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Abstract. We show that the orthogonal free quantum groups are not inner amenable and
we construct an explicit proper cocycle weakly contained in the regular representation. This

strengthens the result of Vaes and the second author, showing that the associated von Neumann

algebras are full II1-factors and Brannan’s result showing that the orthogonal free quantum
groups have Haagerup’s approximation property. We also deduce Ozawa-Popa’s property strong

(HH) and give a new proof of Isono’s result about strong solidity.

1. Introduction

The orthogonal free quantum groups FOn are given by universal unital C∗-algebras Ao(n) =
C∗(FOn) which where introduced by Wang [Wan95] as follows:

Ao(n) = C∗〈vij , 1 ≤ i, j ≤ n | vij = v∗ij and (vij) unitary〉.

Equipped with the coproduct defined by the formula ∆(vij) =
∑
vik ⊗ vkj , this algebra becomes

a Woronowicz C∗-algebra [Wor98] and hence corresponds to a compact and a discrete quantum
group in duality [Wor98, PW90], denoted respectively O+

n and FOn.
These C∗-algebras have been extensively studied since their introduction, and it has been noticed

that the discrete quantum groups FOn share many analytical features with the usual free groups
Fn from the operator algebraic point of view. Let us just quote two such results that will be of
interest for this article:

(1) the von Neumann algebras L(FOn) associated to FOn, n ≥ 3, are full II1 factors [VV07] ;
(2) the von Neumann algebras L(FOn) have Haagerup’s approximation property [Bra12].

On the other hand there is one result that yields an operator algebraic distinction between FOn
and Fn: it was shown in [Ver12] that the first L2-cohomology group of FOn vanishes.

The purpose of this article is to present slight reinforcements and alternate proofs of the results
(1), (2) above. Namely we will:

(1) show that the discrete quantum groups FOn are not inner amenable (see [MvN43, Eff75]
for non abelian free groups);

(2) construct an explicit proper cocycle witnessing Haagerup’s property [DFSW13].

Moreover, putting these constructions together we will obtain a new result, namely Property
strong (HH) from [OP10b], which is a strengthening of Haagerup’s property and corresponds to
the existence of a proper cocycle in a representation which is weakly contained in the regular
representation. This sheds interesting light on the result from [Ver12] mentioned above, according
to which such a proper cocycle cannot live in a representation strongly contained in the regular
representation (or multiples of it). Note that the cocycle corresponding to the original proof
[Haa79] of Haagerup’s property for Fn does live in (multiples of) the regular representation.

Finally we will mention applications to solidity: indeed the constructions of the article and
Property strong (HH) allow for two new proofs of the strong solidity of L(FOn) using the tools of
[OP10a, OP10b]. Notice that strong solidity has already been obtained in [Iso12] using Property
AO+ from [Ver05, VV07] and the tools of [PV12].
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2. Notation

If ζ, ξ are vectors in a Hilbert space H, we denote ωζ,ξ = (ζ| · ξ) the associated linear form on
B(H), and we put ωζ = ωζ,ζ ∈ B(H)+

∗ .
We will use at some places the q-numbers [k]q = Uk−1(q + q−1) = (qk − q−k)/(q − q−1), where

(Uk)k∈N are the dilated Chebyshev polynomials of the second kind, defined by U0 = 1, U1 = X
and XUk = Uk−1 + Uk+1.

Following [KV00], a locally compact quantum group G is given by a Hopf-C∗-algebra C0(G),
with coproduct denoted ∆, satisfying certain axioms including the existence of left and right
invariant weights ϕ, ψ : C0(G)+ → [0,+∞] :

ϕ((ω ⊗ id)∆(f)) = ω(1)ϕ(f) and ψ((id⊗ ω)∆(f)) = ω(1)ψ(f),

for all ω ∈ C0(G)∗+ and f ∈ C0(G)+ such that ϕ(f) < ∞. When there is no risk of confusion,
we will denote ‖f‖22 = ϕ(f∗f) ∈ [0,+∞] the hilbertian norm associated with ϕ. Using a GNS
construction (H,Λϕ) for ϕ, one defines the fundamental multiplicative unitary V ∈ B(H ⊗ H),
denoted W in [KV00], by putting V ∗(Λϕ ⊗ Λϕ)(f ⊗ g) = (Λϕ ⊗ Λϕ)(∆(g)(f ⊗ 1)). Recall that G
is called unimodular, or of Kac type, if ϕ = ψ.

Now assume that G is discrete, meaning for instance that there exists a fixed vector ξ0 ∈ H such
that V (ξ0 ⊗ ζ) = ξ0 ⊗ ζ for all ζ ∈ H. In that case one can always identify C0(G) with its image
by the GNS representation on H, moreover it can be reconstructed from V as the norm closure of
(id⊗B(H)∗)(V ), and the coproduct is given by the formula ∆(f) = V ∗(1⊗ f)V .

From V one can also construct the dual algebra C∗red(G) as the norm closure of (B(H)∗⊗ id)(V ),
equipped with the coproduct ∆(x) = V (x⊗1)V ∗ (opposite to the dual coproduct of [KV00]). Since
(ωξ0 ⊗ id)(V ) = 1, this C∗-algebra is unital, and it is in fact a Woronowicz C∗-algebra [Wor98].
Moreover the restriction of ωξ0 is the Haar state h of C∗red(G). When there is no risk of confusion,
we will denote ‖x‖22 = ϕ(x∗x) the hilbertian norm associated with h. Using Λh : x 7→ xξ0 as a GNS
construction for h we have (Λh ⊗ Λh)(∆(x)(1⊗ y)) = ∆(x)V (ξ0 ⊗ yξ0) = V (xξ0 ⊗ yξ0), so that V
coincides with the multiplicative unitary associated to (C∗red(G),∆) as constructed in [BS93].

The von Neumann algebras associated to G are denoted L∞(G) = C0(G)′′ and M = L(G) =
C∗red(G)′′, they carry natural extensions of the respective coproducts and Haar weights.

Recall that a corepresentation X of V is a unitary X ∈ B(H ⊗ HX) such that V12X13X23 =
X23V12. There exists a so-called maximal C∗-algebra C∗(G) together with a corepresentation
V ∈M(C0(G)⊗C∗(G)) such that any corepresentation X corresponds to a unique ∗-representation
π : C∗(G)→ B(HX) via the formula X = (id⊗π)(V). We say that X, π are unitary representations
of G. When X = V , we obtain the regular representation π = λ : C∗(G) → C∗red(G). Moreover
C∗(G) admits a unique Woronowicz C∗-algebra structure given by (id ⊗∆)(V) = V12V13, and λ
is then the GNS representation associated with the Haar state h of C∗(G).

On the other hand, a unitary corepresentation of G, or representation of V , is a unitary Y ∈
M(K(HY )⊗C∗(G)) such that (id⊗∆)(Y ) = Y12Y13, corresponding to a ∗-representation of C0(G)
as above. We denote Corep(G) the category of finite dimensional unitary corepresentations of G,
and we choose a complete set IrrG of representatives of irreducible ones. In the discrete case, it
is known that any corepresentation decomposes in IrrG. We have in particular a ∗-isomorphism
C0(G) ' c0−

⊕
r∈IrrGB(Hr) such that V corresponds to

⊕
r∈IrrG r. We denote pr ∈ C0(G) the

minimal central projection corresponding to B(Hr), and Cc(G) ⊂ C0(G) the algebraic direct sum
of the blocks B(Hr). The ∗-algebra Cc(G), together with the restriction of ∆, is a multiplier Hopf

algebra in the sense of [VD94], and we denote its antipode by Ŝ.
On the other hand we denote C∗(G)r ⊂ C∗(G) the subspace of coefficients (ω ⊗ id)(r) of an

irreducible corepresentation r, and C[G] the algebraic direct sum of these subspaces. The coproduct
on C∗(G) restricts to an algebraic coproduct on C[G], which becomes then a plain Hopf ∗-algebra.
Recall also that λ restricts to an injective map on C[G], hence we shall sometimes consider C[G]
as a subspace of C∗red(G). We will denote by ε and S the co-unit and the antipode of C[G], and we
note that ε extends to C∗(G): it is indeed the ∗-homomorphism corresponding to X = idH ⊗ idC.

