c. quantum group and pg is left invariant. More-
over there is a canonical isomorphism (Nq,Tq) ~ (Mq, Aq).

Note that the Rieffel’s deformation in the C*-setting was constructed by the
first author in [4], see also Remark 4 and [5] for an overview.

In Section 5 we calculate explicitly two examples. It is known that if H is an
abelian closed subgroup of a l.c. group G, then there is a unique faithful unital
normal *-homomorphism « from L*(H) to L(G) such that a(up) = Ag(h), for
all h € H, where \g is the left regular representation of G, so H < (£(G), Ag) is
a co-subgroup. The left (and right) invariant weight on £(G) is the Plancherel
weight for which o4(\,) = §&(g)Ay, for all g € G, where d¢ is the modular
function of G. Then oy o a(uy) = a(ug(- — v¢)), where ~; is the character on
K defined by (v, g) = 65" (g). Because the vector space spanned by the uj, for
h € H is dense in L*°(H), we have 0,0 a(F) = a(F(-— 7)), for all F € L=(K).
Thus, H < (£(G),Ag) is stable. So, given a bicharacter ¥ on H, we can
perform the twisting construction. The deformation of the Haar weight will be
non trivial when H is not in the kernel of the modular function of G.

Let G = C* x C be the az 4+ b group and H = C* be the abelian closed
subgroup of elements of the form (z,0) with z € C*. Identifying C* with
Z x R

ZXRi—?@, (n,p)'—>7n,p:(rewn—>e““”“”eme)

)

let us define, for all x € R, the following bicharacter on Z x R :
\I/w(('n,’ P), (k7 ’I")) = eiz(kln p—nlnr)

and perform the twisting construction. We obtain a family of l.c. quantum
groups (M, A,) with trivial scaling group and scaling constant. Moreover, we
show that the antipode is not deformed. The main result of Section 5.1 is the
following. Let us denote by ¢ the Plancherel weight on £(G) and by a subscript
x the objects associated with (M, A,).

Theorem 3 We have:

hd [D(pl : D@]t = A(eztz 0 6” A(E—Zztz 0)
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o (M_,,A_;) ~ (My,A)°P and if v,y > 0 with x # y then (M, A,) and
(My,Ay) are not isomorphic.

— ~

The von Neumann algebra of the dual quantum group (M, A,) is generated by
two operators & and 3 affiliated with it and such that

e & is normal, B s g-normal, i.e., BB* = qB*B,
) dﬁ = Bd and dﬁ* = qﬁ*d, with ¢ = e**.
The comultiplication is given by Ax(d) —a®a and A, (B) =a®p+8®1.

For the dual (]\//.TI, AI) we deform, like in the Woronowicz’ quantum az + b
group, the commutativity relation between the two coordinate functions, but
the difference is that we also deform the normality of the second coordinate
function.

The second example of Section 5 is the twisting of an already non trivial
object. Consider the Woronowicz’ quantum az + b group (M, A) at a fixed
parameter 0 < ¢ < 1. Let @ : L*(C?) — M be the normal faithful *-
homomorphism defined by a(F') = F(a). Because A(a) = a®a, one has Aoa =
(o ® o) o Agq. Thus, we have a co-subgroup Ci < (M, A) which is stable:

010 a(F) = 01(F(a)) = F(oe(a)) = F(q~*"a) = a(F(; 1)),

where 7; = ¢%* € C9. Performing the twisting construction with the bicharac-

ters ‘ ‘ .
U, (gFHe, gty = givkv=le) g € 7,

we get the twisted l.c. quantum groups (M, A;). The main result of Section
5.2 is the following. Recall that we denote by a = u|a| the polar decomposition
of a.

Theorem 4 One has A,(a) = a®a and A, (b) = u=* a[* Tt @b+bu®|al .
The modular element 6, = |a|***2, the antipode is not deformed and we have
[Do, : Dyly = |a|=2®t. Moreover, for any x,y € N, one has: if v # v,
then (Mg, Ay) and (M, A,) are not isomorphic; if x # 0, then (M, A;) and
(M_,,A_,) are not isomorphic. The von Neumann algebra of the dual quantum

group (M, A,) is generated by two operators & and B affiliated with it and such
that

e ( is normal, B 18 p-normal, i.e., BB* = pB*B,
. dﬁ = qzﬁAd and dﬂA* = pﬂA*d, with p = ¢~ **.
The comultiplication is given by Ay(é) = @ ® & and Ay(B) =a @ f+3 @ 1.

We refer to [5] for the explicit example of the twisting in the C*-setting of
the group G of 2 x 2 upper triangular matrices of determinant 1 with the abelian
subgroup of diagonal matrices in G. Next subsection contains useful technical
result.

11



2.8 Abelian stable co-subgroups

Let G < (M, A) be a stable co-subgroup with G abelian. For all v € G, the map
t — (7,7 is a character on R, so there exists A(y) > 0 such that (7, v:) = A\(y)%
for all t € R.

Proposition 3 Let G < (M, A) be a co-subgroup with G abelian. Then:
LA L)WQAe L) =W(L,®1), (1oR,)WAR])= (L, )W, (3)
for all v € é, s0 we have two commuting actions o and o of G on M:

olf(z) = LyxL? and off(x) = RyxR:. This gives an action of G? on M
al oal® such that

Ayiye = Oy O Ay

(1 ® ay, 1, ) (W) = (L3, @ W(L], @ 1). (4)
2. If@ < (M,A) is stable, then, for all x € Ny and all v € G, we have
ol(z),aff(x) € Ny, LyAx) = A (x)), and RyA(x) = A(v) "2 A(af(z)).

Proof. Since A(L,) = L,®L,, A(z) = W*(1@z)W and (Jo )W (JoJ) =
W*, it is easy to check the first two equalities. The equality for « follows
immediately. To prove the second assertion we need the following

Lemma 3 ([8]) Letw e Z, a€ M, andbe€ D(o_i), then awb € T and

i
2

&(awd) = aJafé(b)*Jf(w).

Let us prove the second assertion. By the first assertion we have aﬁ((w ®

(W)) = (Lyw @ ¢)(W). Take w € Z. By Lemma 3, we have L w € 7 and

Alaf (Aw))) = AA(Lyw)) = L AAW)).

Y

Because A(Z) is a core for A, for all 2 € N, we have ok (z) € N and

Ak (2)) = L A(=).

By the first assertion, we have off((w®:)(W)) = (wL_, ®¢)(W). Note that
01(Ly) = A(y) "Ly, thus L, € D(o;) and 04 (L) = A(7)?L,. Take w € T.
By Lemma 3, we have wL_, € 7 and

A (AW)) = AAWL—,)) = A7) 2 B, AAW))-

Because A\(Z) is a core for A, this concludes the proof. |
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3 Twisting of locally compact quantum groups

Let G be a l.c. group and (M,A) a l.c. quantum group. Suppose that G <
(M, A) is a stable co-subgroup. We keep the notations of Section 2.7. Note that
the maps (t — a(¥(-,7; 1)) and (t — a(¥(y',-))) are unitary representations
of Rin M. Let A and B be the positive self-adjoint operators affiliated with M
such that A" = (U (-, 1)) and B = a(¥(y;',-)). We have A(A) = A® A,
A(B) = B® B. Note that o4(A%) = a(¥(-y; 1, 7:1)) = At A%, Also we have
0.(B") = 0,(B™) = N*'Bi* 50 the weights @q and 1) are the Vaes’ weights
associated with ¢, A and A, and with ¥, A\ and B, respectively. In the sequel,
we denote by Aq the canonical G.N.S. map associated with g, and by F — F
the *-automorphism of L>°(G x G) defined by F(g,h) = F(g~", gh). Theorem
1 is in fact a corollary of the following result.

Theorem 5 For all z,y € N, we have Aq(x)(y ® 1) € Nygee, and
(Ao @ Ag) (Aa(z)(y ® 1)) = Wa(Aa(y) © Aa(z)),
where W = Q(J @ HYWQ(J @ J).
Proof. Let us introduce the sets

N = {x € M, zA? is bounded and zA% € J\fw} and

[N

L= {a: € N, A~ 22A7 is bounded and A(zA%) € D(A~ )} .

When y € L, we denote the closure of A-2g Az by A*%yA%. By definition, N
is a o-strong*-norm core for Ag, and Proposition 18 shows that the same is true
for L. As Aq is closed in these topologies, it suffices to prove the theorem for
elements x € N and y € L. The first step is as follows.

Lemma 4 Letx € N,y€ L and F € (a® «)(L>®(G x G)). Then

(A(x)F*y @ 1)(A? ® A7) is bounded and

(A(z)F*(y © 1)) (A2 ® A2) = A(zA2)F* (A*%yA% ® 1) .
Proof. Note that A(A2) = A7 @ A7 = W* <1®A%) W Let 2 € N and
€ € D(A} ® A%). Then W¢ € D(1® A%) and
A) (AR @ AN = W 1@z WW* (1o Ab)We
= W(leo)(leAD)WE
= W'(1@zA2)WE=A(zA3)E.
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Thus, A(z)(Az @ Az) C A(zA?) and because it is densely defined, we have
shown that, Vo € N, A(z)(A2®A?) is bounded and A(z)(A? @ A2) = A(zAz).
If x € N, y € N, the commutativity of (o ® a)(L*°(G x G)) implies:

A@F (yo1))(A7@A2) = A )(1®A;>F*(y,4%®1)

(A2 @ AZ) (A2 @ 1)F*(yA? @ 1)
2)(A? @ AT)F* (A" 3yA? @ 1)

cA3)F* (A %yA2®1)

5]

8

Since (A(z)F*(y ® 1))(Az @ A2) is densely defined, the proof is finished. B In
what follows, we identify L>°(G) with its image a(L*°(G)). Note that

(t®0)(F)=(®0,)(F), forall teR,FeL®Gxaq).
By analytic continuation, this is also true for t =z € C and F € D(t ® 0,,).
Now we construct a set of certain elements of N, g, and give their images
by Ao ® Aqg.
Lemma 5 Letz € N,y € L and F € L*(G x G). If FED(®o_;) then
A@)F*(y®1) € Npgop, and
(Ao ® Ag) (A@)F* (y @ 1)) = (Jo)W(@o_, )(F)(JoJ) (A—%Ag(w ® AQ(:c)) .

