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1 Introduction

Let f: X — Y be a morphism of complex analytic manifolds, M a coherent module
over the ring Dx of differential operators on X, F' an IR-constructible object on X. In
this first paper, we give a criterion insuring that the derived direct images of the Dx-
module ' ®@ M are coherent Dy-modules, and we prove related duality and Kunneth
formulas. Part of these results were announced in [20, 21].

In [22], making full use of these results, we shall associate to (M,F') a characteristic
class and show its compatibility with direct image, thus obtaining an index theorem
generalizing (in some sense) the Atiyah-Singer index theorem as well as its relative
version [1, 3].

Let us describe our results with more details, beginning with the non-relative case
for the sake of simplicity.

An elliptic pair on a complex analytic manifold X is the data of a coherent Dyx-
module M and an IR-constructible sheaf /' on X (more precisely, objects of the derived
categories), these data satisfying the transversality condition

char(M)N SS(F) C Tx X. (1.1)

Here char(M) denotes the characteristic variety of M, SS(F') the micro-support of ¥
(see [12]) and T% X the zero section of the cotangent bundle 7*X.

This notion unifies many classical situations. For example, if M is a coherent Dyx-
module, then the pair (M,Cx) is elliptic. If U is an open subset of X with smooth
boundary 9U, the pair (M,Cy) is elliptic if and only if QU is non characteristic for M.
If X is the complexification of a real analytic manifold M, then (M,Cxs) is an elliptic
pair if and only if M is elliptic on M in the classical sense. If F' is IR-constructible
on X, then (Ox,F) is an elliptic pair. If G is a coherent Ox-module, we can associate
to it the coherent Dx-module § ®, Dx, and the results obtained for the elliptic pair
(G B0 Dx,Cx) will give similar results for G. See §8 for a more detailed discussion.

If f: X — Y is a morphism of complex analytic manifolds, we generalize the
preceding definition and introduce the notion of an f-elliptic pair, replacing in (1.1)
char(M) by charg(M), the f-characteristic variety of M (this set was already defined
in [19] when f is smooth).

The main results of this paper assert that if the pair (M, F') is f-elliptic, f is proper
on supp(M) Nsupp(F) and M is endowed with a good filtration, then:

1) the direct image (in the sense of D-modules) f (M @ F) has Dy-coherent coho-

mology,
2) the duality morphism

[ (D'F @ Dy M) — Dy f(M® F)

is an isomorphism (here, D denotes the dualizing functor for D-modules and D’
is the simple dual for sheaves),



3) there is a Kiinneth formula for elliptic pairs,
4) direct image commutes with microlocalization.

See Theorem 4.2, Theorem 5.15, Theorem 6.7 and Theorem 7.5 below for more details.

In fact, we obtain these results in a relative situation over a smooth complex manifold
S, working with the rings of relative differential operators. This relative setting makes
notations a little heavy but it gives us the freedom on the base manifold we need in
the proofs. Even if we want the final result over a base manifold reduced to a point, in
the proofs, we need to use other bases. So, it is better to work in a relative situation
everywhere. Moreover, the base change Theorem 6.5 is a natural way to get the Kiinneth
formula for elliptic pairs.

The idea of the proof of the finiteness result goes as follows.

First, using the graph embedding, we are reduced to prove the theorem for a closed
embedding (this one does not offer much difficulty) and for a projection. Then, using
the same trick as in [8], we reduce to the case Y = S. Then it remains to treat the case
where X = Z x S, f: X — S is the second projection, M is a Dx|s-module endowed
with a good filtration and F' = GG [X]Ts where (G is an IR-constructible sheaf on Z. We
call it the projection case and we have to prove that in this case Rfi(F @ M B s Ox)
is Qg coherent and Qg dual to Rf!]i’Hompxls(F @ M, Qxsldx — ds]).

For that purpose, we “trivialize” F' by replacing it by a bounded complex of sheaves
of the form &, Ty, the U,’s being relatively compact subanalytic open subsets of X
satisfying the regularity condition:

D'(Ty,) = TF..

This construction is made possible thanks to the triangulation theorem and a result of
Kashiwara [11].

Next, we consider the relative realification Mps of M obtained by adding the rel-
ative Cauchy-Riemann system to the Dz, g s-module M and remark that since M is
assumed to be good we may always find a resolution of Mps by finite free Dym, g5~
modules near subsets of Z® x S of the form K x A where K is a compact subset
of Z and A is an open polydisc in S. Moreover, since the solutions of the relative
Cauchy-Riemann system are the same in the sheaves of analytic functions, differen-
tiable functions or distributions with holomorphic parameters in S, we can compute
the holomorphic solutions of M as the relative analytic, differentiable or distributional
solutions of Ms.

Now, the elliptic hypothesis insures the regularity theorem, that is, the isomorphism

FoMe, Ox = RHom(D'F. M@y Ox).

Applying Rfi to this isomorphism, we shall compute both sides using the trivialization
of F' and a finite free resolution of the relative realification of M using analytic (resp.



differentiable) solutions for the left (resp. right) hand side. This will give us a continuous
Og-linear quasi-isomorphism

Ry == R, (1.2)

where the components of the left (resp. right) hand side are DFN-free (resp. FN-free)
topological modules over the Fréchet algebra Og. The coherence then follows from an
extension of Houzel’s finiteness theorem [7] due to one of the authors [25]. Note that we
found no way of applying the original Houzel’s theorem in our situation since it is not
obvious to find the requested chain of nuclear quasi-isomorphisms for a given elliptic
pair.

The duality result is proved along the same lines once we have a clear construction
of the general duality morphism which makes it easy to check its compatibility with
the various simplifications and transformations used in the proof.

Note that the hypothesis that the D-module M is endowed with a good filtration
could be relaxed by using cohomological descent techniques as in [24]. However, doing
so would have cluttered the proof with unessential technical difficulties. This is why we
have preferred to stay to a simpler setting, sufficient for all known applications.

Our theorems provide a wide generalization of many classical results as shown in
the last section.

In particular, we obtain Grauert’s theorem [6] (in the smooth case) on direct images
of coherent O-modules and the corresponding duality result of Ramis-Ruget-Verdier [15,
16]. Since we treat D-modules, we are allowed to “realify” the manifolds by adding
the Cauchy-Riemann system to the module, and the rigidity of the complex situation
disappears, which makes the proofs much simpler and, may be, more natural than the
classical ones.

We also obtain Kashiwara’s theorem [9] on direct images of coherent D-modules as
well as its extension to the non-proper case of [8] (whose detailed proof had never been
published) and the corresponding duality result of [23, 24].

In the absolute case, we regain and generalize many well-known theorems concerning
regularity, finiteness or duality for D-modules (in particular those of [2, 13, 14]), see §8
for a more detailed discussion.

2 Elliptic pairs and regularity

2.1 Relative D-modules

In this section, we recall some basic facts about relative D-modules.
In the sequel, by an analytic manifold we mean a complex analytic manifold X of
finite dimension dy. Keeping the notations of [12], we denote by

T:TX — X and m:T*X — X

the tangent and cotangent bundles of X.



To every complex analytic map f: X — Y, we associate the natural maps

TX 7> X xyTY f—> Y
X ? X xy T"Y f—> Y.

Let S be an analytic manifold. A relative analytic manifold over S is an analytic
manifold X endowed with a surjective analytic submersion ex : X — 5. We often use
the notation XS for such an object when we want to avoid confusion on the basis and
set for short dx ¢ = dx — ds.

A morphism f : X|S — Y|S of relative analytic manifolds is the data of a complex
analytic map f: X — Y such that ey o f = €ex.

Let X|S be a relative analytic manifold over S.

Since € : X — S is smooth, the map

TX — X x5 TS

is surjective. Its kernel is thus a sub-bundle of T'X. We denote it by T X|S and call
it the relative tangent bundle of X|S. Its holomorphic sections form the sheaf © xs of
vertical holomorphic vector fields on X|S. Recall that a holomorphic vector field 6 is

vertical if and only if

9(h o] GX) =0
for any section i of Og. The dual map

XXST*SﬁT*X

is injective. Its cokernel is thus a quotient-bundle of 7*X which is isomorphic to the
dual of TX|S. This is the relative cotangent bundle of X|S, we denote it by T*X|S
and denote by

px|s : I"X — T X|S
the canonical projection. The holomorphic sections of AP T*X|S form the sheaf Q];qs
of relative holomorphic differential forms of degree p. To shorten the notations, we set

dx|s
Oxis = QX|s :

To every morphism f: X|S — Y|S, we associate the natural maps

TX|S —» XxyTY[S — TY[S
T'X|S o Xxy TY[S — T7YS.

Note that we use the same notations as in the non-relative case since the context will
avoid any confusion.

The subring of Hom ¢ (Ox,Ox) generated by the derivatives along vertical holo-
morphic vector fields and multiplication with holomorphic functions is denoted by Dxs.
We call it the ring of relative differential operators on X|S.



The basic algebraic properties of Dy s are easily obtained using the usual fil-
tration/graduation techniques. We will not review them here and refer the reader
to [18, 19].

As usual, we denote by Mod(Dx|s) the abelian category of left Dy s-modules and
by Coh(Dx|s) the full subcategory of coherent modules. The category Coh(Dx|s) is
a thick subcategory of Mod(Dxs) (i.e. it is full and stable by kernel, cokernel and
extensions).

A coherent Dx|s-module M is good if, in a neighborhood of any compact subset of
X, M admits a finite filtration by coherent Dxs-submodules My (k = 1,...,{) such
that each quotient M/ Mjy_; can be endowed with a good filtration. We denote by
Good(Dx|s) the full subcategory of Coh(Dx|s) consisting of good Dx|s-modules. This
definition ensures that Good(Dx)s) is the smallest thick subcategory of Mod(Dxs)
containing the modules which can be endowed with good filtrations on a neighborhood
of any compact subset of X.