We denote (fz)z the Woronowicz characters of C∗(G), satisfying in particular h(xy) = h(y(f1 ∗
x ∗ f1)), where φ ∗ x = (id⊗ φ)∆(x) and x ∗ φ = (φ⊗ id)∆(x). We put as well Fv = (id⊗ f1)(v) ∈
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B(Hv) for any f.-d. unitary corepresentation v ∈ B(Hv) ⊗ C∗(G) and qdim v = TrFv. Denoting
vζ,ξ = (ωζ,ξ ⊗ id)(v), the Schur orthogonality relations [Wor87, (5.15)] read, for v, w irreducible:

h(v∗ζ,ξwζ′,ξ′) =
δv,w

qdim v
(ζ ′|F−1

v ζ)(ξ|ξ′).

Note that in Woronowicz’ notation we have vkl = vek,el if (ei)i is a fixed ONB of Hv. Similarly,
we have the formula ϕ(a) = qdim(v) Tr(Fva) for the left Haar weight ϕ and a ∈ B(Hr) ⊂ C0(G)
[PW90, (2.13)] — note that the coproduct on C0(G) constructed from V in [PW90] is opposite to
our, so that ϕ = hdR with their notation.

Finally we will use the following analogue of the Fourier transform:

F : Cc(G)→ C∗red(G), a 7→ (ϕ⊗ id)(V (a⊗ 1)).

On can show that it is isometric w.r.t. the scalar products (a|b) = ϕ(a∗b), (x|y) = h(x∗y) for a,
b ∈ Cc(G), x, y ∈ C∗red(G) — see also Section 3.1.

In this article we will be mainly concerned with orthogonal free quantum groups. For Q ∈
GLn(C) such that QQ̄ ∈ CIN , we denote Ao(Q) the universal unital C∗-algebra generated by n2

elements vij subject to the relations Qv̄Q−1 = v and v∗v = vv∗ = In ⊗ 1, where v = (vij)ij ∈
Mn(Ao(n)) and v̄ = (v∗ij)ij . Equipped with the coproduct ∆ given by ∆(vij) =

∑
vik ⊗ vkj , it is

a full Woronowicz C∗-algebra, and we denote G = FO(Q) the associated discrete quantum group,
such that C∗(FO(Q)) = Ao(Q). In the particular case Q = In we denote Ao(n) = Ao(In) and
FO(n) = FO(In).

It is known from [Ban96] that the irreducible corepresentations of FO(Q) can be indexed vk,
k ∈ N up to equivalence, in such a way that v0 = idC ⊗ 1, v1 = v, and the following fusion rules
hold

vk ⊗ vl ' v|k−l| ⊕ v|k−l|+2 ⊕ · · · ⊕ vk+l.

Moreover the contragredient of vk is equivalent to vk for all k. The classical dimensions dim vk

satisfy dim v0 = 1, dim v1 = n and ndim vk = dim vk−1 + dim vk+1. We denote ρ ≥ 1 the
greatest root of X2 − nX + 1, so that dim vk = [k + 1]ρ. Similarly we have qdim v0 = 1 and
qdim v1 qdim vk = qdim vk−1 + qdim vk+1. Moreover, if Q is normalized in such a way that QQ̄ =
±In, we have qdim v = Tr(Q∗Q). We denote q ∈ ]0, 1] the smallest root of X2− (qdim v)X + 1, so
that qdim vk = [k + 1]q.

3. The adjoint representation of FOn
The aim of this section is to prove that the non-trivial part ad◦ of the adjoint representation of

FOn factors through the regular representation. Equivalently, we will prove that all states of the
form ωξ ◦ ad◦, with ξ ∈ H, factor through C∗red(FOn). For this we will use the criterion given by
Lemma 3.5 below, which is analogous to Theorem 3.1 of [Haa79].

3.1. Weak containment in the regular representation. In this section we gather some useful
results which are well-known in the classical case. We say that an element f ∈ L∞(G) is a
(normalized) positive type function if there exists a state φ on C∗(G) such that f = (id ⊗ φ)(V).
The associated multiplier is Mφ = (id ⊗ φ)∆ : C[G] → C[G], it extends to a bounded map on
C∗red(G) characterized by the identity (id⊗M)(V ) = V (f ⊗ 1).

Lemma 3.1. Let φ be a unital linear form on C[G] and consider M = (id⊗ φ)∆ : C[G]→ C[G].
Then M extends to a completely positive map on C∗red(G) iff φ extends to a state of C∗(G).

Proof. By Fell’s absorption principle V12V13 = V23V12V∗23, ∆ extends to a ∗-homomorphism ∆′ :
C∗red(G) → C∗red(G) ⊗ C∗(G). Hence if φ extends to a state of C∗(G), M extends to a CP map
M = (id⊗φ)∆′ on C∗red(G). For the reverse implication, since C∗(G) is the enveloping C∗-algebra
of C[G], it suffices to prove that φ(xx∗) ≥ 0 for all x ∈ C[G]

We choose a corepresentation v ∈ B(Hv) ⊗ C∗red(G). Let L be a GNS space for B(Hv), with
respect to an arbitrary given state. For a ∈ B(Hv), resp. ω ∈ B(Hv)

∗, we denote â, ω̂ the
corresponding elements of L = B(C, L) resp. L∗ = B(L,C), and we identify B(Hv) with a
subspace of B(L) via left multiplication. Similarly we denote v̂ the element of B(C, L)⊗ C∗red(G)
corresponding to v. We have then v̂v̂∗ ∈ B(L) ⊗ C∗red(G) and (ω̂ ⊗ 1)v̂v̂∗(ω̂∗ ⊗ 1) = xx∗ if
x = (ω ⊗ id)(v).
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If M is CP, the following element of B(L)⊗ C∗red(G) is positive:

(id⊗M)(v̂v̂∗) = (id⊗ id⊗ φ)(id⊗∆)(v̂v̂∗)

= (id⊗ id⊗ φ)(v12v̂13v̂
∗
13v
∗
12) = v(X ⊗ 1)v∗,

where X = (id⊗ φ)(v̂v̂∗) ∈ B(L). We conclude that X is positive, hence φ(xx∗) = ω̂Xω̂∗ ≥ 0 for
any x ∈ C[G]. �

We will be particularly interested in the case when φ factors through C∗red(G), or equivalently,
when φ is a weak limit of states of the form

∑n
i=1 ωξi ◦λ with ξi ∈ H. In that case we say that f , φ

are weakly associated to λ, or weakly `2. We have the following classical Lemma [Fel63, Lemma 1]:

Lemma 3.2. Let π : C∗(G) → B(K) be a ∗-representation. Assume that there exists a subset
X ⊂ K such that Span π(C[G])X = K and ωξ ◦ π is weakly `2 for all ξ ∈ X. Then π factors
through C∗red(G).

Proof. As noted in the original paper of Fell, the proof for groups applies in fact to general C∗-
algebras, and in particular to discrete quantum groups. More precisely, take A = C∗(G), T = π
and S = {λ} in [Fel63, Rk 1]. �

On the other hand we say that φ ∈ C[G]∗ is an `2-form if it is continuous with respect to the
`2-norm on C[G], i.e. there exists K ∈ R such that |φ(x)|2 ≤ Kh(x∗x) for all x ∈ C[G]. In that
case we denote ‖φ‖2 the corresponding norm. Clearly, if φ is `2 then it is weakly `2.

Although we will not need this in the remainder of this article, the following lemma shows that
`2-forms can also be characterized in terms of the associated “functions” in C0(G) by mean of the
left Haar weight. Note that in the unimodular case we have simply ϕ(ff∗) = ϕ(f∗f) = ‖f‖22.

Lemma 3.3. Let φ ∈ C[G]∗ be a linear form and put f = (id ⊗ φ)(V ). Then φ is an `2-form iff
ϕ(ff∗) <∞.

Proof. We put p0 = (id ⊗ h)(V ) ∈ Cc(G), which is also the central support of ε̂, and we note the
following identity (see the Remark after the proof) in the multiplier Hopf algebra Cc(G) :

(1) ∀c ∈ Cc(G) (Ŝ ⊗ ϕ)(∆(p0)(1⊗ f)) = f.

