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Abstract

We prove that for a fairly large family of HNN extensions Γ, the group measure space II1 factor
L∞(X) o Γ given by an arbitrary free ergodic probability measure preserving action of Γ, has
a unique group measure space Cartan subalgebra up to unitary conjugacy. We deduce from
this new examples of W∗-superrigid group actions, i.e. where the II1 factor L∞(X) o Γ entirely
remembers the group action that it was constructed from.

1 Introduction and statement of main results

A central theme in the theory of von Neumann algebras is the classification of Murray and von
Neumann’s group measure space II1 factors L∞(X)oΓ in terms of the initial free ergodic probability
measure preserving (p.m.p.) action Γ y (X,µ). Typically the II1 factor L∞(X) o Γ forgets a lot
of information about the group action Γ y (X,µ). This is best illustrated by Connes’ theorem
[Co76] implying that all free ergodic p.m.p. actions of all infinite amenable groups give rise to the
same II1 factor.

Using his groundbreaking deformation/rigidity theory, Popa established several striking rigidity
theorems. For particular families of group actions and with different degrees of precision, he
manages to recover Γ y (X,µ) from the II1 factor L∞(X) o Γ. In particular, in [Po03, Po04]
Popa proved that if Γ y (X,µ) is any free ergodic p.m.p. action of a property (T) group and if
Λ y (Y, η) = [0, 1]Λ is the Bernoulli action of any group with infinite conjugacy classes (icc), then
the isomorphism of L∞(X) o Γ and L∞(Y ) o Λ implies the isomorphisms of the groups Γ,Λ and
the conjugacy of their actions.

In the recent articles [Pe09, PV09, Io10], group actions Γ y (X,µ) satisfying the most extreme
form of rigidity, called W∗-superrigidity, were discovered: if Λ y (Y, η) is any free ergodic p.m.p.
action of any group Λ and if L∞(X) o Γ is isomorphic with L∞(Y ) o Λ, then the groups Γ,Λ are
isomorphic and their actions conjugate.

Note that W∗-superrigidity for Γ y (X,µ) arises as the sum of the following two rigidity phenomena.

• Uniqueness of the group measure space Cartan subalgebra: if the II1 factor M = L∞(X)oΓ
has another group measure space decompositionM = L∞(Y )oΛ, then the Cartan subalgebras
L∞(X) and L∞(Y ) of M must be unitarily conjugate inside M .

• Orbit equivalence superrigidity: if any other free ergodic p.m.p. action Λ y (Y, η) is orbit
equivalent with Γ y (X,µ), then the groups must be isomorphic and the actions conjugate.
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Both the uniqueness of (group measure space) Cartan subalgebras and the orbit equivalence super-
rigidity are extremely hard to establish and are even more rarely known to hold simultaneously.

In [PV09] a class G of countable groups Γ was found such that all group measure space II1 factors
L∞(X) o Γ, for arbitrary free ergodic p.m.p. actions Γ y (X,µ), have a unique group measure
space Cartan subalgebra up to unitary conjugacy. This class G contains all free products Γ1 ∗ Γ2

of an infinite property (T) group Γ1 and a non-trivial group Γ2, as well as a fairly large family of
amalgamated free product groups Γ1 ∗Σ Γ2.

The main aim of this paper is to show the following similar uniqueness of group measure space
Cartan subalgebras for crossed products with certain HNN extensions Γ = HNN(H,Σ, θ) where
Σ < H is an amenable subgroup, θ : Σ → H is an injective group homomorphism and H has a
certain rigidity property, e.g. property (T). Recall that HNN(H,Σ, θ) is the group generated by a
copy of H and an extra generator t, called stable letter, with relations tσt−1 = θ(σ) for all σ ∈ Σ.

Theorem 1.1 (See Theorem 4.1). Let H be a group that contains a non-amenable subgroup with
the relative property (T) or that contains two commuting non-amenable subgroups. Let Σ < H be an
amenable subgroup and θ : Σ→ H an injective group homomorphism. Denote by Γ = HNN(H,Σ, θ)
the corresponding HNN extension and assume that there exist g1, . . . , gn ∈ Γ such that

⋂n
i=1 giΣg

−1
i

is finite.

For all free ergodic p.m.p. actions Γ y (X,µ), the II1 factor L∞(X) o Γ has, up to unitary
conjugacy, a unique group measure space Cartan subalgebra.

Note that the finiteness of
⋂n
i=1 giΣg

−1
i is automatic when Σ ∩ θ(Σ) is finite.

To prove Theorem 1.1 we follow the same strategy as in [PV09], replacing the length deformation on
amalgamated free products and its dilation (see [IPP05]) by an analogous deformation and dilation
for HNN extensions. For this we make use of HNN extensions of tracial von Neumann algebras.

Next we observe that those groups that admit a decomposition either as an amalgamated free prod-
uct over an amenable group or as an HNN extension over an amenable subgroup, are exactly those
groups that admit an action on a tree with at least one amenable edge stabilizer. To make a more
precise statement, also avoiding trivial amalgamated free product decompositions, we introduce
the following terminology. We follow Serre’s conventions [Se83] so that a graph G is a pair of sets
V(G),E(G), whose elements are called the vertices, resp. edges of G, equipped with a source map
s : E(G) → V(G) and a range map r : E(G) → V(G), as well as an involution E(G) → E(G) called
inversion and satisfying the following two properties: e 6= e and s(e) = r(e) for all e ∈ E(G). A tree
is a connected graph without cycles. An action on a tree is said to be without inversion if g · e 6= e
for all e ∈ E(G) and all g ∈ Γ.

A combination of [PV09, Theorem 1.1] and Theorem 1.1 then yields the following.

Theorem 1.2. Let Γ be a group satisfying the following two properties.

1. Γ contains a non-amenable subgroup with the relative property (T ) or Γ contains two com-
muting non-amenable subgroups.

2. Γ admits an action Γ y T without inversion on a tree T such that there exists a finite subtree
with a finite stabilizer and such that there exists an edge e ∈ E(T ) with the properties that
Stab e is amenable and that the smallest subtrees containing all vertices Γ · s(e), resp. Γ · r(e),
are both equal to the whole of T .
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Then, for all free ergodic p.m.p. actions Γ y (X,µ), the II1 factor L∞(X) o Γ has, up to unitary
conjugacy, a unique group measure space Cartan subalgebra.

