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Introduction

Let M be a real analytic manifold. The Grothendieck subanalytic topology
on M, denoted Mg,, and the morphism of sites pg,: M — M,, were intro-
duced in [KSO1]. Recall that the objects of the site Mg, are the relatively
compact subanalytic open subsets of M and the coverings are, roughly speak-
ing, the finite coverings. In loc. cit. the authors use this topology to construct
new sheaves which would have no meaning on the usual topology, such as
the sheaf €, fp of €*°-functions with temperate growth and the sheaf Dbg\za
of temperate distributions. On a complex manifold X, using the Dolbeault
complexes, they constructed the sheaf &' . (in the derived sense) of holomor-
phic functions with temperate growth. The last sheaf is implicitly used in the
solution of the Riemann-Hilbert problem by Kashiwara [Kas80, Kas84] and
is also extremely important in the study of irregular holonomic Z-modules
(see [KSO03, § 7]).

In this paper, we shall modify the preceding construction in order to
obtain sheaves of ¥ *°-functions with a given growth at the boundary. For
example, functions whose growth at the boundary is bounded by a given
power of the distance (temperate growth of order s > 0), or by an exponential
of a given power of the distance (Gevrey growth of order s > 1), as well as
their holomorphic counterparts. For that purpose, we have to refine the
subanalytic topology and we introduce what we call the linear subanalytic
topology, denoted My,.

Let us describe the contents of this paper with some details.

In Chapter 1 we construct the linear subanalytic topology on M. De-
noting by Op,, . the category of open relatively compact subanalytic subsets
of M, the presite underlying the site My, is the same as for M,,, namely
Opyy,, but the coverings are the linear coverings. Roughly speaking, a finite
family {U;};e; is a linear covering of their union U if there is a constant C'
such that the distance of any z € M to M \ U is bounded by C-times the
maximum of the distance of x to M \ U; (i € I). (See Definition 1.1.1.) In
this chapter, we also prove some technical results on linear coverings that we
shall need in the course of the paper.
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Chapter 2. Let k be a field. One easily shows that a presheaf F' of
k-modules on Mg, is a sheaf as soon as, for any open sets U; and U, such
that {Uy, Us} is a linear covering of U; U Uy, the Mayer-Vietoris sequence

is exact. Moreover, if for any such a covering, the sequence

is exact, then the sheaf F' is T-acyclic, that is, R['(U; F') is concentrated in
degree 0 for all U € Op,,_.

There is a natural morphism of sites pga: Msa — Mg, and we shall prove
the two results below (see Theorems 2.3.13 and 2.4.17):

(1) the functor Rpga, : D¥(kys,) — Dt (kyy,,) admits a right adjoint p!,,
(2) if U has a Lipschitz boundary, then the object Rpg.,ky is concentrated
in degree 0.

Therefore, if a presheaf F' on M, has the property that the Mayer-Vietoris
sequences (0.0.2) are exact, it follows that RI'(U; p,,F) is concentrated in
degree 0 and is isomorphic to F(U) for any U with Lipschitz boundary. In
other words, to a presheaf on Mj, satisfying a natural condition, we are able
to associate an object of the derived category of sheaves on M, which has
the same sections as F' on any Lipschitz open set. This construction is in
particular used by Gilles Lebeau [Leb16] who obtains for s < 0 the “Sobolev
sheaves 73, ", objects of D™ (Cyy,,) with the property that if U € Op,,
has a Lipschitz boundary, then RI'(U; .7} ) is concentrated in degree 0 and
coincides with the classical Sobolev space H*(U).

The fact that Sobolev sheaves are objects of derived categories and are not
concentrated in degree 0 shows that when dealing with spaces of functions or
distributions defined on open subsets which are not regular (more precisely,
which have not a Lipschitz boundary), it is natural to replace the notion of
a space by that of a complex of spaces.

In Chapter 3, we briefly study the natural operations on the linear
subanalytic sites. The main difficulty is that a morphism f: M — N of
real analytic manifolds does not induce a morphism of the linear subanalytic
sites. This forces us to treat separately the direct or inverse images of sheaves
for closed embeddings and for submersive maps.

In Chapter 4 we construct some sheaves on My,. We construct the sheaf
%”J\OZ ; of €>°-functions with growth of order s > 0 at the boundary and the

sheaves €y ’jev(s) and €y ’jev{s} of €*-functions with Gevrey growth of type

s > 1 at the boundary. By using a refined cut-off lemma (which follows from
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a refined partition of unity due to Hormander [H6r83]), we prove that these
sheaves are -acyclic. Applying the functor p. ;, we get new sheaves (in the
derived sense) on Mg, whose sections on open sets with Lipschitz boundaries
are concentrated in degree 0. Then, on a complex manifold X, by considering
the Dolbeault complexes of the sheaves of €*°-functions considered above,
we obtain new sheaves of holomorphic functions with various growth.

As already mentioned, Sobolev sheaves are treated in a separate paper
by G. Lebeau in [Lebl6].

Finally, in Chapter 5, we apply these results to endow the sheaf @’;fsa
with a filtration (in the derived sense) that we call the L*-filtration.

Denote by FZ,,, the sheaf Py, = psa P of differential operators on
M., endowed with its natural filtration and denote by FZ,,  the sheaf
D, = Psal P, endowed with its natural filtration. For .7 = M, Mg,, Mg,
the category Mod(FZ~) of filtered Z-modules on .7 is quasi-abelian in the
sense of [Sch99] and its derived category DT (FZ25) is well-defined. We shall
use here the recent results of [SS16] which give an easy description of these
derived categories and we construct a right adjoint p., to the derived functor
Rpsal*: D+(F@Msa) — D+(F@Mnl)

By considering the sheaves €y, (s > 0) we obtain the filtered sheaf
Fo flp. Then, on a complex manifold X, by considering the Dolbeault

complex of this filtered sheaf, we obtain the filtration F, ﬁ’;&a on the sheaf
o

Recall now the Riemann-Hilbert correspondence. Let .# be a regular
holonomic Zx-module and let G : =R €om , (4, Ox) be the perverse sheaf
of its holomorphic solutions. Kashiwara’s theorem of [Kas84] may be for-
mulated by saying that the natural morphism .#Z — p_'R.%om (G, ﬁ;&a) is
an isomorphism. Replacing the sheaf ﬁ’;?sa with its filtered version Fooﬁ;ia,

we define the filtered Riemann-Hilbert functors RHF s, and RHE,, by the
formulas
RHFOO,SaI D}Tolreg(‘@X) — D+<F_@Xm),
M+~ FRAom (Sol(A),F 0 ),
RHE, = ps_alRHFOO,Sa: D;{Olreg(.@)() — DY (FZx)

and we prove that the composition
RHF or
Dloiees (Zx) “2 DF (FZx) 2 D* ()

is isomorphic to the identity functor. In other words, any regular holonomic
P x-module # can be functorially endowed with a filtration F,..#, in the
derived sense.
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We also briefly introduce an L?-filtration better suited to apply Horman-
der’s theory (see [Hor65]) and present some open problems.
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Chapter 1

Subanalytic topologies

1.1 Linear coverings

Notations and conventions

We shall mainly follow the notations of [KS90, KS01] and [KS06].

In this paper, unless otherwise specified, a manifold means a real analytic
manifold. We shall freely use the theory of subanalytic sets, due to Gabrielov
and Hironaka, after the pioneering work of Lojasiewicz. A short presentation
of this theory may be found in [BMS8§].

For a subset A in a topological space X, A denotes its closure, Int A its
interior and A its boundary, 9A = A \ Int A.

Recall that given two metric spaces (X, dx) and (Y, dy), a function f: X —
Y is Lipschitz if there exists a constant C' > 0 such that dy (f(x), f(2')) <
C-dx(z,2') for all z,2" € X.

( All along this paper, if M is a real analytic manifold, we
choose a distance dy; on M such that, for any x € M and
any local chart (U,p: U < R"™) around z, there exists a
neighborhood of x over which d,; is Lipschitz equivalent to
the pull-back of the Euclidean distance by ¢. If there is no
\risk of confusion, we write d instead of dy;.

(1.1.1)

In the following, we will adopt the convention
(1.1.2) d(z,0) = Dy + 1, for all z € M,

where Dy, = sup{d(y, z); y,z € M}. In this way we avoid distinguishing the
special case where M = | J,.; U; in (1.1.4) below (which can happen if M is
compact).
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The site M,

The subanalytic topology was introduced in [KS01].

Let M be a real analytic manifold and denote by Op,, the category of
relatively compact subanalytic open subsets of M, the morphisms being the
inclusion morphisms. Recall that one endows Op,, with a Grothendieck
topology by saying that a family {U;}ic; of objects of Op,,_is a covering of
U € Op,y,, if U; C U for all i € I and there exists a finite subset J C I such
that | ies Uj = U. It follows from the theory of subanalytic sets that in this
situation there exist a constant C' > 0 and a positive integer N such that

(1.1.3) d(z, M\ U)N < C-(I?ea}(d(af,M\Uj)).

One shall be aware that if U is an open subset of M, we may endow it
with the subanalytic topology Us,, but this topology does not coincide in
general with the topology induced by M.

We denote by pg.: M — Mg, (or simply p) the natural morphism of sites.

The site My,

Definition 1.1.1. Let {U;}c; be a finite family in Op,, . We say that this
family is 1-regularly situated if there is a constant C' such that for any z € M

(1.1.4) d(z, M\ | JU) < C- max d(x, M\ Uy).

icl

Of course, this definition does not depend on the choice of the distance
d.

When M = R™ and U C R" we have d(z, M \ U) = d(z,0U), for all
x € U. In general we have the following comparison result.

Lemma 1.1.2. Let U € Op,,  be such that OU is non empty (that is, U is
not a union of connected components of M ). Then there exists C' > 0 such
that for all x € U we have

d(z, M\ U) < d(z,0U) < Cd(z, M \ U).

Proof. The first inequality is clear and we prove the second one. If it is false,
n—>roo

there exist z,, € U, n € N, such that d(x,,0U)/d(x,,, M \U) —— oo. Since
U is compact, up to taking a subsequence we may assume that x,, converges
to a point z € U. We see easily that € OU. We take a chart around = as
in (1.1.1). Since dgn(y,0U) = dgn(y, M\ U) for y in the chart near x, we can

not have d(z,,0U)/d(x,, M\ U) ne oo, which proves the result. Q.E.D.
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Example 1.1.3. Let U;,U; € Op,, be two disjoint open sets. We prove
that {Uy, Us} is 1-regularly situated. We set U = Uy U Uy. We argue as in
the proof of Lemma 1.1.2 and assume by contradiction that there exists a
sequence z,, € U, n € N, such that d(x,, M \ U)/ max;—1 o{d(z,, M \ U;)}
converges to co. We may as well assume z,, € U; for all n. Up to taking a
subsequence we may assume that z,, converges to a point & € U;. We see
that x € 0U;. We take a chart around x as in (1.1.1). Then, for n > 0,
dga(x,, M\ U,) is realized by a point y,, € U;. Since UyNOU; = () we have in
fact y, € M\U. Hence dga(z,,, M\U;) = dga(x,, M\U). Since d is Lipschitz
equivalent to dga, the quotient d(x,,, M \U)/ max;—1 2{d(x,, M \U;)} remains
bounded and we have a contradiction.

Example 1.1.4. On R? with coordinates (1, z3) consider the open sets:

Uy = {(z1,19); 13 > —23, 11 > 0},
Us = {(z1,22); m2 < 23, 21 > 0},
Us = {(21,22); 71 > —13, 19 > 0}.

Then {U;, Us} is not 1-regularly situated. Indeed, set W:=U; UU, = {x1 >
0}. Then, if x = (z1,0),z; > 0, d(x,R2\ W) = z; and d(z,R*\U;) (i = 1,2)
is less that 7.

On the other hand {Uy, Us} is 1-regularly situated. Indeed,

d(z,R*\ (U, UUs)) < vV2max(d(z,R*\ Uy), d(z, R\ Us)).

Definition 1.1.5. A linear covering of U is a small family {U;};cr of objects
of Op,,., such that U; C U for all i+ € I and

115 there exists a finite subset Iy C I such that the family {U; }iej,
(1.1.5) is 1-regularly situated and | J,., U; = U.

i€lp —°
Let {U;}ier and {V;};cs be two families of objects of Op,, . Recall that

one says that {U; };es is a refinement of {V}},c; if for any i € I, there exists
jeJwith U; C V.

Proposition 1.1.6. The family of linear coverings satisfies the axioms of
Grothendieck topologies below (see [KS06, § 16.1]).

COV1 {U} is a covering of U, for any U € Opy,._ .

COV2 If a covering {U;}icr of U is a refinement of a family {V;}jes in Opy,
with V; C U for all j € J, then {V}},es is a covering of U.

COV3 IfV C U are in Opyy,, and {U; }ier is a covering of U, then {VNU,}ies
s a covering of V.

COV4 If {Us}ier is a covering of U and {V;} ey is a small family in Op,,.
with V; C U such that {U; N'V;},es is a covering of U; for all i € I, then
{Vi}jes is a covering of U.
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Proof. We shall use the obvious fact stating that for two subsets A C B in
M, we have d(x, M \ A) < d(x, M \ B).

COV1 is trivial.

COV2 Let Iy C I be as in (1.1.5). Let o: I — J be such that U; C V),
for all ¢ € I. Then, for all x € U; we have d(x, M \ U;) < d(z, M \ Vo). It
follows that o(Iy) satisfies (1.1.5) with respect to {V;};e.

COV3 Let Iy C I be as in (1.1.5) and let C' be the constant in (1.1.4). Let
x be a given point in V NU. We have d(xz, M \ (VNU)) < d(z, M\ U). We
distinguish two cases.

(a) We assume that d(x, M\ (V NU;)) = d(z, M \ U;), for all i € Iy. Then
we clearly have d(z, M \ (V NU)) < Cmax;ey, d(z, M \ (V NU;)) and I,
satisfies (1.1.5) with respect to {V N U, }ier.

(b) We assume d(z, M\ (VNU,,)) < d(xz, M\Uj,,) for some ig € Iy. We choose
y € M\ (VNU,) such that d(z,y) = d(x, M \ (VNU,;)). Then we have
d(z,y) < d(x, M \ U;,). We deduce that y € U;, and then that y € M \ V.
Hence y e M\ (VNU) and d(z, M \ (VNU)) <d(z,y). Then

dlz, M\ (VNU)) <dxz,M\ (VNU,))
<maxd(xz, M\ (VNU;)).
i€lp
We obtain (1.1.4) for the family {V N U, }ieq, with C' = 1.
COV4 Let Iy C I be as in (1.1.5) and let C' be the constant in (1.1.4).
For each i € Iy let J; C J satisfy (1.1.5) with respect to U; for the family

{U; NV, }jes and let C; be the corresponding constant. We set Jo = J,.; J;
and B = max{C - C;; i € Iy}. Then we have

i€lp

d(x, M\ U) < Cmaxd(x, M\ U;)
< C’Il%e}g((ci I]IJEELL]X d(z, M\ (U;NV})))

< Bmax maxd(z, M\ V;)

i€ly  jeJ;
< Bmaxd(z, M \'V;),
J€Jo
which proves that .Jy satisfies (1.1.5) with respect to {V;};es. Q.E.D.
As a particular case of COV4, we get

Corollary 1.1.7. If {Ui;}icr is a linear covering of U € Opy, and I =
e la is a partition of I, then setting Uy := J,c;. Ui, {Uataca is a linear
covering of U.

1€1,
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The notion of a linear covering is of local nature (in the usual topology).
More precisely, we have:

Proposition 1.1.8. Let V € Op,, . and let {U;};er be a finite covering of V
in Ms,. Then {V N U,}ier is a linear covering of V.

Proof. Set U = J, U; and let W € Op,, . be a neighborhood of the boundary
OU such that VNW = (. Let us prove that the family {W, {U;}.c/} is a linear
covering of WUU. We set f(z) = max{d(x, M\ W),d(x, M\ U;),i € I} and
Z={xe M;dxz,M\ (WUU))>d(z,U)}. Then Z is a compact subset of
W UU. Hence there exists € > 0 such that f(z) > ¢ for all x € Z.

We also see that U C Z. Hence f(z) = d(x, M\ W) for ¢ Z. Moreover,
for a given ¢ Z we have d(z, M \ W) < d(z, M\ (W UU)) < d(z,U)
by definition of Z. Hence a given y € M \ W realizing d(z, M \ W) can
not belong to U and we obtain d(x, M \ (W UU)) = d(z, M \ W). Finally
dlx, M\ (WUU)) = f(z) forx ¢ Z.

Now we deduce that d(z, M\ (W UU)) < Cf(z) for some C' > 0 and for
all z € M, that is, {W,{U, }ier} is a linear covering of W U U.

Taking the intersection with V' we obtain by COV3 that {V NU,}cs is a
linear covering of V. Q.E.D.
Corollary 1.1.9. Let {U;}icr and {Bj};cs be two finite families in Op,, .
We set U = |J, U; and we assume that U C U; Bj. Then {Ui}ier is a linear
covering of U if and only if {U; N Bj}icr is a linear covering of U N B; for
all j € J.

Proof. (i) Assume that {U;}; is a linear covering of U. Applying COV3 to
B;NU C U we get that the family {U; N B, }ies is a linear covering of U N B;
for all j € J.

(ii) Assume that the family {U; N B, }ies is a linear covering of U N B, for all
j € J. By Proposition 1.1.8 the family {U N B;},c; is a linear covering of U.
Hence the result follows from COV4. Q.E.D.

Definition 1.1.10. (a) The linear subanalytic site Mg, is the presite Mg,
endowed with the Grothendieck topology for which the coverings are the
linear coverings given by Definition 1.1.5.

(b) We denote by pga: Mgy — Mg, and by pg: M — Mg, the natural mor-
phisms of sites.

The morphisms of sites constructed above are summarized by the diagram

p
M —= M,

psl lpsal

M.
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Remark 1.1.11. Let M and N be two real analytic manifolds and let
f: M — N be a topological isomorphism such that both f and f~! are
subanalytic Lipschitz maps. Then f~': Op,, — Opy_ induces an isomor-
phism of sites Ny =2 Mg,.