We denote by D(Dx|s) the derived category of Mod(Dxs) and by Db(DX|5) its
full triangulated subcategory consisting of objects with bounded amplitude. The full
triangulated subcategory of DP(Dy|s) consisting of objects with coherent (resp. good)
cohomology modules is denoted by Dg,,(Dx|s) (resp. DE,oq(Dx|s))-

We introduce similar notations with the ring Dx ¢ replaced by the opposite ring Dgﬂs
to deal with right Dx|s-modules. Since the categories Mod(Dx|s) and Mod(D%S) are
equivalent, we will work only in the most convenient one depending on the problem at
hand.

In the sequel, we will often need to work with bimodule structures. Let k& be a field.
Recall that if A and B are k-algebras, giving a left (A,B)-bimodule structure on an
abelian group M is just giving M a left structure of A-module and a left structure of
B-module such that

a-(b-m) = b-(a-m)
(c-a)-(b-m) = (c-b)(a-m)

for any a € A, b € B, ¢c € k and m € M. Hence, it is equivalent to consider that
M is endowed with a structure of A @, B-module. Using this point of view it is easy
to extend to bimodules the notions and notations defined usually for modules. For
example, we will denote by Mod(Dx s ® Dx|s) the category of left Dx|s bimodules and
by D(Dx|s @ Dx)s) the corresponding derived category.

Let f: X|S — Y|S be a morphism of relative analytic manifolds over S.

Recall that

Dxis—»y)s = Ox @4-1p, f'Dys

has a natural structure of left Dy g-module compatible with its structure of right
™' Dy|s-module. Using this transfer module, we may define the relative proper di-
rect image of an object M of Db(D%S) by the formula

[15(M) = Rfi(M ®1§X|S Dx|s-v]s)
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It is an object of Db(D;ITS).
Recall also that if M (resp. N) is a right (resp. left) Dy s-module then there is on
M Qo4 N a unique structure of right Dyx|s-module such that

(m®@n)-0 = m-0@n—m®~0-n
(m®n)-h = m-h@n=m®h-n
for any sections m, n, § and h of M, N, Oxs and Ox respectively.

In the same way, if V', P are two left Dx|s-modules then there is on N @, P a
unique structure of left Dy g-module such that

- n@p) = 0-n@p+neb-p
for any sections n, p, 6 and h of N, P, Ox|s and Ox respectively.

Finally, recall the following exchange lemma which will be useful in the sequel.

Lemma 2.1 If M is a right Dx|s-module and N, P are left Dxs-modules then the
map
M@y  (N®@o, P) — (M@, N)@p, P
m@n®@p) = (m@n)@p
is a canonical isomorphism.

Let X be a relative analytic manifold over S. Recall that the characteristic variety of
a coherent Dx|g-module M is a conic analytic subset of 7*.X|S denoted by charx|s(M)
and that
char(Dx Bp s M) = p}}scharmg(/\/l).

Hence theorem 11.3.3 of [12] gives the equality
SS(RHompxls(J\/l, Ox)) = p}ﬁscharms(/\/l).

The sheaf ) x|s of relative holomorphic differential forms of maximal degree is canon-
ically endowed with a structure of right Dy g-module which is compatible with its struc-
ture of Ox-module and characterized by the fact that, for every open subset U of X,
one has w.0 = —Lgw if w € Qx5(U) and 6 is a vertical vector field defined on U.

Definition 2.2 The dualizing complex for right Dx s-modules is the complex of right
Dyx)s-bimodules defined by setting

Kxis = Oxsldx|s] @, Px|s

and using the natural structure of right Dy g-bimodule on the sheaf (x5 Do, Dxs.
The dual of an object M of D_(D}ﬂs) is

RHom Dx|s(M’ Kxis)

as an object of D+(D§55). We denote it by Dy s(M).
The functor Dy g is the dualizing functor for right Dx|s-modules.

11



As in algebraic geometry, the terminology used in the preceding definition is justified
by the following biduality result.

Lemma 2.3 There is a canonical sheaf involution of Qx|s Do, Dx\|s interchanging its
two right Dx|s-module structures.

Proof: Let us consider the sheaf Dy s oy, Dx|s where the tensor product uses the left
Ox module structures of the two copies of Dy |g. This sheaf is obviously endowed with
one structure of left Dy|g-module and two structures of right Dy|s-module which are
compatible with each other.

The involution

Dx|s ®@p, Dxis — Dxis ®p, Dxis
PO — QRP

exchanges the two right structures and preserves the left one.
Tensoring over Dyx|s with {lx|s using its right structure and the left structure of
Dx|s @, Dx|s and applying the exchange lemma 2.1 gives us the requested involution.
O

Proposition 2.4 For any object M of D (Dgas), the canonical arrow

coh
M — R,HomDMS(RH()mDMS(M’ ICX|5), /Cx|5)
deduced from the involution of the preceding lemma is an isomorphism.

Proof: Since M is locally isomorphic to a bounded complex of finite free right Dy s-
modules it is sufficient to prove the result for M = Dy where it is an easy consequence
of the preceding lemma and the fact that {1x ¢ is a locally free Ox module of rank one.

O

It follows that the characteristic variety does not change by duality:
Proposition 2.5 If M is an object of DEOh(D;f]S) then one has

chary (M) = chary|s(D x s M).

2.2 Relative f-characteristic variety

In this subsection, we consider a morphism f : X|S — Y|S of relative analytic
manifolds over S and define the relative characteristic variety char;(M) of a coherent
D}ﬂs—module M. First, we consider the case of a relative submersion where such a
variety was already defined in [19] for S = {pt}. Next, by using the graph embed-
ding, we extend this definition to the general case. Finally, we show how the relative
characteristic variety controls the micro-support of M ®{;X|S Dx|s-v|s-

12



Let f: X|S — Y|S be a relative analytic submersion over S. Since f is smooth,
we have the following exact sequence of vector bundles on X:

0 — X xy T7Y|S <7 T*X|S < T*X|Y — 0.
f f

Working as in paragraph II1.1.3 of [19] we get the following lemmas.
Lemma 2.6 Assume M, is a coherent Dx|y-module. Then
CharX|5(DX|S ®DX|Y MO) = qb}lcharXD/(Mo).

Lemma 2.7 Assume M is a coherent Dy s-module and assume Mg, Ny are two co-
herent Dxy-submodules of M which generates it as a Dx|s-module then

chary |y (Mg) = charxy (No).
Hence, we may introduce the following definition.

Definition 2.8 Let M be a coherent Dx|s-module. One defines the relative charac-
teristic variety charss(M) of M with respect to f to be the subset of 7*X|S which
coincide on T*U|S with qb}lcharmy(./\/lo) for any open subset U/ and any coherent Dy y-
submodule Mg of My which generates My as a Dy |s-module.

It is clear that charys(M) is a closed conic analytic subvariety of T*X|S and that
chary (M) = charss(M) + (X xy T7Y]S).

The functor chary g is additive:

Proposition 2.9 If f: X — Y is a relative analytic submersion over S and if
0—L—>M—N—0
is an exact sequence of coherent Dx|s-modules then
charys(M) = charys(L£) U chargs(N).
In the sequel we will need the following lemma essentially due to [8].

Lemma 2.10 Let f: X|S — Y|S be a relative analytic submersion over S and let K
be a compact subset of X. Assume M is a Dx|s-module which admits a good filtration
in a neighborhood of K. Then, in a neighborhood of K, M has a left resolution by
Dx|s-modules of the form

DX|S ®DX|Y N

where the Dxy-module N admits a good filtration and is such that

¢;1CharX|Y(N) C ChaI’f|5(./M).

13



Proof: In this proof, we always work in some neighborhood of K.

Since M admits a good filtration, we can find a coherent Ox-submodule M, of M
which generates it as a Dx|s-module. Set No = Dx |y My. By construction, Nyis a
Dy y-submodule of M which generates it as a Dx|s-module. Obviously, Ny admits a
good filtration. Moreover, by definition,

qﬁj?lcharmy(./\/o) = charys(M).
The kernel K of the canonical Dy g-linear epimorphism
Dxs @p, No— M —0
is a Dx|s-module which admits a good filtration and we have
charys(K) C charys(Dx|s ®Dx|y No) = chargs(M).

We may thus start over the same construction with M replaced by K and build the
requested resolution by induction. a

Now, by using the graph factorization, we will define the notion of relative charac-
teristic variety for a map which is not necessarily a relative submersion.
Let f: X|S — Y|S be any morphism of relative analytic manifolds.
Denote by
X T> X xgY T> Y

the relative graph factorization of f.
First, we notice:

Lemma 2.11 Assume f is a relative submersion and M is a coherent Dx|s-module.
Then
charjjs(M) = “i'i charys(is1(M)).

Hence, for a general f, the following definition is a natural extension of our previous
one.

Definition 2.12 For any coherent Dx|s-module M, we set
charsjs(M) = “i'i; ' chargs(i51(M)).

As usual, for an object M of D!, (Dx|s), we also set

coh

charys(M) = | J charys(H/ (M)).

JEZ

We also introduce similar definitions for right Dx|s-modules.

14



Note that charyg(M) is a closed conic analytic subset of 7*X|S and that
charyg(M) = charyg(M) + ¥g(X xy T*Y]S).
A link between the relative characteristic variety and the micro-local theory of

sheaves is given in the following theorem:

Theorem 2.13 Let f : X|S — Y|S be a morphism of relative analytic manifolds
over S and assume M is an object of D (D;)as). Then

coh
SS(./M ®7];X|s DX|5_>y|5) C p)_(1|5charf|5(/\/i).
Proof: Consider the graph factorization of f:
X — X xgY —Y.
7 q

By Proposition 5.4.4 of [12], if F'is a sheaf on X, then SS(i.F') is the natural image of
SS(F). Hence, in view of the definition of charys, it is enough to prove the inclusion:

SS(i( M ®5X|S Dx|soyis)) C p~'charys(ijsi(M))
where we write p instead of pxy.y|s. Since

(M ®1§Xls Dx|s=yis) ~ 1s(M) @

Dy
Dyovis ~XxsYIS=YIS)

we have reduced the proof to the case where f is a relative submersion, what we shall
assume Now.
Since the problem is local on X and

charis(M) = J chargs(H(M)),
jeZ
we may assume M is a coherent right Dy|g-module. Using Lemma 2.10, we are then
reduced to consider the case where M = M, ®Dx|y Dx)s, for a coherent right D y-
module M. Now,
M ®£X|S Dxissy)s ~ Mo ®£le Dx|ssy|s

~ (Mo ®{§X|Y Ox) @10, ™' Dy s.