Proof. According to Proposition 20 and Lemma 4, it suffices to show that

VE€D(@o_,), AwA?)F* (A3yAz ®1) € Npg, and,
(A® A) (A(xA%)F*(A—%yA% ® 1)) (5)

=(JoNW(eo ) F)JoJ) (A—%Ag(w ® Ag(x)) :

Let F € L*(G x G). We identify o with its restriction to L*(G). A direct
application of Lemma 1 (2) gives that L>(G) © D(o_; ) is a o-strong™ core for
L®O_s. Taking into account the observation preceding this lemma and because
A® A is o-strong*-norm closed, it suffices to show (5) for F' € L**(G)©D(o_;).
By linearity, we only have to show (5) for F of the form F = F; ® F» with
Fi,F, € L™(G) and F» € D(o_%). Proposition 18 gives A~ 2yA? € N, so

A(zA2)(FfA~2yA? ©1) € N,g,, and writing

A(zA2)(Ff @ F3) (A" 1yAz @ 1) = A(zA2)(Ff A 1yAz @ 1)(1 @ Fy)
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with 1® Fy € D(t® 0_), we see that A(zA3)F* (A~ 2yAs @ 1) € N,g, and

(A®A) (A(xA%)F*(A*%yA% ® 1))

- (1 ® Jo_%(FQ)J) (A®A) (A(xA%)(FfA—%yA% ® 1))

= (1® Jo_4(F2)) W™A(F) A 3yAT) @ A(vA3)
(by definition of W)

- (1 ® Ja_%(FZ)J) (J& )W (J ® J)(F; @ )A(A-yA?) ® A(zA3)
(because W* = (J @ JYW(J @ J))

J®J) (1 Qo (FQ)) W (R(F) ®1) (J® J)A™5 Ag(y) ® Ag(z)

because R(z) = Ja*J, and A(A-2yAz)= A*%Ag(y) by Proposition 18)
J@ WA (o, (F2)) (R(F) ©1) (J © J)A™3Aa(y) @ Aa(x)
because A(z) =W*(1® x)W).

~ o~ o~ —

So we just have to compute:

A (o4 (B2) (RI) @1) (9.h) = Filg Moy (F2)(gh)

—_~—

=(@o_s)(F)(g~" gh) = (t®o_;)(F)(g,h).
B The next lemma is necessary to finish the proof of the theorem.
Lemma 6
(1) We have JA~2 = Az.].

(2) The operator (1@ o_s)(Q) is normal, affiliated with M @ M, and its polar
decomposition s

v

L@ ) Q) =043 a1).

Proof. Let o € R and D,, the horizontal strip bounded by R and R — ic.
(1) Let € € D(A_%). There exists a continuous bounded extension F' of
t ~— A"¢ on D_y which is analytic on D?,. The function G(2) = JF(Z) is

continuous bounded on D% and analytic on DY. Moreover :
2
R(A™")(9) = ¥(g~ "\ m) = (g, % ') = A'(g), forallge G, teR.
Thus, JA"J = R(A~%) = A, We deduce G(t) = JA®¢ = AitJ¢. This means
that J& € D(Az) and A3J¢ = G(—%) = JF(}) = JA 3¢, 50 JA™3 C Az J.

The other inclusion can be proved in the same way.
(2) Note that

(t® o) (Q)(g,h) = T(g~ " ghy 1) = V(g™ gh)¥(g,7) = QA" @ 1)(g, h).
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We conclude the proof applying Proposition 1. R |
We can now prove the theorem. Let © € N and y € L. Put £ = JAq(y) €

D(Az) and 1) = JAg(z). By Lemma 6 (2), A2é@n € D ((L ® O'_%)(Q)). Thus,
using Lemma 1 (1), there exists 2, € L®(G x G)ND(1® o_:) such that

2
Q, — Q o-stronglys and (L®U_%)(Qn)(A%§®T]) — (L®U_%)(Q)(A%€®77).
Because l?’ = F, we also have Q,, — Q o-strongly*, so
A) U (ye1) — A)Q'y®1  o-strongly™.
By Lemma 5, A(2)Q(y® 1) € N@n@@n and

(Ao ® Ag) (A(x)2,(y® 1)) =

Because Aq ® Agq is o-strong™ - norm closed, we have A(z)Q*(y®1) € Nogopn s
so Aq(z)(y® 1) € Npggy, and

(Ao ® Ag) (Aq(z)(y® 1))

Q(Aq ® M) (A(z)"(y 1))
Q(J @ HWQ(J & J)(Aa(y) @ Aa(z))
= Wi(Aa(y) ® Aa(z)).

|
Let R = uR(z)u* be the *-anti-automorphism of M, where u = a(¥(-71,)).
Proof of Theoreml. Let x,y € N,,. By Theorem5, we have

Il (Ao @ Aq) (Aq(z)y @ 1) ||* = [[Aa(y) ® Aa(z)|?
& (Wag(y) @ pa) (Da(z*r)) = wag ) (Dealr ). (6)

Let w € M, w > 0. The inclusion M C B(H) is standard, so there is £ € H
such that w = we. Let a; € M such that Aq(a;) — & Then

WAg(ay)(T) = w(x), forall ze€ M. (7)

To show that ¢q is left invariant, it suffices to show that Ag(z*z) € N,ge,
when x € N,,. Indeed, in this case we have, using (7),

Wag(an (Dwa(@*r) — w(l)pa(z*z) and,
(Wag(an) ® ) (Aa(z*)) — (W@ pa) (Aa(z*z)).
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This implies, using (6), that for all w € M} and z € N,
(W@ ¢a) (Aa(z™z)) = w(l)pa(z ),
i.e., o is left invariant. Let us show that Aq(z*z) € N,gyp,. We put
m = (t® pq)(Aa(z*z)) € MT.

The spectral decomposition of m is m = fooo Adey + oo .p. From (6) we see
that, for all y € Ny, m(wa,(y)) < 0o. Thus, the set {w € M | m(w) < oo} is
dense in M. This implies p = 0 and m = mr, where T is the positive operator
affiliated with M defined by
T :/ )\d@)\.
0

So, we only have to show that T is a bounded operator. Using again (6) and
the definition of mr, we see that, for all y € N, Aa(y) € D(Az) and

172 Aa ()| = pa(z"z)|[Aa(y)*

Thus, T is a bounded operator.

It is easy to check (see [16]) that Ag o Rg = o(Rq ® Rq)Agq, so the right
invariance of ¢q o Rq follows. Thus, (M, Ag) is a l.c. quantum group and it
follows immediately from Theorem 5 that Wy, is its multiplicative unitary. Our
next aim is to show that g = pq o Rg. We compute:

R (“Ugt(U*)) (9) = ulg (g7 ") =u(@)¥(g v, 9 " 1)
= u(g)u (9)¥ (g™ 7) ¥ (v, 97 ) (e, )
)\it2 (AitBit)(g).

This implies

(DeaoRa : DUl = [D(pa),o R : DpoRli=R(ID(¢a), : Del™)
= R([D ((pQ)u : DQDQ]*_t)R([DS@Q : D‘P]*—t)

= R (uas_zt(u*)) R (A’iéAit)

_ )\it2AitBit()\7i§A7it)
- XNEB

Thus, ¥q = pq o Rg. In order to finish the proof, we have to compute the
scaling group and the scaling constant. Recall that if (M, A) is a l.c. quantum
group, then the scaling group is the unique one-parameter group 7 on M such
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that Aooy = (1 ® 0y) o A. Since (1 @ 04)(2) = Q(A* ® 1), using 74 0 = a, we
have (1; ® 04)(Q) = Q(A" ® 1), which gives:

(@0’ )(Aa(z) = (1©A") (1@ 0)(Q) (1 ®0)(A(2)) (1 @ 00) () (1@ A™)
= QA" AN (1, ® ) (Az)) (A~ @ A~HQ*
= QA(AMA(o4(2))A(ATHQ*
= Aq(of(2)).

This relation characterizes the scaling group of (M, Ag). Recall that the scaling

constant of (M, A) verifies o7, = v~ tp. Because 7;(A*) = A% forallt,s € R,

we deduce that pq o TtQ = pqoT = v 'pq. Thus, V=,

Let us denote by X and Y the operators
X=0" and Y=(JoJ)(uw o1)QJo.J).
Note that ¥*(g,h) = U*(g~1, 9)¥(g, h), so Q* = (u* ® 1)Q and
Wo=Jo ) QW (JoJ)Q =JJ)Q(Jo )WY =YWX.

From now on we suppose that G is abelian, we switch to the additive notations
for its operations and denote by G its dual. Recall that the notations wu., L,
and R, where introduced in Section 2.7. Note that R(L,) = L = L_,.

Proposition 4 Rgq is the unitary antipode of (M,Aq). Moreover,
e /g = 5A71B,
o D(Sq) =D(S) and, for all x € D(S), Sa(x) =uS(x)u*.