In combination with Popa’s cocycle superrigidity theorems [Po05, Theorem 0.1] and [Po06a, Theo-
rem 1.1], we obtain the following new examples of W∗-superrigid actions. Recall that if a countable
group Γ acts on a countable set I, the action Γ y (X0, µ0)I given by (g · x)i = xg−1·i is called a
generalized Bernoulli action.

All generalized Bernoulli actions are p.m.p. They are ergodic if and only if Γ · i is infinite for all
i ∈ I. The criterion for essential freeness depends on whether (X0, µ0) has atoms or not: if (X0, µ0)
has no atoms, essential freeness is equivalent with every g 6= e acting non-trivially on I; if (X0, µ0)
has atoms, essential freeness is equivalent with every g 6= e moving infinitely many i ∈ I. We will
always implicitly assume that our generalized Bernoulli actions are essentially free.

Theorem 1.3 (See Theorem 6.1). Let H be a property (T) group, Σ < H an infinite amenable
subgroup and θ : Σ → H an injective group homomorphism satisfying Σ ∩ θ(Σ) = {e}. If Γ y I
such that Σ · i is infinite for all i ∈ I, then the generalized Bernoulli action Γ y (X0, µ0)I is
W∗-superrigid.

Observe that explicit examples for Theorem 1.3 can be obtained by considering two different copies
of Z in SLn(Z), n ≥ 3.

Acknowledgment. We are grateful to the referee for pointing us towards [Ue07] where HNN
extensions of von Neumann algebras are, up to amplifications, shown to be isomorphic to certain
amalgamated free products. As we explain in Remark 4.6, this does not allow to directly deduce
our main results from the analogous results in [PV09], but this can be used as the starting point
of an alternative, slightly more technical proof.

2 Preliminaries

2.1 Intertwining by bimodules

To fix notations, we briefly recall the intertwining-by-bimodules technique from [Po03, Section 2].

Let (M, τ) be a tracial von Neumann algebra and assume that A,B ⊂ M are possibly non-unital
von Neumann subalgebras. Denote their respective units by 1A and 1B. Then, the following three
conditions are equivalent.

• 1AL2(M)1B admits an A-B-subbimodule that is finitely generated as a right B-module.

• There exist non-zero projections p ∈ A, q ∈ B, a normal unital ∗-homomorphism ϕ : pAp→
qBq and a non-zero partial isometry v ∈ pMq satisfying av = vϕ(a) for all a ∈ pAp.

• There is no sequence of unitaries un ∈ U(A) satisfying ‖EB(xuny
∗)‖2 → 0 for all x, y ∈

1BM1A.

If one of these equivalent conditions hold, we write A ≺M B. Otherwise, we write A 6≺M B.

When M is a II1 factor and A,B ⊂ M are Cartan subalgebras, then A ≺M B if and only if there
exists a unitary u ∈ U(M) such that A = uBu∗, see [Po01, Theorem A.1].
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2.2 Amalgamated free products of tracial von Neumann algebras

Let P1, P2 be von Neumann algebras equipped with a faithful normal tracial state τ . Assume that
N is a common von Neumann subalgebra of P1 and P2 and that the traces of P1, P2 coincide on
N . We denote by P = P1 ∗N P2 the amalgamated free product with respect to the unique trace
preserving conditional expectations (see [Po91] and [VDN92]).

We record the following result from [IPP05]. Recall first that the quasi-normalizer of a von Neumann
subalgebra Q ⊂ P is defined as the von Neumann algebra generated by the elements x ∈ P for
which there exist x1, . . . , xn, y1, . . . , ym ∈ P satisfying

xQ ⊂
n∑
i=1

Qxi and Qx ⊂
m∑
j=1

yjQ .

Lemma 2.1 (Theorem 1.1 in [IPP05]). Let P = P1∗NP2 be an amalgamated free product w.r.t. trace
preserving conditional expectations, as above. Let p ∈ P1 be a non-zero projection and Q ⊂ pP1p a
von Neumann subalgebra of pP1p such that Q 6≺P1 N . Then every Q-P1-subbimodule H of pL2(P )
which is finitely generated as a right P1-module, is contained in L2(P1). In particular, the quasi-
normalizer of Q inside pPp is contained in pP1p.

We also mention the following fact that can be proven by directly applying the third characterization
of the intertwining relation A ≺ B. If P = P1 ∗N P2 is an amalgamated free product and Q ⊂ pP1p
is a von Neumann subalgebra satisfying Q 6≺P1 N , then Q 6≺P P2.

2.3 HNN extensions of groups: some notations

Let H be group, Σ < H a subgroup and θ : Σ→ H an injective group homomorphism. Define the
HNN extension Γ = HNN(H,Σ, θ) = 〈H, t | θ(σ) = tσt−1, ∀σ ∈ Σ〉. For ε ∈ {−1, 1} we define

Σε =

{
Σ if ε = 1 ,

θ(Σ) if ε = −1 .

We call g = g0t
ε1g1t

ε2 · · · tεngn ∈ Γ, with gi ∈ H and εi ∈ {−1, 1}, a reduced expression if gi ∈
H −Σεi whenever εi 6= εi+1. By convention, if n = 0, the reduced expressions are defined to be the
elements g0 ∈ H − {e}. Observe that any element g ∈ Γ − {e} admits a reduced expression and
that the natural number n, as well as the sequence ε1, . . . , εn appearing in a reduced expression for
g, only depend on g. We call n the length of g and we denote |g| := n.

The Bass-Serre tree T of the HNN extension Γ is defined as follows.

V(T ) = Γ/H and E(T )+ = Γ/Σ,

where V(T ) denotes the set of vertices of T and E(T )+ denotes the set of positive oriented edges
of T . The source map s and the range map r are defined by

s(gΣ) = gH and r(gΣ) = gt−1H for all g ∈ Γ .

We have a natural action of Γ on T . Denote by dT the geodesic distance on V(T ). One checks that

dT (H, g ·H) = |g| for all g ∈ Γ .
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3 HNN extensions of von Neumann algebras and their length de-
formation

HNN extensions of general von Neumann algebras were introduced in [Ue04]. In this section we
follow a different approach to specifically define HNN extensions of finite von Neumann algebras.
This will serve as an important technical tool in the proof of Theorem 1.2.