From this we can deduce that the scalar product in H implements, via the Fourier transform,
the natural duality between Cc(G) and C[G] which is given, for x = (ω ⊗ id)(V ) ∈ C[G] and
f = (id ⊗ φ)(V ) ∈ Cc(G), by 〈f, x〉 = (ω ⊗ φ)(V ) = φ(x) = ω(f). Indeed we have, using the

identities (Ŝ ⊗ id)(V ) = V ∗ and V13V23 = (∆⊗ id)(V ):

(xξ0|F(f)ξ0) = h(x∗F(f)) = (ϕ⊗ h)((1⊗ x∗)V (f ⊗ 1))

= (ω̄Ŝ ⊗ ϕ⊗ h)(V13V23(1⊗ f ⊗ 1)) = (ω̄Ŝ ⊗ ϕ)(∆(p0)(1⊗ f)) = ω̄(f).

This yields, for x ∈ C[G] and φ such that f = (id ⊗ φ)(V ) ∈ Cc(G), the formula φ(x) =
ω(f) = (F(f∗)ξ0|xξ0), which holds in fact for any x ∈ C∗red(G) by continuity. We get in particular

‖φ‖2 = ‖F(f∗)‖2 = ‖f∗‖2 =
√
ϕ(ff∗).

Now for a general φ and r ∈ IrrG, denote φr the restriction of φ to C[G]r. We have ‖φ‖22 =∑
r∈IrrG ‖φr‖22, (id ⊗ φr)(V ) = prf and ϕ(ff∗) =

∑
r∈IrrG ϕ(ff∗pr), so that the identity ‖φ‖22 =

ϕ(ff∗) still holds in [0,+∞]. �

Remark 3.4. The identity (1) is equivalent to the fact that the Fourier transform F is isometric.
Indeed a simple computation yields

h(F(a)∗F(b)) = ϕ[a∗(Ŝ ⊗ ϕ)(∆(p0)(1⊗ b))].

Note that (1) can be easily proved by standard computations in Cc(G), and this is one convenient
way of establishing the fact that F is isometric.

Now we consider the case of the discrete quantum group FOn, whose irreducible corepre-
sentations vk ∈ B(Hk) ⊗ Ao(n) are labeled, up to equivalence, by integers k. Recall that we
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denote C[G]k = C∗red(G)k the corresponding coefficient subspaces, and (Uk)k the series of di-
lated Chebyshev polynomials of the second kind. In [Bra12], Brannan shows that the multiplier
Ts : C∗red(FOn)→ C∗red(FOn) associated with the functional

τs : C[FOn]→ C, x ∈ C[FOn]k 7→
Uk(s)

Uk(n)
ε(x)

is a completely positive as above, for every s ∈ ]2, n] — see also Section 4.1.
Besides it is known that FOn satisfies the Property of Rapid Decay. More precisely, for any

k ∈ N and any x ∈ C∗red(G)k we have ‖x‖ ≤ C(1 + k)‖x‖2, where C is constant depending only on
n [?]. On the other hand we denote by l : C[G]→ C the length form on FOn which coincides with
kε on C[G]k, and we recall that the convolution of two linear forms φ, ψ ∈ C[G]∗ is defined by
φ ∗ψ = (φ⊗ψ)∆. It is well-known that the convolution exponential eφ =

∑
φ∗n/n! is well-defined

on C[G], and in the case of l (or any other central form) we have simply e−λl(x) = e−λkε(x) if
x ∈ C[G]k.

Lemma 3.5. A state φ ∈ C∗(FOn)∗ factors through C∗red(FOn) iff e−λl ∗ φ is `2 for all λ > 0.

Proof. We denote by φk the restriction of φ to the f.-d. subspace of C[G]k. Since these subspaces
are pairwise orthogonal, we have ‖φ‖22 =

∑
‖φk‖2. Now for every s < n there is a λ > 0 such that

Uk(s)/Uk(n) ≤ e−λk for all k. We can then write

‖τs ∗ φ‖22 =
∑
‖(τs ∗ φ)k‖2 =

∑ Uk(s)2

Uk(n)2
‖φk‖2 ≤

∑
e−2λk‖φk‖2 = ‖e−λl ∗ φ‖22.

Now if e−λl ∗φ is `2 for all λ > 0, we conclude that this is also the case of τs ∗φ for all s ∈ ]2, n].
In particular τs ∗ φ is weakly `2 for all s. We have (τs ∗ φ)(x) → φ(x) as s → n for all x ∈ C[G],
and τs ∗ φ is a state for all s, hence τs ∗ φ→ φ weakly and it follows that φ is weakly `2.

Conversely, if φ factors through C∗red(G), using Property RD we can write for any x ∈ C∗red(G)k:

|φ(x)| ≤ ‖x‖ ≤ C(1 + k)‖x‖2,

hence ‖φk‖2 ≤ C(1 + k). This clearly implies that ‖e−λl ∗ φ‖2 is finite for every λ > 0. �

3.2. The adjoint representation. Recall that we denote by λ : C∗(G) → B(H) the GNS
representation of the Haar state h, and consider the corresponding right regular representation
ρ : C∗(G)→ B(H), x 7→ Uλ(x)U given by the unitary U(Λh(x)) = Λh(f1∗S(x)) = Λh(S(x∗f−1)).
We have in particular ρ(vij)Λh(x) = Λh(x(f1 ∗ v∗ji)), if vij = vei,ej are the coefficients of a unitary
corepresentation in an ONB. Recall that [UC∗red(G)U,C∗red(G)] = 0.

The adjoint representation of G is ad : C∗(G) → B(H), x 7→
∑
λ(x(1))ρ(x(2)). Here ∆ :

x 7→
∑
x(1) ⊗ x(2) is the coproduct from C∗(G) to C∗red(G) ⊗max C

∗
red(G), which is well-defined

because a product of two commuting corepresentations of V is again a corepresentation. We have
(id⊗ ad)(v) = (id⊗λ)(v)(id⊗ ρ)(v) if v is a corepresentation of G. Here are two explicit formulae,
for x ∈ C[G] and vij coefficient of a unitary corepresentation in an ONB:

ad(x)Λh(y) =
∑

Λh(x(1)y(f1 ∗ S(x(2)))),

ad(vij)Λh(y) =
∑

Λh(viky(f1 ∗ v∗jk)).

The corepresentation of V associated to ρ is W = (1⊗ U)V (1⊗ U), and the one associated to

ad is A = VW . Note that we have, in the notation of [BS93], W = ΣṼ Σ. In particular [BS93,
Prop. 6.8] shows that W (1 ⊗ f)W ∗ = σ∆(f) for f ∈ C0(G). This means that the multiplicative
unitary W ∗ is associated to the discrete quantum group Gco-op.

Lemma 3.6. The canonical line Cξ0 ⊂ H is invariant for the adjoint representation ad : C∗(G)→
B(H) iff G is unimodular. In that case, ξ0 is a fixed vector for ad.

Proof. For x ∈ C[G] one can compute ad(x)ξ0 =
∑
x(1)(f1 ∗ S(x(2)))ξ0, which equals in the

unimodular case
∑
x(1)S(x(2))ξ0 = ε(x)ξ0. So in that case ξ0 is fixed.
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Furthermore, for v ∈ IrrG the previous computation together with Woronowicz’ orthogonality
relations lead to

(ξ0| ad(vij)ξ0) =
∑
k

h(vik(f1 ∗ v∗jk)) =
∑
k

h((v∗jk ∗ f−1)vik)

=
∑
k

δjiδkk
qdim v

=
dim v

qdim v
ε(vij).

In particular, denoting φ : x 7→ (ξ0| ad(x)ξ0), we see that (id ⊗ φ)(v) = (dim v/ qdim v)id. Now if
the line Cξ0 is invariant, φ is a character and since v is unitary we must have dim v = qdim v for
all v ∈ IrrG. This happens exactly when G is unimodular. �

Definition 3.7. If G is a unimodular discrete quantum group, we denote ad◦ the restriction of
the adjoint representation of C∗(G) to the subspace H◦ = ξ⊥0 ⊂ H.

Our aim in the remainder of the section is to show that ad◦ factors through λ in the case of
G = FOn, n ≥ 3 — or more generally for unimodular orthogonal free quantum groups. We will
need some estimates involving coefficients of irreducible corepresentations of G.