1.2 Regular coverings

We shall also use the following:
Definition 1.2.1. Let U € Op,, . A regular covering of U is a sequence
{Ui}ien,n with 1 < N € N such that U = Uie[LN} U;and, forall 1 <k < N,
{Ui}iep i is a linear covering of Ulgz‘gk Us.

We will use the following recipe to turn an arbitrary covering into a linear

covering by a slight enlargement of the open subsets. For an open subset U
of M, an arbitrary subset V' C U and € > 0 we set

(1.2.1) Vel ={z € M; d(z,V) < ed(x, M\ U)}.

Then V=Y is an open subset of U. If the distance d is a subanalytic function
on M x M, U € Op,,,, and V is a subanalytic subset, then Ve also belongs
to Op,,... We see easily that (UNV) cC V=V C U.

Lemma 1.2.2. We assume that the distance d is a subanalytic function on
M x M. Let U € Opy,. and let V. C U be a subanalytic subset. Let 0 < e
and 0 <6 < 1. We set &' = =2, Then

(i) for any x € VU and y € M such that
d(z,y) <od(x, M\ U) ord(x,y) < dd(y, M\ U),
we have d(y, V) < €'d(y, M\ U), that is, y € VU,
(ii) for any x € VU we have d(z, M\ VE"V) > §d(x, M \ U),
(iii) {U\V,V"V} is a linear covering of U.

We remark that any ¢ > 0 can be written ¢/ = £ with ¢,§ as in the

1-5
lemma.
Proof. (i) The triangular inequality d(z, M \ U) < d(x,y) + d(y, M \ U)
implies
dw, MAU) < (1= 6)d(y, M\ U), it d(z,y) < 6d(z, M\ U),
d(z, M\ U) < (1+0)d(y, M\U),  if d(x,y) <dd(y, M\U).
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Since 1 + 6§ < (1 —d)~! we obtain in both cases
(1.2.2) d(x, M\ U) < (1 —=26)""d(y, M\ U).
In particular we have in both cases d(x,y) < (1 —0)"*d(y, M\ U). Now the

definition of V=V implies
d(y,V) < d(x,y) +d(z,V)
<5(1=68)"'d(y, M\ U) +ed(x, M\ U)
<(e+0)(1=0) ld(y, M\ U),
where the last inequality follows from (1.2.2).
(ii) By (i), if a point y € M does not belong to V="V we have d(z,y) >
dd(x, M\ U). This gives (ii).
(iii) Since d is subanalytic, the open subset VeV is subanalytic. We also see
easily that U = (U \ V) U VeV, Now let 2 € M.
(a) If & ¢ V=U, then (1.2.1) gives d(x,V) > ed(x, M \ U). Since d(z, M \
(U\V)) = min{d(z, M \ U),d(z,V)}, we deduce d(z,M \ (U \ V)) >
min{e, 1}d(z, M \ U).
(b) If x € VoY then (ii) gives d(x, M \ V'V) > dd(x, M\ U).
We obtain in both cases
max{d(z, M\ (U\V)),d(z, M\ V="V)} > Cd(z, M\ U),
where C' = min{d, e}. This proves (iii). Q.E.D.

Lemma 1.2.4 below will be used later to obtain subsets satisfying the
hypothesis of Lemma 4.3.1. We will prove it by using Lemma 1.2.2 as fol-
lows. Let Uy,U; € Opy,, and let U = Uy UU,. For € > 0 we set, using
Notation (1.2.1),

(12.3) Ui = (U \Uy)®" ={z € Uy; d(z, U\ Uy) < ed(z, M\ Uy)},
(1.2.4) Us = (U, \U))*"> = {x € Uy; d(x,Us \ Uy) < ed(x, M\ Us)}.

Lemma 1.2.3. (i) Fori= 1,2 and for any € > 0, the pair {Us,U; N Us}
s a linear covering of U.

(ii) For any e,e’ > 0 such that ee’ < 1, we have VfﬂU_g'ﬂ U =1{.

(ifi) Lete >0,0<0 <1 and set &' = &2, " = €. We assume e<” < 1.
Then, for any x € M,

d(z,Uf) > 6d(x, M\ Uy) ifx g U,

—~

{d(:p, Us) > sd(x, M\ Uy) ifx e U?,
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Proof. (i) By symmetry we can assume ¢ = 1. By Lemma 1.2.2, the pair
{U1 \ (U1 \ Us),Us} is a linear covering of U;. Since U, is open we have
U1 \ (U1 \ Ug) = U1 N U2 and (1) follows.

(ii) We have

UNUC{zeU; dx,U \Us) <ed(x, M\ Up)},
U NUC{zeU; dxz U \Uy) <& dx,M\Us)}.

We remark that d(z, M\Us) < d(x,U;\Us) and d(z, M\Uy) < d(x, Ux\Uy) for
any z € M. Let v € UsNUS'NU and set dy = d(x, Uy\Uy), dy = d(x, U \Uy).
We deduce d; < e€'d;, for i = 1,2. Since e’ < 1 we obtain d; = dy = 0.

Hence = ¢ Uy and x & U,. Since U = U; U Us, this proves (ii).

(iii) By Lemma 1.2.2 (i), we have d(x, M \ U ) > dd(x, M \ U;) for any
x € U, By (ii) we have U5 € M \ U{" and the first inequality follows.

By Lemma 1.2.2 (i), if # ¢ U and 2 € U§, then d(w, 2) > §d(z, M \ Uy).
This gives the second inequality. Q.E.D.

Lemma 1.2.4. Let Uy, U; € Opy,, and set U = Uy UU,. We assume that
{U1,Us} is a linear covering of U. Then there exist Ul C U;, i = 1,2, and
C > 0 such that

(i) {U!,U; nUs} is a linear covering of U; (i = 1,2),

(i) U nU;NU =0,

(iil) setting Z; = (M \ U)UU!, we have Z, N Zy = M\ U and

d(z, Z1 N Zy) < C(d(x, Zy) + d(x, Zs)),  for any x € M.

Proof. We set ¢ = 6 = 1/3, ¢/ = &2 = 1 and ¢ = sllfg = 2. Using the
notations (1.2.3) and (1.2.4) we set U/ = Uf, i = 1,2.

(i) and (ii) are given by Lemma 1.2.3 (i) and (ii).

(ili) The equality Z; N Zy = M \ U follows from (ii). Let C" be the constant
in (1.1.4) for the family {U;,Us}. We set C; = max{1,6'C"}. Let z € M
and let x; € Z; be such that d(x,z;) = d(x, Z;). By the definition of 7, if
xy ¢ Ul, then z; € M\ U. Hence d(x, Z;) = d(z, M \ U) and the inequality
in (iii) is clear.

Hence we can assume z; € U] and also 2 € Uj by symmetry. Then
we have d(z,Z,) + d(x, Zy) = d(x,U5) + d(z,U5). Since ee” = 2/3 < 1,
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Lemma 1.2.3 (iii) gives d(z, U{) +d(z,US) > 6 d(xz, M \ Uy). The same holds
with M \ U, replaced by M \ Us and (1.1.4) gives

d(x, UF) + d(z,U5) > & mac{d(x, M\ U)} > C7d(x, M\ U),

so that (iii) holds with C' = (4. Q.E.D.

Lemma 1.2.5. We assume that the distance d is a subanalytic function
on M x M. Let {U}, be a 1-reqularly situated family in Op,,  and let
C' > 1 be a constant satisfying (1.1.4). We choose D > C and 1 > ¢ > 0
such that eD < 1 —e. We define U?,V;,U! € Op,,.. inductively on i by
U=V, =U, =U, and

U} ={z €U; d(z, M\ (U; UV;_1)) < Dd(z, M\ U;)},
Vi=Viuby,
Ul = (UN*Y" (using the notation (1.2.1)).

Then Vy = U, Ui and, for allk =1,..., N, we have U, C Uy, Vi, = Ur_, U!
and {U/}%_, is a 1-regularly situated family in Op,,_ .

Proof. (i) Let us prove that U, C Uy. Let z € U; and let us show that
r € Uy. By (1.2.1) we have z € V; and there exists y € U} such that
d(z,y) < ed(x, M \ V;). We deduce d(z,y) < e(d(z,y) + d(y, M \ V})) and
then

(1.2.5) d(a,y) < (¢/(1 =€) d(y, M\ ).

On the other hand we have U,S C Uy, hence Vi, C U, UV,_;1. Since y € U,S
we deduce

(1.2.6) d(y, M\ Vi) < d(y, M \ (Ux UVi_1)) < Dd(y, M \ Ug).

The inequalities (1.2.5), (1.2.6) and the hypothesis on D and ¢ give d(z,y) <
d(y, M \ Uy). Hence x € Uy.

(ii) We have V; = V;_; UU?. Hence Lemma 1.2.2 implies that {V;_;,U/} is a
covering of V; in Mg,. Let us prove the last part of the lemma by induction
on k. We immediately obtain that Vj, = |JI_, U/. Moreover, {Vi_1, U;} being
a covering of Vi, we get by using COV4 that, for all k = 1,..., N, {U/}r_| is
a l-regularly situated family in Op,,_.

(iii) It remains to prove that Viy = UZ]\LI U;. Tt is clear that V}, C UZN:1 U;, for
allk=1,...,N. Let z € U, U;. Since {U;}, is 1-regularly situated, there
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exists o such that d(z, M \UX, U;) < Cd(z, M\ U,). In particular = € Uj,
and moreover d(xz, M \ (U;, U V;,—1)) < Cd(x, M \ Uy,) < Dd(x, M\ Uy,).
Therefore € U. By definition U C V;; C V. Hence z € Vy and we
obtain Vy = U, Us. Q.E.D.

In particular, we have proved:

Proposition 1.2.6. Let U € Op,, . Then for any linear covering {U;}icr
of U there exists a refinement which is a reqular covering of U.



Chapter 2

Sheaves on subanalytic
topologies

2.1 Sheaves

Usual notations

We shall mainly follow the notations of [KS90, KS01] and [KS06].

In this paper, we denote by k a field, although most of the results hold
under the hypothesis that k is a commutative unital Noetherian ring with
finite global dimension. Unless otherwise specified, a manifold means a real
analytic manifold.

If € is an additive category, we denote by C(%) the additive category
of complexes in €. For x = 4+, — b we also consider the full additive sub-
category C*(%) of C(%) consisting of complexes bounded from below (resp.
from above, resp. bounded) and C"(%’) means C(%) (“ub” stands for “un-
bounded”). If & is an abelian category, we denote by D(%) its derived
category and similarly with D*(%) for * = 4+, —, b, ub.

For a site .7, we denote by PSh(k~) and Mod(k ) the abelian categories
of presheaves and sheaves of k-modules on 7. We denote by ¢: Mod(ks) —
PSh(k~) the forgetful functor and by (+)* its left adjoint, the functor which
associates a sheaf to a presheaf. Note that in practice we shall often not
write ¢. Recall that Mod(ks) is a Grothendieck category and, in par-
ticular, has enough injectives. We write D*(ks) instead of D*(Mod(k~))
(x =+, —,b,ub).

For a site .7, we will often use the following well-known fact. For any F' €
D(kz) and any i € Z, the cohomology sheaf H'(F) is the sheaf associated
with the presheaf U +— H'(U;F). In particular, if H(U;F) = 0 for all
U € 7, then H(F) ~0.

19
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For an object U of .7, recall that there is a sheaf naturally attached to
U (see e.g. [KS06, § 17.6]). We shall denote it here by ki » or simply kg if
there is no risk of confusion. This is the sheaf associated with the presheaf
(see loc. cit. Lemma 17.6.11):

V= &yuk.

The functor “associated sheaf” is exact. If follows that, if V — U is a
monomorphism in .7, then the natural morphism ky s — kys also is a
monomorphism.

Sheaves on M and M,

We shall mainly use the subanalytic topology introduced in [KS01]. In loc.
cit., sheaves on the subanalytic topology are studied in the more general
framework of indsheaves. We refer to [Pre08] for a direct and more elementary
treatment of subanalytic sheaves.

Recall that ps,: M — Mg, denotes the natural morphism of sites. The
functor p,, is left exact and its left adjoint p3! is exact. Hence, we have the
pairs of adjoint functors

sa % R, sa %
paat pa

The functor ps,, is fully faithful and p_'ps., =~ id. Moreover, p'Rpsa, =~ id
and Rpsa, in (2.1.1) is fully faithful.
The functor p_;! also admits a left adjoint functor p,,. For F' € Mod(kys),

psarF' is the sheaf on M, associated with the presheaf U — F(U). The
functor pg,, is exact, fully faithful and commutes with tensor products.

Proposition 2.1.1. Let U € Opy, and let F' € Mod(kys). Then
RI'U; Rpsa ) ~ RI'(U; F).

Proof. This follows from RI'(U; G) ~ RHom (ky, G) for G € Mod(ky) (T =
M or F = M,) and by adjunction since p3'kyar, =~ ky- Q.E.D.

Also note that the functor pg,, admitting an exact left adjoint functor, it
sends injective objects of Mod(kj,,) to injective objects of Mod(ky, ).

One denotes by Modg..(kys) the category of R-constructible sheaves on
M. One denotes by D .(kys) the full triangulated subcategory of DP(kj;)
consisting of objects with R-constructible cohomologies.
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Recall that pg,, is exact when restricted to the subcategory Modg..(kas).
Hence we shall consider this last category both as a full subcategory of
Mod(ky,) and a full subcategory of Mod(kyy,, ).

For U € Op,, . we have the sheaf kyyyr,, ~ psa,kun on Mg, that we simply
denote by k.

Sheaves on M and M,

Recall Definition 1.1.10. The functor pg,, is left exact and its left adjoint
psj is exact since the presites underlying the sites Mg, and Mg, are the same
(see [KS06, Th. 17.5.2]). Hence, we have the pairs of adjoint functors

Psal x Rpsal«
(212) MOd(kMsa) ~— MOd(kMsaJ’ D+(kMsa> ~— D+(kMsal>'
Psal Psal

Lemma 2.1.2. The functor psa, in (2.1.2) is fully faithful and ps_a%,osal* ~ id.
Moreover, p_iRpsa, == id and Rpg, in (2.1.2) is fully faithful.

Proof. (i) By its definition, p_psa1, F' is the sheaf associated with the presheaf
U (psar, F)(U) ~ F(U) and this presheaf is already a sheaf.

(ii) Since p_; is exact, p,,|Rpsal, is the derived functor of p_jper,. Q.E.D.

In the sequel, if K is a compact subset of M, we set for a sheaf ' on M,
or Msal:

['(K; F) = m L(U;F), U€Opy,-
KcU

Lemma 2.1.3. Let F' € Mod(ky,,). For K compact in M, we have the
natural isomorphisms

I(K; F) = T(K; po F) == T(K; pg'F).

Proof. The first isomorphism follows from Proposition 1.1.8. The second one
from [KSO1, Prop. 6.6.2] since p;' >~ p2lp.i. Q.E.D.

The next result is analogue to [KS01, Prop. 6.6.2].

Proposition 2.1.4. Let F' € Mod(kyy, ). For U open in M, we have the
natural isomorphism

D(U; pg'F) =~ lim (V5 F), V € Opy,,.
vccUu
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Proof. We have the chain of isomorphisms, the second one following from
Lemma 2.1.3:

L(U;pg'F) = lim D(Vipg'F) =~ lim D(V;F) =~ lim D(V;F).

vVccu Vccu Vccu

Q.E.D.

The next result is analogue to [KS01, Prop. 6.6.3, 6.6.4]. Since the proof of
loc. cit. extends to our situation with the help of Proposition 2.1.4, we do
not repeat it.

Proposition 2.1.5. The functor p;' admits a left adjoint that we denote
by pay. For F € Mod(ky), paF' is the sheaf on Mg, associated with the

presheaf U — F(U). The functor pg, is exact and fully faithful.

Sheaves on M., and M,

Proposition 2.1.6. Let U € Op,, . Then we have psa,kum,, =~ kv, and
p;a,%kUMsal = kUMsa‘

Proof. The proof of [KS01, Prop. 6.3.1] gives the first isomorphism with-
out any changes other than notational. The second isomorphism follows by
Lemma 2.1.2. Q.E.D.

Proposition 2.1.7. Let U € Op,, and let F' € Mod(ky,,,). Then
RI'(U; Rpsal, F') ~ RI'(U; F).

The proof goes as for Proposition 2.1.1.
In the sequel we shall simply denote by ki the sheaf ki » for 7 = Mg,
or y = Msal-

Proposition 2.1.8. Let .7 be cither the site My, or the site Myy. Then a
presheaf F is a sheaf if and only if it satisfies:

(i) F(0) =0,

(ii) for any Uy,Us € Opy, . such that {Uy,Us} is a covering of Uy UUs, the
sequence 0 — F(Uy UU,y) — F(Uy) & F(Usy) — F(Uy NUs) is exact.

Of course, if T = Ms,, {Uy,Us} is always a covering of U; U Us.
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Proof. In the case of the site M, this is Proposition 6.4.1 of [KS01]. Let F'
be a presheaf on M, such that (i) and (ii) are satisfied and let us prove that
F is a sheaf. Let U € Op,,  and let {U;}ic; be a linear covering of U. By
Proposition 1.2.6 we can find a finite refinement {V;};c; of {U;}ie; which is
a regular covering of U. We choose o: J — I such that V; C U,y for all
j € J and we consider the commutative diagram

00— F(U) — @ie[ F(UZ) — @i,je[ F(Ui )

(2.1.3) H L L”
0——=FU) —=@pc;s F(Vi) —= Dy 1cs F(Via),

where a and b are defined as follows. For s = {s;}icr € @,.; F'(U;), we set
a(s) = {txtres € Byey F (Vi) where ty, = s,4|v;,. In the same way we set
b({si;}ijer) = {Som)o@)|viy tries- The proof of [KSO1, Prop. 6.4.1] applies
to a regular covering in Mg, and we deduce that the bottom row of the
diagram (2.1.3) is exact. It follows immediately that Keru = 0. This proves
that F' is a separated presheaf.