Consider first the group case. So, let H be a group, Σ < H a subgroup and θ : Σ → H an
injective group homomorphism. Associated to this data is a triple (M,N, θ) where N = LΣ is
viewed as a von Neumann subalgebra of M = LH and θ provides a trace preserving embedding
from N into M . We shall associate to an arbitrary triple (M,N, θ) consisting of a tracial von
Neumann algebra M , a von Neumann subalgebra N ⊂ M and a trace preserving embedding
θ : N → M , a new tracial von Neumann algebra HNN(M,N, θ). By construction we will have
L(HNN(H,Σ, θ)) = HNN(LH,LΣ, θ).

Fix such a triple (M,N, θ).

3.1 The L2-space

For ε ∈ {−1, 1} define

Nε =

{
N if ε = 1 ,

θ(N) if ε = −1 .

We define θε : Nε → N−ε ⊂M in the obvious way.

For n ≥ 1 and ε1, . . . , εn ∈ {−1, 1} define the M -M -bimodule

Hε1,...,εn = K0 ⊗
N
· · · ⊗

N
Kn,

where K0 = Kn = L2(M) and, for 1 ≤ i ≤ n− 1,

Ki =

{
L2(M) if εi = εi+1 ,

L2(M)	 L2(Nεi) if εi 6= εi+1 .

We view K0 = L2(M) as an M -N -bimodule, where the left M -action is the obvious one and the
right N -action is given by ξ · x = ξx if ε1 = −1 and ξ · x = ξθ(x) if ε1 = 1. Similarly, we view
Kn = L2(M) as an N -M -bimodule, where the right M -action is the obvious one and the left N -
action is given by x · ξ = xξ if εn = 1 and x · ξ = θ(x)ξ if εn = −1. Finally, for 1 ≤ i ≤ n − 1, we
view Ki as an N -N -bimodule in the following way.

• The left N -action is given by x · ξ =

{
xξ if εi = 1 ,

θ(x)ξ if εi = −1 .

• The right N -action is given by ξ · x =

{
ξθ(x) if εi+1 = 1 ,

ξx if εi+1 = −1 .

Define the M -M -bimodule

H = L2(M)⊕
⊕

n≥1, ε1,...,εn∈{−1,1}

Hε1,...,εn .
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We always view M ⊂ B(H) via the left module action and we denote by ρ : M → B(H) the unital
normal ∗-anti-homomorphism given by the right action of M on H. Every element x ∈ M can be
viewed as a vector in L2(M) that we denote by x̂.

Let ε ∈ {−1, 1}. We define a unitary uε ∈ B(H) in the following way.

• If ξ ∈ L2(M) we define uεξ = 1̂⊗ ξ ∈ Hε.

• If ξ ∈ Hε1,...,εn with n ≥ 1 and ε1 = ε we define uεξ = 1̂⊗ ξ ∈ Hε,ε1,...,εn .

• If ξ = x̂⊗ ξ0 ∈ Hε1,...,εn with n ≥ 1, ε1 6= ε and x ∈M , ξ0 ∈ Hε2,...,εn we define

uε(x̂⊗ ξ0) =

{
1̂⊗ x̂⊗ ξ0 ∈ Hε,ε1,...,εn if x ∈M 	Nε ,

θε(x)ξ0 ∈ Hε2,...,εn if x ∈ Nε .

It is easy to check that uε extends to a unitary on H such that (uε)∗ = u−ε, justifying the superscript
notation. We rather write u instead of u1 and one checks easily that

uxu∗ = θ(x) for all x ∈ N.

Moreover, u commutes with the right M -module action on H.

In an entirely similar way, we define the right version vε of uε.

• If ξ ∈ L2(M) we define vεξ = ξ ⊗ 1̂ ∈ Hε.

• If ξ ∈ Hε1,...,εn with n ≥ 1 and εn = ε we define vεξ = ξ ⊗ 1̂ ∈ Hε1,...,εn,ε.

• If ξ = ξ0 ⊗ x̂ ∈ Hε1,...,εn with n ≥ 1, εn 6= ε and x ∈M , ξ0 ∈ Hε1,...,εn−1 we define

vε(ξ0 ⊗ x̂) =

{
ξ0 ⊗ x̂⊗ 1̂ ∈ Hε1,...,εn,ε if x ∈M 	N−ε ,
ξ0θ
−ε(x) ∈ Hε1,...,εn−1 if x ∈ N−ε .

As above, vε extends to a unitary on H such that (vε)∗ = v−ε. Again we write v instead of v1.
One checks that v commutes with the left M -module action on H, as well as with the unitary u.

3.2 The HNN extension

Definition 3.1. The HNN extension HNN(M,N, θ) is defined as the von Neumann subalgebra of
B(H) generated by M and u:

HNN(M,N, θ) := 〈M,u〉 ⊂ B(H).

Let P = HNN(M,N, θ). An element x ∈ P of the form x = x0u
ε1x1 · · ·uεnxn with xi ∈ M and

εi ∈ {−1, 1} will be called reduced if xi ∈M 	Nεi whenever εi 6= εi+1. By convention, in the case
where n = 0, the reduced elements are the ones of the form x = x0 with x0 ∈M 	 C1.

Let Ω = 1̂ ∈ L2(M) ⊂ H. Let x = x0u
ε1x1 · · ·uεnxn ∈ P be a reduced element. Observe that

xΩ = x̂0 ⊗ · · · ⊗ x̂n ∈ Hε1,...,εn .
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It follows that the integer n, as well as the sequence ε1, . . . , εn, only depend on x. The integer n is
called the length of the reduced element x.

Let Pred be the vector subspace of P spanned by the reduced elements. By the relation θ(x) = uxu∗

for x ∈ N , it is easy to check that Pred is a ∗-subalgebra of P . Moreover, by definition of the HNN
extension, Pred is weakly dense in P .

We can also consider the right version of the HNN extension

HNN′(M,N, θ) := 〈ρ(M), v〉 ⊂ B(H).

Observe that HNN′(M,N, θ) ⊂ P ′. It will become clear immediately that this inclusion actually is
an equality.

As before, we have the notion a of reduced element x′ = ρ(x0)vε1ρ(x1) · · · vεnρ(xn) in HNN′(M,N, θ)
and the vector space spanned by such elements is a weakly dense ∗-subalgebra of HNN′(M,N, θ).

3.3 The HNN trace

Let Ω = 1̂ ∈ L2(M) ⊂ H. Define the normal state on P = HNN(M,N, θ) given by τ(x) = 〈Ω, xΩ〉.
Observe that, whenever x = x0u

ε1x1 · · ·uεnxn ∈ P is reduced, also x′ = ρ(xn)vεn · · · vε1ρ(x0) is a
reduced element in HNN′(M,N, θ) and one has

xΩ = x̂0 ⊗ · · · ⊗ x̂n = x′Ω.