In order to carry on the computations, we will need to be more precise about the irreducible
corepresentations of FO(Q). We denote by v = v1 ∈ B(Cn) ⊗ Ao(Q) the fundamental corepre-
sentation. Then we introduce recursively the irreducible corepresentation vk ∈ B(Hk) ⊗ Ao(Q)
as the unique subcorepresentation of v⊗k not equivalent to any vl, l < k. In this way we have
Hk ⊂ H⊗k1 , with H0 = C and H1 = Cn. We denote by Pk ∈ B(H⊗k1 ) the orthogonal projection
onto Hk. Recall that each irreducible corepresentation of Ao(Q) is equivalent to exactly one vk,
and that we have the equivalence of corepresentations

Hk ⊗Hl ' H|k−l| ⊕H|k−l|+2 ⊕ · · · ⊕Hk+l−2 ⊕Hk+l.

It is known that dimHk = [k + 1]ρ = (ρk+1 − ρ−k−1)/(ρ− ρ−1). Note in particular that we have
D1ρ

k ≤ dimHk ≤ D2ρ
k with constants 0 < D1 < D2 depending only on n.

Let us also denote by Qkr ∈ L(H⊗k1 ) the orthogonal projection onto the sum of all subspaces
equivalent to Hr, so that Pk = Qkk. If pr is the minimal central projection of C0(FOn) associated
with vr, then Qkr also corresponds to ∆k−1(pr) via the natural action of C0(FOn) on H1.

Note that the subspace ImQa+b+c
r (Pa+b⊗Pc) (resp. ImQa+b+c

r (Pa⊗Pb+c)) corresponds to the
unique subcorepresentation of va+b ⊗ vc (resp. va ⊗ vb+c) equivalent to vr, when it is non-zero.
When r = a+ b+ c both spaces coincide with Ha+b+c. On the other hand one can show that these
subspaces of H⊗a+b+c

1 are pairwise “far from each other” when r < a + b + c and b is big. More
precisely, Lemma A.4 of [VV07] shows that

‖(Pa+b ⊗ Pc)Qa+b+c
r (Pa ⊗ Pb+c)‖ ≤ C1q

b

for some constant C1 > 0 depending only on q. Indeed when r varies up to a + b + c − 2 the
maps on the left-hand side live in pairwise orthogonal subspaces of H⊗a+b+c

1 and sum up to
(Pa+b ⊗ Pc)(Pa ⊗ Pb+c)− Pa+b+c.

Since we are interested in ad◦, we assume in the remainder of this section that FO(Q) is uni-
modular : equivalently, Q is a scalar multiple of a unitary matrix, or qρ = 1.

In the following lemma we give an upper estimate for |(ωζ ⊗ Trk)((Pl ⊗ Pk)Qk+l
r Σlk)|, where

ζ is any vector in Hl, Trk is the trace on B(Hk), and Σlk : Hl ⊗Hk → Hk ⊗Hl is the flip map.
Note that ‖(Pl ⊗ Pk)Qk+l

r Σlk‖ ≤ 1 so that (dimHk)‖ζ‖2 is a trivial upper bound, which grows
exponentially with k. In the lemma we derive an upper bound which is linear in k (and even
constant for r < k + l).

Note that it is quite natural to consider maps like (Pl ⊗ Pk)Qk+l
r Σlk when studying the adjoint

representation of Ao(n). A non-trivial upper bound for the norm ‖(P1 ⊗ Pk)Qk+1
k−1Σ1k‖ was given

in [VV07, Lemma 7.11], but it does not imply our tracial estimate below.
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Lemma 3.8. Let (ekp)p be an ONB of Hk. There exists a constant C ≥ 1, depending only on n,
such that we have, for any 0 < l ≤ k, ζ ∈ Hl and r = k − l, k − l + 2, . . . , k + l − 2:∣∣∣∑

p

(ζ ⊗ ekp|Qk+l
r (ekp ⊗ ζ))

∣∣∣ ≤ Cq−l‖ζ‖2 and
∣∣∣∑
p

(ζ ⊗ ekp|Pk+l(e
k
p ⊗ ζ))

∣∣∣ ≤ Ckq−l‖ζ‖2.
Proof. In this proof C denotes a generic constant depending only on n. Let us denote by Sk,lr , Sk,l+

the sums in the statement as well as Sk,l = Sk,l+ +
∑
r S

k,l
r . We first prove the estimate for Sk,lr :

using the Lemma A.4 from [VV07] recalled above, with a = c = l and b = k − l, we can write

|Sk,lr | =
∣∣∣∑
p

(ζ ⊗ ekp|Qk+l
r (ekp ⊗ ζ))

∣∣∣ ≤∑
p

|(ζ ⊗ ekp|(Pl ⊗ Pk)Qk+l
r (Pk ⊗ Pl)(ekp ⊗ ζ))|

≤ ‖(Pl ⊗ Pk)Qk+l
r (Pk ⊗ Pl)‖

∑
p

‖ζ‖2‖ekp‖2 ≤ C1q
k−l(dimHk)‖ζ‖2 ≤ C1D2q

−l‖ζ‖2.

On the other hand, we can compute Sk,l using scalar products in Hl ⊗ Hk−l ⊗ Hl to obtain the
following induction relation:

Sk,l =
∑
p,q,i,j

(ζ ⊗ ekp|eli ⊗ ek−lq ⊗ elj)× (eli ⊗ ek−lq ⊗ elj |ekp ⊗ ζ)

=
∑
p,q

(ekp|ek−lq ⊗ ζ)× (ζ ⊗ ek−lq |ekp) =
∑
p,q

(ζ ⊗ ek−lq |ekp)× (ekp|ek−lq ⊗ ζ)

=
∑
q

(ζ ⊗ ek−lq |Pk(ek−lq ⊗ ζ)) = Sk−l,l+ .

As a result we have |Sk,l+ | = |Sk,l−
∑
r S

k,l
r | ≤ |S

k−l,l
+ |+Clq−l‖ζ‖2. For k = 0 we have Sk,l+ = ‖ζ‖2.

For k = 1, . . . , l − 1 we use the trivial estimate |Sk,l+ | ≤ (dimHk)‖ζ‖2 ≤ Cq−l‖ζ‖2, and an easy
induction on k for fixed l finally yields the result. �

From Lemma 3.8 one can deduce a similar estimate concerning coefficients of corepresentations.
Given ONB’s (eki )i, (ela)a of Hk, Hl, we denote by vkij , v

l
ab the associated coefficients of vk, vl.

Lemma 3.9. There exists numbers Cl, depending only on n and l, such that for all k ≥ l > 0 we
have ∑

ij

∣∣∣∑
p

(Λh(vkjpv
l
ab)|Λh(vlabv

k
ip))
∣∣∣2 ≤ Clk2qk.

Proof. Let us recall some facts from the Woronowicz-Peter-Weyl theory in the Kac case. Since
vk ⊗ vl ' v|k−l|⊕ · · · ⊕ vk+l−2 ⊕ vk+l, the product of coefficients vkjpv

l
ab decomposes as a sum of

coefficients of vr, r = |k − l|, . . ., k+ l− 2, k+ l. More precisely the decomposition corresponds to
projecting ekj ⊗ ela and ekp ⊗ elb onto the subspace equivalent to Hr. Besides, the scalar product of
two coefficients (ωx,y ⊗ id)(w), (ωx′,y′ ⊗ id)(w) of an irreducible corepresentation w corresponds to
the scalar product (x′ ⊗ y|x⊗ y′) up to a factor (qdimw)−1.