It remains to prove that Kerv = Imu. Let s = {s;}icr € @,c; F'(U;) be
such that v(s) = 0. By the exactness of the bottom row we can find t € F(U)
such that a(u(t) —s) = 0. Let us check that t|y, = s; for any given i € I.
The family {U; N Vi }res is a covering of U; in Ms,. Since F' is separated it
is enough to see that t|y,nv, = si|u,nv, for all k € J. Setting W = U; N Vg,
we have

tw = oty lw = (So)lvinv, o) lw = (silvinu, o) lw = silw,

where the first equality follows from a(u(t) — s) = 0 and the third one from
v(s) = 0. Q.E.D.

Lemma 2.1.9. Let .7 be either the site Mg, or the site Mgy. Let U € Opy,
and let {F;};er be an inductive system in Mod(k 7 ) indexed by a small filtrant
category I. Then

(2.1.4) lim ['(U; F) = T(U; lim F).

This kind of results is well-known from the specialists (see e.g. [KS01,EP])
but for the reader’s convenience, we give a proof.

Proof. For a covering . = {U,}; of U set

N F):=Ker(][F(U:) = [[FU:nUy).

ij
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Denote by “@” the inductive limit in the category of presheaves and recall
that llglﬂ is the sheaf associated with “lig” F;. The presheaf “lig” F; is

separated. Denote by Cov(U) the family of coverings of U in .7 ordered as
follows. For . and % in Cov(U), .4 = % if 7] is a refinement of 7.
Then Cov(U)°P is filtrant and

DUdimF) ~ L (%l F)
i FeCov(U) i

~ lig iy (.7 F)
B

~ liglig (7 F) = lig T(U; F)),
% S 7

Here, the second isomorphism follows from the fact that we may assume that
the covering .7 is finite. Q.E.D.

Example 2.1.10. Let M = R? endowed with coordinates = = (z1, ). For
g, A > 0 we define the subanalytic open subset

(2.1.5) Unre ={z; 0 <2y <e, —Ax? < a9 < Axi}.

We define a presheaf ' on Mg, by setting, for any V' € Op,,_,

F(V) = {k if for any A > 0, there exists € > 0 such that Uy, C V,

0 otherwise.

The restriction map F(V) — F(V'), for V! C V, is idy if F(V') = k. We

prove that F is sheaf in (iii) below after the preliminary remarks (i) and (ii).

(i) For given A, ey > 0 we have d((g,0), M \ Ua,,) > (A/4)e?, for any € > 0
small enough. In particular, if (V') =k, then

(2.1.6) d((g,0), M\ V)/e* = 400 when ¢ — 0.

(ii) Let us assume that there exist A > 0 and a sequence {e,}, n € N,
such that ¢, > 0, ¢, — 0 when n — oo and V contains the closed balls
B((gn,0), Ae?) for all n € N. Then there exists ¢ > 0 such that V contains
UA,E \ {O}

Before we prove this claim we translate the conclusion in terms of sheaf
theory (in the usual site R?). Let p: R? — R be the projection (xq,x5) — 1.
Then, for z; > 0, the set p~(x1) NV N U,. is a finite disjoint union of
intervals, say I, ..., In. If p~1(z1) NV contains p~'(z;) N Uys., then N =1,
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I is closed and RI'(R; k;, ) = k. In the other case none of these I,..., Iy is
closed and HO(RR; k; ) =0, forall j =1,...,N. By the base change formula

we deduce that V' contains Uga \ {0} if and only if Rp.(ky =)l = Kjo,q-
We remark that, for e < 1, we have Rp.(kyqg-) [0.e) = Rp«(Kyqp7) [o.e)-
The sheaf Rp.(ky g, ) is constructible. Hence it is constant on |0, €] for € >

0 small enough. Since (Rp.(ky~p;7))s, = k by hypothesis, the conclusion
follows.

(iii) Now we check that F' is a sheaf on Mg, with the criterion of Proposi-
tion 2.1.8. Let U,U;, U, € Op,, . such that {U;,U,} is a covering of U.

(iii-a) Let us prove that F(U) — F(U;) @ F(Us) is injective. So we assume
that F'(U) = k (otherwise this is obvious) and we prove that F'(U;) = k or
F(Uy) = k. Let A> 0. By (2.1.6) and (1.1.4) there exists gy > 0 such that

max{d((,0), M \ Uy),d((¢,0), M\ Us)} > Ae?  for all £ €]0, &¢|.

Hence, for any integer n > 1, the ball B((1/n,0), A/n?) is included in U;
or Uy. One of Uy or Uy must contain infinitely many such balls. By (ii) we
deduce that it contains Ua.,, for some €4 > 0. When A runs over N we
deduce that one of U; or U, contains infinitely many sets of the type Ua.,,
A e N. Hence F(U;) =k or F(Uy) =k.

(ili-b) Now we prove that the kernel of F'(U,) @ F(Us) — F(Uie) is F(U). We
see easily that the only case where this kernel could be bigger than F(U) is
F(U,) = F(Uy) =k and F(U;2) = 0. In this case, for any A > 0, there exist
1,62 > 0 such that Uy, C Uy and Uy, C Us,. This gives Ug minge, ey C Utz
which contradicts F(Uja) = 0.

(iv) By the definition of F' we have a natural morphism u: F' — pgi, ko)
which is surjective. We can see that p_1(u) is an isomorphism. We define
N € Mod(kyy,,,) by the exact sequence

(2.1.7) 0= N —F — pakiy — 0.

Then p_;N =~ 0 but N # 0. More precisely, for V & Opyr,, we have
NWV)=0if0eVand N(V) = F(V)if0& V.

2.2 ['-acyclic sheaves

Cech complexes

In this subsection, .7 denotes either the site Mg, or the site Mg,.
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For a finite set I and a family of open subsets {U;};c; we set for ) # J C I,

UJ = ﬂ U]

jed
Lemma 2.2.1. Let F be either the site Mg, or the site Mg,. Let {Uy,Us}
be a covering of Uy UUy. Then the sequence

(2.2.1) 0 = ki, = kuy, @ ky, = ko, = 0
18 exact.

Proof. The result is well-known for the site Mg, and the functor pg,, be-
ing left exact, it remains to show that ky, & ky, — ky,up, is an epimor-
phism. This follows from the fact that for any F' € Mod(kys,, ), the map
Hom knr,, (ky,uv,, F) — HomkMsal (ky, @kyy,, F) is a monomorphism. Q.E.D.

Consider now a finite family {U;}ies of objects of Op,,,, and let N:=|[I]. We
choose a bijection I = [1, N]. Then we have the Cech complex in Mod(kz)
in which the term corresponding to |J| = 1 is in degree 0.

(222) ki =0-> P k@S P ky, ®es— 0.
JCI,|J|=N JclI,|J|=1

Recall that {e;}sj=x is a basis of A"ZXN and the differential is defined as
usual by sending ki, ®e; to @, ki, ) ®e€i |es using the natural morphism
kUJ — kUJ\{z‘}’

Proposition 2.2.2. Let .7 be either the site Mg, or the site My,. Let U €
Opyy, and let % = {U;}; € I be a finite covering of U in J (a regular
covering in case J = Mga). Then the natural morphism k,, — ky is a
quasi-isomorphism.

Proof. Recall that N = |I|. We may assume [ = [1, N]. For N = 2 this is
nothing but Lemma 2.2.1. We argue by induction and assume the result is
proved for N — 1. Denote by %' the covering of U :=J,,.y_, Ui by the

.....

(223) Fi=0— @ kUJ®€Ji>“‘i> @ kUJ®€J—>O.

NeJcl,|J|=N NeJcl,|J|=1

Note that F} is isomorphic to the complex ki, - — ky, where ky, is in de-
gree 0 and we shall represent F by this last complex. By [KS06, Th. 12.4.3],
there is a natural morphism of complexes

(2.2.4) u: kg [—1] = (kgnpy — kuy)
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such that kj, is isomorphic to the mapping cone of u. Hence, writing the
long exact sequence associated with the mapping cone of u, we are reduced,
by the induction hypothesis, to prove that the morphism

kynuy = ko @ kuy,

is a monomorphism and its cokernel is isomorphic to ky. Since {U’, Uy} is
a covering of U, this follows from Lemma 2.2.1. Q.E.D.

Acyclic sheaves

In this subsection, .7 denotes either the site M, or the site My,. In the
literature, one often encounters sheaves which are I'(U; )-acyclic for a given
U € 7 but the next definition does not seem to be frequently used.

Definition 2.2.3. Let F' € Mod(ky). We say that F is [-acyclic if we have
HYU;F)~0forallk>0and all U € 7.

We shall give criteria in order that a sheaf F' on the site 7 be I'-acyclic.

Let U € Op,,,, and let % = {U;}; € I be a finite covering of U in 7 (a
regular covering in case 7 = Ms,). We denote by C* (% ; F') the associated
Cech complex:

(2.2.5) C*(%; F):=Hom,_ 1(kg;/,F).

One can write more explicitly this complex as the complex:

JCI,|J|=1 JCI,|J|=N

where the differential d is obtained by sending F(U;) ® e; to €
Ul) X €; A €.

F(U; N

3
Proposition 2.2.4. Let 7 be either the site M, or the site Mg, and let

F € Mod(kz). The conditions below are equivalent.

(i) For any {Uy,Us} which is a covering of Uy U Uy, the sequence 0 —
F(U,UUy) — F(Uy) @ F(Uy) — F(U NUy) — 0 is exact.

(ii) The sheaf F is T'-acyclic.

(iii) For any exact sequence in Mod(ks)

(2.2.7) G =0 Pky, —»— P ky,, =0

ioEA() 'LNEAN

the sequence Hom, (G*,F) is exact.
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(iv) For any finite covering % of U (regular covering in case T = Msa),
the morphism F(U) — C* (% ; F) is a quasi-isomorphism.

Proof. (i)=(ii) (a) Let U € Opy,,,. Let us first show that for any exact

sequence of sheaves 0 — F 5 F” Y B 5 0 and any U € Op,,, the
sequence 0 — F(U) — F'(U) — F"(U) — 0 is exact. Let s” € F"(U). By
the exactness of the sequence of sheaves, there exists a finite covering U =
UN, U; and s, € F'(U;) such that ¢(s}) = s"|p,. In case .7 = My, We may
assume that the covering is regular by Proposition 1.2.6. For k =1,..., N,
we set Vi = Ule U;. Let us prove by induction on k& that there exists
t,, € F'(Vy) such that ¢(t)) = s"|y,. Starting with ¢] = s we assume that
we have found t. Since our covering is regular, {Vj, U411} is a covering of
Vit1. We set for short W = Vi, NUjy1. We have 9 (t)|w) = ¥(s), 1 |w). Hence
there exists s € F(IW) such that p(s) = t;|w — s),1|w. By hypothesis (i)
there exists sy € F(Vi) and sy € F(Ugy1) such that s = sy|w — su|w.
Setting ¢, = t;, — ¢(sv) and sy = s34 — ¢(sy) we obtain t;|lw = sy |w
and we can glue t;|w and sy |y into ¢, € F'(Vi11). We check easily that
Y(ty, 1) = 8"|v,,, and the induction proceeds.

(i)=>(ii) (b) Denote by ¢ the full additive subcategory of Mod(k~) consist-
ing of sheaves satisfying the condition (i). We shall show that the category
J is I'(U; *)-injective for all U € Op,, . The category # contains the
injective sheaves. By the first part of the proof, it thus remains to show that,
for any short exact sequence of sheaves F* :=0 — F/ — F — F” — 0, if
both F’ and F' belong to _#, then F" belongs to ¢ .

Let Uy, Us as in (i) and denote by k;, the exact sequence 0 — ky,np, —
ky, ® ky, — kpyov, — 0. Consider the double complex Hom, (kg , F'°).
By the preceding result all rows and columns except at most one (either one
row or one column depending how one writes the double complex) are exact.
It follows that the double complex is exact.

(ii)=-(iii) Consider an injective resolution I° of F, that is, a complex I"* of
injective sheaves such that the sequence I°":=0 — F — I"° is exact. The
hypothesis implies that I'(W; ") remains exact for all W € Op,, . Then
the argument goes as in the proof of (i)=(ii) (b). Recall that G* denotes
the complex of (2.2.7) and consider the double complex Hom, (G*,1°).
Then all its rows and columns except one (either one row or one column
depending how one writes the double complex) will be exact. It follows that
all rows and columns are exact.

(ili)=(iv) follows from Proposition 2.2.2.
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(iv)=(i) is obvious. Q.E.D.

Corollary 2.2.5. Let 7 be either the site Mg, or the site Mgy. A small
filtrant inductive limit of T'-acyclic sheaves is I'-acyclic.

Proof. Since small filtrant inductive limits are exact in Mod(k), the family
of sheaves satisfying condition (i) of Proposition 2.2.4 is stable by such limits
by Lemma 2.1.9. Q.E.D.

Definition 2.2.6. Let .7 be either the site Mg, or the site M,. One says
that F' € Mod(kz) is flabby if for any U and V in Op,, with V' C U, the
natural morphism F'(U) — F(V) is surjective.

Lemma 2.2.7. Let 7 be either the site Mg, or the site M.
(i) Injective sheaves are flabby.
(ii) Flabby sheaves are I'-acyclic.
(iii) The category of flabby sheaves is stable by small filtrant inductive limits.

Proof. (i) Let F' be an injective sheaf and let U and V' in Op,, with V' C U.
Recall that the sequence 0 — ky — kg is exact. Applying the functor
Hom, (*,F) we get the result.

(ii) If I € Mod(ky) is flabby then it satisfies condition (i) of Proposi-
tion 2.2.4.

(iii) The proof of Corollary 2.2.5 also works in this case. Q.E.D.

2.3 The functor péal

In this section we make an essential use of the Brown representability theorem
(see for example [KS06, Th 14.3.1]).

Direct sums in derived categories

In this subsection, we state and prove some elementary results that we shall
need, some of them being well-known from the specialists.

Lemma 2.3.1. Let € be a Grothendieck category and let d € Z. Then the
cohomology functor H® and the truncation functors 7<% and 72¢ commute
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with small direct sums in D(€). In other words, if {F;}icr is a small family
of objects of D(€), then

(2.3.1) P r='F; = =P F)

and similarly with 7>¢ and HY.

Proof. (i) The case of H? follows from [KS06, Prop. 10.2.8, Prop. 14.1.1].
(ii) The morphism in (2.3.1) is well-defined and it is enough to check that it

induces an isomorphism on the cohomology. This follows from (i) since for
any object Y € D(¥), H (7<) is either 0 or H(Y). Q.E.D.

Lemma 2.3.2. Let € and €' be two Grothendieck categories and let p: € —
€' be a left exact functor. Let I be a small category. Assume
(i) 1 is either filtrant or discrete,

(ii) p commutes with inductive limits indexed by I,

(iii) inductive limits indexed by I of injective objects in € are acyclic for the
functor p.

Then for all j € Z, the functor R7p: € — €' commutes with inductive limits
indezed by I.

Proof. Let a: I — € be a functor. Denote by .# the full additive subcate-
gory of € consisting of injective objects. It follows for example from [KSO06,
Cor. 9.6.6] that there exists a functor ¢: I — .# and a morphism of functors
a — 1 such that for each i € I, a(i) — (i) is a monomorphism. There-
fore one can construct a functor ¥: I — C*(.#) and a morphism of functor
a — ¥ such that for each i € I, a(i) — ¥(i) is a quasi-isomorphism. Set
X; = a(i) and G; = ¥(i). We get a qis X; — G, hence a gis

On the other hand, we have
lim R p(X;) =~ lim B (p(G;))
= ij(li_n; G;)

where the second isomorphism follows from the fact that H? commutes with
direct sums and with filtrant inductive limits. Then the result follows from
hypothesis (iii). Q.E.D.
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Lemma 2.3.3. We make the same hypothesis as in Lemma 2.5.2. Let —oo <
a<b<oo,let] beasmall set and let X; € DI*(E). Then

(2.3.2) @ Rp(X;) =~ Rp(@ X,).

Proof. The morphism in (2.3.2) is well-defined and we have to prove it is an
isomorphism. If b = a, the result follows from Lemma 2.3.2. The general case
is deduced by induction on b — a by considering the distinguished triangles

HY(X;)[—d] = X; — 72011 x; 2
Q.E.D.

Proposition 2.3.4. Let € and €' be two Grothendieck categories and let
p: € — €' be a left exact functor. Assume that

(a) p has finite cohomological dimension,
(b) p commutes with small direct sums,
(c) small direct sums of injective objects in € are acyclic for the functor p.
Then
(i) the functor Rp: D(€) — D(¥") commutes with small direct sums,

(ii) the functor Rp: D(€) — D(¥") admits a right adjoint p': D(€") —
D(%),

(iii) the functor p' induces a functor p': DT(€") — DT (%¥).

Proof. (i) Let {X;}icr be a family of objects of D(%). It is enough to check
that the natural morphism in D(%”)

(2.3.3) P ro(X:) = Ro(EP Xi)

el el

induces an isomorphism on the cohomology groups. Assume that p has co-
homological dimension < d. For X € D(%) and for j € Z, we have

T2 Rp(X) ~ 129 Rp(r=7971 X).
The functor p being left exact we get for k > j:

(2.3.4) H*Rp(X) ~ H*Rp(r<kr2i—d-1X).



32 CHAPTER 2. SHEAVES ON SUBANALYTIC TOPOLOGIES

We have the sequence of isomorphisms:

HkRp(®XZ) ~ HkRp <k >] d— 1@){

12

HkRp @ TSkTZJ_d_lXi)

12

GB HkRp(TSkTZj_d_lXi)
D H* Rp(X)

The first and last isomorphisms follow from (2.3.4).
The second isomorphism follows from Lemma 2.3.1.
The third isomorphism follows from Lemma 2.3.3.

12

(ii) follows from (i) and the Brown representability theorem (see for exam-
ple [KS06, Th 14.3.1]).

(iii) This follows from hypothesis (a) and (the well-known) Lemma 2.3.5
below. Q.E.D.

Lemma 2.3.5. Let p: € — € be a left exact functor between two Grothendieck
categories. Assume that p: D(€) — D(€") admits a right adjoint p': D(€") —
D(%) and assume moreover that p has finite cohomological dimension. Then
the functor p' sends DY(€") to D ().

Proof. By the hypothesis, we have for X € D(%) and Y € D(%¢”)
Hom ) (p(X),Y) = Homy, o (X, p(Y)).