This last sheaf is locally on X a direct sum of an infinite number of copies of My ®1]; |
XY

Ox. Applying [12] Exercise V.5(i) (which is an easy consequence of Proposition 5.1.1(3)
[loc. cit.]) we get successively

SS(M ®£X|S Dx|ssyis) = SS(Mo ®1§X|Y Ox)
= S5(Mo @y, Dx @5 Ox)
= char(./\/io ®DX|Y DX)

= p_lgb;lcharXD/(Mo)
= p 'charys(M)

where the third equality comes from theorem 11.3.3 of [12]. O
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2.3 Relative elliptic pairs

We shall now define the main object of study of this paper.

Let D(X) denote the derived category of the category of sheaves of C-vector spaces
on X and let DP(X) denote the full triangulated subcategory of complexes with bounded
amplitude.

Recall that a sheaf F' of C-vector spaces is IR-constructible if there is a subanalytic
stratification of X along the strata of which H’(F) is a locally constant sheaf of finite
rank for any j € Z. Following [12], we denote by DY __(X) the full triangulated sub-
category of DP(X) consisting of complexes with IR-constructible cohomology sheaves.
We say for short that an object of D¥,_ (X) is an IR-constructible complex. For such
an object, SS(F) is a closed subanalytic Lagrangian subset of 7*X™ where X™ denotes
X considered with its underlying real analytic manifold structure. We shall identify
T*X™ with (T*X)® as for example in [12] and simply denote it by 7*X. In this pa-
per, we will have to consider most of the time the simple dual D'F of F' and not its
Poincaré-Verdier dual DF'. Recall that since X is an oriented topological manifold of
dimension 2dx:

D'F = RHom(F,Cx) and DF = RHom(F,wx) ~ RHom(F,Cx[2dx])
so the two duals coincide up to shift. Since F'is constructible, we have the local biduality
isomorphism F' —== D'D'F.
Definition 2.14 Let f : X|S — Y|S be a morphism of relative analytic manifolds
over S. A pair (M,F) is a relative f-elliptic pair if:

e M is an object of D? (DXﬂS),

coh

e F'is an object of D%_C(X),
e p~'charys(M)NSS(F)C TxX.

Such a pair is good if moreover M is an object of Dgood(Dgas). Its support is the set
supp(M) Nsupp(F'). When f is the canonical map ex : X|S — S|S we will say for
short that (M,F) is a (good) relative elliptic pair on X|S. When S = {pt}, we drop

the word “relative” in the preceding definitions.

Since charyg(M) contains chary (M), a relative f-elliptic pair is a relative elliptic
pair. Moreover, on a neighborhood of supp M,

SS(F)NX xsT*S C TG X.

In particular, an elliptic pair (M,F) on X is the data of a complex of coherent right
Dx-modules M and an IR-constructible complex F' such that

char(M)N SS(F) C Tx X.

We shall see in §8 below why this notion is a natural generalization of that of an elliptic
system on a real manifold. There, we will also explain why Theorem 2.15 below may
be considered as a generalization of the classical regularity theorem for elliptic systems.

16



Theorem 2.15 Let (M,F') be an f-elliptic pair. Then the canonical morphism

F®(Mek

Dx|s

Dx|s-y|s) — RHom(D'F, M ®£X|S Dx|s-v]s)

induced by the morphism F' — D'D'F', is an isomorphism.

Proof: By [12] Proposition 5.4.14, we know that if G belongs to D°(X) (and F is

IR-constructible as above), the natural morphism
F®G— RHom(D'F,G)
is an isomorphism as soon as
SS(F)*NSS(G) C Ty X.
Hence, the conclusion follows from Theorem 2.13 by applying the preceding result to

G=M ®7];X|s DX|S—>Y|S-

When Y = 5, we get:

Corollary 2.16 Let M and I be objects of DEOh(D;ﬂS) and Db _ (X)) respectively.
Assume the transversality condition

p~'charys(M)NSS(F) C TxX
where p : T*X — T*X|S is the canonical projection. Then the canonical morphism
F@(Meag  Ox) — RHomp  (D'F,M@, Ox)
is an isomorphism.

Definition 2.17 The dual of a relative pair (M, F') is the pair (D xs(M),D'F).

It follows from this definition that a relative pair is f-elliptic if and only if so is its
dual pair.

3 Tools

If X is a complex analytic manifold, we have already encountered X, the real un-
derlying analytic manifold to X. Here, we shall also make use of X, the complex
manifold with X® as underlying space for which the holomorphic functions are the
anti-holomorphic functions on X. Recall that X x X is a natural complexification of
X via the diagonal embedding.
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3.1 Dolbeault complexes with parameters

Let Z and S be complex analytic manifolds and let gz : Z x S — Z be the second
projection.

We will denote by Az, sis (resp. Fzxs|s, Dbzxs|s) the sheaf of real analytic functions
(resp. infinitely differentiable functions, distributions) on Z x S which are holomorphic
in S.

We will also set

DZRxS|S = (D2x7x5|s)|zﬂ°~xs-

using the diagonal embedding of Z® in Z x Z. Locally, operators in Dymy 515 are of
the form

Zaaﬁz Z,8) DO‘DB

where a, 5(2,%,s) is a section of Azygs; (2: U — @?%2) and (s : V — @%5) being
holomorphic local coordinate systems on Z and S respectively.
For any Dyr, gjs-module M we will consider the parametric Dolbeault complex

AEXS|S(M)
defined by setting
Yrsis(M) = az' A% @ ita, M
the formulas for the differentials being given locally by
d: 'AUXS|S( ) — A?Jtléﬁs(M) (3.1)
dg
ad?@m aap’q®m—|—2dzl ANa”? @ D,im

=1

and
a9 A@isw( ) — A?JZES(M) (3.2)

— dZ .
ad?@m aap’q®m+2d7/\ap’q®l)5¢m

=1

where (z: U — (Ddz) is a holomorphic local coordinate system on Z. Obviously, this
definition is independent on the chosen local coordinate system.

When M is equal to Azys)s (resp. Fzys)s, Dbzysis) we will denote the corre-
sponding parametric Dolbeault complex simply by “4ng|5 (resp. F zxs|s Db'Z"Xs|S). Of
course, the natural maps

P Py (2N V2N
QZ><S|s ’ AZXS|S » Frxsis — DbZ><S|s

are quasi-isomorphisms.
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Let A/ be another Dymy sjs-module. Using the natural structure of Dym, gjg-module
on the sheaf A/ ®~AZ><S|
coefficients in N by the formula

. M we define the parametric Dolbeault complex of M with

N7(M) = Ay, g5V Dayss M)

The associated simple complex is the parametric de Rham complex of M with coeffi-
cients in . We denote it by N (M).

In this paper, we will only use the preceding notions when N is Fzxs)s or Dbyygs.
In this case, we have of course

P,q — P,q
ZXS|S('/M) - fZXS|S ®AZ><5|SM

Dby s1s(M) = Dbylgs @a,, g M
and the differentials 9 and 9 are given locally by formulas similar to (3.1) and (3.2).

3.2 Realification with parameters

Let Z and S be complex analytic manifolds and set n = dz. Consider Z x S as a
relative manifold over S through the second projection e.
The parametric realification of a left Dy, g)s-module M is the sheaf

Muis = Azxsis @, . M.
In this formula, the Dym, gjg-module structure is described locally by the formulas

Dzj(a®m) = D, ;ja@m+a® D, m
Dz (a®@m Dz.a@m
flawm) = fag@m

S~—

where a,f and m are sections of Az, g5 and M respectively; (z : U — @") being a
local holomorphic coordinate system on Z.

Since Ay, g5 is flat over Oz, g, parametric realification is an exact functor.

Let us consider the map

§:7 xS — ZxZxS
(z,8) = (2,2,3).
It is clear that
5_1(D2x7xs|s) = DZIRxs|s-

Hence the sheaf inverse image by ¢ of a DZ><7><S|S‘mOdU1e is naturally a Dym,g|s-
module. Moreover, one checks easily that

M]R|S = 5_1(OZ><7><S ®q—1oz><s q_l./\/l) = 5_1(./\/1 07)
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where ¢ : Z x Z x S — Z x S is the natural projection and [X] denotes the external
product of D-modules.

As usual, using “side changing” functors, we may also define the parametric real-
ification of a right Dy, g s-module M. We still denote it by Mp|s and check easily
that

Mujs = Al g5 Co,, . M =0 (MEQ).

Parametric realification is a powerful tool to simplify problems dealing with Dz, g|5-
modules thanks to the following result.

Proposition 3.1 Let K be a compact subset of Z and let A be a closed polydisc of S.
Assume M is a good Dy, gs-module. Then, in a neighborhood of K x A, Mps has a
left resolution by finite free Dym, g g-modules .

Proof: The assumption insures that M X Oy is a good Dy, 7, g s-module. Hence it is
generated by a coherent O, . s-module in a neighborhood of the Stein compact subset
§(K x A) of the complex analytic manifold Z x Z x S. By Cartan’s Theorem A, it is
thus finitely generated in a neighborhood of §( K x A). The conclusion follows easily.
O

In order to be able to use effectively the preceding proposition in the sequel, we need
to understand the links between parametric realification and the finiteness and duality
results. These links are made explicit in the following five lemmas. Since the proofs are
just easy computational verifications we leave them to the reader. Recall that Hom’
denotes as usual the internal Hom functor of the category of complexes of sheaves.