It follows that Ω is a cyclic vector for both HNN(M,N, θ) and HNN′(M,N, θ). Hence, τ is a
faithful state on P and (H,Ω) is its GNS construction. Denote by J the modular conjugation on
L2(M) given by Jx̂ = x̂∗. Define the anti-unitary operator Jτ on H such that Jτ |L2(M) = J and
Jτ |Hε1,...,εn

= Jε1,...,εn , where Jε1,...,εn : Hε1,...,εn → Hεn,...,ε1 is given by the formula ξ0 ⊗ ξ1 ⊗ · · · ⊗
ξn 7→ Jξn ⊗ Jξn−1 ⊗ · · · ⊗ Jξ0. One checks straightforwardly that Jτ (xΩ) = x∗Ω for all x ∈ P .
Since Jτ is anti-unitary, it follows that τ is a trace.

Note that τ(x) = 0 whenever x is a reduced element. Also observe that the canonical inclusion
M ⊂ P is trace preserving. Since clearly Jτ HNN(M,N, θ)Jτ = HNN′(M,N, θ), it follows that
HNN(M,N, θ) and HNN′(M,N, θ) are each other’s commutant.

3.4 The universal property

We record the following elementary proposition and leave the proof to the reader.

Proposition 3.2. Let P = HNN(M,N, θ) be an HNN extension. Assume that (Q, τQ) is any
tracial von Neumann algebra, that π : M → Q is a trace-preserving embedding and that w ∈ Q is
a unitary satisfying

• π(θ(x)) = wπ(x)w∗ for all x ∈ N ,

• for all reduced x = x0u
ε1 · · ·uεnxn ∈ P , we have τQ(π(x0)wε1 · · ·wεnπ(xn)) = 0.

Then there exists a unique trace-preserving ∗-homomorphism π̃ : P → Q extending π and satisfying
π̃(u) = w.

Either using the universal property or checking definitions, one observes that HNN(LH,LΣ, θ) =
L(HNN(H,Σ, θ)) whenever Σ < H is a subgroup and θ : Σ → H is an injective group homomor-
phism.
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3.5 The length deformation of an HNN extension

In [IPP05, PV09] a crucial role is played by the length deformation on an amalgamated free product.
Since we need a similar deformation for HNN extensions, we first recall the amalgamated free
product case. We call reduced element of P := P1 ∗N P2 any product x = x1 · · ·xn where the
factors xi belong alternatingly to P1 	N and P2 	N . Let 0 < ρ < 1. In [IPP05], it is shown that
the formula

ψρ(x) = ρn x for all reduced x = x1 · · ·xn ,

yields a well defined normal unital completely positive map ψρ : P → P . If ρ → 1, then ψρ → id
pointwise in ‖ · ‖2.

One of the main technical ingredients of [IPP05] is the following: whenever Q ⊂ P is a von Neumann
subalgebra with the relative property (T), there exists i ∈ {1, 2} such that Q ≺P Pi. By the relative
property (T), we know that ψρ → id in ‖ · ‖2, uniformly on the unit ball of P . In order to deduce
from this that actually Q ≺P Pi for some i ∈ {1, 2}, a dilation of ψρ is introduced in [IPP05]. One

constructs a larger tracial von Neumann algebra P̃ ⊃ P together with a continuous one-parameter
group of automorphisms αt ∈ Aut(P̃ ) such that

ψρt(x) = EP (αt(x)) for all x ∈ P .

Here ρt → 1 when t→ 0. In order to allow for spectral gap rigidity, it is crucial that PL2(P̃ 	 P )P
is weakly contained in the coarse P -P -bimodule. This is exactly the case if we amalgamate over
an amenable subalgebra N .

We now perform similar constructions for the HNN extension P := HNN(M,N, θ), leading to well
defined normal unital completely positive maps mρ : P → P satisfying

mρ(x) = ρn x whenever x = x0u
ε1x1 · · ·uεnxn is a reduced element in P . (3.1)

Define M̃ := M ∗N (N ⊗ LZ) and denote by v ∈ LZ the canonical unitary generator. Define the

automorphism β ∈ Aut M̃ given by β(x) = x for all x ∈ M and β(v) = v∗. Let a ∈ LZ be the
unique self-adjoint element with spectrum [−π, π] such that v = exp(ia). Note that β(a) = −a
and define vs := exp(isa). It follows that vs is a continuous one-parameter group of unitaries
in LZ and that β(vs) = v−s for all s ∈ R. Finally, putting ρs := sin(πs)/(πs), one checks that
τ(vs) = τ(v∗s) = ρs for all s ∈ R.

We naturally have M ⊂ M̃ , so that we can define P̃ := HNN(M̃,N, θ). Note that P ⊂ P̃ and that
the ‘stable unitary letter’ u ∈ P also serves as stable unitary letter for P̃ . For all s ∈ R, the unitary
uvs ∈ P̃ satisfies uvsx(uvs)

∗ = θ(x) for all x ∈ N . We want to apply the universal property 3.2

and define an automorphism αs of P̃ satisfying αs(x) = x for all x ∈ M̃ and αs(u) = uvs. Assume

that xi ∈ M̃ and ε1, . . . , εn ∈ {1,−1} such that x0u
ε1x1 · · ·uεnxn is a reduced element in P̃ . We

have to prove that
τ
(
x0(uvs)

ε1x1 · · · (uvs)εnxn
)

= 0 .

But grouping the xi with the (vs)
εj , one can consider x0(uvs)

ε1x1 · · · (uvs)εnxn as a reduced element
in P̃ as well. Therefore, its trace is zero.

Claim 1. We have P̃ = P ∗N (N ⊗ LZ). To prove this claim, we need to check that

τ(x0v
k1x1 · · · vknxn) = 0
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whenever x0, xn ∈ P , x1, . . . , xn−1 ∈ P 	N and k1, . . . , kn ∈ Z−{0}. To show this, we may assume
that either xi ∈M or that xi = yi,0u

εi,1yi,1 · · ·uεi,`iyi,`i is a reduced element in P of length `i ≥ 1.
Make the following observations.

• If k ∈ Z− {0}, then MvkM ⊂ M̃ 	M .

• If 1 ≤ i ≤ j ≤ n− 1 and xi, xi+1, . . . , xj ∈M 	N , then

Mvkixiv
ki+1 · · ·xjvkj+1M ⊂ M̃ 	M .