Assume that the cohomological dimension of the functor pis <r. Let Y €
D=%(¢"). Then Hom (X, p'(Y)) = 0 for all X € D<7"(%). This means

that p'(Y) belongs to the right orthogonal to D<~"(%) and this implies that
p(Y) € D=7(€"). Q.E.D.
The functor RI'(U; *)

Lemma 2.3.6. Let 7 be either the site Mg, or the site Mgy and let U €
Opyy,- Let I be a small filtrant category and o: I — Mod(ks) a functor.
Set for short F; = a(i). Then for any j € Z

(2.3.5) liy H/RU(U; Fy) =~ H'RI(U; lig ).
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Proof. By Lemma 2.1.9, the functor I'(U; +) commutes with small filtrant
inductive limits and such limits of injective objects are T'(U; »)-acyclic by
Lemma 2.2.7. Hence, we may apply Lemma 2.3.2. Q.E.D.

Proposition 2.3.7. Let U € Op,, . The functor I'(U; «): Mod(ky,) —
Mod (k) has cohomological dimension < dim M.

Proof. We know that if FF € Modg..(kys), then H'RT(U; F) ~ 0 for j >
dim M. Since any F' € Mod(kyz,) is a small filtrant inductive limit of con-
structible sheaves, the result follows from Lemma 2.3.6. Q.E.D.

Corollary 2.3.8. Let _# be the subcategory of Mod(kas,) consisting of
sheaves which are T'-acyclic. For any F € Mod(kyy,), there exists an ex-
act sequence 0 — F — F* — ... — F" — 0 where n = dim M and the F’’s
belong to 7 .

Proof. Consider a resolution 0 — F — Y ﬂ) I' — .. with the I?’s injective
and define FV = [7 for j <n—1, F/ =0 for j > n and " = Kerd". It
follows from Proposition 2.3.7 that F™ is ['-acyclic. Q.E.D.

Proposition 2.3.9. Let I be a small set and let F; € D(kyy,) (i € I). For
U € Op,,,,, we have the natural isomorphism

(2.3.6) PRrrU; F) = RU(U; P F) in D(k).

iel el

Proof. The functor I'(U; «) has finite cohomological dimension by Proposi-
tion 2.3.7, it commutes with small direct sums by Lemma 2.1.9 and inductive
limits of injective objects are I'(U; « )-acyclic by Lemma 2.2.7. Hence, we may
apply Proposition 2.3.4. Q.E.D.

The functor Rpg,,

Lemma 2.3.10. Let _# be the subcategory of Mod(kyy,,) consisting of sheaves
which are I'-acyclic. The category 7 is psa,-injective (see [KS06, Cor. 13.3.8]).

Proof. Let 0 - ' — F — F"” — 0 be an exact sequence in Mod(ky,, ).

(i) We see easily that if both F” and F belong to _#, then F" belongs to 7.
(ii) It remains to prove that if F' € _#, then the sequence 0 — pga, ' —
psal B = psar, " — 0 is exact. Let U € Op,, . By Proposition 2.1.7 and
the hypothesis, the sequence 0 — pga1, F'(U) = psar F(U) = psar, F"(U) — 0
is exact. Q.E.D.

Applying Corollary 2.3.8, we get:
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Proposition 2.3.11. The functor psa, has cohomological dimension < dim M .

Proposition 2.3.12. Let I be a small set and let F; € D(kyy,) (1 € 1). We
have the natural isomorphism

(237) @ Rpsal*ﬂ = Rpsal*<@ E) in D(kMsal)'

el i€l

Proof. By Proposition 2.3.11, the functor pg,, has finite cohomological di-
mension and by Lemma 2.1.9 it commutes with small direct sums. More-
over, inductive limits of injective objects are pg,1,-acyclic by Lemmas 2.3.10
and 2.2.7. Hence, we may apply Proposition 2.3.4 (i). Q.E.D.

Theorem 2.3.13. (i) The functor Rps,: D(ka,) — D(kar,) admits a
right adjoint p.,,: D(kar,,) — D(kar,)-

(ii) The functor p.,, induces a functor p.: D (kyr,) — D¥ (k).

Proof. These results follow from Propositions 2.3.12 and 2.3.11, as in Propo-
sition 2.3.4. Q.E.D.

Corollary 2.3.14. One has an isomorphism of functors on DT (ky,,):
(2.3.8) id 2% b Rpgal,-

Proof. This follows from the fact that (Rpgal,, p.,) is a pair of adjoint functors
and that Rpsa, is fully faithful by Lemma 2.1.2. Q.E.D.

Remark 2.3.15. (i) We don’t know if the category M, has finite flabby
dimension. We don’t even know if for any F' € D"(ky,,,) and any U € Op,,_,
we have RT'(U; F') € D"(k).

(ii) We don’t know if the functor p!,: D (kar,,) — Dt (ky.,) constructed in
Theorem 2.3.13 induces a functor p.,,: D*(ky.,) — DP(ka, ).

sal

2.4 Open sets with Lipschitz boundaries

Normal cones and Lipschitz boundaries
In this paragraph R" is equipped with coordinates (2, x,,), 2’ € R, z,, € R.

Definition 2.4.1. We say that U € Op,,  has Lipschitz boundary or simply
that U is Lipschitz if, for any x € 0U, there exist an open neighborhood V'
of x and a bi-Lipschitz subanalytic homeomorphism ¢: V' =+ W with W an
open subset of R" such that »(V NU) =W N{z, > 0}.
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Remark 2.4.2. (i) The property of being Lipschitz is local and thus the pre-
ceding definition extends to subanalytic but not necessarily relatively com-
pact open subsets of M.

(ii) If U; is Lipschitz in M; (i = 1,2) then Uy x Us is Lipschitz in M; x Ms.
(iii) If U is Lipschitz and « € 9U, there exist a constant C' > 0 and a sequence
{Yn}nen, yn € U, such that d(y,,x) — 0 and d(y,,z) < Cd(y,,0U), for all
n € N (in the notations of the definition, assume ¥ (z) = (2/,0) and set

yn =71 (', 1/n)).

Example 2.4.3. (i) Lemma 2.4.5 below will provide many examples of Lip-
schitz open sets.

(ii) Let (z,y) denotes the coordinates on R?. Using (iii) of Remark 2.4.2 we
see that the open set U = {(z,y);0 < y < z?} is not Lipschitz.

Lemma 2.4.4. Let U € Op,, . We assume that, for any x € OU, there exist
an open neighborhood V' of x and a bi-analytic isomorphism: V. =% W with
W an open subset of R™ such that p(V NU) =W N{(2',x,); z, > p(2)}
for a Lipschitz subanalytic function ¢. Then U is Lipschitz.

Proof. We define ¢;: R* — R", (2/,2,) — (2/,2, — ¢(2’)). Then 1 is a
bi-Lipschitz subanalytic homeomorphism and we have (i, o )(V NU) =
(W) N {x, > 0}. Hence U is Lipschitz. Q.E.D.

Lemma 2.4.5. Let 'V be a vector space and let v be a proper closed convex
cone with non empty interior. Let U € Opy_ . Then the open set U + 7 has
Lipschitz boundary.

Proof. Let p € O(U + ). We identify V with R™ so that p is the origin and
~ contains the cone vy = {(2/, z,,); x, > ||2'||}. We have in particular

(2.4.1) Y0 C (U+7) € (R*\ (=)

For 2’ € R"! we set [, = (U +v) N ({z'} x R). Then Ly = I,y + [0, +o0].
By (2.4.1) we also have [,y # () and I, # R. Hence we can write l,; =
('), +oc], for a well-defined function ¢: R"™! — R.

Let us prove that ¢ is Lipschitz. Let 2/ € R®! and let us set ¢ =
(', o(2")) € O(U + 7). We have the similar inclusion as (2.4.1), (¢ + 7)) C
(U+7) € (R"\ (g —)). Hence O(U +7~) C (R"\ ((¢+0) U (¢ —0))). For
any ¥ € R"! we have (v, ¢(¢/')) € (U ++~) and the last inclusion translates
into |o(y') — e(2')| < ||y’ — 2'||. Hence ¢ is Lipschitz and U + ~ is Lipschitz
by Lemma 2.4.4. Q.E.D.

We refer to [KS90, Def 4.1.1] for the definition of the normal cone C'(A, B)
associated with two subsets A and B of M.
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Definition 2.4.6. (See [KS90, § 5.3].) Let S be a subset of M. The strict
normal cone N,(S) and the conormal cone N}(S) of S at € M as well as
the strict normal cone N(S) and the conormal cone N*(S) of S are given by

N (S)=T, M\ C(M\ S,S), an open cone in T, M,
N;(S) = N,(S)° (where ° denotes the polar cone),
N(S) = U N.(S), an open convex cone in T'M,

xeM

N*(S) = | N;(9).

zeM

By loc. cit. Prop. 5.3.7, we have:

Lemma 2.4.7. Let U be an open subset of M and let x € OU. Then the
conditions below are equivalent:

(i) N.(U) is non empty,
(ii) Ny, (U) is non empty for all y in a neighborhood of ,

(iii) Ni(U) is contained in a closed convex proper cone with non empty
intertor in T M,

(iv) there ezists a local chart in a neighborhood of x such that identifying M
with an open subset of V, there exists a closed convex proper cone with
non empty interior v in 'V such that U is y-open in an open neighbor-
hood W of x, that is,

Wn{(UnNW)+~)cCU.

Definition 2.4.8. We shall say that an open subset U of M satisfies a cone
condition if for any x € OU, N,(U) is non empty.

By Lemmas 2.4.5 and 2.4.7 we have:

Proposition 2.4.9. Let U € Op,, . If U satisfies a cone condition, then U
1s Lipschitz.

Remark 2.4.10. One shall be aware that our definition of being Lipschitz
differs from that of Lebeau in [Leb16]. By Lemma 2.4.4, if U is Lipschitz in
Lebeau’s sense, then it is Lipschitz in our sense.
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A vanishing theorem

The next theorem is a key result for this paper and its proof is due to
A. Parusinski [Par16].

Theorem 2.4.11. (A. Parusinski) Let V' € Op,, . Then there exists a
finite covering V = J,c; V; with V; € Opy,,, such that the family {Vj};es is
a covering of V in Mgy and moreover H*(V;kyr) =~ 0 for all k > 0 and all

jel.

Recall that one denotes by pga: Mgy — Mg, the natural morphism of
sites.

Lemma 2.4.12. We have Rpga, k., >~ ks,

sal *

Proof. The sheaf H*(Rpsa,Kaz,) is the sheaf associated with the presheaf
U H*(U;kyy,). This sheaf if zero for k > 0 by Theorem 2.4.11. Q.E.D.

Lemma 2.4.13. Let M = R™ and set U = ]0,+o00[xR""!. Then we have
Rpsaky ~ ky .

Proof. (i) The sheaf H*(Rpsa,ky) is the sheaf associated with the presheaf
V +— H*(V;ky). Hence it is enough to show that any V € Op,, admits a
finite covering V' = (J,., V; in Mg such that H*(Vj;ky) =~ 0 for all k > 0.
We assume that the distance d is a subanalytic function. Let us set Vo =
VN (] —o0,0[xR* 1) and V' = V%", where we use the notation (1.2.1) with
e = 1. In our case we can write (1.2.1) as follows

Vi={zeV; dz,V\U) <d(z, M\ V)}.
This is a subanalytic open subset of V. By Lemma 1.2.2 we have

(2.4.2) {V',VNU} is a covering of V in Mg,).

(ii) Let us prove that RI'(V';ky) ~ 0. We denote by (x, 2’) the coordinates
on M = R™. Forz = (xq,2') with z; > 0, we have d(z, V\U) > d(z, M\U) =
xy. If (x1,2") € V' we obtain d(x, M \ V') > xy, hence B(z,z1) C V, where
B(z, ;) is the ball with center x and radius x;. This proves that V' N U is

contained in the right hand side of the following equality
(24.3)  V'NU={z=(21,2') €V; 2z, >0and B(z,z;) C V}

and the reverse inclusion is easily checked. It follows that, if (z1,2") € V'NU,
then (y;,2') € V' NU, for all y; € [0,71]. Let ¢: R* — {0} x R*"! be the
projection. We deduce:
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(a) ¢ maps V' NU onto V N U,

(b) ¢ Y(z) NV’ N U is an open interval, for any = = (0,2') € VN IU.
For any ¢ < 0 < d we have RI'(Jc,d[; kjoq) ~ 0. Hence (a) and (b) give
Rq.RI'v/ky ~ 0, by the base change formula, and we obtain RI'(V';ky) ~
RI'(R"; R¢.RIvky) ~ 0.

(iii) By Theorem 2.4.11 we can choose a finite covering of V N U in Mgy,
say {W,};er, such that H*(W;;ky) ~ 0 for all k > 0. By (2.4.2) the family
{V',{W;};jes} is a covering of V' in Mg,. By (ii) this covering satisfies the
required condition in (i), which proves the result. Q.E.D.

We need to extend Definition 2.4.1.

Definition 2.4.14. We say that U € Op,, is weakly Lipschitz if for each
x € M there exists a neighborhood V' € Op,, of z, a finite set I and
U; € Opy,,, i € 1, such that UNV = J,,; U; and

i€l

(2.4.4) for all @ # J C I, the set Uy =, U; is a disjoint union of
o Lipschitz open sets.

By its definition, the property of being weakly Lipschitz is local on M.

Example 2.4.15. The open subset U = R?\ {0} of R? is not Lipschitz
but it is weakly Lipschitz: setting Uy = {(x,y) € R?, +y > —|z|} we have
U=U,UU_ and Uy, U_, U, NU_ are disjoint unions of Lipschitz open
subsets.

Proposition 2.4.16. Let U € Op,,, and consider a finite family of smooth
submanifolds {Z;}icr, closed in a neighborhood of U. Set Z = J;o; Zi. As-
sume that

(a) U is Lipschitz,

(b) ZiNZ;NoU =0 for i # j, OU is smooth in a neighborhood of Z N OU
and the intersection is transversal,

(¢c) in a neighborhood of each point of Z N'U there exist a local coordinate
system (x1,...,x,) and for eachi € I, a subset I; of {1,...,n} such that

Z; = nje[i{x;xj = 0}.

Then U \ Z is weakly Lipschitz.
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Proof. Since the property of being weakly Lipschitz is local on M, it is enough
to prove the result in a neighborhood of each point p € U.

(i) Assume p € OU. We choose a local coordinate system (z1,...,x,) cen-
tered at p such that U = {x;z, > 0} and Z = {z;21 = --- = x,, = 0} (with
r <mn). For 1 <i < r, define U; = {z;2, > 0,2; # 0}. Then the family
{Ui}izl ..... r satisfies (244)

(ii) Assume p € U. We choose a local coordinate system (zi,...,x,) such
that Z; = (\;,c;{7;2; = 0}. For each j; € I; and g; = &1, define Uil =
{@; ez, > 0}, Set A=T[,.;({£1} x I;) and for o € A set Uy = (,c; Ui

i€l ~1

Then the family {U, }oca satisfies (2.4.4). Q.E.D.

Theorem 2.4.17. Let U € Op,,  and assume that U is weakly Lipschitz.
Then

(1) Rpsakun, = psa ko, =~ ko, is concentrated in degree zero.
(ii) For F € D"(kar,), one has RT(U; pl, F) ~ RI(U; F).

(iii) Let F € Mod(kar,) and assume that F is U-acyclic. Then RT'(U; pi F)
is concentrated in degree 0 and is isomorphic to F(U).

Note that the result in (i) is local and it is not necessary to assume here
that U is relatively compact.

Proof. (i)—(a) First we assume that U is Lipschitz. The first isomorphism is a
local problem. Hence, by Remark 1.1.11 and by the definition of “Lipschitz
boundary” the first isomorphism follows from Lemma 2.4.13. The second
isomorphism is given in Proposition 2.1.6.

(i)—(b) The first isomorphism is a local problem and we may assume that U
has a covering by open sets U; as in Definition 2.4.14. By using the Cech
resolution associated with this covering, we find an exact sequence of sheaves

in Mod(ky, ):
O0—-L,—--—Ly—>ky—0

where each L; is a finite sum of sheaves isomorphic to ky for some V' € Op,,
with V' Lipschitz. Therefore, Rpga, L; is concentrated in degree 0 by (i)—(a)
and the result follows.

(ii) follows from (i) and the adjunction between Rpg., and pl ;.

(iii) follows from (ii). Q.E.D.
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Example 2.4.18. Let M = R? endowed with coordinates # = (xy, ). Let
R > 0 and denote by Bg the open Euclidian ball with center 0 and radius
R. Consider the subanalytic sets:

Uy ={x € Br;x1 > 0,29 <23}, Uy={x € Bp;z; > 0,29 > —17},
Ui = U NUs, U:U1UU2:{$€BR;£U1>O}.

Note that {U;, Us} is a covering of U in Mg, but not in Mg,. Denote for short

by p: Mg, — Mg, the morphism pg,. We have the distinguished triangle in
Db (k sal):

(2.4.5) Rp.ki,, — Rp.ko, @ Rp.ko, — Rpoky = .

Since Uy,Us and U are Lipschitz, Rp,ky is concentrated in degree 0 for
V = U,,Uy, U. It follows that Rp.ky,, is concentrated in degrees 0 and 1.
Hence, we have the distinguished triangle

(2.4.6) p.ku,, = Rp.ku,, = Ripkp,[—1] = .

Let us prove that R!p,ky,, is isomorphic to the sheaf N introduced in (2.1.7).
We easily see that there exists a natural morphism k; — N which is surjec-
tive. Hence we have to prove that the sequence

kUl@kU2_>kU_>N

is exact. This reduces to the following assertion: if V' € Op,, satisfies
V C U and N(V) = 0, then {V NU;,V NUs} is a linear covering of V. We
prove this claim now.