Denote by Cij the sums over p on the left-hand side of the statement. We compute now, using
Lemma 3.8:

|Cij | =
∣∣∣∑
r

1

qdim vr

∑
p

(ela ⊗ eki |Qk+l
r (ekj ⊗ ela))(ekp ⊗ elb|Qk+l

r (elb ⊗ ekp))
∣∣∣

≤
∑
r

1

qdim vr
|(ela ⊗ eki |Qk+l

r (ekj ⊗ ela))| ×
∣∣∣∑p(e

l
b ⊗ ekp|Qk+l

r (ekp ⊗ elb))
∣∣∣

≤
∑
r

Ckq−l

qdim vr
|(ela ⊗ eki |Qk+l

r Σlk(ela ⊗ ekj ))|,

where Σlk : Hl⊗Hk → Hk ⊗Hl is the flip map. Note that the sum over r contains at most (l+ 1)
terms. Using Cauchy-Schwarz’ inequality and summing |Cij |2 over i, j we recognize the squares of
the Hilbert-Schmidt norms of Ar = (ωela ⊗ id)(Qk+l

r Σlk), which are dominated by dimHk because
the operator norm of Ar is less than 1:∑

ij

|Cij |2 ≤ (l + 1)
∑
r

(Ckq−l)2

(qdim vr)2

∑
ij

|(eki |Ar(ekj ))|2 ≤ (l + 1)
∑
r

(Ckq−l)2

(qdim vr)2
dimHk.
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In our case dim = qdim and ρ = q−1. Since r ≥ k − l, we obtain∑
ij

|Ckij |2 ≤ (l + 1)2 (Ckq−l)2

(dimHk−l)2
dim(Hk) ≤ C2D2

1D2(l + 1)2k2q−2lqk−2l,

where C, D1, D2 are constants depending only on n. �

Theorem 3.10. Consider an orthogonal free quantum group FO(Q) which is unimodular. Then
the representation ad◦ of C∗(FO(Q)) factors through λ.

Proof. By Lemma 3.2 it suffices to prove that the states φ = ωξ ◦ad : x 7→ (ξ| ad(x)ξ) on Ao(n) are
weakly associated to the regular representation, for a set of vectors ξ spanning a dense subspace of
H◦. In particular, we can assume that ξ is a coefficient of some irreducible corepresentation, and
we will take in fact ξ = Λh(vl∗ab).

We already saw that ‖φ‖22 =
∑
‖φk‖22, where φk is the restriction of φ to the subspace C[G]k =

Span{vkij}. Moreover in the unimodular case (
√

dimHkv
k
ij)ij is an ONB of C[G]k with respect to

the `2 norm, and hence ‖φk‖22 = dimHk

∑
|φ(vkij)|2. Using the fact that h is a trace, we have

φ(vkij) =
∑
p

(Λh(vl∗ab)|Λh(vkipv
l∗
abv

k∗
jp )) =

∑
p

(Λh(vk∗ip v
l∗
ab)|Λh(vl∗abv

k∗
jp ))

=
∑
p

(Λh(vkjpv
l
ab)|Λh(vlabv

k
ip)).

Now we can use Lemma 3.9 and we obtain ‖φk‖22 ≤ dim(Hk)Clk
2qk ≤ D2Clk

2. In particular it is
clear now that ‖e−λl ∗ φ‖22 ≤ D2Cl

∑
e−2λkk2 <∞ for all λ > 0, and so φ is weakly associated to

λ by Lemma 3.5. �

3.3. Inner amenability. The notion of inner amenability for locally compact quantum groups
has been defined in [GNI13]. We will only consider this notion for discrete quantum groups. Recall
that, when G is a discrete quantum group, we denote by p0 ∈ L∞(G) the minimal central projection
corresponding to the trivial corepresentation. Following Effros [Eff75] we define inner amenability
as follows.

Definition 3.11. A discrete quantum group G is called inner amenable if there exists a state
m ∈ L∞(G)∗ such that m(p0) = 0 and,

m((id⊗ ω)∆(f)) = m((ω ⊗ id)∆(f)) for all ω ∈ L∞(G)∗, f ∈ L∞(G).

Remark 3.12. Our terminology is different from [GNI13] where they call strictly inner amenable
a discrete quantum group satisfying Definition 3.11. Note however that, according to [GNI13,
Remark 3.1(c)], all discrete quantum groups are inner amenable in the sense of [GNI13, Def. 3.1].

Theorem 3.13. Let G be a unimodular discrete quantum group. The following are equivalent.

(1) G is inner amenable.
(2) The trivial representation ε : C∗(G)→ C is weakly contained in ad◦.

Moreover, if G is countable and L(G) has property Gamma then G is inner amenable.

Proof. 1 ⇒ 2. The proof of this implication is similar to the one of the implication 1 ⇒ 2 in
[Tom16, Theorem 3.8], and moreover we are in the unimodular case. Let us give a sketch of the
proof. Denoting A = (id ⊗ ad)(V) = VW , it is known that ε is weakly contained in ad◦ iff there
exists a net of unit vectors ξn ∈ H◦ = ξ⊥0 such that ||A(η ⊗ ξn)− η ⊗ ξn|| → 0 for all η ∈ H.

Let Jϕ and Jh be the modular conjugations of ϕ and h respectively, with respect to the GNS
constructions as in Section 2. It is known that (Jh ⊗ Jϕ)V (Jh ⊗ Jϕ) = V ∗, and since U =
JϕJh = JhJϕ in the discrete case we also have (Jh ⊗ Jϕ)W (Jh ⊗ Jϕ) = W ∗. Moreover W =
(1⊗ U)V (1⊗ U) = (Jh ⊗ Jh)V ∗(Jh ⊗ Jh), and [?, Prop. 2.15] yields the second formula below:

(2)
V ∗(Λϕ(g)⊗ Λϕ(f)) = (Λϕ ⊗ Λϕ)(∆(f)(g ⊗ 1)) and

W (Λϕ(g)⊗ Λϕ(f)) = (Λϕ ⊗ Λϕ)(σ∆(f)(g ⊗ 1)),

for all f, g ∈ Nϕ, and σ the flip map on L∞(G) ⊗ L∞(G). Note that for the second formula to
hold in the non-unimodular case one has to replace Λϕ by a GNS construction for the right Haar
weight ψ.
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We use also the identification C0(G) =
⊕

αB(Hα), where α runs over IrrG, and we recall that
ϕ =

∑
α dim(Hα) Trα in this identification. We denote (eαij)ij the matrix units of B(Hα) associated

to a chosen orthonormal basis (eαi )i of Hα. Recall finally the notation ωζ,ξ ∈ B(H)∗ for ζ, ξ ∈ H.
In what follows we restrict these linear forms to L∞(G) and we convolve them according to ∆.
Now we have:

Claim 1. Let f = f∗ ∈ Nϕ ⊂ L∞(G) and put X = σ∆(f2) −∆(f2) =
∑
α,i,j e

α
ij ⊗X(α)ij. For

all α ∈ Irr(G) we have:

||ωΛϕ(f) ∗ ωJhΛϕ(eαi1),JhΛϕ(eαj1) − ωJhΛϕ(eαi1),JhΛϕ(eαj1) ∗ ωΛϕ(f)|| ≥ ϕ(eα11)ϕ(|X(α)ij |).

Proof of Claim 1. Let z be the adjoint of the phase of X(α)ij and write

ωΛϕ(f) ∗ ωJhΛϕ(eαi1),JhΛϕ(eαj1)(z)− ωJhΛϕ(eαi1),JhΛϕ(eαj1) ∗ ωΛϕ(f)(z) =

=
(
ωJhΛϕ(eαi1),JhΛϕ(eαj1) ⊗ ωΛϕ(f)

)
(σ∆(z)−∆(z)).

Using the formulas σ∆(z) = W (1 ⊗ z)W ∗, ∆(z) = V ∗(1 ⊗ z)V , (Jh ⊗ Jϕ)V (Jh ⊗ Jϕ) = V ∗,
(Jh ⊗ Jϕ)W (Jh ⊗ Jϕ) = W ∗ and Equations (2), one obtains, as in the proof of [Tom16, Lemma
3.14], the formula:

ωΛϕ(f) ∗ ωJhΛϕ(eαi1),JhΛϕ(eαj1)(z)− ωJhΛϕ(eαi1),JhΛϕ(eαj1) ∗ ωΛϕ(f)(z) = ϕ(eα11)ϕ(|X(α)ij |).

�

Claim 2. Let f ∈ Nϕ ∩ L∞(G)+. Then, for all α ∈ Irr(G), one has:

||A(Λϕ(eαij)⊗ Λϕ(f))− Λϕ(eαij)⊗ Λϕ(f)||2 ≤ 2ϕ(f2)
1
2 (ϕ⊗ ϕ)(|X(α)|) 1

2 .

Proof of Claim 2. The proof is the same as the proof of [Tom16, Lemma 3.16] without modular
factors, by using Equation (2), the Cauchy-Schwarz inequality and the Powers-Størmer inequality.