Proof. If (M,A) is a l.c. quantum group, then the unitary antipode is
the unique *-anti-automorphism R of M such that R((¢t @ we ) (W)) = (¢t ®
wyn,g¢)(W). Let us define two *-homomorphisms by

T L®GXG) = MM : 7 (F)=(J&J)(a®a)(F)*(Jo.J),
m: L®(GXxG) > MeM: n(F)=(a®a)F).
We want to prove that, for all F,G € L>*(G x G) and &, € H,

R((@we,) (7 (F)Wr(@)) = c@wme) (7 (GWR(F)) . (3)

By linearity and continuity, it suffices to prove (8) for F' = u,, ® u,, and
G = Uy, ® uy, with 7; € G. We have

s (Uyy ®Uqp) =Ly, ® Ry, and m(uy, @ Uy, ) = Ly, ® Ly, sO
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R ((L ® we ) (7T/ (U @ Unp )W (U, ® um)))
= R((t®wey) (Lyy ® Ry, WLy, @ Ly,))
= R(L—y, (¢t ® Ly, we - Ry,) (W) Ly,)
= L_\,R ((L ® Wme,szn) (W)) Ly,
= L (t®wiry,nir,e) (W) Ly,
= L_,, (L® WL, Jn,Ryy Jﬁ) (W) L,
= (t® Ly, winge.Roy,) (Loyy @ 1WL,, ®1)
L@ win,ge) (Loyy ® Ry ,W Ly, & L,)

(
= (L ®@wip,s¢) (W,(u% ® Uy )W (Uryy @ uvz)) .

Note that Y = 7 (¥), X = 7(¥*) and #(¥)(u* @ 1) = Qu* ® 1) = Q* = X.
Also, using R(u*) = u*, we have

(e (1) =

(
=
=
=

Using these remarks and relation (8), one has

Ro ((t ®@ we ) (Wa))

uR ((L ® wep) (w’(\i')Ww(\Il*)>) u®
= (®we) (e D (E)Wr(B)w @ 1)

= (L®wpe) YWX)
= (L ® WJQWJQ&) (WQ) .

Where we use, in the last equality, the fact that Jo = A¥.J so W Jan,Jaf = Win,J¢-
This relation characterizes the unitary antipode of (M, Ag). We have

[Dq : Dyl = [Dyq @ DY|[DY : Del[Dy : Dogl
— (/\zéth)(yzéazt)()\fngfzt)
— L% (5AT'B).

Thus, dqg = dA~!B (because we have seen in the proof of Theorem 1 that
Yo = ¢q o Rq). The last statement is clear. |
Remark. If (M, A) is a Kac algebra, (M, Aq) is not in general a Kac algebra
(see Section 5.1). However, in the case considered in [3], [16], and [6], when
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a(L*(G)) belongs to the fixed point subalgebra of M with respect to o, then
7 is trivial and we have A=!B =1, so (M, Aq) is a Kac algebra .

Remark. The map L®(G x G) — B(H® H) : F — 7 (F)Wn(F*) is o-
strong*-o-weak continuous. So, if (x +— U, is o-strongly* continuous map from
R to L*°(G x G) such that ¥, is a continuous bicharacter, for all x € R, then,
denoting by W, the multiplicative unitary of the twisted l.c. quantum group
associated with U, the map x — W, from R to the unitaries of B(H ® H) is
o-weakly continuous. This is the case for the example of section 5.1 and for the
examples constructed in [5] and [6].

4 Rieffel’s deformations of locally compact quan-
tum group

This section is devoted to the proof of Theorem 2. We use the hypotheses and
notations from the previous section and from Section 2.7. So let G < (M, A)
be a stable co-subgroup with G abelian. Recall that we have (see Section 2.8)
two unitary representations of G : v+ Ly and v — R, of G. This gives two
*-homomorphisms from L*°(G) to B(H), mr, and g, respectively. We have

mp=a and wR(F)=Ja(F(=))J = JJa(F)JJ.

Recall that W = YWX, where X = (a ® a)(¥*) = (7 @ mp)(¥*) and

=(J@ )T ®J) = (r, @ 7r)(¥) = (a(u) ® 1)(7L @ 7r)(¥*). Note that
G < (Mg, Ag) is also stable (by the preceding section), so the results of section
2.8 can b be applied also to G < (Mq,Aq). Thus, we have a left-right action a of
G2 on M and also a left- right action 3 of G? on MQ We denote by the same 7
the canonical morphism from M in the crossed product N = G2 x M and from
MQ in G2 MQ. Also we denote by A, 4, the canonical unitaries in the two
crossed products and by the same 6 the dual action on G2 x M and G2 ]\//.79
Recall that 6 and A verify

991,92 ()‘71772) =<7,91 ><72,92 >)"y1,’72'

The unitary representations v — A(y,0), 7 = Ao,4) and A give unital normal
*_homomorphisms A, Ag : L®(G) — G2 x M and A : L®(G?) — G2 x M
verifying

Arn(uy) = A(7,0)5 ARr(uy) = A0,7) )‘(u('nﬁz)) = A2
Since >\(f1 ® fg) = )\L(fl)/\R(fg), then

0(91.9:) AL(F)) = AL(F(- — g1)), for any F'€ L>(G). (9)
0(g1,92)(AR(F)) = Ar(F (- — g2)), for any F € L™(G).

We have for the twisted dual action 6¥:

0&1,92)(7r(33)) =m(ow_,, w,,)(x)), forallze M. (10)
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Considering the following unitaries in M ® N:
X = (a®A)(¥), Y = (a@Ag)(¥) = (a(u)@1)(a@Ap)(¥¥), W = (1&m)(W),

we put Wo = YW X. Let Ng be the fixed point subalgebra of G2 x M under
the twisted dual action. The step to prove Theorem 2 is to show that Mg is
isomorphic to Ngq, for this we need a preliminary lemma. Let B be the von
Neumann algebra acting on H and generated by {(w ® ¢)(WQ*) |w € B(H).}.

Lemma 7 We have:
o BV{L,|yeG} =MV{L,|veG}’,
e BV{R,|ye€G} =MoV{R,|yecG} .

Proof. First, take a net in the vector space spanned by elements u,, ® .,
such that ) c; ju,, , — ¥ strongly*. Then (w ® ¢)(WQ*) is the weak limit
of ¢ (L, w®)(W)L_,,, so B C MV {L,|~ € G}'. For the converse
inclusion note that (w®¢)(W) = (w®¢)(WQ*Q). Thus, (w®)(W) is the weak
limit of ) ¢; (L, .w ® ¢)(WQ*)L,,. The second assertion can be proved using
the same technique. |

Proposition 5 There exists a *isomorphisrrkp : /GA\Q x M — G2 x ME inter-
twining the actions 0¥ on G x M and 6 on G? x Mq. Moreover,

p((w ® 1) (Wa)) = 7((w ® 1) (Wa)).

Proof. Remark that if we put V = (F ® F)U where F :— L*(G) is the
Fourier transform and U : L*(G x G) ® H — L*(G x G) ® H is the unitary
defined by (U&)(’Yl, ’72) = L’Yl R’Y2§(’71772) then

Va(z)V* = 1®1l®uw,
VAoV = 4, ®1® Ly,
Vi, V¥ = 1®u,®R,.

Applying a ® o ® ¢, we conclude that the crossed products can be defined
on H® H® H by:

@FPxM = {L,®1®L,|yeG} V{I®L, @R, |yeG} Viele M,
@PxMg = {L,©1®L,|veG}Y V{18 L, @R, |veG} V1iele® M.

Put W = (J ® J)W(J ® J). Then W*(1® )W = A°(z), for all 2 € M
and (W,1®y] =0, for all y € M. We have also Wq = (j\g ® TQ)WQ(TQ ® j\Q)
with similar properties.

In the following computation we use the relations W*(1® L, )W = L, ® L.,
W(I®R,)W* = L,®R, and similar relations with Wq. We use also the equality
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[WisQ5,, WasQ3s] = 0 implying [WQ35,,1 ® y] = 0, for all y € B. Finally, using
Lemma 7, we have:

FPxM={L,210L,|veG} V{19 L,®R,|veG} VielaM
I Ad(Wi3)
1e1e L) vi{l,®L,®R) VieleM
= {1®1®Ly} V{Ly®L,®Ry} VI®R1I®B :=1L;
1 Ad(Q32W55Q31WV55)
{Ly®L,®L) V{lole R} VieleB
= (L, ®L,®L} V{I®1®R,} VIole My =L,
L Ad(Wa)23)
{L,®18L,|ye@}Y' V{19L, @R, |veG}' VieleMg =G?x M.
Define p := pyo®opy, where p1, @ and p, are the isomorphisms from G2 M to

Ly, from L, to Ly, and from Ly to G2 x Mg, respectively. Then one can check

that pody, ,,(z) = 04, 4, 0p(x), for all g1, g> € G and for all z of the form A, -,
(or Ly ®1® L, and 1 ® Ly ® Ry in our description of the crossed products).
Thus, to finish the proof we only have to show that (w ® ¢)(Wq) € Ng and

p((w®1)(Wa)) = 7((w® )(Wq)). Using (9), one computes

COOh X)) = (@0 0)(X) = (@®A)(T (. — g1))
= (@@ A)(¥y, @ 1)(a® AL)(T)
= (a(¥,)21)X. (11)
Similarly
@0, ) (Y) = (1@ 03g.0)Y) = (@0, g) (@@ Ar)(D))
= (O( & )‘R)(\ij(’ i 92)) = Y/(O‘(\ijlz) & 1)' (12)

And, using (10) and (4), one has
(@8, 0) (W) = (@m) (Lo, ® YW (Ly_,, 1)

= (a(¥;,) @ HW(a(¥; )@ 1). (13)

—91

Now (11), (12), and (13) imply (: ® 0f )(Wa) = Wa, so (w ©1)(Wa) € Na.