Let V' C U be such that N(V) = 0. By the definition of N, there exists
A > 0 such that Us. ¢ V for all € > 0, where Uy, is defined in (2.1.5).
Hence there exists a sequence {(z1,,, Z2.n) }nen such that z;,, > 0, 1, — 0
when n — 00, |22,| < A:Uin and (21, 22,) € V, for all n € N. We define
f(z) = d((z,0), M \ V), for z € R. Then f is a continuous subanalytic
function and f(z1,) < Azi,,, for all n € N. The set {z €]0,1[; f(z) < Az?}
is subanalytic and relatively compact, hence it is a finite disjoint union of
points (but it is open) and intervals. Since it contains a sequence converging
to 0, it must contain some interval |0, zo[. We have then f(z) < Az? for all
z €]0, zo[. We deduce, for any (z1,z5) € R? with z; €]0, z¢],

(2.4.7) d((z1,29), M\'V) < |zo] +d((21,0), M\ V) < |25 + Az].
On the other hand we can find B > 0 such that, for any (z1,x9) € U,
(248) max{d((a:l, 372), M \ U1>, d((ﬂ?l, Iz), M \ Ug)} > |I2‘ + BQ?%

We deduce easily from (2.4.7) and (2.4.8) that {V N U,V N Uy} is a linear
covering of V.



Chapter 3

Operations on sheaves

All along this chapter, we follow Convention (1.1.1).

In this chapter we study the natural operations on sheaves for the linear
subanalytic topology. In particular, given a morphism of real analytic mani-
folds, our aim is to define inverse and direct images for sheaves on the linear
subanalytic topology. We are not able to do it in general (see Remark 3.3.7)
and we shall distinguish the case of a closed embedding and the case of a
submersion.

3.1 Tensor product and internal hom

Since My, is a site, the category Mod (k. ) admits a tensor product, denoted
+ ® ¢ and an internal hom, denoted .##om . The functor ® is exact and the
functor J#om admits a right derived functor. For more details, we refer
to [KS06, § 18.2].

3.2 Operations for closed embeddings

f-regular open sets

In this section, f: M — N will be a closed embedding. We identify M with
a subset of N. We assume for simplicity that dj, is the restriction of dy to
M and we write d for dy; or dy. We also keep the convention (1.1.2) for

d(z, ().

Definition 3.2.1. Let V' € Opy_ . We say that V' is f-regular if there exists
C > 0 such that

(3.2.1) dlz, M\ MNV)<Cd(z,N\V) forall ze M.

41
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e The property of being f-regular is local on M. More precisely, if M =
U,er Ui is an open covering and V' € Opy_ is f|y,-regular for each
1 € I, then V is f-regular.

o If V and W belong to Opy_ with f~1(V) = f~4(W), V. C W and V is
f-regular, then W is f regular.

Lemma 3.2.2. Let f: M — N be a closed embedding. The family {V €
Opp..; V is f-regular} is stable by finite intersections.

Proof. We shall use the obvious fact which asserts that for two closed sets
F} and F5 in a metric space,

d(x, F1 U Fy) = inf(d(z, F}),d(z, F3)).

Let Vi and V; be two f-regular objects of Opy_ . and let C; and C; be the
corresponding constants as in (3.2.1). Let x € M. We have

d(z, M\ (M OV, N V)

inf d(z, M\ (M NV))

irz;f(Cl- ~d(z, N\ V;))

(max ;) - (inf d(z, N\ V;))
= (max &) - d(z, N'\ (Vi N V3)).

IN

IN

Q.E.D.

Lemma 3.2.3. Let f: M — N be a closed embedding and let U € Opy,_.
Then there exists V € Opy. such that V is f-reqular and M NV =U.

Proof. We choose Vj € Opy,, such that U C V. We set
§ =inf{d(z, N\ Vy); v € U}

and V = (Vo \ (VonM))UU. We have § > 0. Let z € M and y € N be such
that d(z, N\ V) = d(z,y). If y € M, then d(z, N\ V) =d(x, M\ U). If
y & M, then d(z, N\V) = d(z, N\Vy) > J. In any case we have d(z, N\V) >
min{d(x, M\ U),d}. Hence (3.2.1) is satisfied with C' = max{1, D/d}, where
D = max{d(x, M\ U); v € M} < 0. Q.E.D.

Lemma 3.2.4. Let f: M < N be a closed embedding. Let V' € Opy_ be
an f-reqular open set and let {V;}ier be a linear covering of V', that is, a
covering in Opy_ . Then there exists a refinement {W}jcs of {Vitier such
that {W;}jes is a linear covering of V- and W; is f-regular for all j € J. We
can even choose J =1 and W; C'V;, for all i1 € I.
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Proof. Let C be a constant as in (3.2.1). Let Iy C I be a finite subset and
let C” > 0 be such that

(3.2.2)  d(x,N\V)<C" -maxd(x,N\V;) forallze N.

i€lp
Then, for any x € M we have

diz, M\ (M NV))<C-d(z, N\V)
(3.2.3) <CcC'- max d(z, N\ V).

We set D =2CC". For i € Iy we define W; € Opy_ by
Wy=WVi\M)U{zeMnV; dlz, M\ (MNV))<Dd(z,N\V;)}

and for i € I\ Iy we set W; = 0.

(i) Since D > CC’, the inequality (3.2.3) gives V' = (J;c; Wi. Let us prove
that {W;}icr, is a linear covering of V. We first prove the following claim,
for given € > 0,7 € Iy and x € N:

if d(z, N\ W;) < ed(z, N\ V),

then d(z, N\'V;) < ((1+ %) + $)d(z, N\ V).

(3.2.4)

If d(z, N\W;) = d(z, N\V;), the claim is obvious. In the other case we choose
y € N such that d(z, N \ W;) = d(x,y). Then we have y € V; \ W;. Hence
y € M and the definition of W; gives d(y, N\ V;) < D7 Yd(y, M \ (M NV)).
We deduce

d(x, N\ Vi) < d(z,y) +d(y, N\ V;)

z,y) + D rd(y, M\ (M NV))

z,y) +CD td(y, N\ V)

+ CDfl)d(a:, y) + CDfld(:c, N\V)

c14+CD)+COD Hd(z, N\ V),

QU QU X
—~~

VAN VAN VAN VAN VAN
—_

o~~~

which proves (3.2.4).

Now we prove that {W;}.cr, is a linear covering of V. We choose € small
enough so that (¢(1+ %)+ %) < & (recall that D = 2CC") and we prove,
for all z € N,

(3.2.5) dz, N\V)<e*t. max d(z, N\ W;).

Indeed, if (3.2.5) is false, then (3.2.4) implies d(z, N \'V;) < &d(z, N\V)
for some x € V and all ¢ € I;. But this contradicts (3.2.2).
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(ii) Let us prove that W; is f-regular, for any i € Iy. We remark that
Wi\ M = V;\ M. Hence d(x, N\ W;) = d(z, N\ V;) or d(z, N\ W;) =
dx, M \ (M N'W;)), for all z € M. In the first case we have, assuming
x € M NW; (the case x ¢ M N W; being trivial),

dlx, M\ (M NW;)) <d(x, M\ (MNV))
< Dd(x, N\ V) = Dd(z, N\ W,).

In the second case we have obviously d(z, M \ (M NW;)) < d(z, N\ W;).
Hence (3.2.1) holds for W; with the constant max{D, 1}. Q.E.D.

Thanks to Lemma 3.2.2, to f we can associate a new site.
Definition 3.2.5. Let f: M — N be a closed embedding.
(i) The presite N/ is given by Opys = {V € N,,; V is f-regular}.
(ii) The site N7, is the presite N/ endowed with the topology such that a
family {V; }ics of objects Opyy is a covering of V in N/ if it is a covering
in Ngj.

One denotes by p¢: Nga — st

. the natural morphism of sites.

Proposition 3.2.6. The functor f*: Oprl — Opyp, V= f7HV), induces

a morphism of sites f: Mgy — NSJ;I. Moreover, this functor of sites is left

exact in the sense of [KS06, Def. 17.2.4].

Proof. (i) Let C be a constant as in (3.2.1). Let {V;};es be a covering of V' in
Nsa and let [y C I be a finite subset and C” > 0 be such that d(y, N \ V) <
C" - max;er, d(y, N\ 'V;) for all y € N. We deduce, for z € M,

d(z, M\ M NV) C-d(xz,N\V)
CC"-maxd(z, N \'V;)

i€lp

cc'- mz}xd(x,M \ M NV).
1€lo

IA A

IN

(il) We have to prove that the functor f*: Op NS Opy,., is left exact in the
sense of [KS06, Def. 3.3.1}, that is, for each U € Op,,_, the category whose
objects are the inclusions U — f~}(V) (V € Oprl) is cofiltrant.

This category is non empty by Lemma 3.2.3 and then it is cofiltrant by
Lemma 3.2.2. Q.E.D.
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Hence, we have the morphisms of sites

N, sal

(3.2.6) l”f
My — N/,

Now we consider two closed embeddings f: M — N and g: N — L of
real analytic manifolds and we set h:=go f. We get the diagram of presites:

Pg

Ny —> L9 Le,
pfl

(3.2.7) NI Mo
~ g
fT \
M., h LN L,

where the objects of LI N L" are the open sets U € Opy,, which are both
g-regular and h-regular, g is induced by g and ), is the obvious inclusion.
We will use the following lemma to prove that the direct images defined in
the next section are compatible with the composition.

Lemma 3.2.7. (i) Let W € Opyn. Then W NN € Opyy.
(ii) Let W € Opy, be such that NNW € Opyys. Then W € Opya.

(ili) Let W € Oppy and V € Opys be such that V-C N NW. Then there
exists U € Opy N Opyn such that U C W and V C NNU.

Proof. (i) By hypothesis there exists C' > 0 such that d(x, M \ M N W) <
Cd(z, L\ W), for any x € M. Since d(x,L\ W) < d(z, N\ N NW) we
deduce (i).

(ii) By hypothesis there exist C, Cy > 0 such that, for any x € M,
dlx, M\ M NW) < Cid(x, N\ NNW) < C1Cod(x, L\ W),

which proves the result.

(iii) By Lemma 3.2.3 there exists Uy € Op;, such that N N Uy = V. Then
U=UyNW is g-regular by Lemma 3.2.2 and N NU = V. Hence U is also
h-regular by (ii). Q.E.D.
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Inverse and direct images by closed embeddings
Let us first recall the inverse and direct images of presheaves.

Notation 3.2.8. (i) For a morphism f: 7 — 9 of presites, we denote by
f. and fT the direct and inverse image functors for presheaves.
(ii) We recall that the direct image functor f, has a right adjoint f*: PSh(kz)
PSh(k ) defined as follows (see [KS06, (17.1.4)]). For P € PSh(kg) and
U € Opg, we have (f*P)(U) = Jim (V).

frv)—uU
Lemma 3.2.9. Let f: M — N be a closed embedding and let G € Mod (ks ).

sal

Then, using the notations of (3.2.6), we have picG € Mod(kn,,,)-

Proof. We have to prove that, for any V' € Opy,, and any covering of V' in
Nial, say {V; }ier, the following sequence is exact

(328) 0= lm GW) =[] lim ¢Wi) = [[ lm GW),

wecv iel WiCVi ijel Wi CVinv;

where W, W;, W;; run respectively over the f-regular open subsets of V', V;,
V; N'V;. The limit in the second term of (3.2.8) can be replaced by the limit
over the pairs (W, W;) of f-regular open subsets with W C V, W; C W NV,.
Then the family {W N V;};c; is a covering of W in Ng,. By Lemma 3.2.4 it
admits a refinement {W/};e; where the W/’s are f-regular and W/ C V;. We
may as well assume that W; contains W/, for any ¢ € I. Then {W;};cs is a
covering of W in N7 . Hence the second term of (3.2.8) can be replaced by

lim  lim [,
WV {Witier el
where W runs over the f-regular open subsets of V' and the family {W;};c;
runs over the coverings of W in st;l such that W; c W NV,.
Now in the third term of (3.2.8) we may assume that I;; contains W;NW;
and the exactness of the sequence follows from the hypothesis that G &

Definition 3.2.10. Let f: M — N be a closed embedding. We use the
notations of (3.2.6).

(i) We denote by feas: Mod(Mga) — Mod(Ngar) the functor pfc o ﬁ and we
call fia. the direct image functor.

(ii) We denote by fs;f: Mod(Nga) — Mod(Mgy) the functor f’l o py, and
we call £ the inverse image functor.
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For F € Mod(Mg,), G € Mod(Nga), U € Op,,, and V' € Opy

obtain

sal’

(3.2.9) D(V; fanF) =~ lim  F(MnW),
WeOp yr, WCV
(3.2.10) D(U; f1G) ~ ling G(W).

WeOp, s, WNM=U

Lemma 3.2.11. Let f: M — N and g: N — L be closed embeddings and
let h = go f. We use the notations of the diagram (3.2.7). There is a natural
isomorphism of functors

(3.2.11) Geoph =5 A} o7,

Proof. The morphisms of functors Ay, o g, o pfc ~ G, 0py, O pfc — g, gives
by adjunction the morphism in (3.2.11). To prove that this morphism is
an isomorphism, let us choose G € PSh(kys) and W € Op;,. We get the
morphism

(3.2.12) LW (g- © p)(G)) = D(W: (X, 09,)(@)),

where T(W; (g, © p})(G)) ~ Jim G(V) and T(W; (A 03.)(G)) ~
VEOp, , VCNNW
Im  G(NNU). Then the result follows from Lemma 3.2.7.  Q.E.D.
U€Op, 1, UCW

Proposition 3.2.12. Let f: M — N and g: N — L be closed embeddings
and let h = go f. There is a natural isomorphism of functors gsax © fsaxe —

hsal* .

Proof. Applylng Lemma 3.2.11, we define the isomorphism as the composi-
tion p} 0 G 0 pl o f. 2 ph o M, 07, 0 [ ~ p}, o .. QED.

Theorem 3.2.13. Let f: M — N be a closed embedding.
(i) The functor fu. is right adjoint to the functor f.|
(ii) The functor fa is left exzact and the functor fsal 15 ezxact.

(iii) Ifg: N — L s cmother closed embedding, we have (go f)salx 2 Gsalx© fsals
and (g0 f)al = fai © gal-
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Proof. (i) We have fo. = pfc o f. and fol = 1o pf,. Since (f_l,ﬁ) and
(ps,, p?) are pairs of adjoint functors between categories of presheaves and
since the category of sheaves is a fully faithful subcategory of the category
of presheaves, the result follows.

(ii) By the adjunction property, it remains to show that functor fsjﬂl is left

exact, hence that the functor ffl is exact. By Proposition 3.2.6, the mor-
phism of sites f: Mgy — Nfl is left exact in the sense of [KS06, Def. 17.2.4].

sa.

Then the result follows from [KS06, Th. 17.5.2].

(iii) The functoriality of direct images follows from Proposition 3.2.12 and
that of inverse images results by adjunction. Q.E.D.

3.3 Operations for submersions

Let f: M — N denote a morphism of real analytic manifolds. In this section
we assume that f is a submersion. If f is proper, it induces a morphism of
sites Mg — Ngal, but otherwise, it does not even give a morphism of presites.
Following [KS01] we shall introduce other sites My, (denoted Mj, in loc. cit.),
similar to Mg, but containing all open subanalytic subsets of M, and Mg,
similar to Mg,. Then Mg, has the same category of sheaves as My, and any
submersion f: M — N induces a morphism of sites fip1: Mgy — Ngpi-

Another subanalytic topology

One denotes by Op,,, the category of open subanalytic subsets of M and
says that a family {U;}ic; of objects of Op,, is a covering of U € Op,,, if
U; C U for all i € I and, for each compact subset K of M, there exists a finite
subset J C I such that Ujej UiN K = UnNK. We denote by My, the site
so-defined. The next result is obvious (and already mentioned in [KSO01]).

Proposition 3.3.1. The morphism of sites Mg, — M, induces an equiva-
lence of categories Mod(ky, ) ~ Mod(kaz,)-

Similarly, we introduce another linear subanalytic topology My, as fol-
lows. The objects of the presite My, are those of My,, namely the open
subanalytic subsets of M. In order to define the topology, we have to gener-
alize Definitions 1.1.1 and 1.1.5.

Definition 3.3.2. Let {U;}ic; be a finite family in Op,, . We say that this
family is 1-regularly situated if for any compact subset K C M, there is a
constant C' such that for any x € K

(3.3.1) diz, M\ | JUy) <C- max d(x, M\ U).

iel
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Definition 3.3.3. A linear covering of U € Op,,, is a small family {U;}ic;
of objects of Op,,, such that U; C U for all 7 € I and

for each relatively compact subanalytic open subset W C M there
(3.3.2)¢ exists a finite subset Iy C I such that the family {W N U;}ieg, is
L-regularly situated in W and {J;c, (UinW)=UNW.

Proposition 3.3.4. (i) The family of linear coverings satisfies the axioms
of Grothendieck topologies.

(ii) The functor p. associated with the morphism of sites p: Mg, — Mg
defines an equivalence of categories Mod(kyy,,) >~ Mod (ks )-

The verification is left to the reader.

Inverse and direct images

Proposition 3.3.5. Let f: M — N be a morphism of real analytic mani-
folds. We assume that f is a submersion. Then [ induces a morphism of
sites fop1: Mgpi — Napi.

Proof. Let V' € Opy, and let {V;}ic; be a linear covering of V. We have to
prove that {f~'V;}ics is a linear covering of f~'V. As in the case of Mj,,
the definition of the linear coverings is local (see Corollary 1.1.9). Hence we
can assume that M = N x L. We can also assume that dy((z,y), (2, ")) =
max{dy(x,z'),dr(y,y)}, for x,2’ € N and y,y’ € L. Then for any (z,y) €
M we have dy((x,y), N\ f'V) = dy(x, N\ V) and the result follows easily.

Q.E.D.

By Propositions 3.3.4 and 3.3.5 any submersion f: M — N between
real analytic manifolds induces a pair of adjoint functors ( fsgll, fsalx) between
Mod (Mg, ) and Mod(Ng,) and we get the analogue of Theorem 3.2.13:
Theorem 3.3.6. Let f: M — N be a submersion.

(i) The functor fi. is right adjoint to the functor f,;.

(ii) The functor fe. is left exact and the functor f.] is exact.