Lemma 3.2  a) The sheafA%isw(Dmesw) is naturally endowed with a structure of
left Dyzysjs-module and a structure of right Dym gs-module and the differential
0 is compatible with these two structures.

b) As a complex of (Dzxs|s, D%%XS|S)—bimodu]eS A%;(S|S(DZRX5|S) is quasi-isomor-
phic to (Dzyss)mjs|—n) (where the realification uses the right module structure
of DZxS|s)

Lemma 3.3 The map

0,

0,
Z><S|S(DZ]R><5|S) Op Fzxs|s ’ FZXS|S

zR x 5|5

(ao’p RQ)du a®? A Qu

is an isomorphism of complexes of left Dy, g s-modules. Combined with the Dolbeault
quasi-isomorphism
Ozxs — fg’gswv

it induces in the derived category the isomorphism

M ®£z Ozxs —= Mmys[—n] @ Fzxs|s

xS|S

zRx 5|5
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for any complex of right Dy, g s-modules M. We have also similar results with F
replaced by Db or A.

Lemma 3.4 The map

Dby, ssl—n] — Homyp

0, 7
ZRX5|S(AZXS|S(DZRXS|S)7 Db%25|5)
n,r+n

P WP B Qe (0 ALY - Q)

is an isomorphism of complexes of right Dy, gjs-modules. Combined with the Dolbeault
quasi-isomorphism
Q%515 — Db?;<5|57

it induces in the derived category the isomorphism

RHomyp (M, Q% g5(n]) == BHom,,

|s zR x 5|5

(Mmyys[—n], Db 55)

for any complex of right Dy, sis-modules M. We have also similar results with Db
replaced by A or F.

Lemma 3.5 The natural arrow

Qyys15(Dzxsis) — Qg gsl—n]

(resp. Dby, gis(Dzmysis) — Dbyygsl—2n] )

of complexes of right Dy , g|s (resp. Dyms)s) modules is a quasi-isomorphism. Together
with the relative de Rham quasi-isomorphism

e Os == QZ><S|s

(resp. ¢ '0s —= Dbyysis )
it induces the e 'Qg linear pairing

Q7 xs15[n] o5 Ozxs — € 'Os2n]

Dzxs|s

(resp. DbQanS|S®{;ZlRXsS}-ZXS|S — ¢ '0g[2n] ).

|
Lemma 3.6 Assume M is an object of Dth(DOprsw)- We have the commutative
diagram

(Maf Ozxs) ®EL_1OS RHom 772xs|s(M’ 0% s[n]) — e 1O0s[2n]

|

(Migs @5 Frxsis) 8Lio BHomp . (Miys, DbF5p5) — ' Os[2n]

|s

Zx5|S

where the horizontal arrows are constructed by contraction followed by the pairings of
the preceding lemma, the first vertical arrow being the tensor product of the isomor-
phisms of Lemma 3.3 and 3.4 while the second vertical arrow is the identity.
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3.3 Trivialization of IR-constructible sheaves

In this section, we follow the notations of [12, Ch. VIII]. As in the classical theory of
simplicial complexes, the sets U(xz) of [loc. cit.] are called open stars. Let us first point
out some basic facts about the topology of polyhedra.

Lemma 3.7 Let (S5,X) be a simplicial set and let « € |S|. Then
(a) yeU(z) = [z,y] CU(x)
(b) yedU(x) = [z,y[CU(z)
where U(z) denotes the open star of = in |S|.
Proof: (a) One knows that
020 (x)
Thus, if y € U(z), thereisa o D o(x) such that y € |o|. Since it is clear that |z,y] C |o]|

and that « € U(x), one gets that [z,y] C U(z).
(b) The set {o € ¥ : 0 D o(x)} being finite, one has the equality

Ul)= U lol.
s30(z)
Hence, since y € dU(x), there is a simplex ¢ D o(z) such that y € [o]\ |o|. Let o’
be a simplex included in o such that y € |o’|. If o/ D o(x) then |z, y] C |o'| C U(zx)
as requested. If o' 2 o(z) then 0" = o' U o(z) is a simplex of ¥ included in o and
|z, y[ C |0"| C U(x) and the conclusion follows. O

Lemma 3.8 If (5,Y) is a simplicial set and if + € |S| then one has the following
commutative diagram

AU (x) x 10,1] JoU(z) x {1} —=» Ulz)
) !

U(x) x [0,1] /oU(z) x {1} —=» U(x)
where the horizontal arrows are homeomorphisms, the vertical arrows being the natural
inclusions.

Proof: Let us define the continuous application

f:oU(x) x[0,1] — U(x)
by setting f(u,t) = (1 —t)u+ta. The preceding lemma shows that f(u,t) = f(u',t') if
either t =t =1 or (u,t) = (v, t'). Moreover, it is clear that for every v € U(x) there
is v € OU(x) such that u € [z,v]. From these facts, one deduces that the continuous

map

g:0U(z) x[0,1] /0U(z) x {1} — U(x)

associated to f is bijective. Since dU(x) x [0, 1] is a compact space, g is an homeomor-
phism. To conclude, it remains to note that f~'(U(z)) = oU(z) x |0, 1]. O
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Proposition 3.9 If (S5,Y) is a simplicial set, then for every open star U(z) of x € |S]
one has

151(Cu)) = Uy
Proof: 1t is clear that
151(Cu@) = BHom(Cu(), Ts|)
= Bjue) . (Cuw)-
It remains to prove that the canonical arrow

Com — Bive) . (Cuw)

is a quasi-isomorphism on U(xz). Thanks to the preceding lemma, there is a neighbor-

hood w of dU(z) in U(x) and an homeomorphism
¢ 1w — IU(x) x [0, ¢

such that ¢(wNU(z)) = dU(x) x]0,¢[. We are thus reduced to show that the canonical
arrows

¢ — lim H°(V x 10,9[; @)
Vev,n>o

0 — lim HYV x]0,9[;C) (k>1)
Vev,n>o

are isomorphisms when V is a fundamental system of neighborhoods of y € 9U(x). But,
using homotopy, it is clear that

H(V x )0,7[; €©) = H*(V; Q)
and the proof is complete. a

The following proposition is the main result of this section and will be used as a
basic tool in the sequel.

Proposition 3.10 An IR-constructible sheaf F' on a real analytic manifold M is quasi-
isomorphic to a bounded complex 1" of the form

) — .. fan (EW(“' —s e B (EW}“ — e P (DH/M ——50---
ia€lg e i€l 'k el i

where each family (W, )i, er, is locally finite, the open subsets Wy ;. being subanalytic,
relatively compact, connected and such that

DEW((EWk,ik ) = (Dkaik )
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the differential d%. being such that the induced map
(d7)ji : O, — Qg

is either 0 if Wy; ¢ Wiy ; or a complex multiple c;?i]WkHJ Wi of the canonical inclusion
map if Wkﬂ' C Wk+17]‘.

Moreover, if F' has compact support, we may assume that the set I is finite for
every k € Z.

Proof:  From the theory of IR-constructible sheaves, one knows that there is a simpli-
cial set (S,¥) and an homeomorphism i : |S| — M such that i~'F is a simplicialy
constructible sheaf. From a construction due to M. Kashiwara [11] one knows that such
a sheaf is quasi-isomorphic to a bounded complex T such that each T* is a locally finite
direct sum of the sheaves Iy, associated to the open stars of the simplexes of ¥ where
F is non zero. Since we have just proven in the preceding lemma that for such a sheaf
one has

D/((DU(U)) ~ (Dm

the first part of the proposition is clear.
Concerning the differential of the complex, we note that if o, ¢’ are two simplexes
of ¥ then
Hom(Cy (), Cu (o)) ~ D(U(0); Coo)nv (o))

hence the conclusion since U(o) is a connected open set.
In case F' has compact support K, the open stars U(c) meeting K are in finite

number and since only these stars appear in the components of 7", the sets [}, are finite.
O

3.4 Topological Os-modules

Let S be a complex analytic manifold. Recall that the sheaf Og of holomorphic functions
on S is a multiplicatively convex sheaf of Fréchet algebras over S (see [7, 25]). Also
recall that if V' is a relatively compact open subset of a Stein open subset U of X then
the restriction map

I(U; Os) — I'(V; Os)

is C-nuclear. From this it follows easily that I'(U; Op) is a Fréchet nuclear (FN) space
and that I'(V,Og) is a dual Fréchet nuclear (DFN) space.

As in [7], we will consider Og as a sheaf of complete bornological algebras and
deal with the category Born(Og) of complete bornological modules over Og. Recall
that Houzel has shown that Born(Og) has a natural internal hom functor denoted by
,COS(-, -) and an associated tensor product functor denoted by - ®Os .. They are linked
by the adjunction formula

Hom Born(OS)(M ®OS N’ 73) = Hom Born(Og) (M7 EOS(N7 73))
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We denote by L, _(-,-) the global sections of L, (-,-) considered as a bornological
vector space. For any M in Born(Os), the functor L, (M, ) has a left adjoint. We
denote it by - ® M.

Following [15], an FN-free (resp. a DFN-free) Og-module is a module isomorphic to
E ®Og for some Fréchet nuclear (resp. dual Fréchet nuclear) space E. It is easily shown
that the Os topological dual £, (M, Os) of an FN-free (resp. a DFN-free) Os-module
M is DFN-free (resp. FN-free). Moreover both FN-free and DFN-free Og-modules are
Og reflexive.

The results needed for the proof of the finiteness, duality and base change theorems
for relative elliptic pairs are summarized in the three following propositions. The first
one is Corollary 5.1 of [25] and the next two ones are easily deduced from the results

in §1-2 of [15] (see also [16]).

Proposition 3.11 Let M (resp. N") be a complex of DFN-free (resp. FN-free) Os-
modules. Assume M and N are bounded from above and

u':./\/l'—>./\/'

is a continuous Og-linear morphism. Assume moreover that u' is a quasi-isomorphism
forgetting the topology. Then M" and N have Os-coherent cohomology.

Proposition 3.12 Let M’ be a complex of FN-free Os-modules and let N' be a DFN
Og-module. Assume M’ is bounded from above and has Og-coherent cohomology.
Then the natural morphism of D*(Og)

EOS(JM.,N) — R?-[om@s(./\/l',./\/)
is an isomorphism.

Proposition 3.13 Let M be a complex of FN-free (resp. DFN-free) Og-modules and
let N be an FN (resp. DFN) Og-module. Assume M’ is bounded from above and has
Ogs-coherent cohomology. Then the natural morphism of D~(Og)

M ®£s N — M ®Os N
is an isomorphism.