�

We can now finish the proof of 1 ⇒ 2. Let m ∈ L∞(G)∗ be a state such that m(p0) = 0 and
m((id⊗ω)∆(f)) = m((ω⊗ id)∆(f)) for all ω ∈ L∞(G)∗, f ∈ L∞(G). By the weak* density of the
normal states ω ∈ L∞(G)∗ such that ω(p0) = 0 in the set of states µ ∈ L∞(G)∗ such that µ(p0) = 0,
there exists a net of normal states (ωn)n such that ωn(p0) = 0 for all n and ωn ∗ ω − ω ∗ ωn → 0
weak* for all ω ∈ L∞(G)∗.

By the standard convexity argument, we may and will assume that ||ωn ∗ ω − ω ∗ ωn|| → 0.
Now, since L∞(G) is standardly represented on H, and by a straightforward cut-off argument, we
can assume that ωn = ωΛϕ(fn) with fn ∈ L∞(G)+ ∩ Cc(G), p0fn = 0 and ‖fn‖2 = 1. Applying
Claim 1 (instead of [Tom16, Lemma 3.14]), [Tom16, Lemma 3.15] and Claim 2 (instead of [Tom16,
Lemma 3.16]), we obtain

||A(Λϕ(eαij)⊗ Λϕ(fn))− Λϕ(eαij)⊗ Λϕ(fn)|| → 0

for all α, i, j. Putting ξn = Λϕ(fn) ∈ H◦, this easily implies that ||A(η⊗ ξn)− η⊗ ξn|| → 0 for all
η ∈ H, hence ε factors through ad◦.

2⇒ 1. Take a net of unit vectors ξn ∈ H◦ = ξ⊥0 such that ||A(η⊗ ξn)− η⊗ ξn|| → 0 for all η ∈ H,

and put ξ̃n = Jϕξn. Then ξ̃n has norm one, it is orthogonal to ξ0 for all n and we have for all
η ∈ H:

||W ∗(η ⊗ ξ̃n)− V (η ⊗ ξ̃n)|| = ||W (Jhη ⊗ ξn)− V ∗(Jhη ⊗ ξn)||
= ||A(Jhη ⊗ ξn)− Jhη ⊗ ξn|| → 0.

Let m ∈ L∞(G)∗ be a weak* accumulation point of the net of states (ωξ̃n)n. One has:

m((ωη ⊗ id)∆(f)) = lim〈(1⊗ f)V (η ⊗ ξ̃n), V (η ⊗ ξ̃n)〉 = lim〈(1⊗ f)W ∗(η ⊗ ξ̃n),W ∗(η ⊗ ξ̃n)〉
= m((ωη ⊗ id)σ∆(f)) = m((id⊗ ωη)∆(f)) for all η ∈ H, f ∈ L∞(G).

Moreover, m(p0) = lim〈p0ξ̃n, ξ̃n〉 = 0.

Finally, suppose that G is a countable unimodular discrete quantum group such that L(G) has
property Gamma. To show that the co-unit is weakly contained in ad◦ we follow the proof of Effros
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[Eff75]. Write Irr(G) = {uk | k ∈ N} where uk ∈ B(Hk)⊗ C∗(G). Given n ∈ N, choose a unitary
un ∈ L(G) such that h(un) = 0 and

||unλ(ukij)− λ(ukij)un||2 <
1

nmax{dim(uk) | k ≤ n}
for all k = 1, . . . , n and 1 ≤ i, j ≤ dimuk. From this inequality, it is easy to check that, for all
k ≤ n and all η ∈ Hk, one has

||(id⊗ λ)(uk)(1⊗ un)(η ⊗ ξ0)− (1⊗ un)(id⊗ λ)(uk)(η ⊗ ξ0)|| < 1

n
||η||.

Recall that ξ0 is a fixed vector for ad. Hence, for all η ∈ Hk, one has (id⊗ad)(uk)(η⊗ ξ0) = η⊗ ξ0.
Moreover, since the representations λ and ρ commute we find, with ξn = unξ0, k ≤ n and η ∈ Hk,

||(id⊗ ad)(uk)(η ⊗ ξn)− (η ⊗ ξn)|| =

= ||(id⊗ ad)(uk)(1⊗ un)(id⊗ ad)(uk)∗(η ⊗ ξ0)− (η ⊗ ξn)||

= ||(id⊗ λ)(uk)(1⊗ un)(id⊗ λ)(uk)∗(η ⊗ ξ0)− (1⊗ un)(η ⊗ ξ0)||

<
1

n
||η||.

Since ξn ∈ H◦ = ξ⊥0 , it follows that the co-unit is weakly contained in ad◦. �

Corollary 3.14 (cf [VV07]). For n ≥ 3 the discrete quantum group FOn is not inner amenable,
and in particular the von Neumann algebra L(FOn) is a full factor.

Proof. For n ≥ 3 it is known that FOn is not amenable, hence λ does not weakly contain ε. On the
other hand by Theorem 3.10 the representation ad◦ is weakly contained in λ. Consequently ε is not
weakly contained in ad◦, hence FOn is not inner amenable and L(FOn) is full by Theorem 3.13. �

4. Property (HH) for L(FOn)

4.1. A Deformation. Recall that ∆ : Ao(n) → Ao(n) ⊗ Ao(n) factors to ∆′ : C∗red(FOn) →
C∗red(FOn)⊗ Ao(n) by Fell’s absorption principle. On the other hand, for any element g ∈ On we
have a character ωg : Ao(n)→ C defined by putting ωg(vij) = gij and using the universal property
of Ao(n). It is easy to check that (ωg ⊗ ωh)∆ = ωgh and that ωe = ε, where e is the unit of On
and ε is the co-unit of Ao(n).

Combining these objects we get ∗-homomorphisms αg = (id⊗ωg)◦∆′ : C∗red(FOn)→ C∗red(FOn)
such that αg ◦ αh = αgh, αe = id and h ◦ αg = h. In particular each αg is an automorphism of
C∗red(FOn) and we have got an action of On on C∗red(FOn) by trace preserving automorphisms.
Note that there is also an action α′ of Oop

n on C∗red(FOn) given by α′g = (ωg ⊗ id) ◦ ∆′′, where
∆′′ : C∗red(FOn)→ Ao(n)⊗ C∗red(FOn) is the homomorphism analogous to ∆′.

Let n ≥ 2. Denote M = L(FOn) the von Neumann algebra of FOn and M̃ = M ⊗M . We

identify M inside M̃ via the unital normal faithful trace preserving ∗-homomorphism ι := ∆.
Denote by E the canonical conditional expectation from M̃ to ι(M). We let On act on M̃ by

putting Ag = (αg ⊗ id) : M̃ → M̃ .

Proposition 4.1 (cf [Bra12]). Denote (Uk)k the dilated Chebyshev polynomials of the second kind
and consider, for each s ∈ R, the densely defined map Ts : C∗red(FOn) → C∗red(FOn) with domain

C[FOn] such that Ts = Uk(s)
Uk(n) id on C[FOn]k for all k ∈ N.

Then for each g ∈ On we have E ◦ Ag ◦ ι = Ts where s = Tr(g). In particular, for such s the
map Ts extends to a trace preserving completely positive map on C∗red(FOn).

Proof. For r ∈ N, denote vrij the coefficients of the rth irreducible corepresentation vr of FOn,
with respect to a given ONB of the corresponding space. It is easy to check that E(vrij ⊗ vskl) =
δrsδjkv

r
il/Ur(n), where Ur(n) = dim vr.

On the other hand, denoting ur the image of vr as a representation of On, we have by definition
ωg(v

r
ij) = urij(g). The character χr = Tr ◦ur of ur is given by χr(g) = Ur(Tr g), since u0 = 1,

u1 = id and u1 ⊗ ur ' ur−1 ⊕ ur+1. Now it suffices to compute as follows:

E ◦Ag ◦∆(vrij) =
∑
k,l

E(vriku
r
kl(g)⊗ vrlj) =

∑
k

vrij
urkk(g)

Ur(n)
= vrij

Ur(Tr g)

Ur(n)
.
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�

Example 4.2. Define gt = idn−2 ⊕Rt ∈ On where

Rt =

(
cos(t) − sin(t)
sin(t) cos(t)

)
.