(i) If g: N — L is another submersion, we have (g © f)sax = Gsalx © foals
and (go f)o1 =~ fal ogal-
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Remark 3.3.7. Our two definitions of fy., for closed embeddings and sub-
mersions do not give a definition for a general f by composition. For example
let us consider the following commutative diagram

M=R2"* R3
| T
p q
R ! __N=R?

where i(z,y) = (7,y,0), p(z,y) = z, ¢(r,y, 2) = (2, 2) and j(z) = (2,0). For
V € Opy,, we define two families of open subsets of f~!(V):

L={MnW;We OpRgb, W C ¢ 'V, W is i-regular},
L={p ' RNV'); V'€ Opy,, V' CV, V'is j-regular}.

Then, for any F' € Mod (M) we have

(3.3.3)  T(V;qusisan F) ~ (¢ V5 g F) ~ lim F(U),
Uel,
(3.3.4)  T(V; jsatpsan F) = lim FRNV; psare F) =~ lim F(U).

V'cV, V' j-regular Uel,

Let us take for V' the open set V = {(z, z); 23 > 2%}. Then the two families
I, and I, of open subsets of f~*(V) = {(z,y); x > 0} are not cofinal. Indeed
the set Wy C R3 given by Wy = {(z,y, 2); 3 > y? + 2%} is i-regular. Hence
M N Wy = {(x,y); * > y?} belongs to I;. On the other hand we see easily
that, if V' is j-regular and V' C V| then RNV’ C e, +o0], for some £ > 0.
Hence M N Wj is not contained in any set of the family Is.

Let us define F' = hgk[o,e]x{o} € Mod(Mgy,). Taking U = M N W,

e>0

in (3.3.3) we can see that I'(V; gsasisai« F') =~ k. On the other hand (3.3.4)
imphes F(V;jsal*psal*F) ~ 0. Hence QSal*isal* ;ﬁ jsal*psal*~



Chapter 4

Construction of sheaves

On the site Ms,, the sheaves €, P and Dbtp below have been constructed
in [KS96,KS01]. By using the hnear topology we shall construct sheaves on
My, associated with more precise growth conditions.

All along this chapter, we follow Convention 1.1.1.

4.1 Sheaves on the subanalytic site

Temperate growth

For the reader’s convenience, let us recall first some definitions of [KS96,
KSO01]. As usual, we denote by €7 (resp. 7)) the sheaf of complex valued
functions of class €>° (resp. real analytic), by Dbys (resp. Hr) the sheaf of
Schwartz’s distributions (resp. Sato’s hyperfunctions) and by %, the sheaf
of finite-order differential operators with coefficients in .o7;.

Definition 4.1.1. Let U € Op,, and let f € €;7(U). One says that f has
polynomial growth at p € M \ U if it satisfies the following condition. For a
local coordinate system (z1, ..., x,) around p, there exist a sufficiently small
compact neighborhood K of p and a positive integer N such that

(4.1.1) sup (d(z, K\ U))"|f(2)] < oo

We say that f is temperate at p if all its derivatives have polynomial growth
at p. We say that f is temperate if it is temperate at any point p € M \ U.

For U € Op,,.., we shall denote by €y;""(U) the subspace of €52(U)
consisting of temperate functions.

o1
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For U € Op,,,, we shall denote by Db (U) the space of temperate
distributions on U, defined by the exact sequence

0 — Tanw (M; Dbys) — T(M; Dbyy) — DOY(U) — 0.

It follows from (1.1.3) that U ~ %5;"?(U) is a sheaf and it follows from
the work of Lojasiewicz [Loj59] that U ~ Db (U) is also a sheaf. We denote
by €. ’:p and DbE\Za these sheaves on M,,. The first one is called the sheaf of
€°°-functions with temperate growth and the second the sheaf of temperate
distributions. Note that both sheaves are I'-acyclic (see [KS01, Lem 7.2.4] or
Proposition 4.1.4 below) and the sheaf Db}, is flabby (see Definition 2.2.6).

We also introduce the sheaf €77 of €*°-functions on M, as

oo . 00
Crr., = PsaxCrr -

We denote as usual by %) the sheaf of rings of finite order differential oper-
ators on the real analytic manifold M. If 1j;: M — X is a complexification
of M, then @y, ~ 1;; Zx. We set, following [KSO01]:

(4.1.2) D = Psar Dt
The sheaves €y, €57, and Dby are Zy,,-modules.

Remark 4.1.2. The sheaves €, ﬁ:p and Db‘j\}/}sa are respectively denoted by
€yt and DU, in [KSO1].

A cutoff lemma on M,

Lemma 4.1.3 below is an immediate corollary of a result of Hormander [H6r83,
Cor.1.4.11] and was already used in [KS96, Prop. 10.2].

Lemma 4.1.3. Let Z; and Zy be two closed subanalytic subsets of M. Then
there exists 1 € CrP(M \ (Z1 N Zy)) such that ) = 0 on a neighborhood of
Zy\ Zy and 1 =1 on a neighborhood of Zy \ Zy.

Proposition 4.1.4. Let .F be a sheaf of %ﬂfjs:p—modules on Ms,. Then F is
[M-acyclic.

Proof. By Proposition 2.2.4, it is enough to prove that for U;, U in Op,,
the sequence 0 — .7 (U, UUy) — F(Uy)®F (Us) — F# (UyNUy) — 0 is exact.
This follows from Lemma 4.1.3 (see [KS96, Prop. 10.2] or Proposition 4.3.4
below). Q.E.D.
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Gevrey growth

The definition below of the sheaf €,;"*" is inspired by the definition of the
sheaves of #*°-functions of Gevrey classes, but is completely different from
the classical one. Here we are interested in the growth of functions at the
boundary contrarily to the classical setting where one is interested in the
Taylor expansion of the function. As usual, there are two kinds of regularity
which can be interesting: regularity at the interior or at the boundary. Since
we shall soon consider the Dolbeault complexes of our new sheaves, the in-
terior regularity is irrelevant and we are only interested in the growth at the
boundary.

We refer to [Kom73b] for an exposition on classical Gevrey functions or
distributions and their link with Sato’s theory of boundary values of holo-
morphic functions. Note that there is also a recent study by [HM11] of these
sheaves using the tools of subanalytic geometry.

In § 4.2 we shall define more refined sheaves by using the linear subana-
lytic topology.

Definition 4.1.5. Let U € Op,,. and let f € €;7(U). We say that f has
0-Gevrey growth at p € M \ U if it satisfies the following condition. For a
local coordinate system (z1, ..., x,) around p, there exist a sufficiently small
compact neighborhood K of p, h > 0 and s > 1 such that

(4.1.3) sup (exp(—h-d(z, K\ U)'"*)|f(z)] < .

ze KNU

We say that f has Gevrey growth at p if all its derivatives have 0-Gevrey
growth at p. We say that f has Gevrey growth if it has such a growth at any
point p € M\ U.

We denote by G, (U) the subspace of €55 (U) consisting of functions with
Gevrey growth and by €% the presheaf U +— G (U) on Mi,.

The next result is clear in view of (1.1.3) and Proposition 4.1.4.
Proposition 4.1.6. (a) The presheaf €y, %" is a sheaf on Ms,,
(b) the sheaf €y is a Dy, -module,

(c) the sheaf €3> is a €yp P -module,

(d) the sheaf €y is I'-acyclic.
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4.2 Sheaves on the linear subanalytic site

By Lemma 2.3.10, if a sheaf .# on M, is [-acyclic, then Rpg,,.# is concen-
trated in degree 0. This applies in particular to the sheaves &y, ’:p, Dbtpsa
and & 5.

In the sequel, we shall use the following notations. We set

oo,tp 00,tp tp L tp 0o,gev | 00,gev
Cg Moy - psal*Cnga s Dszal = psal*Dsza7 %Msal = psal*(nga .

Temperate growth of a given order

Definition 4.2.1. Let U € Opy,, let f € €37(U) and let t € R>o. We
say that f has polynomial growth of order < t at p € M \ U if it satisfies

the following condition. For a local coordinate system (z1, ..., z,) around p,
there exists a sufficiently small compact neighborhood K of p such that
t
(4.2.1) sup (d(z, K\ U))'|f(z)| < oc.
zeKNU

We say that f is temperate of order t at p if, for each m € N, all its derivatives
of order < m have polynomial growth of order < ¢+ m at p. We say that f
is temperate of order ¢ if it is temperate of order ¢ at any point p € M \ U.

For U € Op,,.., we denote by €y (U) the subspaee of €55 (U) consisting
of functions temperate of order ¢ and we denote by (500 the presheaf on Mg,
so obtained.

The next result is clear by Proposition 2.1.8.

Proposition 4.2.2. (i) The presheaves (t > 0) are sheaves on Mgy,
(i) the sheaf ‘5]\040? 1s a sheaf of rings,

(iii) fort > 0, €y tl is a Gy —module and there are natural morphisms
00,t oot oot+t
Cg ®(5000 % bal % bd

1

We also introduce the sheaf
oco,tpst | 00,
(ngal : QCK Mgar*
t
(Of course, the limit is taken in the category of sheaves on Mg,.) Then, for

0 <t <1, there are natural monomorphisms of sheaves on M, :

(4.2.2) %“0 = Crpl %‘m = Crp P s GrptP

al

Note that the inclusion €y, tlp s G tlp is strict since there exists a function
f (say on an open subset U of R) with polynomial growth of order < ¢ and
such that its derivative does not have polynomial growth of order < ¢ + 1.
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Gevrey growth of a given order

Definition 4.2.3. Let U € Op,,_, let s €]1,400[ and let f € €37 (U). We
say that f has 0-Geuvrey growth of type (s) at p € M \ U if it satisfies the
following condition. For a local coordinate system (z1,...,z,) around p,
there exists a sufficiently small compact neighborhood K of p such that

(4.2.3) sup (exp(—h-d(z, K\ U)'™))|f(z)] < o0

ze KNU

for all h €]0,+oo[. We say that f has Gevrey growth of type (s) if all its
derivatives have 0-Gevrey growth of type (s) at p. We say that f has Gevrey
growth of type (s) if it has such a growth at any point p € M \ U.
Similarly, one defines f of Gevrey growth of type {s} when replacing
(4.2.3) for all h €]0, +o0[ with the same condition for some h €]0, +o00].

Definition 4.2.4. For U € Op,, and s €]1,+oo[, we denote by GS\‘})(U)

and GE}(U ) the spaces of functions of Gevrey growth of type (s) and {s},
respectively.
We denote by %ﬂoo’gev(s) and Cﬁm’gev{s} the presheaves on My, so obtained.

Clearly, the presheaves ‘500 gev ) and %”AO/Z ’jev{s} do not depend on the
choice of the distance.

Proposition 4.2.5. (i) The presheaves €y, gev(s and Gy * gev{s} are sheaves
on Msal7

(ii) the sheaves ‘Kff’gev(s) and ‘Kfj’gev{s} are €y P -modules,

o) gev(s and (goo gev{s}

(iii) the presheaves €y are I'-acyclic,

(iv) we have natural monomorphisms of sheaves on Mg for 1 < s < s
G s I o ) o e,

Proof. (i), (ii) and (iv) are obvious and (iii) will follow from (ii) and Propo-

sition 4.3.4 below (see Corollary 4.3.5). Q.E.D.

We set

(goo gev st oo,gev{s}

g Cngal
s>1
Hence, we have monomorphisms of sheaves on M, for 0 <t and 1 < s
00,0 00,t 00,tp st 0o, tp
%Msal % Cngal (ﬁ (ngal % %Msal

0o,gev(s) co,gev{s} 00,gev st 00,gev 00
= Cngal = (ngal = (ngal = (ngal = %Msal.
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. : ¢ tp st ,
Definition 4.2.6. If %, . is one of the sheaves €%, @0t goose(®)
sal Moy Mg ? Mia1 ?

oo ,gev{s} oo, gev st 7 g
G or G, we set Fap, = pey F

Let us apply Theorem 2.4.17 and Corollary 4.3.5. We get that if U &
Opy,,, is weakly Lipschitz and if %, denotes one of the sheaves above,
then

R’F(U7 c3-67]\45a) = F<U7 cgﬁ]\4sal)'

We call €y} :, 9 :pSt, G, fev(s), G, fev{s} and €y, 5" ** the sheaves on
M, of €>°-functions of growth ¢, strictly temperate growth, Gevrey growth
of type (s) and {s} and strictly Gevrey growth, respectively. Recall that on
Ms,, we also have the sheaf € ’:p of €>°-functions of temperate growth, the

sheaf Dby  of temperate distributions and the sheaf €y, 5" of ¢"°-functions
of Gevrey growth.

Rings of differential operators

Let M be a real analytic manifold. Recall that &,; denotes the sheaf of finite
order analytic differential operators on M and that we have set in (4.1.2)

(424) '@Msa = psa!-@M-
Now we set
(425) '@Msal = psal*‘@Msa'

Hence, 2y, is the sheaf on My, associated with the presheaf U +— Z,(U)
and Ms, is its direct image on Mg,. We define similarly the sheaves Z4(m)
of differential operators of order < m on the site 7 = M, Mg,, Mgy.

Lemma 4.2.7. There are natural morphisms P, (m) ® €y — €y ™
making CKAO/Z’LP ** and CKACZ’:F left D, -modules.

The sheaves CKAO/Z’geV(S) and CKACZ’geV{S} are naturally left D, -modules.

al al

Proof. This follows immediately from Definitions 4.2.1 and 4.2.3.  Q.E.D.

By using the functor p.,;, we will construct new sheaves (in the derived
sense) on M, associated with the sheaves previously constructed on Mg,;.

Theorem 4.2.8. (i) The functor psa,: Mod(Za,) — Mod(Zas,,) has fi-
nite cohomological dimension.

(ii) The functor Rpsa,: D(Zm.,) — D(Za,,) commutes with small direct
sums.



4.3. A REFINED CUTOFF LEMMA 27

(iii) The functor Rpsa, in (i) admits a right adjoint p.: D(Zar,) — D(Zs,)-
(iv) The functor p., induces a functor p.,;: DY (Zyr.,) — DT (ZaL,).-

Proof. Consider the quasi-commutative diagram of categories

Mod(Zhy,, ) —=2—~ Mod(Zhy.,)

forl fort

MOd(CMsa) A MOd(CMsal ) :

The functor for: Mod(Zas,) — Mod(C,y,,) is exact and sends injective ob-
jects to injective objects, and similarly with Mg, instead of Mg,. It follows
that the diagram below commutes:

Rpsal «

D(‘@Msa) D(‘@Msal)
forl forl
D(CMsa> et D(CMsal ) :

Moreover, the two functors for in the last diagram above are conservative.
Then
(i) and (ii) follow from the corresponding result for C,,-modules.

(iii) and (iv) follow from the Brown representability theorem, (see Proposi-
tion 2.3.4). Q.E.D.

4.3 A refined cutoff lemma

Lemma 4.3.1 below will play an important role in this paper and is an im-
mediate corollary of a result of Hormander [H6r83, Cor.1.4.11]. Note that
Hormander’s result was already used in [KS96, Prop. 10.2] (see Lemma 4.1.3
above).

Hormander’s result is stated for M = R™ but we check in Lemma 4.3.2
that it can be extended to an arbitrary manifold.

Lemma 4.3.1. Let Z; and Zy be two closed subsets of M :=R"™. Assume
that there exists C' > 0 such that

(4.3.1) d(x,Zy N Zy) < Cld(z, Z1) + d(x, Z3)) for any x € M.

Then there exists 1 € €yy°(M\(Z,NZ5)) such that ¢ = 0 on a neighborhood
of Z1\ Zy and v =1 on a neighborhood of Zy \ Z;.
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Lemma 4.3.2. Let M be a manifold. Let Z1 and Zsy be two closed subsets of
M such that M\ (Z1 N Zy) is relatively compact and such that (4.3.1) holds
for some C' > 0. Then the conclusion of Lemma 4.53.1 holds true.

Proof. We consider an embedding of M in some RY and we denote by dy/,
dg~ the distance on M or RY. We have a constant D > 1 such that
D™y (2, y) < dy(z,y) < Ddgn(z,y), for all z,y € M\ (Z, N Zs).

Let x € RY and let 2/ € M such that dgn(z,2') = dgn(z,M). In
particular dyn(x,2") < dg~ (2, Z1). Then we have, assuming ' & Z1 N Zs,

dpn (2, Z1 N Zs) < dgn(z,2") + Ddp (2, Z1 N Zs)

< dgn(z,2") + DC(dp (2, Z1) + dpr (2, Z5))

< dgn(x,2') + D*C(dpn (2', Z1) + dpn (2, Z5))

< (14 2D*C)dgn (x,2") + D*C(dgn (2, Z1) + dgn (2, Z5))

< (14 3D*C)(dgn (z, Z1) + dgn (, Z5)).
If ' € Z1NZ;y, then dgn (2, Z1 N Zy) = dgn (x, M) < dgn(z, Z71) and the same
inequality holds trivially. Hence we can apply Lemma 4.3.1 to Z;, Z, C RN
and obtain a function ¢ € Cov’(RY \ (Z1 N Z»)). Then ¥|un (2,nz) belongs
to %]\ZO’O(M \ (Z1 N Z,)) and satisfies the required properties. Q.E.D.
Lemma 4.3.3. Let Uy, U; € Opy, and set U = Uy UU,. We assume that

{U1,Us} is a linear covering of U. Then there exist Ul C U;, i = 1,2, and
Y € EGP(U) such that

(i) {U],U; NUs} is a linear covering of U,

(i) Gl = 0 and Pl = 1.

Proof. We choose Ul Cc U, i =1,2 as in Lemma 1.2.4 and we set Z; =
(M\U)UU],. Then the result follows from Lemmas 1.2.4 and 4.3.2. Q.E.D.

Proposition 4.3.4. Let .F be a sheaf of %ﬁi—modules on Mgy. Then F is
[-acyclic.

Proof. By Proposition 2.2.4, it is enough to prove that for any {U;, Us} which
is a covering of Uy U Uy, the sequence 0 — % (U, UU;) — F# (Uy) @ % (Uy) —
F(UyNUy) — 0 is exact. This follows from Lemma 4.3.3, similarly as in the
proof of [KS96, Prop. 10.2]. The only non trivial fact is the surjectivity at
the last term, which we check now.

We choose U] C U;, i = 1,2, and ¢ € ‘KAOJO’O(U) as in Lemma 4.3.3. Let
s € DUy NUy; #). Since {U],U; N Uy} is a linear covering of U;, i = 1,2, we
can define s; € I'(Uy; ) and s9 € I'(Usy; %) by

siloinw, = ¥ - s, Sl’U{ =0 and sylp,np, = (1—9) s, 32‘U§ =0.
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Then s1|y,nu, + S2luynu, = S, as required. Q.E.D.