In the sequel, when applying the preceding propositions, we will use the following
well-known result.

Proposition 3.14 Assume Z, S are complex manifolds. Denote by ¢ : Z x S — S
the second projection. Then, we have the following isomorphisms:

e.Frxsis = D(Z;F7) & Os
eDb s ~ To(Z;Db*%) & Os = Ly (. Fzxsis, Os)-
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Hence, QDbdZZX’ng is a DFN-free Og-module which is the topological dual over Og of the

FN-free Os-module ¢,Fzys)s. Moreover,
€.0zxs =1'(Z;0p) ® Os.
Hence, if K is a compact subset of 7, we have
e[(Azysis)rxs] ~ T(K; Az) @ Os

and ¢, [(Azxs|s)kxs) is a DFN-free topological Os-module. Finally, if T is another
complex manifold and p: Z x T x S — S and q: T x S — S denotes the canonical
projections, we have

PFzxrxsirxs ~ &Fzxsis O ¢<Orxs.

4 Finiteness

4.1 The case of a projection

Proposition 4.1 Let Z, S be complex analytic manifolds. Consider Z x S as a relative
analytic manifold over S through the second projection €. Let (G be an object of
D% _.(Z) and set F = GX]Cs. Assume that (M,F ) is a good relative elliptic pair with
¢-proper support on Z x S|S. Then

Re(F@Me,,  Ozxs)

is an object of D® | (Os).

coh

Proof: By “dévissage”, it is obviously sufficient to prove the result when M is a
Dy s)s-module which admits a good filtration on a neighborhood of any compact subset
of Z x S.

It follows from the relative regularity theorem (Theorem 2.15) that the canonical

map
Feo M ®1];sz|5 Ozxs — RHOm(D/F,M ®7];z><s|s Ozxs)
is an isomorphism. Using Lemma 3.3, we get the isomorphism
Re (F @ Mpys @ o Azxsys) (4.1)
zR xs|s

— Re,RHom(D'F, Mps ®£ZIR><S|S Fzxs|s)-

Let V be the interior of a closed polydisc A of S. Since supp(M)Nsupp(F)Ne *(A)
is compact, we can find a compact subset K in Z such that K x V' is a neighborhood
of supp(M) N supp(F) N e * (V). Replacing S by V and G by G shows that we may
assume from the beginning that GG has compact support. Moreover, by Proposition 3.1
we may also assume that Mg is quasi-isomorphic to complex £ whose components
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are free Dym, g s-modules of finite rank. Since Mps has bounded amplitude, we may
even assume £* = 0 for k> 0.

We know by Proposition 3.10 that D’'G is isomorphic to a bounded complex T of
the form

_>@ (I]W'ki — ...
ZEIk ’

where W, ; is relatively compact subanalytic subset of Z such that D’((Ewkyz.) = (DW;“-
Thus G ~ D'D'G is quasi-isomorphic to a complex C" of the form

— 8 O, —
ZEIk *

It is clear that the sheaf (-AZXS)U(XS (resp. (FZXs)lst) is acyclic for the the functor
€|k xs, (resp. €uxs,) for any compact subset K (resp. any open subset U) of Z. Hence
we may view isomorphism (4.1) more explicitly as the morphism

6*((0 (Ds) (34 L ®DZIRXS|S AZXS|S) (42)

— &Hom(T X Cs, L ®DZ]R><SS foS|S)

in the category of complexes of Og-modules (not the derived category). Let us denote
by R; (resp. Rj;) the source (resp. target) of the preceding arrow.
The components of Ry (resp. R;) are easily seen to be finite sums of the sheaves

6|Wk,ixs*(AZXS|S|WkJ‘XS) (vesp. €|Wk7ixs*(‘7:2><5|s|wk7iXS) )-

Hence, R; (resp. Rj;) is naturally a complex of DFN-free (resp. FN-free) topological
Og-modules. For these natural topologies, the regularity quasi-isomorphism is clearly
continuous. Applying Proposition 3.11 we conclude that R, has Og-coherent cohomol-
ogy and the proof is complete. a

4.2 The general case

Theorem 4.2 Let f: X|S — Y|S be a morphism of relative analytic manifolds over
S. Assume (M, F) is a good relative f-elliptic pair with f-proper support; i.e.

e M is an object Ongood(D()ﬁs):
o F is an object of Db_.(X),
o ¢ 'charys(M)NSS(F)C TxX,
e supp(M) N supp(F) is f-proper.
Then i|S!(./M ® F') is an object of Db (D;ITS).

good

27



Proof: By “dévissage”, it is obviously sufficient to prove the result when M is a Dy -
module which admits a good filtration on a neighborhood of any compact subset of

X‘ Decomposing f through its graph embedding
1: X — X xY
shows that it is sufficient to prove the finiteness theorem for the second projection
p2: X xY|S —Y]|S
and the pair 75,(M) € Ob(Dgood(D;PXmS)), FX]Ty € Ob(DY _ (X x Y)) since by the
projection formula we have
L5 (M) @ (FRICy) = (M F).
From the definition of charsg(M), it is clear that
chary,|s(25:(M)) N SS(F X Cy)

is contained in the zero section of T*(X x Y|S). So if ¥ = S, the theorem is a
consequence of the results obtained in the case of a projection.

To conclude, we will show that if f is a relative submersion and the theorem is true
for f: X|Y — Y|Y then it is also true for f: X|S — Y|S.

We will use a device introduced in [8] and extended in Lemma 2.10.

Let A be a polydisc in Y and denote by K the compact subset of X defined by

K = supp(M)N SS(F)N fHA).

Using Lemma 2.10, it is easy to see that, in a neighborhood of K, M is isomorphic
to a complex of right Dy g-modules of the form R Opyry Dyx|s where R is a coherent
right Dxy-submodule which admits a good filtration and is such that

¢~ 'charxy(R) C charys(M).

Moreover, this complex may be assumed to be bounded from above.
Since the functor iIS' has finite cohomological dimension, it is thus sufficient to

prove the coherence on A of the cohomology of LS!(F ® M) when M has the special
form M = M, ®Dx|y Dyx|s where My is a coherent Dx|y-module which admits a good
filtration.

In this case, one knows that the complex f |Y!(F ®M,) has Oy-coherent cohomology,
and the chain of isomorphisms

RA(F @ M ®£X|S Dx|s5v|s)
= RA(F® (Mg ®£le Dxs) ®£X|S Dx|ssy)s)
—= Rf(F® M, ®£X|Y Dx|s5v]|s)
—= RA(F @ Mooy Ox)@g Dyjs

shows that iIS'

(F ® M) belongs to D2, _,(Dys). O

good
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Corollary 4.3 In the situation of the preceding theorem, the well known formula:
L ~ L
fia(F @ M) Dpys Or = Rf(F oM s Ox)
gives the inclusion:
chary|s(i|5!(F ®@M)) C fwtf'_lcharxw(A/i)
Proof: By Theorem 2.13 and Proposition 5.4.4 and 5.4.14 of [12], we know that

pyischaryis(fg(F @ M) = SS(fi4(FoM)ep  Oy)
= SS(RA(F@Mey  Ox))
fwtf/_lss(F ® M ®£X|S OX)

fﬂtf’_l(SS(F) + p)_(1|scharX|5(M)).

N

N

Note that by hypothesis:
p}}scharﬂg(./\/l) NSS(F) C Ty X.
Moreover, one has:
p)_(llscharxw(/\/l) + (X xy T*Y) C p}llscharﬂs(/\/l).
Hence,

p;(llscharms(/\/l) + SS(F)} NFI(X xy T7Y) C p}ﬁschaer(M) N (X xy TY)

s0

TSS(F) + pxscharx|s(M)) € 'f'7 (pxscharx|s(M))
and the proof is complete. a
5 Duality

Let f: X|S — Y|S be a morphism of relative complex manifolds. OQur aim in this
section is to prove that, under suitable hypotheses, duality commutes with direct images
(see Theorem 5.15 for a precise statement). The proof will use the graph decomposition
of f and various “dévissages”. Hence, it is necessary to construct first the natural
transformation:

fisr0 Dxjs — Dyis o fig

and to check its compatibility with respect to composition in f. This will be a conse-
quence of the explicit construction of the trace morphism for D-modules given in the
next section. We follow the lines of [24] (see also [11, 17]).
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5.1 The relative duality morphism

Recall that if f: X — Y is a holomorphic map then it induces integration maps
D:q . p+dx,q+dx p+dy,q+dy

commuting with the Dolbeault operators. We will use this fact and the machinery of
distributional Dolbeault complexes of §3.1 to construct canonically the duality map for
right D-modules.

Let M be a left Dx-module. To simplify notations, we will set

Dby (M) = ,Db}s;x{ptﬂ{pt}(M]RHpt})‘
Hence, the components are
Db (M) = Db? Do, M
and the differentials are given in a local coordinate system z : U — @92 by

ore ,Db];éq ®@X M — ,Dbg:H’q ®@X M
dx
P @p’qu®P—|—Edzi/\u®DzéP
=1
and
gp,q : ,Dbgéq ®@X M — ,Dbgéq-}—l ®@X M
u®@P — 0"y ® P

respectively. Also recall that we denote by Dby (M) the simple complex associated
with Dby (M).

Lemma 5.1 The differential of Dby (Dx) is compatible with the right Dx-module
structure of its components and, in D*(DY), one has a canonical isomorphism:

Proof: The compatibility of the differential of Dby (Dx) with the right Dx-module
structure of its components is a direct consequence of the local forms of d and 9 recalled
above.

Using the fact that Dy is flat over Ox and the Dolbeault resolution of Q% we get
the quasi-isomorphisms

Hence, Weil’s lemma shows that the natural morphism
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from the holomorphic to the distributional de Rham complex of Dy is a quasi-isomorph-
ism of complexes of right Dx-modules and the conclusion follows from the Spencer
quasi-isomorphism

DRX(DX) ~ QX[—dX].
O

Lemma 5.2 To any morphism f : X — Y of analytic manifolds one can associate a
canonical integration morphism

in the category of bounded complexes of right Dy -modules.