Now we want to show that p((w ® 1)(Wq)) = 7((w ® 1)(Wg)). We take a
net in the vector space spanned by elements w,, ® u,, such that ) ¢; ;j(u,, ®

Uy,) — ¥ ~strongly*, 80 Ci (L, ®A_+, 0) — X and ¢ (a(u)@1)(L_, @
Xo,_~,;) — Y strongly*. This implies

Z Ci,jCr i A0, —y,; T((L . Ly x(u) @ ) (W)X 0 — (W ® 1) (Wq)  weakly.
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Thus p; ((w ® ¢)(Wq)) is the weak limit of the net

S gt (Lny @ Loy @ Ry (1010 (L 0. L_% a(w) &))@ 1& L)

= ZEZ'J L_’Yj ® L_’Yj ® R_'Yj)(l ®1l® ( L_'Yz WZ lL_"/k ® L—m))
i ol

7kl Zcm Ly, ®L @R _))(1®1® (w.L_y.a(u) @) (WQL)).

i,

and @ o p; ((w ® 1)(Wq)) is the weak limit of the net
D e, (1®1@ Ro )10 1@ (w.L_y,.au) @) (W)
=1010 we 1)) a law) @1)(L_y, @ R_, )WQ).
Because ) ¢; j(a(u) @ 1)(L_,, ® R_,,) — Y weakly, we have

bop((we)(Wa) =1010 (@) (Wa).

This concludes the proof. |

In particular, Proposition 5 implies that No = {(w ® 1)(Wq)|w € B(H).}"
and that p is a *isomorphism from Ng to ]\/ZQ which sends (w ® L)(WQ) to
(w® 1)(Wgq). Thus, we can transport the l.c. quantum group structure from

Mg to Ngq. First, we show that the comultiplication introduced in Section 2.7
is the good one. For this we need

Proposition 6 There exists a unique unital normal *-homomorphismT : N —
N ® N such that

LA 72) = A0 ® X0, and T(w(z)) = (7@ W)A(x)

Proof. Like in the begining of the proof of Proposition 5 define the crossed
product

FPxM={L,®10L,|veG} V{1® L, ®R, |7 G} Viale M.

Let W be the operator defined in the proof of Proposition 5 and @ be the unitary
on HRH® H® H® H® H such that Q* = 245235W1§W56245 We define
I'(z) =Q* (1®:17)Q Using that W*(L, ® L )W L7®1 Az) =W*(1@z)W,
foralleM[Wl@]OforallyEM W (1® L)W = L, ® L., and
W,1®y] =0, forally € M, one can check that the needed properties of I'. W

The unitary ¥ = (Ag ® Az)(¥*) € N® N allows to define the unital normal
*-homomorphism I'g(z) = YT'(2)T* : N — N ® N which is a comultiplication
on Nq:

Proposition 7 For all © € Nq, we have I'q(x) € Nq ® Nq and

(p® p)(Ta(2)) = Aa(p(2)).
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Proof. Tt suffices to show that (1 ® p ® p)(1 @ T'q)(Wa) = (Wa)13(Wa)12.
By the definition of T', one has, for any F € L>®(G),

PAL(F)) =2 (F)®1 and T'(Ag(F)) =1® Ag(F),
and since 1 ® Y commutes with X 12 and with )713, one gets:
(L@FQ)(X) :Xlg and (L®FQ)(Y/) :}713.

Moreover,

(t@To)(W) = (1@T)e@Tom)(W)(1®T")
~ (eNeeren ((ed)W)1eT)
(

= 1IM)(te@rmem)(WizWi)(leT")
= TosWisWi2Y3s.

Using (3), we can check the following relations on the generators u., of L*(G):

WA @rr(F))W* = (rr @ mr)(Ac(F)),
W*Q1@np(F)W = (rp @ 1) (Ag(F)), for any F' € L>(G).

Then

Wia (g ® 71) (05 Wiy = (71, © TR © 1) ((AG ® L)(\i:)) ,

Wiyl @ m)(8)esWis = (me @ mp @ ) (0 @0) (02 A6)(89))).
Let us define
V=(memon) (0e)(ceded))memen) (b)),
then we have

(t@p@p)(t@Te)(Wa) = (1©p®p)(YisTasWisWiaT55X15)
YisWisVIWi2 X1a,

so it remains to calculate:

(0©0) ((1© 26)(F) (9., (g © 1) () (g, b, 1)

= (L oY AG)(\iJ*)(hvg7t)(AG oy L)(\i/)(.%hvt)
=0 (~hh+g+)¥(~g—h,g+h+t)=V(-g,g+h+t)

= U*(g,t)¥(g, h).

Thus, V = X13Y72, and this concludes the proof. | |
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Remark. One can show that o and /3 are actions of G? on the reduced dual
C*-algebras A and Aq. Moreover, the *-isomorphism p gives a —1somorph1sm
between the reduced crossed products G2 x A and G2 x Ag. So A is nuclear if
and only if Aq is nuclear. Moreover, the twisted dual action 0¥ gives a deformed
G2 product structure on G2 x A and the Landstad algebra for this G2- product

is [(w ® 1)(Wq)], and it is isomorphic to Aq. These results can be obtained
directly from the universality property of crossed products (see [4]).

The rest of this section is devoted to the computation of the left invariant
weight on (Ng,Tq). Since p : N = G2 x M — é2 x Mg is a *-isomorphism,
one can consider two natural weights on N, 1 = ¢, the dual weight of ¢ on N,
and @3 = $q o p, where ¢q is the dual weight of ¢g on G2 x My,

Lemma 8 We have:

1. [AD@O Ay yp D@]t = <’727’7t> = [Dg@(l 0/671,72 : D@Q]t vt € R; V’h,% S
G.

2. [Dpq 0 991 90 : D1y = U(y4, 92), for allt € R and all g1,92 € G.

3. For any n.s.f. weight v on N, v is invariant under the action 0¥ if and

only if Hgl g2 ([Dv 2 Dp1]y) = ¥U(yg, g2)[Dv : D1y

Proof Using Proposition 3(2), and because L, and R, are unitaries, we

find poal =¢, @oaf=Ay)¢, so

[Dgoay, , : Do)y = [ngoa,%loa Dcpoa Cle [Dcpooz : D@l

’Yz
= aljw ([Dgo 0471 : D@ly) [Dgo oz72 : D@y
= A(2)" = (72,m)-

The right-hand side of the first equality is obtained by considering the stable co-
subgroup G < (M, Agq). Let us prove the second assertion. Let g1, g2 € G, define
the unitary v := Aw_, w, ), and denote by 1], the weight @1, () = ¢1(vav*).
Using the first assertion, we have

[Dp1ly © Dpnle = 0¥ (v) = 0™ (Tgy, ve)v = U( 1, g2).
Note that ¢q o qu g2 = P1lv 00y, g,y 50

[Der 09g1 g2 t Dp1le = [Dpilv o by g, 1 Dp100g, g,]t[Dip1 08,9, + Dipre
= 0_g,—g ([Dp1lo : Depr]e) = ¥(y, g2).

Putting u; = [Dv : Dypq]; and using the second assertion, one has

[Dyoeg‘l’l g2 : Dy]t = egjgh—gz (ut)[DQOloegl g2 D@l]tu: = eglgl,—gz (ut)\ll(')/tag2)u:

This concludes the proof. |
Note that, using Lemma 8 (1), we have, for all t € R, F' € L*°(G?),
o (AF)) = ME (- + 7)) = of (A(F)). (14)
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Let T be the strictly positive operator affiliated with N and such that T =
Ar(¥(=7,.)). Using (14), we find o} (T%) = A\=%T% 50 one can consider the
Vaes’ weight fig associated with 7" and A~!'. This is the unique n.s.f. weight

—7.f

on N such that [Dfiq : Dpi]; = A2 T%. From (9) we have 9;}/1 o(T) =

Ar(P (=, . — gg) U (v, gg)T” By Lemma 8(3), fiq is invariant under 0¥ 0

the image fig o p~! of fig in G2 x Mq, is invariant under the dual action. Thus

fio © p~ ! is the dual weight of some weight pg on Mq. To finish the proof of

Theorem 2, we will show in Theorem 6 that uo = ¢q, for which we need
Proposition 8 For allt € R and all x € N, we have
of(z) = T"o} ()T~

Proof. By (14), it suffices to prove this equality for elements of the form
(w® 1) (Wq). By definition of o7, we have

o? (w0 (Wa)) = () @ )(Wa),
where p§}(w)(z) = w(d," 7% (x)). Proposition 4 gives
P (@) = w (57 AT By ()
On the other hand, using (14), one has
teo)X)=X, (®aq)(Y)=(A"e)Y,
which implies

teo))(Wa) = A'@Y(awe)W)X

(A" @)Y (0" @ 1)(t— @ )(W)X

= (B*@1)(0""A'BT @ 1)(1_, @ 1) (Wq)
because 6" a(.)d"" = a(.) and Lo = 7

= (Bto 1)) ().

Next, using (3) with the character x:(g) = ¥(v, g), we find
(Bto)Wq = YL, o OWX =Y @) ((L_y, @ )W) X

= Y(®m) (1@ R, )W(I®RR;,)) X =18 Ar(xe))Wa(l ® Ar(x:)*)

= 1T HWo(leTH).
Thus, for all £ € R,w € M,, one has
o (w®)(Wa)) = (we)(B"®1)(®07)(Wa)) 4
(w®b)((b®0t)(( ®T" HWa(leT™)))
“oi ((w® ) (Wa))T™,

where we used, in the last equation, o2(T%) = A\ 7%tTs, [ |
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Theorem 6 We have pug = ¢q.

Let us denote by pp the APlancherel weight on E(éz), by Ap its canonical
G.N.S. map, by )\(L;z and )\gz the *-homorphisms L®(G) — L£(G?) coming
from the representations (y +— )\82’0)) and (y — )\(%2’7)), respectively, and by

Tit = )\%2 (U(=~,-). Thus, T'= Ty ®1. We also introduce the *-homomorphism
o (F) = Ja(F)*J and denote by F — F° the s-automorphism of L>®(G x G)
defined by F°(g,h) = F(h,g + h).