• We have that M̃ 	M is a subspace of both M̃ 	N and M̃ 	 θ(N).

Altogether it follows that x0v
k1x1 · · · vknxn can be considered as a reduced element of HNN(M̃,N, θ)

so that it indeed has trace zero.

Remark 3.3. Note that claim 1 implies the following: if N is amenable, then PL2(P̃ 	 P )P is
weakly contained in the coarse P -P -bimodule. A detailed argument can be found e.g. in [CH08,
Proposition 3.1].

Using claim 1 one checks easily that

EP (αs(x)) = ρns x whenever x = x0u
ε1x1 · · ·uεnxn is a reduced element in P .

It follows in particular that for all 0 < ρ < 1, formula (3.1) yields a well defined normal unital
completely positive map on P .

Also, since the automorphism β ∈ Aut M̃ is the identity on M , and so in particular on N and θ(N),
we can extend β to an automorphism of P̃ satisfying β(u) = u. By construction β ◦ αs = α−s ◦ β
and β(x) = x for all x ∈ P .

Claim 2. We have P̃ = P ∗M α1(P ). To prove this claim, first note that the von Neumann
subalgebra of P̃ generated by P and α1(P ) contains M , u and α1(u) = uv. Hence, it contains M ,
u and v, which means that it equals P̃ . To conclude we have to prove that

τ(x0α1(y1)x1 · · ·α1(yn)xn) = 0

whenever x0, xn ∈ P and x1, . . . , xn−1, y1, . . . , yn ∈ P 	M . It is sufficient to prove this statement
when all xi, yj are reduced elements of P with x1, . . . , xn−1, y1, . . . , yn having length at least 1.

Using the fact that MvM and Mv∗M are subspaces of M̃ 	M , a straightforward computation
gives the desired result.

With the machinery developed so far, we can now prove the following theorem. It is the HNN
extension counterpart of [IPP05, Theorem 4.3] (see also [PV09, Theorem 5.4]). We will make use
of the identifications in claims 1 and 2, resulting in a relatively elementary proof.

Theorem 3.4. Let P = HNN(M,N, θ) be an HNN extension of finite von Neumann algebras,
p ∈ P a non-zero projection and Q ⊂ pPp a von Neumann subalgebra. Denote by S ⊂ pPp
the quasi-normalizer of Q inside pPp (see Section 2.2 for terminology). Let mρ be the completely
positive maps defined in (3.1).

If there exist 0 < ρ < 1 and δ > 0 such that τ(d∗mρ(d)) ≥ δ for all d ∈ U(Q), then either Q ≺P N
or S ≺P M .
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Proof. We assume that Q 6≺P N and prove that S ≺P M . Since τ(d∗mρ(d)) increases when ρ
increases towards 1, we can take s of the form s = (2n)−1 and δ > 0 such that

τ(d∗αs(d)) = τ
(
d∗EP (αs(d))

)
= τ(d∗mρs(d)) ≥ δ for all d ∈ U(Q) .

Denote by y ∈ pP̃αs(p) the unique element of minimal ‖ · ‖2 in the weakly closed convex hull
of {d∗αs(d) | d ∈ U(Q)}. It follows that τ(y) ≥ δ so that y 6= 0. By uniqueness of y, we have
dy = yαs(d) for all d ∈ Q. Denote by w0 ∈ pP̃αs(p) the polar part of y. Then w0 is a partial
isometry satisfying dw0 = w0αs(d) for all d ∈ Q. Denote p0 := w0w

∗
0 and note that p0 ∈ pP̃ p ∩Q′.

By claim 1 above, we have P̃ = P ∗N (N ⊗ LZ). Combined with Lemma 2.1 and the assumption
that Q 6≺P N , it follows that p0 ∈ pPp. Similarly w∗0w0 = αs(p1) for some projection p1 ∈ pPp.
Since β(x) = x for all x ∈ P and β ◦ αs = α−s ◦ β, one checks that w1 := w0α2s(β(w∗0)) is a partial

isometry in P̃ with left support projection p0, right support projection α2s(p0) and dw1 = w1α2s(d)
for all d ∈ Q. Putting

w = w1 α2s(w1)α4s(w1) · · · α2(n−1)s(w1) ,

we have found a partial isometry w ∈ P̃ with left support projection p0, right support projection
α1(p0) and dw = wα1(d) for all d ∈ Q.

Since p0 ∈ pPp ∩ Q′, we have in particular that p0 ∈ S. Again using claim 1 above, Lemma 2.1
and the assumption that Q 6≺P N , the relation dw = wα1(d) implies that w∗Sw = α1(p0Sp0). In
particular S ≺

P̃
α1(P ). By claim 2 above we can view P̃ as P̃ = P ∗M α1(P ). By the remark

following Lemma 2.1 it then follows that S ≺P M .

Remark 3.5. By [Ue07] amalgamated free products and HNN extensions are related to each other
up to amplifications. We comment on this in Remark 4.6 and show there how our proof for Theorem
3.4, which is rather simple thanks to claim 2, can be used to recover as well the results in [IPP05,
Theorem 4.3] and [PV09, Theorem 5.4].

4 Uniqueness of group measure space Cartan subalgebras

We prove the following version of Theorem 1.1 stated in the introduction, also allowing for arbitrary
amplifications.

Theorem 4.1. Let Γ = HNN(H,Σ, θ) be an HNN extension satisfying all the hypotheses in Theo-
rem 1.1. Let Γ y (X,µ) be an arbitrary free ergodic p.m.p. action and denote P := L∞(X) o Γ.

If Λ y (Y, η) is an arbitrary free ergodic p.m.p. action, p ∈ Mn(C)⊗ P is a projection and

π : L∞(Y ) o Λ→ p(Mn(C)⊗ P )p

is a ∗-isomorphism, then there exist a projection q ∈ Dn(C) ⊗ L∞(X) and partial isometry u ∈
Mn(C)⊗ P such that uu∗ = q, u∗u = p and

π(L∞(Y )) = u∗(Dn(C)⊗ L∞(X))u .

Here Dn(C) ⊂ Mn(C) denotes the subalgebra of diagonal matrices.