Proof: At the level of components the integration morphism is obtained as the follow-

ing chain of morphisms:

FDPFst XDy y) = f(DU " @, f'Dy)
=5 [DUOTHX @ Dy
— Dbz}ﬂj+dy7q+dy ®Oy Dy

—= DY (Dy ),

To get the second morphism one has used the projection formula, the fact that Dby is
a soft sheaf and the fact that Dy is locally free over Oy. The third arrow is deduced
from the integration of distributions along the fibers of f.

To conclude, we need to show that the integration morphism is compatible with the
differentials of the complexes involved. Thanks to the local forms of the differentials,
this is an easy computational verification and we leave it to the reader. a

Lemma 5.3 If f: X — Y and g : Y — Z are morphisms of complex analytic
manitfolds, one has the following commutative diagram:

9:(iDbx (Dxy)[2dx] @p, Dyz) — g/(Dby(Dy)[2dy] @, Dy-7)
lQ 3
9 Dby (Dx7)[2dx] = Db, (Dz)[2d7).
In this diagram, arrow (1) is deduced by tensor product and proper direct image from
f«, arrow (2) is an isomorphism deduced from the projection formula, arrow (3) is g.

and arrow (4) is equal to (g o f),.

Proof:  Going back to the definition of the various morphisms, one sees easily that the
commutativity of the preceding diagram is a consequence of the Fubini theorem for
distributions, that is, the formula

(g0 f).(v) = g.(fu(u))

where g, and f. denotes the push-forward of distributions along ¢ and f respectively,
u being a distribution with g o f proper support. O
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Proposition 5.4 If f : X — Y is a morphism of complex analytic manifolds then
there is a canonical integration arrow

[+ £,(Qx[dx]) — Qy[dy]

in DP(Dy). Moreover, if g : Y — Z is a second morphism of complex analytic
manitolds then

f90f = fg © Q!(ff)

Proof:  One gets the arrow [; by composing the morphisms:

[(Qx[dx]) == Rf(Qx[dx] @5 Dxov)

—  Rfi(Dbx(Dx-y)[2dx])
= fi(Dbx (Dx -y )[2dx])
— Qy[dy]

Let us point out that the second and last isomorphisms come from Lemma 5.1, that
the third one is deduced from the fact that Dby (Dx_y) is c-soft and that the fourth
arrow is given by Lemma 5.2.

The compatibility of integration with composition is then a direct consequence of
Lemma 5.3. O

Corollary 5.5 If f : X|S — Y'|S is a morphism of relative analytic manifolds over S
then there is a canonical arrow

Iys i|sz(QX|S[dXIS]) — Qys[dys].

Moreover, it g : Y|S — Z|S is another morphism of relative analytic manifolds over

S then
Jgosis = Jgis © 951U 115)

Proof: Using the canonical morphism
Qx[dx] ®£X|S Dx_y — Qx|dx] ®£X Dx_y
and the integration morphism
[+ RA(Qx[dx] ®£X Dx_y) — Qyldy]

we get the morphism
Rf(Qx[dx] ®£X|S Dx_y) — Qyldy].
Since

Dxy = Dx|sovls Oy, f~'Dy
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as a (Dx|s,f ' Dy’ )-bimodule and Qy is a right Dy-module, we get a Dy |s-linear mor-
phism:
Rfi(Qx[dx] ®£X|S Dxsoyis) — Qyldy].

Tensoring on both sides by ¢,' Q%™ !'[—ds] and using the projection formula, we get the
requested relative integration map:

Rfi{(Qxs[dx)s] ®£X|S Dx|ssyis) — Qyisdys].

The last part of the corollary is then an easy consequence of the similar result for

S = {pt}. O

Definition 5.6 One defines the direct image of a right (Dx)s, Dx|s)-bimodule M by
setting:

[ (M) = RA((M ®1];X|SDX|S—>Y|S) Rk

L s Dxissy)s)

Lemma 5.7 There is a canonical isomorphism

[(Dx|s ®p, Dx|s) ®£X|S Dx|s-v|s] @5

Dxis Dx|ssy|s

== Dxissyis @p-10, ™ 'Dys
compatible both with the structure of left Dy g-module and the structure of right
(f_1Dy|5,f_IDy|5)—bimodu]e.
Proof:  One has the chain of isomorphisms
[(Dx|s ®p, Dx|s) ®£X|S Dx|s—v|s] ®£X|S Dx|ssy|s

—> [Dxs ®p, Dx|s-v|s] ®{;X|S Dx|ssy|s

- Dxisoy|s ®£X Dx\|s=vis

== Dxissy|s @p-10, [ Dys

== Dxissvs Bp-1pys (f'Dys Q10 ' Dys)

== Dx|s-ys Qp-1pys (f'Dys Q10 ™' Dys)

In the second isomorphism we have used the exchange lemma. In the fourth line, the
last tensor product uses the structure of left f~'Oy-module of f~'Dy|s. In the fifth
isomorphism the last tensor product uses the structure of right f~'Oy-module of the
first factor and the structure of left f~'Oy-module of the second one. Finally, in the
last line, we have used the exchange lemma again. O

Proposition 5.8 Let M be a right Dx|s-module and let M R0, Px|s be the associated
right Dx|s-bimodule. If f : X — Y is a morphism of relative analytic manifolds over
S then one has the following canonical isomorphism

f (_/\/l ®(«%X Dx|s) — i|S'(M) ®£Y DY|S

=|s!

in the derived category D(D;FIS ® D(;,pls).
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Proof: This is a direct consequence of the preceding lemma. a
Definition 5.9 The differential trace map associated to a morphism
f:X|S—Y]|S
of relative analytic manifolds over S is defined to be the arrow
try :i|S!ICX|S — Kys
in the derived category D(Dy|s ® Dys) obtained by composing the following arrows:

L
i|S!’CX|S = i|5!(QX|5[dX|S] B, Dy|s)
— (i|S!QX|S[dX|S]) ®£Y Dy s

= Qys[dys] ®£Y Dy s

where the first arrow comes from the definition of Kxs (see p. 11), the second one
being a consequence of the preceding proposition and the third one being constructed
by tensor product with the integration arrow of Corollary 5.5. By construction, try is
compatible with the composition of maps.

Proposition 5.10 Assume f : X|S — Y|S is a morphism of relative analytic mani-
folds over S. Then the differential trace map

induces a morphism

duy : i|S!QX|S(M) — QYIS(LszM)

for any object M of Db(D;)aS). Moreover, this morphism is functorial in M and
compatible with composition in f.

Proof: Since, by definition,
Dxs(M) = BHomyp (M, Kxs)
we have a canonical morphism
s Dis(M) — BHom (£ M. Ko
in D(D(}),pls). Composing this morphism with the morphism

RHomDYlS(LS!M,ilS!ICMS) — RﬁomDms(LS!M’KYlS)

associated to try gives the requested duality morphism. The construction shows that it
is natural in M. The compatibility with composition in f comes from the corresponding
property of try. a
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To conclude this section, we will show that the differential duality morphism is
compatible with the duality morphism of complex analytic geometry.

Recall that since Dy s is an Ox-module, we have a well defined scalar extension
functor

EX|5 : MOd(OX) — MOd('D})ﬁS)
F = f@ox Dx|5.

The image by this functor of an Ox-module F is coherent as a right Dxs-module if
and only if F is coherent as an Ox-module. For a coherent Ox-module F, one sets

DX|S(F) = RHOMOX(F, QX|S[dX|S])
hence, we have the canonical isomorphism:
Dxs(F) ®p, Dx|s == Dx|s(F @y, Dxs)-

Moreover, if f: X|S — Y|S is a morphism of relative analytic manifolds and F is a
coherent Ox-module we have the canonical isomorphism:

With these facts in mind, we can now state:

Proposition 5.11 Let f: X|S — Y|S be a morphism of relative analytic manifolds.
Assume F is a coherent Ox-module. Then we have the commutative diagram:

RfDxs(F) @o, Dyis —  Dyjs(RAF) @y, Dyjs

i|S!QX|S(F®@XDX|S) — QY|S(i|51(F®OX DX|S))

where the first and second horizontal arrows come respectively from the geometric and
differential duality morphisms, and the vertical arrows isomorphisms are deduced from
the compatibility with direct image and duality of the scalar extensions functors Ex s
and By|s.

Proof: Consider the morphism

QX|5[dX|S] — /CX|S (5-1)
w = w@lx|5.

It follows easily from the definition of the differential integration map that we have
the following commutative diagram:

Rf!QX|S[dX|S] — QY|s[dY|s]

i|S!ICX|S — ’Cy|5.
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In the preceding diagram the horizontal arrows are the geometric and differential trace
maps, the first vertical arrow is deduced from (5.1) by using the canonical section
1x|s-v|s of Dx|soy|s and the second vertical arrow is (5.1) with X replaced by Y.
Since the geometric and differential duality morphisms are directly constructed from
the corresponding trace maps the result is easily reduced to the commutativity of the
preceding diagram. O

5.2 The case of a closed embedding

Proposition 5.12 Let ¢ : X|S — Y|S be a closed relative embedding. Then, for
every coherent right Dx s-module M, the canonical morphism

ys1Dx1s(M) — Dy s(5. M)
is an isomorphism.

Proof: Since the problem is local on X, we may assume M has a bounded resolution
by finite free right Dx|s-modules. Thus it is sufficient to prove the result for M = Dx 5.
Since we have

Dxs = Ox B s Dxs

it follows from Proposition 5.11 that the result is a direct consequence of the corre-
sponding result for O-modules. Since we do not have a precise direct reference for this
well known result we recall it in the following lemma. O

Lemma 5.13 Ifi: Z — X is a closed embedding of analytic manifolds, then for any
object F of D, (Oy) the complex Ri\F is an object of D, (Ox) and the geometric

coh coh

duality morphism
RiRHom , (F,Qz[dz]) — RHom , (RuF,Qx[dx])
is an isomorphism.