Denoting At = Agt , we get in this way a 1-parameter group of automorphisms of M̃ such that
E ◦At ◦ ι = Ts with s = n− 2 + 2 cos t ∈ [n− 4, n].

Fix 0 < t0 < π
3 . For all 0 < t < t0 one has 2 < 1 + 2 cos(t0) < Tr(gt) < n. By [Bra12,

Proposition 4.4.1], there exists a constant C > 0 such that

Uk(Tr(gt))

Uk(n)
≤ C

(
Tr(gt)

n

)k
for all 0 < t < t0 and all k ∈ N. Hence, for 0 < t < t0, the map Ts = E ◦At ◦ ι is L2-compact.

Finally, consider S =
(

0 1
1 0

)
, h = idn−2 ⊕ S ∈ On and B = αh ⊗ α′h ∈ Aut(M̃). We clearly have

B2 = id, BAt = A−tB, and one can check on the generators vij that B ◦∆ = ∆ so that B restricts
to the identity on ι(M).

Remark 4.3. The constructions and results of this Section 4 remain valid for the other unimodular
orthogonal free quantum groups FO(Q). Up to isomorphism, the only missing cases are FO(Q2n)
with Q2n = diag(Q2, . . . , Q2) and Q2 =

(
0 1
−1 0

)
. But these discrete quantum groups all admit the

dual of SU(2) as a commutative quotient, and one can build a deformation using the same matrices
Rt as in Example 4.2.

On the other hand, in the non unimodular case there is no trace preserving conditional expecta-
tion E : M ⊗M → ∆(M), so that the arguments of Proposition 4.1 do not apply anymore. Recall
however that Haagerup’s Property still holds in that case, as shown in [?].

Let us give some applications of the preceding construction. It is known that Haagerup’s
property is equivalent to the existence of a “proper conditionally negative type function” and/or
of a proper cocycle in some representation. Denoting τs the linear form on C[FOn] given by

τs(v
r
ij) = δij

Ur(s)
Ur(n) , it follows from the proposition above and Lemma 3.1 that τs extends to a state

of C∗(FOn). Differentiating at s = n we obtain a conditionally negative form ψ : C[FOn] → C
given by ψ(vrij) = δij

U ′
r(n)

Ur(n) — this was also observed in [CFK12, Crl. 10.3], where all ad-invariant

conditionally negative forms on C[FOn] are classified. It is clear that ψ(x∗x) ≤ 0 for all x ∈ Ker ε.
Moreover the following lemma shows that ψ is indeed proper, and more precisely that the

associated function Ψ = (id ⊗ ψ)(V ) behaves like the “naive” length function L =
∑
rpr at

infinity:

Lemma 4.4. We have
U ′
r(n)

Ur(n) = r√
n2−4

+O(1) as r →∞.

Proof. We have the well-known formula Ur(n) = (qr+1 − q−r−1)/(q − q−1), where q = 1
2 (n −√

n2 − 4). Differentiating first with respect to q, we get

U ′r(n)

Ur(n)
=
r(1− q−2)− 2q−2 + (r + 2)q−2r−2 − rq−2r−4

(q − q−1)(1− q−2r−2)
× dq

dn
.

Noticing that dq/dn = q/
√
n2 − 4, we obtain finally

U ′r(n)

Ur(n)
=

1√
n2 − 4

(
r − 2

q2 − 1
+ o(1)

)
.

�

4.2. Property (HH). It is then natural to ask also for the explicit construction of a proper
cocycle establishing Haagerup’s property. Notice that by [Ver12] such a cocycle cannot live in the
regular representation or a finite multiple of it. Now an explicit cocycle can easily be obtained
by differentiating the 1-parameter group above. More precisely, for any X ∈ on we define δX =
dXAg ◦ ι : C[FOn]→ M̃ . Denoting ur ∈ B(Hr)⊗ C(On) the image of vr, we have explicitly

δX(vrij) =
∑
k,l

vrikdXu
r
kl(g)⊗ vrlj .
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Here dXu
r
kl is the differential of urkl : On → C, evaluated on the tangent vector X at e. Since Ag ◦ ι

is a ∗-homomorphism, we get indeed derivations with respect to the C[FOn]-bimodule structure
coming from the embedding ι = ∆, and in fact we get a Lie algebra map (X 7→ δX) from on to

the space of derivations Der(C[FOn], M̃).
We moreover denote fX = (id ⊗ δX)(V ), which is an unbounded multiplier of the Hilbert

C0(FOn)-module C0(FOn) ⊗ M̃ . Then f∗XfX is an unbounded multiplier of C0(FOn), the “con-
ditionally negative” type function associated to δX . The following Lemma shows in particular
that f∗XfX corresponds to the cond. negative form ψ obtained by differentiating the deformation
Ts = (id⊗ τs)∆.

Lemma 4.5. The derivation δX takes its values in the orthogonal complement M̃◦ of ι(M) with
respect to h⊗ h. Moreover we have

f∗XfX = 2 Tr(X∗X)× (id⊗ ψ)(V ).

In particular for any X ∈ on, X 6= 0, the derivation δX is proper in the sense that prf
∗
XfX ≥ crpr

for any r, with cr →∞.

Proof. The beginning of the proof is quite general and probably well-known to experts.
We choose a 1-parameter subgroup (gt)t of On such that g′0 = X, we put At = Agt , s(t) =

Tr(gt) and we differentiate the identity E ◦ At ◦ ι = Ts(t) between linear maps on C[FOn] from
Proposition 4.1. We obtain Tr(g′t)×T ′s(t) = E ◦A′t ◦ ι, where T ′s is the derivative with respect to s,

and the other derivatives are relative to t. In particular for t = 0 this yields E◦δX = E◦dXAg ◦ι =

Tr(X)× T ′n. Since TrX = 0 for X ∈ on we obtain E ◦ δX = 0, hence δX(C[FOn]) ⊂ M̃◦.
Now we differentiate once more at t = 0, obtaining Tr(g′′0 ) × T ′n = E ◦ A′′0 ◦ ι as linear maps

on C[FOn]. Since (gt)t is a 1-parameter group and X∗ + X = 0, we have g′′0 = g′20 = −X∗X in
Mn(R). Similarly, since (At)t is a 1-parameter group of trace-preserving automorphisms we have
A′′0 = A′20 = −A′∗0 A′0, where A′∗0 denotes the adjoint of A′0 with respect to the hilbertian structure

of M̃ . Moreover we have E = ι∗ at the hilbertian level, so that δ∗XδX = (A′0ι)
∗(A′0ι) = −E◦A′′0 ◦ι =

Tr(X∗X)× T ′n.
The last identity can also be written (δX(a)|δX(b)) = Tr(X∗X)h(a∗T ′n(b)) for all a, b ∈ C[FOn].

As a result we obtain

f∗XfX = (id⊗ δX)(V )∗(id⊗ δX)(V ) = Tr(X∗X)× (id⊗ h)(V ∗(id⊗ T ′n)(V ))

as unbounded multipliers — in other words, the identity above makes sense in the f.-d. algebra
prC0(FOn) ' B(Hr) for any r. But by definition of ψ we have T ′n = (id ⊗ ψ) ◦∆, and using the
identity (id⊗∆)(V ) = V12V13 we can write

f∗XfX = Tr(X∗X)× (id⊗ h⊗ ψ)(V ∗12V12V13) = Tr(X∗X)× (id⊗ ψ)(V ).

Finally we have (pr ⊗ ψ)(V ) = crpr with cr = U ′r(n)/Ur(n) by the computation of ψ before
Lemma 4.4, and the properness results from that lemma. �

Recall the construction of the bimoduleKπ associated to a ∗-representation π : C∗(G)→ B(Hπ).
We put Kπ = H⊗Hπ where H is the GNS space of the Haar state h. The space Kπ is endowed with
two representations, π̃ = (λ⊗π)∆′ : C∗red(FOn)→ B(Kπ) and ρ̃ = λop⊗1 : C∗red(FOn)op → B(Kπ),
where we put λop(x)Λh(y) = Λh(yx).