The standard G.N.S. construction for ¢; is (L2(é2,H),L,A1), where a o-
strong-*-norm core for Ay is given by

D, = {(sc@ Dwe)(W) |z e€Nyp, w GZ} ,

and, if v € Ny, w € Z, we have
A (@@ D@ )W) = Ap(a) © W),
Let Aq(w), Za, and {q be the standard objects associated with (M, Agq). For
2, we take the G.N.S. construction (L?(G?, H), p, A2), where a o-strong-*-norm
core for Ay is
Dy = {(x QD (we ) (Wo) |z e Nop, w € ZQ} ,
and, if x € Ny,, w € Zg, one has
Az (2@ D)(w® ) (Wa)) = Ap(2) @ én(w).
Let us introduce the following sets:

c, = {x e Nyp |T?(z®1) is bounded}7

o, {x e C1|Ap(z) € D(T{f)},
Oy = {wm € To|ne DA ) mD(B%)}.

Lemma 9 For all we, € Co one has w . € I. Moreover,

e A 5y Y u Bt
S (wen) =€ (WE,A*%n) & (wf,u*B%n) = At JutJg <w£,A*%n) ’
The following set is a o-weak-weak core for As:
D = {(z®1)(wen ©1)(Wa) |2 € C, we,y € Ca .
Moreover, if x € Cy and we , € Ca, then

Mo((2 ® 1)(wey ©0)(Wa)) = Ap() © £, -y ).
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Proof. Let we, € Zg and 77 € D(A™%). Let e, be self-adjoint elements, like
in Lemma 2, for the operator A. When = € N,,, we have

e 4ot (ena)l = Henz"€ A )| = (A 2en)2"E, )]
= [((wA™%e,)*E, )| < Ol[Aa(zA ey,

because xA_%enA% is bounded and its closure, which equals to xe,, belons to
N,. Thus, we obtain

W, 4-3, (€)= CllA(zen)l| = Cl[Jo_ (en) JA(2)]| — C[|A(z)]].

Since |w.  _1 n(enm*)| — |w (z*)|, we conclude that w_ 4 . isin Z. More-

cAS £A Iy £AT:
over, for all € N, we have

<§Q(w€,n)7‘]‘77 (en)‘]A(x» = <§Q(W§,71)7A(xen)> = <§Q(w€,n)7AQ(xA7%€n)>
w€7ﬂ(‘47%en$*) = <€n$*£aA7%77>

W a-bylent™) = (Ew, oy ), Azen))

(€W, 4-14,)Jo_s(en) TA(2)).

Taking the limit when n — oo, we conclude that o (we ) = &(

i
2

wE,Af%n)'

Suppose that € D(Bz). Let fn, be self-adjoint elements, like in Lemma
2, for the operator B. Note that f,, commute with e, and u, also e, commute
with u. Let us show that uB%fmA%en is analytic w.r.t. 0. We have

U(—(g =) g =) = A U(=g.9) (9, %) ¥ (31.9),
so oy (u) = A~ A~ B=it and, using Lemma 2, we obtain
o (uBZ fnAZe,) = N CuAT BB, (f)A2o(en)
A" uBT gy (fn) A2 "oy (e).
Define the following function from C to M:
F(2) = A uBE 0 () AT %0, (en).
By Lemma 2, f is analytic, so uB%fmA%en is analytic, and we have

(fm)Uf (en)~

Thus, for x € N, zu*B 3 fmenA% is bounded and its closure, which is equal

g

7%-(uB%fmA%en) = /\i‘uafé i

to xu*B%fmA%en, belongs to N,. Moreover,

enfma®) = enfmr* & u"B2n)| = [(B? frequa™é,n)l
= (2w B fmen) &)l < ClIAGU B frAbe,)]|
< CllTN o i (fm)o_ s (en) JA)]].

W ey
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Taking the limit over m and n, we get

We e b, (@) < CllTuIA()]] < Cllull[[A)]]-

Thus, w 1 € Z. Moreover, for all z € N, one has
&u*B2n ®

(601, 774 €074 ) TAD) = (65 ) Aren f)
= 5u*B2n(enfmx) (en fma*E,u* B2n) = (2*€,u* B2 f, Ad e, A= 7)
— (uB? f, Abena™e, A™ 2n>—w£A,, (( *BzfmAzen))
= (60, -y, ) A" BE fdben) = (6, oy, ) INEu0_y (F)or_y (en) TAG))
= (A JutJE(w

£A” Sy
ot T (E)o_ () TA@))
Taking the limit over m and n, we get §(w£’u*3%n) = )\iJu*Jg(wé’A,%n).
Now we want to prove that D is a o-weak-weak core for A;. Because T'=T1®1,
1
we know that 7% (z ® 1) is bounded if and only if T} z is bounded. Thus, by
Proposition 18, CY is a o-strong*-norm core for Ap, and, by Proposition 17,
it suffices to show that the set {(w ® ¢)(Wq)|w € C2} is a o-strong®-norm
core for Ag. Let z = (we, ® t)(Wq) with we,, € To . Let L = N x N with
the product order and consider the net z(, ) = (We,e, f,n @ ¢)(Wa). Because
en fmn — 1, we have (;, m,) — 2 in norm. Note that e, f,,,n € D(A_%)HD(B%).
Moreover, using the same techniques, one can show that we ., f,.n € Zo. Thus,
We,enfmn € Co2 and we have, for all £ € M such that 2Az is bounded and

A2 €N,

(Aa(@m,m) Aa(z)) = (lalwee, fun) Aa(@)) = (27E enfmn)
(zen fm) Em) = (Calwen), Aa(zen fm)),

because xenfmA% is bounded and ze, fn Az = zA2e, fm € N, so

(o) Aa(e)) = (Ealoen)s o s (en)o_s () TAEAD)
= <JU%(€n)(fi

%(fm)JEQ(wEm)aAQ(x»
Thus, Ao (2(n,m) = Jo:(en)os (fm) Tha(z) — Aa(z). [

Next proposition describes the i image by A of typical elements from As. Let
us define the unitaries

U=\ ®a)@)* and V=05 @a)0l").

Proposition 9 Letx € CY and w € M, be such that wu € I, then Ap®£&(wu) €
D(T~32), (2@ 1)(w® 1) (Wa) €N, and

A ((x ©1)(we L)(WQ)) — UVT 3 Ap(2) ® E(wu).
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First, we need some preliminary results.

Lemma 10 Let J; be the modular conjugation associated with p,. Then, for
all F € L>®(G),

A ® a)(Ag(F)) = ZAL(F) i

Proof. Using Lemma 8 (3), we see that ((y1,72) — L+, R4,) is the standard
implementation of the action o« on H = Hy, so the operator J; is given by

J1€(y1,72) = Ly, R\, JE(=71, —2), for € € L*(G? H). Tt is now easy to

check the needed equality for F' = ., with v € G. Because ()\G ® a) o Ag and
J1AL(.)*Jp are x-homomorphisms, this concludes the proof. |
Define one parameter groups of automorphisms of L‘X’(G) Y (F)(xz) =
F(x—) and ofM o (x) = Jat(Ja:J)J Note that 0,00 = a o7;. By analytic
continuation, o (F) € D(0,) and o (a (F)) = o (7.(F)) Yz € C, F € D(v.).

Lemma 11 Let F € L*(G?), x € N,,, andw € Z. If F € D(y_; ®1), then
(G @ a)(oF) €D ), (z@)(wa) ((a ® Ar)(F)W(a @ )\L)(F)> e
N, , and

M (@@ (0 ) (F)W (e A)(F)))

= 0" @) (F)ew ) (0F ©a)oF)) Ap(z) ® ).

Proof. Because D(yfé) ©® L*(G) is a o-strong™® core for Y- ®cand Ay is
o-weak-weak closed, we can take F' € D(yfé) ©® L*°(G). By linearity, we can
take F' = Iy ® F, with F1 € D(y_;) and I3 € L®(G). f 2 € N, and w € 7,
then

(z®1)(we ) ((a ® A\r)(F)W (o ® AL)(F))

= )\R(Fg)(.’L‘ ® 1)(a(F1).w.a(F1) X L)(W))\L(FQ)
Because F3 € D(’yf%), we have a(F;) € D(o_;). Lemma 3 and the definition
of Ay imply (z ® 1)(a(F)) - w - a(F1) ®1)(W) € N, and

I\J\s

Ai (@@ D(@(F) - w-a(F1) 2 )W)
<1®a<F1>><1®Jo LR ) (Ap (@) © €(w))
= (1@ a(F) (180 (v 4 (F)(Ap(2) © W),

Moreover, (14) gives Ap(Fz) € N¥1, so

A (Fy)(z @ 1)(a(Fy).w.a Fy) @ ) (W ))\L(Fg) eN,, and,

A (Ar(Fe)(@ @ D(a(F)w.a(F) @ 0 (W)AL(F))

= JiIAL(F2)* JiAr(F2)(1 ® a(F1))(1 ® ( ( F1)))(Ap(x)

= JiAL(F2)* (1 ® a(F1)) ((AGZ(F2)®1)( ®0/( i (F1))
(because Ar(F) = )\G (F2)®1 commute with 1® a(F;
= (¢ ®a)(AG(F2)1®F1)(/\G a)(FRel)(ley_i(F

®

§(w))
(Ap(z) ®E(w))

~—
~—
\-/\_/\_/

)(Ap(2) ©E(w)),
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where we used Lemma 10 in the last equality. Note that
(Ac(F2)1® F1)(g, h) = Fa(g + h)Fi(h) = F(h,g + h) = F°(g, h),
and because