Proof: Since the result is of local nature and the duality morphism is compatible with
composition, it sufficient to consider the case when F = Oy and

iU — U xU”

= (Z,0)

where U’ (resp. U") is an open neighborhood of 0 in @©%# (resp. @).
In this case, the arrow

i;ﬂz[dz] — RHom OX(i!OZ, Qx[dx])
corresponds up to shift to the arrow

’i!QZ — RHom OX(i!OZ7 QXU])
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deduced from the arrow

0Qy — Hom, (107, Db [1]) (5.2)
i;w — (lvh — L*(hw))

by using the natural map from Hom, to RHom, and the Dolbeault resolution

Qx = DbdXX". Using the negative Koszul complex K.(z",Ox) as a free resolution of
11Oz, the map (5.2) corresponds to the morphism of complexes

0y — Hom , (K.(z",0x), DbY") (5.3)

which associates to 4w the morphism of complexes which sends A to i.(h)zw) in degree
zero and is zero in other degrees.

The target of the preceding arrow is the simple complex associated to the double
complex K below

dx,0 dx,1 dx,dx
TZ// TZ// R TZ//
dx,0 dx,1 dx,dx

where the horizontal maps are the d Dolbeault operators, the vertical ones being mul-
tiplication by z”. In the preceding diagram the term of bidegree (0,0) is in the upper
left corner and the image of iw by the arrow (5.3) corresponds to the section i.w of
Db in bidegree (—1,1).

Since the canonical inclusion of K.(z”,€x) in the simple complex sK " is a quasi-
isomorphism, it follows that the cohomology of sK ™ is concentrated in degree zero and
that H°(sK) is isomorphic to Qx/z"Qx.

Now we have successively

w = w(2')A(")dz" A dy"”

= w(Z’)AE( d" )

2wz

= ﬁ(w(z’)A dz")

iz

and this shows that i.w has the same cohomology class in H°(sK ™) as the section
w(z') A (dz"[2im) of K%°. Hence the arrow (**) corresponds at the level of H° to the
isomorphism

i!QZ — Qx/Z”QX

AYie

d//
hw lw(z’)/\ Z]
2"Q

and the conclusion follows. O

37



5.3 The case of a projection

As for the finiteness theorem our starting point will be the case of a projection.

Proposition 5.14 Let Z, S be complex analytic manifolds and denote by n the com-
plex dimension of Z. Consider 7Z x S as a relative analytic manifold over S through
the second projection e. Let G be an object of D%,__(7) and set F' = G[X]Ts. Assume
that (M,F) is a good relative elliptic pair with e-proper support on Z x S|S. Then the
natural pairing

Re,( M@ F ®£ZX . Ozxs) ®£S Re(D'F @ BHomyp, (M, Q7 gsln])) — Os

S|

identifies each complex with the Og dual of the other.

Proof: Since the dual of a relative elliptic pair is a relative elliptic pair, we need only
to show that the map
Re(D'F @ RHom Dsz|s(“M’ 0%ys15m])

—  RHom, (Re.(F @ M ®7];Z>< B Ozxs),Os)

S|

deduced from the duality pairing is an isomorphism in the derived category.
Using Lemmas 3.3, 3.4 and 3.6 and the regularity quasi-isomorphism, it is equivalent
to prove that the canonical map
Re(D'F @ RHom DzIRxs|s(M]R|S’ Db}’zsw)) (5.4)

—  RHom ,_(Re.RHom(D'F, Mps ®5zmxs|s Fzxs),O0s))

is an isomorphism in the derived category.

We will work as in the proof of Proposition 4.1 and use the notations introduced
there. Using the resolution £ of Mp|s and the resolution 7" of D'G/, we will compute
explicitly the preceding morphism. We already know that

Re.RHom(D'F, Mpys ®{; Fzxs)

zR x 5|5

o G*HOm(T' (Ds,/: ®DZIR><S }—ZXS) = RQ

|s

Since Dby, ,«s is acyclic for the functor €, ,ys,, we get

Re(D'F @ RHomDZIRXs (:’Vlmsapb?;lsw))

|s
- a((I"XCs) @ Hom DZlRXSlS(,C', Dby s1s))-
We denote by R; this last complex.
The components of R, (resp. Rj;) are finite sums of the sheaves

€wyixs, (Fwy.xs)  (resp. e, xs,(Dbyy, «s) )
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which are FN-free (resp. DFN-free) Og-modules. Hence, R, and R; are naturally
complexes of topological Og-modules.
For any open subset U of Z, we know that

n,n .
cuxs|s, Db sis = Lo (€uxsis, Fuxss, Os)

where the second member of the preceding equality is the sheaf of continuous Og-linear
homomorphisms between the FN-free Os-module ¢y s|s, Fuxsis and Os. Hence we get
the canonical isomorphism

RE = L, (R7*,05)
for any integer k. One checks easily that these maps define an isomorphism of complexes
Ry = /JOS(R'Q, Os).
Moreover, the composition of this morphism with the natural morphism
Lo (Ry,0s) — RHom , (R, Os) (5.5)

gives the map (5.4).
Since R, has Og-coherent cohomology, Proposition 3.12 shows that (5.5) is a quasi-
isomorphism and the proof is complete. a

5.4 The general case

Theorem 5.15 Let f : X|S — Y|S be a morphism of relative analytic manifolds
over S. Assume (M, F) is a good relative f-elliptic pair with f-proper support; i.e.

e M is an object ongood(D())aS),

o I is an object of D% _ (X)),

o ¢ 'charys(M)NSS(F)C TxX,

e supp(M) N supp(F) is f-proper.
Then the duality morphism

£15(D'F © Dyys(M)) — Dy 5(F & M)
is an isomorphism.
Proof: Using the factorization of f through its graph embedding
1: X — X xY

we deduce from the results obtained for closed embeddings that the theorem will be
true if it is true for the second projection

g: X xY|S —=Y|S
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and the pair
(i1 (M), FR Cy) € Ob(Dgyoq(DY,ys) X DR_o(X x Y)).
From the definition of char;s(M), it is clear that
charys(ijs:(M)) N SS(FE Ty)

is in the zero section of T*(X x Y|S). So if Y = S, the theorem is a consequence of the
results obtained in the product case.

To conclude, we will show that if f is a relative submersion and the theorem is true
for f: X|Y — Y|Y then it is also true for f: X|S — Y|S.

Let us assume first that there is a coherent right Dy |y-module Mg such that

./M = ./Mo ®DX|Y Dx|5.

One get successively:

Dy s(f,(F @ M))
o~ RHomDYlS([Rﬁ(F ® My ®1§X|Y Ox)] ®£Y Dy s, Ky)s)
= RHom (f,,(F ® Mo),Oy) @, Kys
= [ (D'F @ Dxy(Mo)) @, Ky|s
—= RA(D'F @ RHomp, | (Mo, Kxy) @y Ox @pio, [ Kyjs)
-~ RA(D'F® RHomDX|Y(Mo,/CX|S) ®£X|S Dx|ssy)s)
= LS!(D’F ® RHom DX|S(A/10 D1y Dxs,Kx|s))
= [o(DF © Dys(M)

and the theorem is proved.
The general case is reduced to the preceding case by using Lemma 2.10 as in the
proof of Theorem 4.2.

6 Base change and Kiinneth formula

6.1 Base change

Recall that to any morphism b : S, — S of complex manifolds is associated a base

change functor

(\)p : Man(S) — Man(5h)
X|S — XXSSb|Sb
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which transforms relative manifolds over .S into relative manifolds over S;. The aim of
this section is to study the behavior of relative elliptic pairs under this functor. The
main result is Theorem 6.5.

Let us fix a base change map b : S, — S. For any relative manifold XS, we denote
by X3|S, its image by the base change functor (-), and by bx the projection from X to
X. By construction, we have the cartesian square:

X =% 9

o o

Xb — Sb.
€Xy,

Hence, there is a canonical ring morphism
bx'Dx|s — Dxys,
and we may introduce the following definition.

Definition 6.1 The base change functor for relative right D-modules is the functor

D(D}ﬂs) — D(D}%sb)
-1 L
M — bX M ®b)_(1DX|s DXb|Sb‘

This functor clearly induces a functor from Dgood(D;ﬂS) to Dlg)ood(D;wab).

The base change functor for sheaves of C-vector spaces is the functor
D(X) — D(X,)
F = bF

This functor clearly induces a functor from D%__(X) to D__(X}). Since the context
will avoid any possible confusion, we denote all these functors by (-)s.

Let us consider now a morphism f : X|S — Y|S of relative manifolds. We denote
by f5 : Xp|Sy — V3|S5, the image of f by the base change associated with b. One checks
easily that the square:

x L vy
Tbx Tby (61)
X, — Y,

fo

is cartesian.

Proposition 6.2 Using the notations introduced above:

a) There is a canonical morphism
b%' Dxisvis QL ' — Dx, |5,
X X |S Y|S fb_lb;'1DY|S b Yb|Sb Ab|sb Yb|Sb

in DP(bx'Dxs ® f; ' Dyys, )-
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b) The preceding morphism induces a natural morphism

(i|51(M))b — E|Sb!(M5)
for M in D(D}ﬂs).

c) The morphisms in (a) and (b) are isomorphisms if either f or b is a closed em-

bedding.
Proof: Since
-1 L -1 o 7—1 L -1
bX DX|S—>Y|S ®fb_1b§_f1DY|S fb DYb|Sb ? bX OX ®b)_<1f_1(9y fb DYb|Sb
and
~ -1
Dx,|s,=vels, =+ Ox, ®fb_10Yb Iv Dyys,

the canonical morphism b3'Ox —+ Oy, induces the morphism in (a).
For any M in D(D;)as), we construct the morphism in (b) as the chain of morphisms:

(i|S!JM)b by' Rfy( M ®£X|S Dx|s5v|s) ®bL;1Dy|s Dy, s,

Rfyby (M ®£X|S Dx|sv)s) ®5L;1vy|s Dy,s,

Rfy(bx' M @1y, 0% Dxisoyis Ofaip,  fi ' Dyys,)
Rfu(bx' M @iy, Di,js,5%s,)

Sy (Ms).