Corollary 4.3.5. The sheaves %AOZSIP“, ‘KA‘ZZ", Dbg\zal, %\oj;l (t € Rso),

00,gev(s) oo,gev{s} 00,gev st 00,gev .
G and €’ (s>1), €= and €y 5 are T-acyclic.

Let #),, denote one of the sheaves appearing in Corollary 4.3.5 and let
F s = Pray T, € DT(Zar,). Then, if U is weakly Lipschitz, RT(U; %)
is concentrated in degree 0 and coincides with .Zy,_ (U).

4.4 A comparison result

In the next lemma, we set M := R"™ and we denote by dx the Lebesgue
measure. As usual, for « € N* we denote by D¢ the differential opera-
tor (0/0y,)* ... (9/0y, )" and we denote by A = 37"  §?/02? the Laplace
operator on M.

In all this section, we consider an open set U € Op,, . We set for short

d(z) =d(z, M\ U).
For a locally integrable function ¢ on U and s € R, we set

(4.4.1) lplloo = sup (@)l lell3 = ld(@) ()]s

Proposition 4.4.1. There exists a constant C, such that for any locally
integrable function ¢ on U, one has the estimate for s > 0:

(4.4.2) D¢l < Calllels + 1ADZ p[511+2).

Proof. We shall adapt the proof of [KS96, Prop. 10.1].
(i) Let us take a distribution K(z) and a ¢*° function R(z) such that

§(x) = AK(z) + R(x)

(where 6(x) is the Dirac distribution at the origin) and the support of K(z)
and the support of R(x) are contained in {x € M;|z| < 1}. Then K(x) is
integrable. For ¢ > 0 and for a function v set:

Ve(z) = Pp(c '), l~(c ="K, and Ec =c "R..
Then we have again

5(z) = AK.(z) + Re(z).
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Hence we have for any distribution 1

(443) () = / oz — y)(A0) (w)dy + / Rz — v (y)dy.

Now for x € U, set ¢(z) = d(x)/2. We set

|/K (z — y)(AD)(y)dyl.

= !/Rc(z)(ﬂf —y)Dye(y)dy|.

Since [ |l~(c(x)(x —y)ldy = c(zx)? [ |K —y)|dy, we get

/ Roy(@ — y)ldy < Crd(x)?

for some constant C}.
(ii) We have

Ay(z) < ( sup DQA(,O /|Kc(x r—y)ldy
|z—y|<c(z)

(s [(D5AR))]) - d(x)”

lz—y|<c(x)

IN

Hence,

d@) o au(m) < O swp [(D5A)y)]) - dla) o

lz—y|<c(x)
(444) < 2s+|oz\+201 ( | Sl|1p( ) |d(y)5+|a|+2(D§‘Ago)(y)|>
z—y|<c(z
< 2s+|a\+20 HAD SOHS-§-|04|-%-2‘

Here we have used the fact that on the ball centered at = and radius ¢(x),
we have d(x ) < 2d(y).

(iii) Since R «(x —y) is supported by the ball of center x and radius ¢(x), we
have

Ba(z) = I/B( ())D;"ﬁc(m(x—y)so(y)dyl
= c(a) ] (@) (DyR)e()(x — y)p(y)dy|
B(w,c(x))
< c(x)7 sup /|D°‘R )|dy.
|z— y|<cz
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Here we have used the fact that DY Ry (y) = c(x) ™1/ (DSR) () (y).
As in (ii), we deduce that

d(x)sﬂa‘Ba (z)

IN

Cy sup |d(y)e(y)|

|z—y|<c(z)

(4.4.5) < Coflolls-

A

for some constant C.
(iv) By choosing 1 = D% in (4.4.3) the estimate (4.4.2) follows from (4.4.4)
and (4.4.5). Q.E.D.

4.5 Sheaves on complex manifolds

Let X be a complex manifold of complex dimension dx and denote by Xy
the real analytic underlying manifold. Denote by X the complex manifold
conjugate to X. (The holomorphic functions on X are the anti-holomorphic
functions on X.) Then X x X is a complexification of Xg and Oy is a
D x-module which plays the role of the Dolbeault complex. In the sequel,
when there is no risk of confusion, we write for short X instead of Xg.

Notation 4.5.1. In the sequel, we will often have to consider the composition
Rpsal, © psa- For convenience, we introduce a notation. We set

(451) Psly! = Psalx © Psal-

Sheaves on complex manifolds

By applying the Dolbeault functor R.#om . (P10, *) to one of the
sal

sheaves

00,tp st 0o,tp 00,gev(s) co,gev{s} 00,gev st 00,gev 00
%X ’ CgX Cngal ’ Cngal ’ %Xsal ’ (ngal ’ Cngal ?

sal sal

we obtain respectively the sheaves

tp st tp gev(s) gev{s} gev st gev
ﬁX ﬁxsal ’ ﬁXsal ) ﬁXsal ) ﬁXsal ’ ﬁX ﬁX

sal ’ sal’ sal”

All these objects belong to D¥(Zx_,). Then we can apply the functor p.,
and we obtain the sheaves

tp st tp gev(s) gev{s} gev st gev
ﬁXsa ’ ﬁX%a ) ﬁXia ) ﬁxea ) ﬁXQa ) ﬁXia ’ ﬁan :

Note that the functor p.,; commutes with the Dolbeault functor. More pre-
cisely:
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Lemma 4.5.2. Let ¢ be an object of D*(Pxx ). There is a natural isomor-
phism

(4.5.2) p!salR%”omgY (psin O%, €x.,) ~ Ritom %Sa(psa!ﬁy, p!saICngal)'

1

Proof. This follows from the fact that the Zx-module 0% admits a global
locally finite free resolution. Q.E.D.

Recall the natural isomorphism [KS96, Th. 10.5]
ﬁ;&a = R%ﬂom%w(psa,ﬁy, 'Dbg?sa).
Proposition 4.5.3. The natural morphism
ope - 0%,
is an isomorphism in DY (Dx_,).

Proof. Let U € Op,,_. Consider the diagram (in which M = R*")

0——TD(U; ') —S=T(U; 63 ') —— 0

| |

0——=T(U;6p'") —2=T(U; 6yp'F) — 0.

As in the proof of [KS96, Th. 10.5], we are reduced to prove that the vertical
arrows induce a qis from the top line to the bottom line. We shall apply
Proposition 4.4.1.

(i) Let ¢ € I'(U; CK]\Z’:IP) with Ap = 0. There exists some s > 0 such that
ld(2)¢||oe < 00. Then ||d(x)*FD%p| < 0o by (4.4.2).

(ii) It follows from [KS96, Prop.10.1] that the arrow in the bottom is surjec-
tive. Now let 1 € T'(U; €y, "P™). There exists ¢ € T(U; 6y, ") with Ap = 1.
Then it follows from (4.4.2) that ¢ € T'(U; %]Z’:lpSt). Q.E.D.

Remark 4.5.4. It is natural to expect that the morphism
¢
0% = 0%

is an isomorphism in D¥(Zx_,). The proof of Proposition 4.5.3 can be
adapted with the exception that one does not know if the map A: €y %" (U) —
Cx 5 (U) is surjective.
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Solutions of holonomic Z-modules

The next result is a reformulation of a theorem of Kashiwara [Kas84].

Theorem 4.5.5. Let A be a reqular holonomic Px-module. Then the nat-
ural morphism

RAom ,, (psar# ﬁ;&a) — RAtom,, (psar A, Ox_,)
1S an isomorphism.

The next result was a conjecture of [KS03] and has recently been proved
by Morando [Mor13] (see also [KS15] for a rather different proof) by using the
deep results of Mochizuki [Moc09] (completed by those of Kedlaya [Ked10,
Ked11] for the analytic case).

Theorem 4.5.6. Let .# be a holonomic Px-module. Then for any G €
D]IbR-c(CX)?

pRAom (G, RAom 5, (psar-# 0y ) € Dp.(Cx).

It is natural to conjecture that this theorem still holds when replacing
the sheaf 07 with one of the sheaves ﬁgev ? ﬁgev{s}

In [KS03], the object H#om ,  (psa-#, 6" ; ) is exphc1t1y calculated when
X = C and, denoting by ¢ a holomorphic coordinate on X, A is associated
with the operator 120, + 1, that is, .4 = Zx exp(1/t).

It is well-known, after [Ram78] (see also [Kom73]), that the holomorphic
solutions of an ordinary linear differential equation singular at the origin
have Gevrey growth, the growth being related to the slopes of the Newton

polygon.

Conjecture 4.5.7. Let .# be a holonomic Zx-module. Then the natural
morphism

Rﬁomﬁ (psa"/l ﬁgev> - Rjiﬂomj (psa!'///a Ox..)
is an isomorphism, or, equivalently,
RA#om ,,  (psart , OX.) = Rpsa,Rtom , (M, Ox).

Moreover, there exists a discrete set Z C R.; such that the morphisms
Rotom , (M, ﬁ)gi:(s)) — Rotom, (A, ﬁ)giz(t)) are isomorphisms for s <
t in the same components of R+, \ Z.



64

CHAPTER 4. CONSTRUCTION OF SHEAVES



Chapter 5

Filtrations

5.1 Derived categories of filtered objects

In this section, we shall recall results of [Sch99] completed in [SS16].

Complements on abelian categories

In this subsection we state and prove some elementary results (some of them
being well-known) on abelian and derived categories that we shall need.

Let € be an abelian category and let A be a small category. As usual, one
denotes by Fct(A, %) the abelian category of functors from A to €. Recall
that the kernel of a morphism u: X — Y is the functor A — Keru(\) and
similarly with the cokernel or more generally with limits and colimits.

Lemma 5.1.1. Assume that € is a Grothendieck category. Then
(a) the category Fct(A, %) is a Grothendieck category,
(b) if F € Fct(A,¥) is injective, then for A € A, F(X) is injective in € .

Proof. The category Fct(A, %) is equivalent to the category PSh(AP, %) of
preshaves on A°? with values in €. It follows that, for any given A € A, the
functor Fct(A,¢) — €, F — F()) has a left adjoint. We can define it as
follows (see e.g. [KS06, Not. 17.6.13]). For G € € we define G, € Fct(A, %)

by
Gw= &P &

Hom (A,u)

N

Then we can check directly that

(5.1.1) the functor € 5 G — G, € Fct(A, ¥) is exact,
(5.1.2) Hom p s (G, F)) = Hom (G, FI(X)) for any I € Fct(A, 4).

65
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(a) Applying e.g. Th. 17.4.9 of loc. cit., it remains to show that Fct(A, %)
admits a small system of generators. Let G be a generator of €. It fol-
lows from (5.1.2) that the family {G)} ea is a small system of generators in
Fct(A, €).

(b) Follows from (5.1.2) and (5.1.1). Q.E.D.

We consider two abelian categories ¥ and €’ and a left exact functor
p: € — ¢'. The functor p induces a functor

(5.1.3) p: Fct(A,€) — Fet(A, €7).
Lemma 5.1.2. Assume that € is a Grothendieck category.
(a) The functor p is left exact.

(b) Let I be a small category and assume that p commutes with colimits
indexed by I. Then the functor p in (5.1.3) commutes with colimits
indexed by 1.

(c) Assume that p has cohomological dimension < d, that is, R'p = 0 for
j >d. Then p has cohomological dimension < d.

(d) Assume that p commutes with small direct sums and that small direct
sums of injective objects in € are acyclic for the functor p. Then small
direct sums of injective objects in Fct(A,€) are acyclic for the functor

p.

Proof. (a) is obvious.

(b) follows from the equivalence Fct(I, Fct(A,€)) ~ Fet(A,Fct(1, %)) and

similarly with %”.

(c) By Lemma 5.1.1 (a), the category Fct(A, %) admits enough injectives.

Let F € Fct(A, %) and let F — F* be an injective resolution of F', that is,

F* is a complex in degrees > 0 of injective objects and F' — F° is a qis. By

Lemma 5.1.1 (b), for A € A, F'*()\) is an injective resolution of F'(\) and by

the hypothesis, H/(p(F*(\))) = 0 for j > d and A € A. This implies that

Rip(F)~ Hi(p(F*))is 0 for j > d.

(d) For a given A € A we denote by i{ the functor Fct(A, €) — €, F — F()).

Then i¥ is exact and, by Lemma 5.1.1 (b), we have i{ o Rp~ Rpoif. Let

F € Fct(A, %) be a small direct sum of injective objects. Since 7§ commutes

with direct sums, it follows from Lemma 5.1.1 (b) again that i (F) is a

small direct sum of injective objects in 4. By the hypothesis we obtain

Ripoif(F)~0, for all j > 0. Hence i{ o R/p(F) ~ 0, for all j > 0. Since

this holds for all A € A we deduce RIp(F) ~ 0, for all j > 0, as required.
Q.E.D.
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Abelian tensor categories

Recall (see e.g. [KS06, Ch. 5]) that a tensor Grothendieck category € is a
Grothendieck category endowed with a biadditive functor ®: ¢ x € — €
satisfying functorial associativity isomorphisms. We do not recall here what
is a tensor category with unit, a ring object A in ¥, a ring object with unit
and an A-module M. In the sequel, all tensor categories will be with unit
and a ring object means a ring object with unit.

We shall consider

(5.1.4) {

a Grothendieck tensor category ¢ (with unit) in which small
inductive limits commute with ®.

Lemma 5.1.3. Let € be as in (5.1.4) and let A be a ring object (with unit)
in 6. Then

(a) The category Mod(A) is a Grothendieck category,

(b) the forgetful functor for: Mod(A) — € is exact and conservative,

(c) the natural functor for: D(A) — D(¥) is conservative.

Proof. (a) and (b) are proved in [SS16, Prop. 4.4].

(c) Since D(A) and D(%) are triangulated, it is enough to check that if
X € D(A) verifies fovr(X) ~ 0, then X ~ 0. Let X be such an object and
let j € Z. Since for is exact, forH/(X) =~ Hj(fovr(X)) ~ (. Since for is
conservative, we get H’(X) ~ 0. Q.E.D.

Derived categories of filtered objects
We shall consider

a filtrant preordered additive monoid A (viewed as a tensor
(5.1.5) < category with unit),
a category € as in (5.1.4).

Denote by Fct(A, %) the abelian category of functors from A to €. It is
naturally endowed with a structure of a tensor category with unit by setting

for My, My € Fet(A, %),

(M; @ Ma)(N) = lim Mi(A1) ® Ma(A2).
A1+A2<A

A A-ring A of € is a ring with unit of the tensor category Fct(A, %) and we
denote by Mod(A) the abelian category of A-modules.
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We denote by Fp € the full subcategory of Fct(A, %) consisting of func-
tors M such that for each morphism A — X in A, the morphism M(\) —
M (X)) is a monomorphism. This is a quasi-abelian category. Let

t: FA€ — Fct(A,6)

denote the inclusion functor. This functor admits a left adjoint x and the
category Fp € is again a tensor category by setting

M1 ®F M2 = K(L(Ml) ®L(M2))

A ring object in the tensor category Fj & will be called a A-filtered ring in
% and usually denoted FA. An FA-module FFM is then simply a module
over F'A in Fy ¢ and we denote by Mod(F' A) the quasi-abelian category of
F A-modules.

It follows from Lemmas 5.1.1 and 5.1.3 that Mod(:F A) is a Grothendieck
category.

Notation 5.1.4. In the sequel, for a ring object B in a tensor category, we
shall write D*(B) instead of D*(Mod(B)), * = +, —, b, ub.

The next theorem is due to [SS16] and generalizes previous results of [Sch99].

Theorem 5.1.5. Assume (5.1.5). Let F'A be a A-filtered ring in €. Then the
category Mod(F'A) is quasi-abelian, the functor v: Mod(FA) — Mod(.F A)
15 strictly exact and induces an equivalence of categories for x = ub,+, — b:

(5.1.6) v D*(FA) 2% D*(LF A).

Notation 5.1.6. Let A and ¢ be asin (5.1.5). The functor liy Fct(A,€) —
% is exact. Let F'A be a A-filtered ring in F)%) and set

(5.1.7) A :=lim A(}).
A
(For short, we write A()) instead of F'A(A).) The functor lim induces an
exact functor
(5.1.8) limy : Mod(F'A) — Mod(A),
thus, using Theorem 5.1.5, for * = ub, 4+, —, b, a functor
(5.1.9) limy : D*(F'A) — D*(A).

Since one often considers F'A as a filtration on the ring A, we shall denote

by for (forgetful) the functor limy -
(5.1.10) for: D*(FA) — D*(A), for:= liny .
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Complements on filtered objects

Lemma 5.1.7. Let A and € be as in (5.1.5) and let €' be another Grothendi-
eck tensor category satisfying the same hypotheses as €. Let F'B be a A-
filtered ring in €.

(a) Let 0: €' — € be an exact functor of tensor categories (see Defini-
tion 4.2.2 in [KS06]). Denote by o: Fct(A,€’) — Fct(A, €) the natural

functor associated with o. Then

(i) FA:=0(FB) has a natural structure of a A-filtered ring with values
in e,

(i) the functor o induces an exact functor oy : Mod(.F B) — Mod(¢F A)
hence a functor op: Mod(FB) — Mod(F'A).

(b) Assume moreover that the functor o has a right adjoint p which is fully
faithful (hence p is left exact and op ~ idy). Denote by p: Fct(A,€) —
Fct(A,€") the natural functor associated with p. Then

(i) p is fully faithful and right adjoint to &,

(i) pinduces aleft exact fully faithful functor p: Mod(¢F'A) — Mod(cF'B)
right adjoint to on and a fully faithful functor py: Mod(FA) —
Mod(F'B) right adjoint to oy.

(¢) The diagram below, in which the horizontal arrows are the forgetful func-
tors, is commutative when composing horizontal and down vertical ar-
rows, or when composing horizontal and up vertical arrows

Mod(FA) — Mod(tFA) ——Fct(A, €)

oo o Iz

Mod(F B) — Mod(:F B) — Fct(A, €”).