W\ @ a)(F 1) (10 (1))

z
2

(G @a) (L@ ;) (0F))
= (@0 )G ®a)(oF),
we conclude the proof. [ |
Lemma 12 The operator (1 ® J’_%)(V) is normal, affilated with £(G?) @ M,
and its polar decomposition is (1 ® 0;%)(V) = V(Tl_% ®1)=VT"z.
Proof. We have (t ® v)(a¥*)(g,h) = U*(h, 9)¥*(—v, g), so
(t@o)(V) = (OF @a) (@) e¥) = V(T e 1),

We conclude the proof by applying Proposition 1. |
Proof of Proposition 9. Let x € C? and w € M, such that w-u € Z. By
Lemma 12, Ap(z) ® {(w-u) €e D((t®@0_,)(V)) and
2

(1@ 0. )(VIAp(r) @ Ew-u) = VI~ 2Ap(a) ® (w - u).
By Lemma 1, V(n) — V o-strongly* and
(@0’ )(V()Ap() ®E(w-u) = VI~ 2 Ap(r) @ {(w - u),
where
Vi =\t [ he o= 0F o) ow ()
with U*(n) = \/ﬁfe_m52 (7t ®@0)(U*)dt. So U*(n) is analytic w.r.t. (t — 1 ®¢)

and U*(n) — U* o-strongly*. Now we can apply Lemma 11 to ¥*(n) and

wou: (201 (w-u® ) ((a ® Ap) (U ()W (a ® )\L)(\I!*(n))> €N, and
A (@@ D)@ @) (@@ M) ()W (@ @A) (¥ ()

= 0" @)@ () ® o )(VIAP() © Ewr ).
Note that
(a®AR)(T*(n))W (a@AL)(T*(n)) — (a@Ar)(¥*)W (a®AL)(T*)  o—weakly, so,
(z®1)(w-u®e) ((a @ Ar)(T*(n))W(a ® /\L)(\I/*(n))> — (221)(wR1)(Wq)  o—weakly,
and
(A§2®a)(\11*(n)o)(u@a/_%)(V(n))Ap(x)®§(w.u) — UVT 2 Ap(2)®¢(w.u) weakly.

Because A; is o-weak-weak closed, this concludes the proof.
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Lemma 13 Let € D(Bz2), £ € H and x € Cy. Then

e, B0 (W)

Proof. Using (15), for all t € R, we have Wao(l @ TYWg = B* T”
Wo(l®T2)Wg4 = B2 @T:. Let n e D(B2), £ € H, z € Cy, f € D(T?), and
l € L*(G? H), then

((x® 1) (wey @ )W)TEf,1) =

(a:®1)(w5,7,®L)(WQ)T% is bounded and its closure is T2 (z ® 1)(w

Wol @ T fn e (z@1))
(B? @ T2 )Wot @ f,n® (z® 1)*)
(1@ (z@)T:)Wa® f,Bin @)
THa®1)(w 5B%U®L)(WQ)J‘J>-

(
(
=
(
Thus, we have (z®1)(we., ®1)(Wo)T? C T (z ® (@, p3, @ ) (Wg). Because
D(T'2) is dense, this concludes the proof. |
Proposition 10 Let z € C) and we,, € Co. Then
(2@ 1) (wey ®1)(Wa) €N NN, and
A, ((:1: ® 1) (we.y ® L)(WQ)) = MUV ® Ju*J)As ((3: ® 1) (we.y ® ) (Wa) )
%

Proof. Let z € €Y and we,, € Cy. By Lemma 13, (z ® 1)(we,, ® ¢)(Wo)T7 is

bounded and its closure is Tz (z ® 1)(w ® 1)(Wgq). Moreover, by Lemma

1
§,B2n
9, W ph, U= wg,u*gén € 7, so we can apply Proposition 9, and we find that
(x® 1)((‘”&,3%77 ®1)(Wa) € N, and

A ((x )W, 1 ® L)(Wg)) —UVT 3 Ap(z) ® €(w

1 1 .
§B2n g,u*Bén)

Finally, using Proposition 18, and because T 3 commutes with UV, we find that
T3 (z® 1)(w§73%n ®)(Wq) € N, and

A (T%(x ®1)(w, 43, © L)(WQ)) = UVAp(2) ® E(w

1 .
§,B2 5#*3577)

By Lemma 9, &(w = )\%JU*J&z(WE,n)’ S0

cus by
A (T% (28 1), 1, @ ,,)(VVQ)) = MUV ® Ju*J)Ap(z) ® Eo(we.y)
= MUV ® Ju*J)As <(x ®1)(weny @ L)(WQ)) .

B Proof of Theorem 6. Let
D be the o-weak-weak core for A, introduced before Lemma 9. By Proposition
10, D C N, NN, and there is a unitary Z such that Ay(z) = ZA,(x), for all
x € D. By Proposition 19, ¢s = fiq, s0 ¢ = uq.
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5 Examples

5.1 Twisting of the az + b group

Our aim is to prove Theorem 3. According to Section 2.7, if H is a closed
abelian subgroup of a l.c. group G, then H < (£(G),Ag) is an abelian stable
co-subgroup. The morphism « : L®(H) — L£(G) is given by a(us) = Ag(h),
and the morphism (t — ;) : R — H by (y,, h) = 65" (h). Let G = C* x C and
K C @G be the subgroup K = {(z,0), z € C*}. The modular function of G is
dc(z,w) = |z|71, for all z € C*, w € C, and (4, z) = ||, for all z € C*,t € R.
Let us identify C* with Z x R :
Zx]Ri—N/C\*, (n,p) = Yn,p = (re? — 7:lnrlr"’(ame).

Then v, = (0,€") € Z x R%.. For any z € R, there is a bicharacter on Z x RY. :
U, ((n, p), (k,r)) = exkp=nlnr) et (M, A,) be the Lc. quantum group
obtained by twisting. Then W, ((n,p),7; ') = €™ = ugi=t((n,p)), and we get
the operator A, deforming the Plancherel weight ¢:

A? = a(Ugzict) = )\(Céf?m,o)'

Since U, (v¢,7s) = 1, for all s,¢ € R, the twisted left-invariant weight ¢, satisfies
[Do, = Dyly = At = A(Ciitw,o)' The modular element of the twisted quantum
group is

6? = (Vs (,7) Vo= 7) = )‘(Cif%tw,())a

0 d, is not affiliated with the center of £(G), and the twisted quantum group
is not a Kac algebra. Let us look if (M,,A;) is isomorphic for different values
of x. Since ¥, is antisymmetric, ¥V_, = ¥* and A is cocommutative, we have
A_, = ocA,. Thus, (M_,,A_,) ~ (M,,A,)°°. Moreover, using the Fourier
transformation in the first variable, one has immediately Sp(d,) = ¢% U {0},
where ¢, = e 2%, Thus, if # # y, * > 0,y > 0, one has ¢Z # qg and,
consequently, (M, A;) and (M, A,) are not isomorphic.

In order to finish the proof of Theorem 3, we must compute the dual l.c.
quantum group. The action of K? on L°°(G) can be lifted to its Lie algebra
C? which does not change the result of deformation (see [6]) but simplifies cal-
culations. The group C is self-dual with the duality (21, 22) — exp (ilm(z122)).
Let z € R. The lifted bicharacter on C is ¥, (z1,20) = exp (izIlm(21Z3)). The
action p of C? on L*®(G) is

e,z (f) (w1, w2) = f(e27 Fwy, e " wz). (16)

Let N = C% x L*>°(G) and 0 be the dual action of C? on N. One has, for all
z,w € C, U (w, z) = ugz(w). So, the twisted dual action is

9\1/ )‘—$El,$22921722( ))‘* (17)

21,22 —xZ1,XZ2°

Let M be the fixed point algebra. We will construct two operators affiliated
with M which generate M Let a and b be the coordinate functions on G, and
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a =m(a), =m(b). Then o and S are normal operators affiliated with N, and
(16) gives

)\21,z2a)‘zl,zQ = ezz_Z1aa Az1,z26A21722 = e_Z1ﬁ' (18)
Now, using (17) and (18), we find
W, _ z(Z1+Z W, _ xZ
S (0) = "B, 07r (8) = . (19)

Let T; and T, be the infinitesimal generators of the left and right translations,
so T; and T, are affiliated with N and A, ,, = exp (iIm(217})) exp (iIm(227}.)) .
Then A\(f) = f(T3,T), for all f € L>°(C?).

Lemma 14 Let L = ¢*T7" and R = ¢*T | then
e (B,L) is a e -commuting pair.
e (B, R) is a 1-commuting pair-
e (o, R) is a e~ *-commuting pair.
(e, L)

° 1s a e*-commuting pair.

Proof. Note that Ph(L) = e~®@mTi = X\_, ; and |L|*s = e®*ReTi = )\, o, so
(18) gives |L|**B|L|~* = e~ "% and Ph(L)BPh(L)* = e®3 which means that
(8, L) is a e”-commuting pair. The proof of the other assertions is similar. W

Define U = \(¥,) and & = U*aU, © = Ph(L)Ph(B) and B = |L||3|. Then
& is normal, B is positive self adjoint, both affiliated with N, and v € N is
unitary.