To prove Theorem 4.1, we first apply the following lemma to the action Γ y Mn(C) ⊗ L∞(X).
It follows that π(L∞(Y )) ≺ A o Σ. Next we use the finiteness

⋂n
i=1 giΣg

−1
i together with [PV06,

Theorem 6.16], to conclude that π(L∞(Y )) ≺ A. Finally the conclusion of Theorem 4.1 follows
from [Po01, Theorem A.1].
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Lemma 4.2. Let H be a group that contains a non-amenable subgroup with the relative property
(T) or that contains two commuting non-amenable subgroups. Let Σ < H be an amenable subgroup
and θ : Σ→ H an injective group homomorphism. Denote by Γ = HNN(H,Σ, θ) the corresponding
HNN extension. Let Γ y (A, τ) be any trace preserving action on the amenable von Neumann
algebra A.

If p ∈ AoΓ is a projection and BoΛ = p(AoΓ)p is any other crossed product decomposition with
B abelian, then B ≺ Ao Σ.

Proof. Write P = A o Γ and put M = A o H, N = A o Σ. Let t ∈ Γ be the stable letter, with
corresponding unitary ut ∈ LΓ ⊂ A o Γ. Define the ∗-homomorphism θ̃ : N → M : θ̃(x) = utxu

∗
t

for all x ∈ N . Note that θ̃(aug) = σt(a)uθ(g) for all a ∈ A and g ∈ Σ. The universal property 3.2

easily yields that P = HNN(M,N, θ̃). So we have on P the completely positive maps mρ and their
dilation αt, as constructed in Section 3.5.

We apply the transfer of rigidity Lemmas 3.1 and 3.2 in [PV09] to the amenable subalgebra N ⊂ P .
Note that P indeed contains either a non-amenable von Neumann subalgebra with the relative
property (T) or two commuting non-amenable von Neumann subalgebras. Using the inequality
‖x −mρt(x)‖2 ≤ ‖αt(x) − EP (αt(x))‖2 for all x ∈ P , we get from [PV09, Lemmas 3.1 and 3.2] a
0 < ρ < 1 and a sequence (sk)k ∈ Λ such that

• ‖mρ(vsk)− sk‖2 ≤ τ(p)/5000 for all k,

• ‖EN (xvsky)‖2 → 0 for all x, y ∈ P .

Lemma 4.3 below provides a 0 < ρ < 1 and a δ > 0 such that τ(d∗mρ(d)) ≥ δ for all d ∈ U(B).
By Theorem 3.4 we either reach the conclusion of the lemma, or we find that the normalizer of B
embeds into M inside P . Since the normalizer of B is the whole of pPp, the latter is absurd.

We do not give a proof for the following result, since it is, mutatis mutandis, the same as the proof
of [PV09, Lemma 5.7]. Two observations have to be made. First, as we recalled in Section 2.3,
every HNN extension Γ can act on its Bass-Serre tree such that the natural length function on Γ
is given by the geodesic distance on the tree. As a consequence, [PV09, Lemma 4.1] remains valid
for HNN extensions. Secondly, we need a replacement for the combinatorial lemma [PV09, Lemma
5.5]. We provide this replacement as Lemma 4.4 below.

Lemma 4.3. Let Γ = HNN(H,Σ, θ) be any HNN extension and Γ y (A, τ) any trace preserving
action. Consider the completely positive maps mρ on A o Γ as above. Let B ⊂ p(A o Γ)p be an
abelian von Neumann subalgebra. Assume that there exists 0 < ρ < 1 and a sequence of unitaries
vk ∈ p(Ao Γ)p that normalize B and satisfy

• ‖vk −mρ(vk)‖2 ≤ τ(p)/5000 for all k,

• ‖EAoΣ(xvky)‖2 → 0 for all x, y ∈ Ao Γ.

Then there exists 0 < ρ0 < 1 and a δ > 0 such that τ(d∗mρ0(d)) ≥ δ for all d ∈ U(B).

To conclude we provide the promised combinatorial lemma. Let Γ = HNN(H,Σ, θ) be an HNN
extension and Γ y (A, τ) be a trace preserving action. Use the notations introduced in Section 2.3.
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Let g ∈ Γ be an element of length at least one and write a reduced expression g = x0t
ε1 · · · tεnxn

with xi ∈ H and εi ∈ {−1, 1}. We call x0t
ε1 the first letter of g and tεnxn the last letter of g.

Let ε, ε′ ∈ {−1, 1} and g′ ∈ Htε, h′ ∈ tε′H. Let Γg′,h′ ⊂ Γ be the set of elements in Γ beginning by
g′ and ending by h′. This means that g ∈ Γg′,h′ if and only if every reduced expression for g begins
with g′σ with some σ ∈ Σε and ends with σ′h′ with some σ′ ∈ Σ−ε′ .

We denote by Pg′,h′ the orthogonal projection of L2(P ) onto the closed linear span of {aug | g ∈
Γg′,h′ , a ∈ A}. In general, whenever W ⊂ Γ, we denote by PW the orthogonal projection of L2(P )
onto the closed linear span of {aug | g ∈W,a ∈ A}. We also denote by PK the orthogonal projection
of L2(P ) onto the closed linear span of {aug | |g| ≤ K, a ∈ A}.

Lemma 4.4. Let K ∈ N−{0, 1} and assume that (yk) is a bounded sequence in P with the following
properties.

• yk = PK(yk) for all k,

• ‖EN (xykz)‖2 → 0 for all x, z ∈ P .

Let g, h ∈ Γ with |g|, |h| ≥ K + 1 and write g, h as reduced expressions. Denote by g′ the first letter
of g and by h′ the last letter of h. Then, we can write

ugykuh = ak + bk

where ak, bk are bounded sequences in P satisfying the following properties.

• ak = Pg′,h′(ak) for all k,

• ‖bk‖2 → 0.

Proof. Choose reduced expressions for g and h:

g = x0t
ε1 · · · tεnxn and h = y0t

η1 · · · tηmym,

where xi, yi ∈ H, εi, ηi ∈ {−1, 1} and n,m ≥ K + 1. For 0 ≤ i ≤ n and 0 ≤ j ≤ m define

gi = xn−it
εn−i+1 · · ·xn−1t

εn xn and hj = y0 t
η1y1 · · · tηjyj .

We use the convention g0 = e = h0. Observe that |gi| = i and |hj | = j.

Write Nε = AoΣε for ε ∈ {−1, 1}. For 0 ≤ i ≤ n and 0 ≤ j ≤ m we define Wi,j = gg−1
i Σεn−ih

−1
j h.

Put W = ∪i+j≤KWi,j and observe that

PWi,j (a) = ugg−1
i
ENεn−i

(ugig−1auhh−1
j

)uh−1
j h for all a ∈ P.