Proof. (a) We first recall that a A-ring A of a tensor category % is the data
of A(\) € €, for each A € A, morphisms 3™ 1 A(N) @ AN) — AA+ V),
for all A} N € A, and £4: 14 — A(0), where 1¢ is the unit of ¥ and 0 the
unit of A. These morphisms satisfy three commutative diagrams (which we
do not recall here) expressing the associativity of u4 and the fact that 4
is a unit. Similarly a module M over A is the data of M (\) € €, for each
A € A, and morphisms p37" : AA) @ M(N) — M(A+ X), for all A, X € A,
satisfying two commutative diagrams left to the reader.
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Let us go back to the situation of the lemma. For a A-filtered ring F'B of
¢’ and an F'B-module N, setting FFA = ¢(F B), the morphisms u;\\;A induce

s AN @ (N (X)) = 0(BO) & N(X)) = a(N(A + X))

For N = (F'B we obtain /LZ”\/. We define €4 = o(ep). We leave to the
reader the verification that 4, p; and Ma( ) satisfy the required commutative
diagrams. This defines the functor g,. We see easily that o, is exact. Since
F'B is A-filtered, the exactness of ¢ implies that F'A is A-filtered and that
o induces the functor o, of the lemma.

(b) The statement (i) is straightforward. Let us define py. For a «F’A-module
M the data of

i a(BO) @ p(M(X))) ~ AN @ M(X) = M(A+ X)

give by adjunction u;&): B(A) @ p(M(X)) — p(M(X+ X)) and define a
structure of «F' B-module on p(M). Since p is left exact p induces py. The
adjunction properties are clear, as well as gypy =~ id and oppy ~ id. Hence
pa and py are fully faithful.

(c) is clear. Q.E.D.

Theorem 5.1.8. (1) We make the assumptions of Lemma 5.1.7 (a)-(b) and
assume moreover that

(i) p has cohomological dimension < d,

(ii) for any M € Mod(.FA), there exists a monomorphism M — I in
Mod(¢FA) such that 1(\) is p-acyclic, for all A € A.

Then the derived functor Rpy: D*(FA) — D*(FB) (x = ub,+) exists. It is
fully faithful and admits a left adjoint py*: D*(FB) — D*(FA) (x = ub, +).
(2) Assume moreover that

(ili) p commutes with small direct sums,

(iv) small direct sums of injective objects in € are acyclic for the functor p.

Then the derived functor Rpy: D(FA) — D(FB) commutes with small di-
rect sums and admits a right adjoint p): D(FB) — D(FA). Moreover, ph
induces a functor DY(FB) — DT (FA).

(3) We make the assumptions of Lemma 5.1.7 (a) and assume moreover that
o 18 fully faithful and has a right adjoint p which is exact. Then the derived
functor oy : D*(FA) — D*(FB) (x = ub, +,b) is well defined, is fully faithful
and admits a right adjoint py: D*(FB) — D*(FA) (x* = ub,+,b).
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Proof. By Theorem 5.1.5, it is enough to prove the statements when replacing
FA and FB with «FA and «F' B, respectively and py with py.

(1) Let us first prove that py: Mod(tF'A) — Mod(¢F B) admits a derived
functor and has cohomological dimension < d.

We let .# be the subcategory of Mod(:F'A) which consists of the I €
Mod(¢F'A) such that I()) is p-acyclic, for all A € A. Using the hypothe-
sis (iv) and the relation for o py ~ p o for we see that the subcategory %
is pa-injective. Hence Rpj exists. We also see that for(.#) is a p-injective
family. Hence for o Rpy ~ Rpo for. Now the assertion on the cohomological
dimension follows from Lemma 5.1.2-(c).

By Lemma 5.1.7, the functor p, is right adjoint to o,. This functor o,
induces p,' on the derived category which is left adjoint to Rps. The relation
aapa = id gives py Rpa ~ id. Hence Rp, is fully faithful.

(2) By the Brown representability theorem, it is enough to prove that

(5.1.11) Rpy commutes with small direct sums.

We consider the functor p: Fct(A,¢) — Fct(A,%”). The hypotheses of
Proposition 2.3.4 are satisfied by Lemma 5.1.2. Therefore the functor p
has cohomological dimension < d and the functor Rp: D(Fct(A, %)) —
D(Fct(A,¢”)) commutes with small direct sums.

Now we prove (5.1.11). Let {X;}ie; be a family of objects of D(¢F'A).
There is a natural morphism €, ; Rpx(X;) = Rpa(B,c; Xi) in D(1F B) and
it follows from Lemma 5.1.3 that this morphism is an isomorphism.

(3) is obvious. Q.E.D.

5.2 Filtrations on Ox_,

In the sequel, if F'M is a filtered object in € over the ordered additive monoid
R, we shall write F* M instead of (F'M)(s) to denote the image of the functor
FM at s € R. This induces a functor D(Fg ') — D(%) denoted in the same
way F'M +— F°M.

The filtered ring of differential operators

Recall that the sheaf &,; of finite order differential operators on M has a
natural N-filtration given by the order.

Recall that the rings Zy, and Z), as well as the sheaves 2, (m) and
D, (m) are defined in (4.2.4) and (4.2.5). We remark that p;' (2., (m)) ~
I (m) and pg) (D, (m)) = Doy, (m).
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Definition 5.2.1. Let .7 be the site M or M, or Mg,. We define the filtered
sheaf FZ4 over A = R by setting:

F*95 = 27([¢])

where [s] is the integral part of s and Z4([s]) is the sheaf of differential
operators of order < [s]. In particular, F*Z5 = 0 for s < 0. We denote by
Mod(FZz) the category of filtered modules over 2.

Let Mg be either M, Mg, or Mg,. In the sequel, we look at Mod(Cy,,, ) as
an abelian Grothendieck tensor category with unit and at FZ,,,, as a A-ring
object in F)% ( with A = R) and ¥ = Mod(Cy,, ). Note that Definition 5.2.1
is in accordance with Lemma 5.1.7 (a) (i).

Since g} (Paya(m) ~ Dru(m) and pod(Prs (M) = Doy (m) we can
apply Lemma 5.1.7 (a) with the exact functors o = pZ! or 0 = p_;. We

al *
obtain the functors

po: Mod(FZyy,) — Mod(FZy,),
pai: Mod(FZy.,) — Mod(F2y,.,).

sal

(5.2.1)

We will also use the fully faithful right adjoint of p_; given by Lemma 5.1.7 (b)
(5.2.2) psal, - Mod(F %y, ) — Mod(FZ,,)-

Theorem 5.2.2. (i) The functor ps, in (5.2.2) admits a right derived
functor Rpsa,: D*(FPa,) — D*(F%u,,) (x = ub,+) which is fully
faithful and admits a left adjoint functor p_;: D*(F%y.,) — D*(F2as.)
(* = ub, +).

(ii) The functor Rpsa, (¥ = ub,+) commutes with small direct sums and
admits a right adjoint p: D*(F %) = D*(F2y,) (x = ub, +).
(iii) The functor pgl: DY (F%a.,) — DT (FZuy) has a fully faithful right

a

adjoint Rpga: DT(FZy) — DY (F2y,).

Proof. (i)-(ii) We shall apply Theorem 5.1.8 (1)-(2) with € = Mod(C,,,, ),
¢ = MOd((CMsal)7 P = Psalyy O = p;a%v A=R, FA=F¥Py,, F'B = F‘@Msal'
Let us check hypotheses (i)—(iv) of Theorem 5.1.8. Hypothesis (i) follows from
Proposition 2.3.11. The hypotheses (iii) and (iv) follow from Lemma 2.1.9.
By Lemma 5.1.3 we know that Mod(:FZ),,,) has enough injectives. Hence
to check the hypothesis (ii) it is enough to prove that if I € Mod(tF2,,,,) is
injective, then I(\) is psa,-acyclic for any A € A.
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By Lemmas 2.3.10 and 2.2.7 it is enough to prove that I()) is flabby. For
any U € Op,, . we have

(5.2.3) D(U; I(N)) ~ HomMod(LF@Msa)((@][\;si])Ua I),

where .@][\}sz] denotes the object tF 2, with the filtration shifted by A, that
is, Fs@][\zsf = F**9,.,.; this isomorphism sends a section s of I(\) to
the morphism 1 + s (which is filtered because 1 € F )‘@][\ZSZ]). Hence the
flabbiness of I(\) follows from the injectivity of I and the exact sequence

0— (91[\//\11a)U — (.@][\j\[la)v, for any inclusion U C V. This completes the proof
of (1)-(ii).
(iii) We apply Theorem 5.1.8 (3) with p = p3!, 0 = pgar- Q.E.D.

We define a functor
Fotom : Modg_.(Cyy) x Mod(F2y,,) — Mod(F%2,,.,)
by setting for G € Modg..(Cy;) and F.Z € Mod(FZ,,.,)
Htom (G, F M) (\) = Hom (G, #(N)).
Using Theorem 5.1.5, this functor admits a derived functor
FR.Zom : D5 _(Cy) x DT (F2..) — DT (F2u,).

Recall the functor for in (5.1.10).

Lemma 5.2.3. Let G € D} (Cy) and let ./ € DY (FDy,). Then

FARom (G, F. M) ~ R#om (G, F A ),
forFRAom (G, F#) ~ R#om (G, forF A ).

Proof. The first isomorphism follows directly from Lemma 5.1.1 (b) and we
only prove the second one.

(i) Since the problem is local on M, we may assume that G has compact
support.

(ii) By standard arguments, we may then reduce to the case where G = Cy,
U € Opy,, -

(iii) Using Theorem 5.1.5, we may replace F.# € DT (F2,,,) with an object
A € DT (Fet(R, Mod(Cyy,))). Let us represent .# by a complex of injective
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objects I* € CT(Fct(R,Mod(Cy,,,))). Then,

liy RT(Cy,.4)
lim (U5 17)
D(U;lim 17 %RF(U;@I')

RIN(U; hgn//l) ~ RIU; forF.#).

forERZom (Cy, F A )

1R

=R

12

Isomorphism (a) follows from Lemma 2.1.9 and isomorphism (b) follows from
Lemma 5.1.1 (b) and Corollary 2.2.5. Q.E.D.

On a complex manifold X, we endow the Zx-module 'y with the filtra-
tion FOx given by

if
(5.2.4) prog =0 Ms<0
Ox if s>0.

By applying the functors pg,, and psa,, we get the objects psa Ox and pg, Ox
of Mod(F Zx,,) and Mod(F Zx_, ), respectively. One shall be aware that these
objects are in degree 0 contrarily to the sheaf Ox_, (when dx > 1).

The L*°-filtration on %A‘Z:lp

Recall that on the site Mg, the sheaf €y, ’:lp *" is endowed with a filtration,
given by the sheaves €y, fl (t € Rsp). We also set

(51\(}0; =0 for t < 0.
Using Lemma 4.2.7 and Theorem 5.2.2; we set:

Definition 5.2.4. (a) We denote by %" the object of Mod(F%y,,,)
given by the sheaves &y :1 (t € R).

(b) We set E @y P := pl,, FOOCKACZZIP, an object of DY (F%,,.,).
We call these filtrations the L>-filtration on €y, flp and &, :p , respec-
tively.

Hence,
S Oo7tp J— 0078
o F 6y =Ty for s €R,

: t t
e we have morphisms F" 9y, @ FL 6" — FEZ76 ",
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e using Notation 5.1.6, forF %), ;tlp ~ Gy ’atlpSt and similarly with M,
instead of M,.

If U € Op,,,, is weakly Lipschitz, we thus have for s > 0:
(5.2.5) RE(U; B 6 ) ~ €5y (U).

Remark 5.2.5. One could have also endowed &’ tlp with the L2-filtration
constructed similarly as the L>-filtration, when replacmg the norm in (4.4.1)
with the L?-norm:

(5.2.6) ||90||2=(/ [p(2)[Pdz)' 2, Jlell; = ld(x) ¢ ().

One gets the filtered sheaves Fo@y;" " and Fy@y) P,

The L°°-filtration on ﬁ;}’sal

On a complex manifold X, we set:

(527) Fooﬁ;(ial = Rﬁom}?gy (psl*lﬁY7 FOO%A;ZSP) e D+(F@Xsal)7
sal
(5:28) ExOR¥, = RA0mp,  (paOx, Fti")

~ P Fooﬁggal € DY (F2x..).

Proposition 5.2.6. The object Fjoﬁgfsal is represented by the complex of

sheaves on XX,

(529) 0 ELe ™0 & e & v 0 0,

Proof. Recall that the Spencer complex SPx(Zx) is the complex of left Zx-
modules

dx
(5.2108Px(Zx) = 0— Zx®, \Ox S - = Zx ®, Ox = Zx — 0.
Moreover, there is an isomorphism of complexes, in any local chart,
(5211) pr(.@)() ~ K.(.@X; '61, ey 'adx)

where the right hand side is the co-Koszul complex of the sequence -0, . .., -04,
acting on the right on Zx. This implies that the left Z-linear morphism
Px — Ox induces an isomorphism SPx(%x) =% Ox in DP(Zx).

If we endow Zx ®, N*Ox, k =0,...,dx, with the filtration F*(Zx ®,
N Ox) = F*2x)®, \' Ox, then SPx(Zx) gives a complex in Mod(FZ5)
and we obtain SPx(%x) =% Ox in D*(F%x). Applying this to X and using
the definition (5.2.8) we obtain the result. Q.E.D.
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Corollary 5.2.7. Let U C X be an open relatively compact subanalytic sub-
set. Assume that U is weakly Lipschitz. Then the object RI'(U; Fjoﬁggsa) is
represented by the complex

(5.2.12)

0 — G O(U) B g ON@) o o gt 0 () g,
Applying the functor p_!', one recovers the filtration introduced in (5.2.4):

(5.2.13) P B OF ~FOx.

5.3 A functorial filtration on regular holo-
nomic modules

Good filtrations on holonomic modules already exist in the literature, in
the regular case (see [KK81, BK86, Sai88, Sai90]) and also in the irregular
case (see [Mal96]). But these filtrations are constructed on each holonomic
module and are by no means functorial. Here we directly construct objects
of DT(F%y), the derived category of filtered Z-modules.

Denote by D ...(Zx) the full triangulated subcategory of D*(Zx) con-
sisting of objects with regular holonomic cohomology. To .# € DP,,...(Zx),

holreg
one associates
Sol(A) := Rotom , (A, Ox).

We know by [Kas75] that Sol(.#) belongs to D2 .(Cx), that is, Sol(.#) has
C-constructible cohomology. Moreover, one can recover .# from Sol(.#') by
the formula:

(5.3.1) M~ p'RAom (Sol(A), O ).

This is the Riemann-Hilbert correspondence obtained by Kashiwara in [Kas80,
Kas84].

Using the filtration Fooﬁ;’sa on Ox,, we can set:

Definition 5.3.1. Let .# be a regular holonomic module. We define the
filtered Riemann-Hilbert functors RHFE, s, and RHE,, by the formulas

RHFOO:%: Dgolreg('@X) - D+(F9Xsa)7

M+~ FRAom (Sol(A),F 02 ),
RHF, = p'RHF s D1, (2x) — DY(F2x).

a
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Note that RHF, s, and RHF,, are triangulated functors.
Recall Notation 5.1.6 and the functor for.

Proposition 5.3.2. In the diagram below

RHF

DY reg (Z) D*(FZx) &% RD*(7x)

the composition is isomorphic to the identity functor.

Proof. Since p_!

mutes:

commutes with inductive limits, the diagram below com-

RHFx sa

D+ (Fy,,) =D+ (Zx.,)

psa L pea’ j

D*(F2yx) —~ D*(Zy).

Dlﬁolreg (‘@X>

Now let .# € D, .. (Zx) and set for short G = Solx(#). By using

holreg
Lemma 5.2.3 we get

forFR#om (G, Fx OF ) ~ Rtom (G, forF O )
~ Rom (G,O% )

and we conclude with (5.3.1). Q.E.D.

Notation 5.3.3. The module .# endowed with the filtration obtained by
applying the functor RHF, s, or RHFE,, will simply be denoted by F s
or F.o.# , respectively.

Example 5.3.4. Let D be a normal crossing divisor in X and let .Z be a
regular holonomic module such that Sol(.#) ~ Cx\p. Let W € Opy_ with
smooth boundary transversal to the strata of D so that W \ D is weakly
Lipschitz. Set U := W \ D. Then, by Lemma 52.3, RI(W;F; ,.#) ~

RIU; F2, ﬁ;&a) and therefore the object RI'(W; E2 ) is represented by the
complex (5.2.12).

Remark 5.3.5. By using the filtration Fy on %”z;p (see Remark 5.2.5), one

can also endow ﬁzal with an L2-filtration and define similarly F, ﬁstapl. Unfor-
tunately, Hormander’s theory does not apply immediately to this situation.
More precisely, for U open in R", denote by L?(U;loc) the space of functions

¢ which are locally in L? for the Lebesgue measure and define

(5.3.2) L**(U) = {p € L*(U;loc); |¢ll; < o0, },



78 CHAPTER 5. FILTRATIONS

where [|p[|5 is defined in (5.3.2).
For U relatively compact and open in C", denote by W@ ({J) the
space of (p, q)-forms with coefficients in L?*(U) and set

WU = {p € W2PD(U); p € W2EatD()},

Now we define 152 ﬁ;}zal as the Dolbeault complex
F30® (U):=0— W) S ... & wzen ) S0,

Then [Hor65, Th 2.2.3] asserts that if U is pseudoconvex, Fgﬁzal(U ) is con-
centrated in degree 0. However F@x_ does not send W™ in Wg**™" and
FQﬁgial is not defined as an object of D(F%x_,).

Given a regular holonomic Zx-module .#, natural questions arise.

(i) Does there exist an integer r such that H/(ES %) — HI(FS.%) is the
zero morphism for s > 0 and j # 0.

(i) Is the filtration H°(Fy.#) a good filtration?

(iii) Does there exist a discrete set Z C Rs( such that the morphisms
Fs . # — ¥4 (s < t) are isomorphisms for [s,t] contained in a con-
nected component of Rsq \ Z7?

Note that it may be convenient to use better the L2-filtration (see Re-
mark 5.3.5).

One can also ask the question of comparing these filtrations with other
filtrations already existing in the literature.
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