Proposition 11 & and B are affiliated with J/M\w and ¥ € J/M\w Moreover,

1"

{F(@9g(B)h), f e L®(C).g e L*RY),he L™(S)} =,
Proof. We have

)
Uettm(=z2T) gie (T (2 25)

= U/\—xfz,xfl v, (2’1, Z2)~

This implies, using (19) and (18):

U, A\ . x(Z1+Z * * oA
021,Z2 (a) =e &+ 2)U >\I2277$EIQAI22,7121U = Q.
Also,
W, A\ _ zRe(T;—21) ,zRe(z _ D
021,22(‘8)76 ( ! 1)6 ( 1)|ﬂ|7‘B
and
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Thus, & and B are affiliated with .7\//.7z and v € J\//.Tz Let

W ={zf(@)g(B)h(o)y, f € L*(C).g € L*(R}),h € L=(S"), 2,y € ML=(C?)} .
By Lemma 15, it suffices to show that WW = N. Note that

{2(8). f€L¥(0).2 € \LX(C)} = (20" f(@)U. f € L¥(0).2 € NLZ(C)} .
Substituting z — zU, we get

"

{(2£(8), f€L¥(C),z € \L®(C2)} = {2f(a)U, f € L=(C),z € AL=(C)} .
Observe that
{f(a)z, f€L¥(C), € NLX(C?)} = {zf(a), f € L®(C), z € ALX(C2)}

SO

" "

{2f(a), f € L®(C),z e NL¥(C?)} = {f(a)2U, f e L¥(C),z € ML=(C?))} .
Substituting z — zU*, we get

" "

{2f(a), € L=(C),2 € NL¥(C?*)} = {f(a)z, feL¥(C),zeNL>(C?)} ,

W= {f(a)zg(é)h({))y, f€L>®(C),ge L®RY),he L™(S"), z,y € A(L“(Cz))}“ .

Note that

{zg(B), geL®RY), z € )\(LOO((CQ))}” - {zéis, sER, z € A(L“(CQ))}”

"

= {ze"eli|glis s e R, 2 € A(L®(C?))} .

Substitution z — ze~$tReTl gives

{z0(B), ge L™(RY), z € )\(L"O((Cz))}” — {2181, s € R, z € AL®(CY)}
= {z0(18). g € L(E}). = € AL¥(C)} .

Also, one can prove that

" 1"

{h(®)y, h e L=(S"), y € M(L>(C?)} = {n(PhB)y, h € L=(S"), y € A(L™(C?))} .
Thus,

"

W= {f(@)zg(|B)R(PhA)y, fe L>(C),g e L=(R),he L¥(SY), 2,y € M(L>(C?))}
= {f(@)zg9(B)y, f.g e L=(C), z,y € \(LX(C?))} .
Commuting back f(«) and z, we have the result. |

Let /3’ = 9B. Then B is a closed (non normal) operator affiliated with ]\//.fm
Let us give now the commutation relations between &, (.
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Proposition 12 o and T;* + T} strongly commute, and & = TP+ 50 the
polar decomposition of & is

Ph(&) = e~ @ ImT+Tr) pp(o) = Ph(L)Ph(R)Ph(a), |a| = e* BT+ T |o| = |L||R||e.
Moreover, the following relations hold with ¢ = €%®:

o 38" =B B,

o (&, ) is a \/q-commuting pair-.

Proof. Since

eiIm(z(Tl*+T:))ae—z‘1m(z(Tl*+T:)) =\

*

_ o2tz
z7-z0A 5z _z=e€ o= q,

Ty + Ty and « strongly commute. Moreover, since ™77 =1,

—izImT, T

~ aezzImTl T

SR 67i$ImTl(TL+T7')*aeizlmTl(Tl+T7-)*.

a=ce

This equality, the strong commutativity of T;* + T, with a, and the equality
e~ iwImTiwgeizimTiv — cow o jmply & = (77 +77) The polar decomposition of
& follows. All the relations can be checked using Lemma 14. ]

We shall give now a nice formula for A,. Let us define the following (closed

non-normal) operator affiliated with M, ® M,: A, (3) = A (0)AL(B).

Proposition 13

Ay(@)=6®a and Ay(B)=a®p+Be1.

Proof. Proposition 7 gives A, = YT(:)Y*, where T = @ T®T  and T is
uniquely characterized by two properties:

e T restricted to L>°(G) coincides with the comultiplication Ag.

With V = YT'(U*), we have A,z(&) = V(e ® a)V*, so it suffices to show that
(U®U)V commutes with @ ® «. Indeed in this case

AL (&) = V(a®@a)V* = (U U NUQU)V(a@a)V*(U*@U*)(UsU) = 4®Qa.
Let us show that (U ® U)V commutes with a ® a. From U = ™77 one has
F(U*) — e—ixIng@T:7 U ® U = ei;chm(TlT:®1+1®T1T;f)7

so V = e~ ieIm(TI@T+Ti®T) g
(U @ U)V = iem(N T ®1+18T T ~ T 8T~ Ti@Ty)
Remark that

Tl 1N — T T~ T = (i1 -1T)(TF 1 -1 1)),
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so it is enough to show that 71 ®1—-1®7T; and T} ® 1 —1Q T strongly commute
with o ® «, which follows from

eiImz(T:®171®T:)( )efilmz(T,’f@lfl@T:) _

a®a X0,-z @ Ao z) (@@ a)(Mo,—z ® Ao z)"

_ Z

(

e “efaR®QQa=a®a,
eiImz(Tl®1—1®Tl)(a ® a)e—ilmz(Tl®1—1®Tl) — (/\270 ® )\—z,O)(a ® 0&)(/\270 ® )\—z,O)*

e

FefaRa=a® a.

By definition of A,, we have
Ap(B) = A1) = (T @ DY a @ B+ B© 1|77,
AL (0) = Ap(e7 ™™ T PR(B)) = (e~ © 1)TPh(a @ B+ ® 1)T*.
A direct computation gives
Ph(a ® 8+ 8@ 1)(e*FT @ 1) = ("1t @ 1)Ph(a ® B+ B ® 1),
SO

e @)T(eef+e )T
(€ @ )T(a@ BT+ (e @ NY(Be1)T".

Az (B) e’
ew
Thus, it suffices to show that

aef = T DT (a®B)T* (20)
Bel = (e o )T(BR1)T". (21)

Let us prove (20). Let us put 7 = e’ @ 1 =L ® 1 and S = T(a® B)T*.
We want to show that & ® 3 =TS. For all z € C, we have

eimImz(TT®1)(a ® 1)e—iw1mz(Tr®1) — ()\O,mza)\afzz ® 1) — %7 (a ® 1)’

and, using the fact that a ® 1 and 1 ® T}" strongly commute, we obtain T(a ®
DY =a®e*’ =a® L. Similarly, T(1® 8)YT* = R® 3. Thus, using Lemma
14, we see that the polar decomposition of S is

Ph(S) = Ph()Ph(R) @ Ph(5)Ph(L), [S| = |af|R|® |S]|L].

Moreover, the polar decomposition of T is given by Ph(T') = Ph(L)®1, |T|=
e”|L| ® 1, so, using Lemma 14, one can see that (7,.5) is a e”-commuting pair.
In particular, the polar decomposition of T'S' is

TS| = e *[T||S| = |L|e||R|@[B]|L], Ph(TS) = Ph(L)Ph(a)Ph(R)@Ph(3)Ph(L).
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But Proposition 12 gives Ph(&) = Ph(L)Ph(R)Ph(«) and |a| = |L||R||a|. Thus,
we conclude that Ph(d ® §) = Ph(T'S) and |& ® 3| = |T'S| which concludes the
proof of (20). One can prove (21) similarly. |

Now the proof of Theorem 3 follows: Proposition 11 says that & and B
generate J/M\x and Proposition 12 gives the commutation relations for & and B

5.2 Twisting of the quantum az + b group

This Section is devoted to the proof of Theorem 4. Let 0 < ¢ < 1 and (M, A)
be the az + b Woronowicz’ quantum group. Let o : L>°(C?) — M be defined
by a(F) = F(a). Recall that (Section 2.7) Ci < (M, A) is an abelian stable
co-subgroup with the morphism v, = ¢?** € C9. Let us perform the twisting
construction using the bicharacters

U, (g, ¢!tV = ¢ IR) g e 7,
and let (M, A;) be the twisted l.c. quantum group.
Proposition 14
Ay(a)=a®a and ALb) =u "Hal*T @ b+b @ ut|al 77,

and [Dy, = Dgl; = A = |a|=2%*t. The modular element &, = |a|***2, the an-
tipode is not deformed. If x,y € N and x # y, then (M, Ag) and (M, A,) are
not isomorphic; if x # 0, then (Mg, Ag) and (M_z, A_;) are not isomorphic.

Proof. The relations of commutation from Preliminaries give

To(a gt )b = W g ), (] g )
=l

_ qim¢7wlv|b|u71l|a|iww

— qixwfmlb\ljx (a7 ql+i¢)'

So, for any v € C9, one has
Vo(a®1,7)(b® 1), (a®1,7)" = (Phase(+))” 1| " (b & 1).

Put Q; = (a®a)(¥,;) = ¥Y,(a®1,1®a). Using the previous formula and the
fact that b® 1 and 1 ® a strongly commute, one gets 2, (b® 1) = b u®|a|~".
Similarly: Q,(1® b)Q% = u~"|al” ® b. These formulas give the comultiplication
on b. The comultiplication on a is clear. We Since W4(v;,7vs) = 1, for all s,¢ € R,
then [D(,Om : D@]t = A? = \Pw(av "Yt_l) = |a|72izt' Put fi&z = \Ilﬂﬂ('v’yt)\pi(’yt_la ');
then f¥(¢"*%?) = ¢**** and a(fF) = |a*"*®. So, the modular element is §, =
la|?|a|**. The antipode is not deformed because ¥;(x~!,z) = 1, for any z.
The spectrum of the modular element is Sp(&,) = ¢Z U {0}, where ¢, = ¢***2,
so, if & # y are strictly positive, then 0 < ¢, # ¢, < 1, so ¢% # ¢%, then
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(M, Az) and (My, A,) are not isomorphic. Moreover, if > 0, then (M, A;)
is not isomorphic to (M_,, A_,) because in the opposite case we would have
W% — (42=2)Z  from where, as « > 0, 4z + 2 = 4z — 2 - contradiction. M

The group C? is selfdual with the duality (g%, ¢"t"%) s ¢?*¥+%) 50 one
can compute the representations L and R of C%:

qu+w =m¥® sk ®R1® Sk, qu+iw =m ¥R1eam¥e sk,
Then the left-right action of (C%)? on the generators of M is
qukﬂv’quw(d) = ql_kH(w—L’o)d, Qgk+ie gltiv (6) = q—k—itpi). (22)

Let N = (C9)® x M, it is generated by the operators Aghtie gi+iv and m(z), for
x € M, and 6 be the dual action of ((Cq)2 on N. The deformed dual action is

\\ *
qu::»igo’ql{»iw = )\qz(kﬂ'«p) ,q® (= 1+iv) aqk+iw,ql+iw (»))\qz(kﬂ'@) LqE(—l+iv) -

Let M\z be the fixed point algebra. The left-right action is very similar to the

one for the classical az + b. Define @ = w(a), 8 = w(b). Then « and [ are
normal operators affiliated with N and one can see that

W, _ -z i v, _ —xk+iz
aqmw’qzﬂw (Oé) - q (l+k)+ (SO‘HZJ)Q 9 qu+'inp’ql+iw (ﬁ) - q ket Lp6~ (23)

Let T; and T, be the "infinitesimal generators” of the left and right translations,
so T; and T;. are affiliated with N and

Agetio giiv = (PhT)" | Th|" (PWT,)" | T, (24)
Then A(f) = f(T},T,) Vf € L® (((CQ)Q) . Let U = A(¥,) and & = U*aU.