Lemma 4.6. The space L2(M̃), viewed as an M,M−bimodule via the left and right actions of
ι(M) = ∆(M), is isomorphic to the M,M−bimodule Kπ naturally associated with the adjoint
representation π = ad of G. The trivial part Cξ0 of the adjoint representation corresponds to the
trivial sub-bimodule ι(M) ⊂ M̃ .

Proof. We consider the unitary V (1⊗U) : L2(M̃) = H⊗H → H⊗H. Recall that V (Λh⊗Λh)(x⊗
y) = (Λh ⊗ Λh)(∆(x)(1⊗ y)) and UΛh(y) = Λh(f1 ∗ S(y)) for x, y ∈ C[G], so that

V (1⊗ U)(Λh ⊗ Λh)(x⊗ y) = (Λh ⊗ Λh)(∆(x)(1⊗ f1 ∗ S(y))).

Recall that ad(z)Λh(y) = Λh(z(1)y(f1 ∗ S(z(2)))). Then we have:

V (1⊗ U)(Λh ⊗ Λh)(∆(z)(x⊗ y)) = (Λh ⊗ Λh)((z(1) ⊗ z(2))∆(x)(1⊗ f1 ∗ (S(y)S(z(3)))))

= (λ⊗ ad)∆(z)V (1⊗ U)(Λh ⊗ Λh)(x⊗ y).
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Moreover in the Kac case we can write:

V (1⊗ U)(Λh ⊗ Λh)((x⊗ y)∆(z)) = (Λh ⊗ Λh)(∆(x)(z(1) ⊗ z(2))(1⊗ S(z(3))S(y)))

= (Λh ⊗ Λh)(∆(x)(z ⊗ S(y)))

= (λop(z)⊗ id)V (1⊗ U)(Λh ⊗ Λh)(x⊗ y).

This shows that V (1 ⊗ U) yields an isomorphism L2(M̃) ' Kad as M,M−bimodules. Moreover,
putting x = y = 1 we see that V (1⊗ U)(Λh ⊗ Λh)ι(M) = Λh(M)⊗ ξ0. �

Recall now from [OP10b] that a discrete group G has Property strong (HH) if it admits a proper
cocycle with values in a representation weakly contained in the regular representation. These
notions make sense in the quantum case, and combining the lemma above with Theorem 3.10 and
Lemma 4.5 we obtain:

Corollary 4.7. The discrete quantum groups FOn satisfy the Property strong (HH).

Remark 4.8. Lemma 4.6 works also at the level of the derivations δX and yields a formula for
the associated cocycles with values in the adjoint representation π = ad. More precisely, a simple
computation shows that V (1⊗ U)δX is of the form (Λh ⊗ cX)∆, with cX : C[FOn]→ H given by
cX = Λhm(dXαg ⊗ S)∆, or in other terms:

cX(vrij) =
∑

(dXu
r
kl)× Λh(vrikv

r∗
jl ).

The fact that V (1⊗U)δX is a derivation implies that cX is a cocycle, i.e. cX(xy) = π(x)cX(y)+
cX(x)ε(y) for x, y ∈ C[FOn]. Denoting gX = (id⊗ cX)(V ) the unbounded multiplier of the Hilbert
module C0(FOn) ⊗H associated with cX , we have f∗XfX = g∗XgX . Hence Lemma 4.5 also shows
that the cocycle cX is proper.

For the generators vij of C[FOn] we have cX(vij) =
∑
XklΛh(vikvjl). For a particular choice of

X one gets e.g. c(vij) = Λh(vi1vj2 − vi2vj1), and the other values of c can be deduced recursively
using the cocycle relation.

4.3. Strong solidity. We first recall the following result due to Ozawa and Popa [OP10a].

Theorem 4.9. Let M be a tracial von Neumann algebra which is weakly amenable and admits the
following deformation property: there exists a tracial von Neumann algebra M̃ , a trace preserving
inclusion M ⊂ M̃ and a one-parameter group (αt)t∈R of trace-preserving automorphism of M̃ such
that

• limt→0 ||αt(x)− x||2 = 0 for all x ∈M .

•
M

(
L2(M̃)	 L2(M)

)
M
≺

M

(
L2(M)⊗ L2(M)

)
M

.

• EM ◦ αt is compact on L2(M) for all t small enough.

Then for any diffuse amenable von Neumann subalgebra P ⊂M we have that NM (P )′′ is amenable
— in other words M is strongly solid.

Proof. If K = L2(M̃)	L2(M) is (strongly) contained in an amplification of the coarse bimodule,
this is a particular case of [OP10a, Thm. 4.9], with k = 1, Q = Q1 = C and G = NM (P ). Indeed
in that case “compactness over Q” for EM ◦ αt means that its extension to L2(M) is compact,
L2〈M, eQ1

〉 is the coarse bimodule L2(M)⊗L2(M), and P �M Q means that P is diffuse. Moreover
if M is weakly amenable and P is amenable, then the action of G = NM (P ) on P is weakly compact
by [Oza12, Thm. B]. Hence the hypotheses of [OP10a, Thm. 4.9] are satisfied, and we can conclude
that N = NM (P )′′ is amenable relative to Q inside M , which just means that N is amenable in
our case.

Note that the proof of [OP10a, Thm. 4.9] shows the existence, for all non-zero central projection
p ∈ M , all F ⊂ NM (P ) finite and all ε > 0 the existence of a vector ζ ∈ K ⊗ L2(M) such that
‖pζ‖2 ≥ ‖p‖2/8, ‖[u ⊗ ū, ζ]‖2 < ε/2 for all u ∈ F and ‖xζ‖2 ≤ ‖x‖2 for all x ∈ M . In particular
one can then show as in [Sin11, Thm. 3.1] that K is left amenable over NM (P )′′ ⊂ M . Now, if
K is only weakly contained in the coarse bimodule, [Sin11, Thm. 3.2] still allows to conclude that
NM (P )′′ is amenable. �

Now by Proposition 4.1, Lemma 4.6 and Theorem 3.10 one can apply the preceding Theorem to
the deformation of L(FOn) presented in Section 4.1. Moreover the weak amenability assumption
is satisfied by [Fre13, Thm. 6.1]. As a result we obtain:
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Theorem 4.10. For all n ≥ 3, the II1 factor L(FOn) is strongly solid.

Note that this result was already proved in [Iso12] using the more recent approach from [PV12]
to strong solidity, and the Akemann-Ostrand Property, established in [Ver05, Thm. 8.3] for free
quantum groups. Finally, it seems likely that strong solidity can also be deduced from Property
strong (HH) as in [OP10b, Crl. B], by adapting Peterson’s techniques to the proper derivation

δX : C[FOn] → M̃ in the quantum setting. Notice in particular that ∆X = δ∗XδX is a “central
multiplier” of C[FOn] by the proof of Lemma 4.5, so that the passage from the classical to the
quantum setting is probably straightforward.
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[PW90] P. Podleś and S. L. Woronowicz. Quantum deformation of Lorentz group. Comm. Math. Phys.,
130(2):381–431, 1990.

[Sin11] T. Sinclair. Strong solidity of group factors from lattices in SO(n, 1) and SU(n, 1). J. Funct. Anal.,

260(11):3209–3221, 2011.
[Tom16] R. Tomatsu. Amenable discrete quantum groups. J. Math. Soc. Japan, 58(4):949–964, 2016.

[VD94] A. Van Daele. Multiplier Hopf algebras. Trans. Amer. Math. Soc., 342(2):917–932, 1994.
[Ver05] R. Vergnioux. Orientation of quantum Cayley trees and applications. J. Reine Angew. Math., 580:101–

138, 2005.

[Ver12] R. Vergnioux. Paths in quantum Cayley trees and L2-cohomology. Adv. Math., 229(5):2686–2711, 2012.
[VV07] S. Vaes and R. Vergnioux. The boundary of universal discrete quantum groups, exactness, and factori-

ality. Duke Math. J., 140(1):35–84, 2007.
[Wan95] S. Wang. Free products of compact quantum groups. Comm. Math. Phys., 167(3):671–692, 1995.
[Wor87] S. L. Woronowicz. Compact matrix pseudogroups. Comm. Math. Phys., 111(4):613–665, 1987.

[Wor98] S. L. Woronowicz. Compact quantum groups. In Symétries quantiques (Les Houches, 1995), pages 845–

884. North-Holland, Amsterdam, 1998.

Pierre FIMA
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