Hence, PWi,j is bounded as a map from P to P . The orthogonal projections PWi,j commute and
hence

1− PW =
∏

i+j≤K
(1− PWi,j ).

is bounded on P . We put bk = PW (ugykuh), ak = ugykuh−bk. So, ak and bk are bounded sequences
in P with ugykuh = ak + bk.
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Since θ(N) = uNu∗, it follows that ‖ENε(xykz)‖2 → 0 for all x, z ∈ P and all ε ∈ {−1, 1}. It
follows that

‖bk‖22 ≤
∑

i+j≤K
‖PWi,j (ugykuh)‖22 =

∑
i+j≤K

‖ENεn−i
(ugiykuh−1

j
)‖22 → 0.

It remains to prove that ak = Pg′,h′(ak) for all k. But, if r ∈ Γ with |r| ≤ K and if grh admits no
reduced expression that begins with g′ and ends with h′, there must exist i, j with i+ j ≤ K such
that girhj ∈ Σεn−i . Hence, grh ∈W . As a consequence, whenever y ∈M with y = PK(y), we have

ugyuh − PW (ugyuh) ∈ Pg′,h′(L2(P )).

This concludes the proof of the lemma.

Remark 4.5. In the formulation of Theorem 1.1 and its amplified version 4.1, we could as well
assume that instead of H, the larger group Γ = HNN(H,Σ, θ) contains a non-amenable subgroup
with the relative property (T) or contains two commuting non-amenable subgroups. The proof
of the theorem remains unchanged. On the other hand, this is not a real generalization, because
such rigid subgroups have to lie inside H (after conjugacy and passage to a finite index subgroup).
Nevertheless this remark will be useful in the proof of Theorem 1.2. A similar remark applies to
[PV09, Theorem 1.1].

Remark 4.6. We are grateful to the referee of the first version of this article who pointed us
towards the following result in [Ue07], inspired by similar observations for equivalence relations in
[Ga99, Pa99]. Let M be a tracial von Neumann algebra, N ⊂ M a von Neumann subalgebra and
θ : N →M a trace preserving embedding. Consider the trace preserving embeddings

N ⊕N ↪→ M2(C)⊗M : x⊕ y 7→
(
x 0
0 θ(y)

)
and N ⊕N ↪→ M2(C)⊗N : x⊕ y 7→

(
x 0
0 y

)
.

Let u ∈ HNN(M,N, θ) be the stable unitary and denote by (eij), resp. (fij) the canonical matrix
units in M2(C) ⊗ M , resp. M2(C) ⊗ N . By [Ue07, Proposition 3.1] there is a canonical trace
preserving ∗-isomorphism

Ψ : HNN(M,N, θ)→ e11

(
(M2(C)⊗M) ∗

N⊕N
(M2(C)⊗N)

)
e11 :

{
Ψ(x) = e11x for all x ∈M ,

Ψ(u) = e12f21 ,

where the amalgamated free product is with respect to the embeddings above and the unique trace
preserving conditional expectations.

Since on the group level HNN extensions cannot be canonically written as amalgamated free prod-
ucts, one cannot directly deduce Theorem 4.1 from the analogous [PV09, Theorem 5.2]. Neverthe-
less the ∗-isomorphism Ψ can be used as the starting point for an alternative proof for Theorem
4.1 that we sketch now. One actually has to generalize [PV09, Theorem 5.6] from crossed products
with amalgamated free product groups to the following more general statement about arbitrary
amalgamated free products.

Suppose that M = M1 ∗P M2 is an amalgamated free product of tracial von Neumann algebras
w.r.t. the unique trace preserving conditional expectations. Assume that P is amenable and that M
admits a von Neumann subalgebra M0 without amenable direct summand such that either M0 ⊂M
has the relative property (T) or M ′0∩M has no amenable direct summand. If M = BoΛ for some
abelian von Neumann algebra B ⊂M and some countable group Λ acting on B, then B ≺M P .
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Such a generalization is not totally innocent and more technical than the proof that we gave above
for Theorem 4.1. One first has to replace the usage of Herz-Schur multipliers in [PV09, Section
4] by the corresponding results in [RX05, Theorem 3.1 and Section 5]. Next one should redo the
proofs of [PV09, Lemmas 5.5 and 5.7] within the general framework of amalgamated free products
of von Neumann algebras.

Conversely, by [Ue07, Proposition 3.4] also amalgamated free products can essentially be viewed as
an HNN extension. So, let M1 and M2 be tracial von Neumann algebras and let P be a common
von Neumann subalgebra on which the traces coincide. We consider the amalgamated free product
M1 ∗P M2 w.r.t. the trace preserving conditional expectations. Denote M = M1 ⊕M2 and define
N ⊂M given by N = P ⊕ P . Put θ : N →M : θ(x⊕ y) = y ⊕ x. Let HNN(M,N, θ) be the HNN
extension with stable unitary u and put p = 1 ⊕ 0 One checks easily that there is a unique trace
preserving ∗-homomorphism

Θ : M1 ∗P M2 → pHNN(M,N, θ)p : Θ(x) =

{
x⊕ 0 if x ∈M1 ,

u(0⊕ x)u∗ if x ∈M2 .

More precisely, Θ extends to a ∗-isomorphism between M1 ∗PM2 ∗P (P ⊗LZ) and pHNN(M,N, θ)p
sending the extra generator v ∈ LZ to u2p.

The ∗-isomorphisms Ψ and Θ intertwine the length deformation on the amalgamated free product
and the HNN extension (see Section 3.5). So, Theorem 3.4 and [PV09, Theorem 5.4] can be deduced
from each other. As explained in Remark 3.5, our proof of Theorem 3.4 is slightly simpler which is
our reason to present it in full detail in Section 3.5.

5 Proof of Theorem 1.2

In Theorem 1.1 we have seen that the conclusion of Theorem 1.2 holds for certain HNN extensions.
In [PV09, Theorem 1.1] it was shown that the conclusion also holds for certain amalgamated free
product groups. So, it suffices to prove that all groups satisfying the assumptions of Theorem 1.2
fall into one of both families.

Take Γ y T with the properties assumed in Theorem 1.2. Let e ∈ E(T ) be an edge such that
the stabilizer Σ := Stab e is amenable and such that the smallest subtrees containing Γ · s(e), resp.
Γ · r(e), are both equal to the whole of T . We claim that there exist g1, . . . , gm ∈ Γ such that⋂m
i=1 giΣg

−1
i is finite. Let T0 ⊂ T be a finite subtree with finite stabilizer. Denote by p1, . . . , pn the

vertices of T0. Since the smallest subtree containing all the edges in Γ · e is the whole of T , we can
take hi, ki ∈ Γ such that pi lies on the geodesic path joining gi · e to hi · e. It is easy to check that

n⋂
i=1

(
giΣg

−1
i ∩ hiΣh

−1
i

)
⊂ Stab T0 ,

proving the claim.