Proposition 15 (TT7)™" and « strongly commute and & = (T;T}) ™" o. The
polar decomposition of & is 4 := Pha = (PhWI}T,)", A :=|a|l = \TlTT\_xJaL
Also, |T;| and |B| strongly commute, so we can define a positive operator B =
|T7)~*|8|. Let © = Ph(T;)* Ph(B). Then & and B are affiliated with M,, v € M,,
and we have the following relations of commutation:

o Wb =0, AB = BA;

e 9Bo* = ¢ 2B, aBa* = ¢~ 2*T1B and, 9A0* = ¢~ 2214,
Moreover, these three operators generate Z/\J\m in the sense that

7"

3T, = { F(@)g(0)h(B), f € L=(CT), g€ I™(8"), he L™(¢H)
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Proof. Using (22) and (24), we find:

TV T || T " = a, (25)
Ph(TiT,)aPh(TiT,)" = (26)
I B|Ty| =" = ¢~ B, (27)
Ph(T})Ph(T})" = ¢ '4. (28)

Due to (25) and (26), o and T;*T; strongly commute. Because U, (T,,T;) =1
we have & = W, (T, T, T,.)*aV . (TiT,, T}). Next, using ¥, (¢, T;.)*a V¥, (¢" ¢, T,) =
/\17q71k+iwa)\iq,zk+iw = ¢kt and because T;T, and « strongly com-
mute, we have

& = [T~ (PhIT,)" a = (I}'T%) " a.
The polar decomposition of & follows. Equality (27) implies that |T;| and |3|
strongly commute. Note that

egciiap7qz+w(U) = \I/w(qu_k—i‘P’TTq—l—iw)
= U)\qzl—izw7q_xk+ix¢ \I;x(qk+i<,0, qlJriu;).

Then, it follows from (22) and (23) that & is affiliated with M,. Also, using
(23) we find 07 gorio griv (D) = (Ph(Tig~*=1%))" ¢"**PhB = 9, s0 0 € M,. In the
same way we prove that B is affiliated with Mx. It is easy to see that PhT;
and PhT, commute with Pha and Phf, and because Pha and Ph3 commute, it
follows that 40 = v4. Also, |Tj| and |T| strongly commute with |a| and |3], and

because |a| and |3| strongly commute, it follows that AB = BA. The relation
dBo* = ¢~2 B follows from (27) and (28). Remark that

Pho|T;|"*Pha* = ¢~ *|T|™*, PwB|T,T|"*PhS* = ¢~ |1, T-|77,

and the two last relations follow from Phea|S|Pha* = ¢|8| and Phf|a|Phs* =
~118]. The generating property is proved as in Prop051t10n 11. |

Let A, be the comultlphcatlon on M and ﬂ = 9B. Then 6 is a closed (non-
normal) operator affiliated with M,. As before, we define A +(3) = AL (0)AL(B)

which is closed, non-normal and affiliated with M ® M The proof of the
following Proposition is similar to the one of Proposition 13.

Proposition 16
Agd)=a®a and A (B)=ap+ie 1.

The proof of Theorem 4 follows from the results of this section.
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6 Appendix

Let a be an action of a l.c. quantum group (M, A) on the von Neumann algebra
N. Let 6 be a n.s.f. weight on N and suppose that N acts on a Hilbert space
K such that (K, ¢, Ag) is the G.N.S. construction for . We define

Dy = span{(a ® 1)a(x) |a € N,z € Ny}.

Let (H, ¢, A) be the G.N.S. construction for the left invariant weight ¢ of (M, A),
¢ the dual weight, and A its canonical G.N.S.-map. We recall that the G.N.S.
construction for the dual weight 6 is given by (H ® K, 1, A), where Ag is the
o-strong*-norm closure of the map

Dy — HRK : (a®1)a(z) — Ala) @ Ag(x).

Proposition 17 Let C1 be a o-strong*-norm core for A and Cy a o-strong*-
norm core for Ag. Then the set C = span{(a ® 1)a(z)|a € Ci,x € Co} is a
o-weak-weak core for Ag.

Proof. Let a € N; and © € Ny. There exists two nets (a;) and (z;), with
a; € Cq and z; € Cy, such that

a;i —a, ¥, — & o —strongly* and A(a;) — A(a), Ag(z;) — Ag(z).
Thus, (a; ® Da(z;) — (e ® 1)a(z) o-weakly and
R (s ® Dale:) = Ala) ® Ao(z:) — Ala) ® Ao(2) = Ay (0@ Da(z)).
|

Proposition 18 Let M be a von Neumann algebra with a n.s.f. weight ¢,
(H,t,A) the G.N.S. construction for ¢, and T a positive self-adjoint operator
affiliated with M. Then C = {x € N, | Tz is bounded and A(x) € D(T)} is a
o-strong*-norm core for A and, if x € C, then Tx € N, and A(Tz) = TA(x).

Proof. Let T = f0+°o Adey be the spectral decomposition of T'. Let e, =
fon dey. Then e, — 1 o-strongly*, Te,, is bounded with domain H. Let x € N,
and put x, = e,x. We have z,, — x o-strongly* and A(z,) = e, A(x) — A(x)
in norm. Moreover, Tz, = Te,x is bounded and A(z,) = e, A(x) € D(T), so
xn € C, and it follows that C is a o-strong*-norm core for A. Now let z € C.
Note that e, Tz = Te,x = e, Tz is in N, and it converges o-strongly* to Tx.
Moreover,

Ae,Tx) = e,TA(x) = e, TA(x) — TA(x).

Because A is o-strong*-norm closed, we have Tz € N, and A(Tz) = TA(z). R

Proposition 19 Let M be a von Neumann algebra, 1 and po two n.s.f. weights
on M having the same modular group. Let (H;,m;,A;) be the G.N.S. con-
struction for ¢; (i = 1,2). Suppose that there exist a o-weak-weak core C
for Ay such that C C Ny, NNy, and a unitary Z : Hy — Hy such that
Ao(z) = ZA1(x), for allz € C. Then o1 = pa.
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Proof. Because C is a o-weak-weak core for A; and because Ay is o-weak-
weak closed, we have N, C N, and, for all z € N, we have A;(z) = ZAs(z).
Thus, ¢1(y*x) = @a(y*z), for all z,y € N,. Let B = N N,,. This is a
dense *-subalgebra of M., N M, and, for all z € B, we have ¢1(x) = pa(z).
Because ¢; and (3 have the same modular group, we can use the Pedersen-
Takesaki Theorem [13] to conclude the proof. |

Let M be a von Neumann algebra, ¢ a n.s.f. weight on M, (H,¢,A) the
G.N.S. construction for ¢, and ¢ the modular group of ¢. Let § be a positive
self-adjoint operator affiliated with M, A > 0 such that o;(6%) = A5 and As
the canonical G.N.S. map of the Vaes’ weight ¢s5. One can consider on M ® M
two n.s.f. weights: s ® s, with the canonical G.N.S. map As ® As, and the
Vaes’ weight (¢ ® ¢)sgs associated with ¢ @ ¢, § ® § and A\2. Let A ® A be
the G.N.S. map for ¢ ® ¢, and (A ® A)sgs the G.N.S. map for (p ® ¥)sxs (see
Section 2.6).

Proposition 20 ¢p; ® ps = ((p & @)5@5 and As @ Ay = (A & A)5®§.

Proof. Let us apply the Pedersen-Takesaki theorem to the weights ¢ :=
(ps ® ps5) and @9 := (¢ ® p)ses Which have the same modular group and are
equal on the dense *-subalgebra B= N ® N of My, N M,,, where

N := {x € M |67 is bounded andEGJ\ﬂp}.

Let A; be the canonical G.N.S. map of ¢;. By definition, N ® N is a o-strong*-
norm core for Ay, and Aj|y = As|y. Since Ay and Ay are o-strongly*-norm
ClOSGd, then A1 C AQ. And A1 = A2 since D(Al) = thl = ./\/@2 = D(AQ) | |

Finally, let us formulate the von Neumann algebraic version of [6], Lemma
3.6. Let N be a von Neumann algebra, G a l.c. abelian group, v : G — N a
unitary representation of G and 6 : G — Aut(N) an action of G on N such
that

0 (u(g)) = <v,9 >u(g).

Let a be the action of G on N implemented by u. The unitary representation

u of G gives a *-homomorphism 7 : L>*(G) — N.

Lemma 15 Let V be a linear subspace of N invariant under the action o and

such that (W(LOO(G))VW(LOO(G'))) = N. Then V" = N.
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