Using Remark 4.5 it remains to prove that Γ is either a non-trivial amalgamated free product over
Σ or an HNN extension over Σ. By [Se83] we know that the quotient graph G := T /Γ can be
equipped with the structure of a graph of groups (G, {Γq}q∈V(G), {Σe}e∈E(G)) such that Γ is the
fundamental group of this graph of groups and T is its Bass Serre tree. For every e ∈ E(G), denote
by se : Σe → Γs(e) and re : Σe → Γr(e) the structural injective group homomorphisms. Denote by
π : T → G = T /Γ the quotient map. We fixed in the previous paragraph a favorite edge e and also

14



denote by e its image in G = T /Γ. We may assume that Σe = Σ. Note also that to every connected
subgraph G1 ⊂ G corresponds a subgroup Γ1 < Γ, given as the fundamental group of our graph of
groups restricted to G1, as well as a Γ1-invariant subtree T1 ⊂ T satisfying π(T1) = G1.

Consider the graph G′ obtained from the graph G by removing the edges e and ē. There are two
cases.

Case 1. The graph G′ is connected. We will contract the connected subgraph G′ ⊂ G in one
vertex and use Serre’s “dévissage” technique to conclude. Following [Se83], we define H to be the
fundamental group of our graph of groups restricted to G′. Via the source homomorphism se we
view Σ = Σe as a subgroup of H. Define the injective group homomorphism θ : Σ → H given by
re. It follows from [Se83, Lemme 6, Section 5.2] that Γ ∼= HNN(H,Σ, θ).

Case 2. The graph G′ is not connected. Let G1 (resp. G2) be the connected component of s(e)
(resp. r(e)). We use a two step contraction procedure. Define for i = 1, 2, the subgroup Γi < Γ as
the fundamental group of our graph of groups restricted to the connected subgraph Gi of G. By the
source homomorphism se we view Σ = Σe as a subgroup of Γ1 and by the range homomorphism re
we view Σ as a subgroup of Γ2. Using twice [Se83, Lemme 6, Section 5.2], first contracting G1 to
one vertex and then contracting G2 to one vertex, we conclude that Γ ∼= Γ1 ∗Σ Γ2. Finally observe
that we decomposed Γ as a non-trivial amalgamated free product: Γ1 6= Σ 6= Γ2. Indeed, otherwise
Γ = Γ1 or Γ = Γ2. If Γ = Γ1, the subtree T1 ⊂ T corresponding to the connected subgraph G1 ⊂ G,
is Γ-invariant and contains s(e). By our assumptions, it follows that T1 = T . Since π(T1) = G1,
this is a contradiction. The equality Γ = Γ2 leads to a contradiction in a similar way.

6 Stable W∗-superrigidity

Recall that a free ergodic p.m.p. action Γ y (X,µ) is said to be W∗-superrigid if the following
holds: if Λ y (Y, η) is any other free ergodic p.m.p. action and θ : L∞(Y ) o Λ → L∞(X) o Γ is a
∗-isomorphism, then the actions Λ y (Y, η) and Γ y (X,µ) are conjugate and the isomorphism θ
is in a precise sense implemented by this conjugacy and a scalar 1-cocycle (see [PV09, Definition
6.1]).

A somehow more natural notion than W∗-superrigidity is stable W∗-superrigidity, appropriately
taking care of amplifications. This is discussed in detail in [PV09, Section 6.2]. We only mention
here that stable W∗-superrigidity for Γ y (X,µ) implies W∗-superrigidity when Γ has no non-trivial
finite normal subgroups and if finite index subgroups of Γ act ergodically on (X,µ).

Theorem 1.3 is a particular case of the following result.

Theorem 6.1. Let H be a countable group with infinite amenable subgroup Σ < H. Let θ : Σ→ H
be an injective group homomorphism. Denote by Γ = HNN(H,Σ, θ) the HNN extension and suppose
that there exist g1, . . . , gn ∈ Γ such that

⋂n
i=1 giΣg

−1
i is finite. Note that this last condition is

automatic if Σ ∩ θ(Σ) is finite.

1. If H admits a non-amenable normal subgroup H0 with the relative property (T ), then all of
the following actions are stably W∗-superrigid.

• Every free p.m.p. action Γ y (X,µ) whose restriction to H is a generalized Bernoulli
action H y (X0, µ0)I with the property that H0 · i and Σ · i are infinite for all i ∈ I.
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• Every free p.m.p. action Γ y (X,µ) whose restriction to H is a Gaussian action defined
by an orthogonal representation π : H → O(KR) with the property that the restrictions
π|H0

and π|Σ have no non-zero finite dimensional subrepresentations.

2. Suppose that H admits non-amenable commuting subgroups H0 and H1 such that H0 is normal
in H. If Γ y (X,µ) is a free p.m.p. action whose restriction to H is a generalized Bernoulli
action H y (X0, µ0)I with the property that H1 ∩ Stab i is amenable for all i ∈ I and that
H0 · i and Σ · i are infinite for all i ∈ I, then Γ y (X,µ) is stably W∗-superrigid.

Proof. By the uniqueness of group measure space Cartan Theorem 4.1 and using [PV09, Lemma
6.5], it is sufficient to prove that for all group actions Γ y (X,µ) appearing in the theorem, we
have that all measurable 1-cocycles ω : Γ × X → G with values in either a countable group G or
the group G = S1, are cohomologous to a group morphism from Γ to G. Take such a 1-cocycle
ω. In case 1 we apply [Po05, Theorem 0.1] and in case 2 we apply [Po06a, Theorem 1.1]. In both
cases it follows that the restricted 1-cocycle ω|H×X is cohomologous to a group morphism from H
to G. We may therefore assume that ω(g, x) = δ(g) for all g ∈ H and a.e. x ∈ X. Denote by
t ∈ HNN(H,Σ, θ) the stable letter. Because t−1Ht ∩ H = Σ and Σ y (X,µ) is weakly mixing,
[Po05, Proposition 3.6] implies that ω is also independent of x in t. Hence, ω(g, x) is independent
of x for all g ∈ Γ.
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