This chain of morphisms is obtained using the definition of the base change functor, the
fact that the square (6.1) is cartesian, the projection formula, the morphism constructed
in (a) and again the definition of the base change functor.

To conclude the proof, it is sufficient to show that if either f or b is a closed embed-
ding then the morphism constructed in (a) is an isomorphism.

Pl b

Assume f is a closed embedding. The problem being local, we may assume there
are open neighborhoods U and V of zero in €™ and @™ respectively with X = U x §|
Y=UxV xS and

fUxS — UxVxS
(u,s) — (u,0,s).
Then, we get Xy =U x Sy, Y, =U x V x S, and
fr:UxSy, — UxV xS,
(U,Sb) — (U,O,Sb)-

Moreover, bx (u, sp) = (u,b(sp)) and by (u, v, sy) = (u,v,b(sp)). In this simple geometric
situation, we have the Koszul quasi-isomorphisms:

K(Oy;v1,...,v,) == f.Ox
[X’.(Oyb;vlOby,...,‘UnOby) —— fb*OXb
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where vy, ..., v, denotes the functions on Y induced by the standard coordinates on V.
Hence, we get the isomorphisms:

- L — -1 7~
leox ®b;<1f_10y fb 1Dyb|5b ~ fb 1[\.(Dyb|5b;‘vl Oby,...,‘UnOby)
L — 1
OXb ®fb_10Yb fb 1Dyb|5b ~ fb 1[\.(Dyb|5b;‘vlOby,...,‘UnOby)

and the conclusion follows.
The case where b is a closed embedding is treated in a similar way. O

The following easy lemma will be useful in the sequel. We leave its proof to the
reader.

Lemma 6.3 Let f: X|S — Y|S be a relative submersion and let b: S, — S be a
base map. Consider X as a relative manifold over Y through the map f and assume

N is an object of D(D}ﬂy). Then
fr: XolYs — Y)Y,
is the image of f : X|Y — Y|Y by the base change associated with by and
(N Oy Dxs) = Ny, DDy, v, Dx,|s,-

The behavior of the characteristic variety under base change is given by the following
result.

Proposition 6.4 Let f : X|S — Y|S be a morphism of relative manifolds. In the
diagram
T*Xb|Sb — Xb XX T*X|S — T*X|S
t(bx)l (bX)TF

the first arrow is an isomorphism and for any object M of DP (D;ﬁs) we have

coh
chary,s,(Ms) C “(bx)'(bx); " charfis(M).

Proof:  Using the graph factorization of f and part (c) of Proposition 6.2 we are reduced
to the case where f is a relative submersion. In this case, assume M is generated as
a right Dx|s-module by a coherent right Dy|y-module M. Thanks to Lemma 6.3 the
epimorphism

Mo ®DX|Y Dx|5 — M —0

induces the epimorphism
(Mo)sy ®p, . Du,js, — My — 0.

Hence,

chary,|s,(M,) C ¢7 'charx,y, ((Mo)s, )

and the result will be true for f : X|S — Y|S and the base change by b if it is true
for f: X|Y — Y|Y and the base change by by . In other words, we are reduced to the
obvious case where Y = 5. O
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Theorem 6.5 Let f : X|S — Y|S be a morphism of relative manifolds and let
b:S, — S be a base map. Denote by f, : X;|S, — Y3|Sy the image of f by the base
change associated to b. Assume (M,F) is a good relative f-elliptic pair. Then

a) (My,Fy) is an fy-elliptic pair in some neighborhood of supp M,

b) the canonical morphism
[i|S!(F ® M)]b — E|Sb!(Fb ® -/Mb)

is an isomorphism.

Proof: Since (M,F) is a relative elliptic pair, F' is non characteristic for bx in a
neighborhood of supp M and [12, Proposition 5.4.13] gives us an estimate of the micro-
support of F, which together with the preceding proposition gives us (a).

To prove part (b), we will use the graph factorization of f and part (c) of Propo-
sition 6.2 to reduce the problem to the case where f : X|S — Y|S is a relative
submersion.

As in the preceding proposition, it is sufficient to treat the case ¥ = S. Assume
M, is a right Dx|y-module and set M = M ®Dx|y Dx\|s. We have successively:

[ M)~ [y, (Mo) @0, Dyisls
= [i|yg("M0)]bY ®Oyb DYb|Sb

and

E|Sb!("Mb) = E|Sb![(MO)bY ®DXb|Yb DXb|Sb]
= E|Yb1[("M0)bY] ®OYb DYb|Sb-

Hence, using Lemma 2.10, we see that the theorem will be true for f : X[S — Y|S
and the base change by b if it is true for f : X|Y — Y|Y and the base change by by.

Finally, factorizing f and b through their graphs and using once more part (c) of
Proposition 6.2, we see that it is sufficient to treat the case where f: Z x S| — S|S
is the second projection. We may also assume that the corresponding f-elliptic pair is
of the form (M,G [xX]Cs) where G and M are objects of Db _ (Z) and Dgood(DOprsw)
respectively, and that b : T' x S — S is the first projection. This product case is
treated in Proposition 6.6 below. O

Proposition 6.6 Let Z, S, T be complex analytic manifolds. Consider 7Z x S as a
relative analytic manifold over S through the second projection €. Let (G be an object
of DY _(Z) and set F = GX1Qs. Consider the cartesian square

7 xS SN S

Tp O Tb

IxTxS L Tx§S
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where the maps are the canonical projections. Assume that (M,F) is a relative elliptic
pair with e-proper support on Z x S|S. Then the canonical map

b~ Re.(F @ M &k
ZxS|
— Rn(pT'F@pMet

P~ Dyyss

< Ozxs) Sp-104 Orxs
OZXTXS)
is an isomorphism.

Proof: Thanks to the regularity theorem 2.15 and Lemma 3.3, it is equivalent to prove
that the canonical morphism:

b~'Re.RHom(D'F, Mg ®1§Z]RXS|S Fzxs) @10, Orxs
— Rn.RHom(p 'D'F,p”' Mp @

i FzxTxs|Txs
P 1DZIR><S|S | )

is an isomorphism. For short, let us denote by S; (resp. ;) the source (resp. target)
of the preceding arrow. Clearly, it is sufficient to prove that for any open polydisc A
of T', the induced morphism

Rb*(simxs) — Rb*(sémxs) (6.2)

is an isomorphism. We will compute this morphism explicitly as in the proof of Propo-
sition 4.1. Using the notations introduced there, we already know that

Re.RHom(D'F, Mpys ®{;ZIR Fzxs)

xS|S

oy G*HOm(T' (Ds,/: ®DZIR>< < }—ZXS) = RQ

5|
Since R}, has Og-coherent cohomology,

Rb.(Sijaxs) = Rb.(b7'R; ®5L—1@S Oaxs)
RQ ®£S b*OAXS-

12

Moreover, we have:
Rbi(S)axs) =~ ReRHom(D'F, Mg ®£ZIR><S|S P+Fzxaxs|axs)
~ eHom(T XTs, L ®Dz]R><S|S p*FZxAXSMXS)-
Let us denote R this last complex. Since we have the isomorphism
EDIWxAxS s axsFzxaxsiaxs = D(W; Fw) @ D(A; Oa) @ Os
for any open subset W of Z, a direct computation shows that
Ry = Ry @, 0.0axs.
Clearly, the morphism (6.2) corresponds to the canonical morphism
R, ®£S b.0axs — Ry @p_ b:O0axs.

Since R;, has Og-coherent cohomology, Proposition 3.13 shows that it is an isomorphism
and the conclusion follows. O
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6.2 Kinneth formula
Theorem 6.7 Let f; : X1|S — Y1|S and f; : X5|S — Y3|S be two morphisms of

relative manifolds. Assume
i) (My,F1) is a good relative fi-elliptic pair with fi-proper support,
ii) (Mg, Fy) is a good relative fy-elliptic pair with fy-proper support.
Then:

a) (MiXlg My, FiXIsFy) is a good relative fi x s fy-elliptic pair with fy X fy-proper
support,

b) the natural morphism
ﬂ|5!(F1 ® My) X ﬁ|5;(F2 ® M;) — MIS![(FI X sFh) @ (My Xy My)]
is an isomorphism.

Proof: Part (a) being obvious, we skip directly to part (b). Since
ﬂ|5!(F1 ® M)
has Dy, |s-coherent cohomology, the formula

fl Xs f2 = (iXm Xs f2) o (fl XSidXz)

allows us to restrict to the case f; =idx,. So, we need only to prove that the canonical
map

ﬂ|5!(F1 Q@ M) X (Fo @ M3) — fi X5 idX2|S!(F1 X k) @ (M Xy My)

is an isomorphism. Using the projection formula, we may get rid of F,. So we assume
Fy = Cx,. The problem being local on Y; xg X3, we may further assume that M, is
equal to Dy, |s.
The image of fi : X;|S — Y1|S under the base change associated with ¢; : X; —
S is
f1 Xsidx2 : X1 Xs X2|X2 — 1/1 Xs X2|X2.

Hence, by Theorem 6.5, we have the isomorphism:

[ﬂm;(Fl@JMl)]Ez - (fl XSidXz) [(F1®M1)62]'

X!
By scalar extension, we get the isomorphism:

£|51(F1 ® Ml) S DX2|5 - f1 Xs idX2|S![(F1 5CDX2) ® ("Ml S DX2|S)]

and the conclusion follows. O
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7 Microlocalization

Here, we shall prove that direct image commutes with microlocalization. More precisely,
denote by Ex the sheaf of (finite order) microdifferential operators on T*X (see [18]
or [19] for a detailed exposition).
Consider a morphism f : X — Y of complex analytic manifolds and the associated
diagram:
X 7 X xy T*Y 7 ™Y

and recall that the microlocal proper direct image of a right Ex-module M is defined

through the formula
[(M) = Rfn("f7' M ®tj},_15X ExLy),

where Ex_,y denotes the micro-differential transfer module associated to f.
Also recall that the microlocalization of a right Dx-module M is the right Ex-
module ME defined on 7" X by setting

ME = ','r)—(l./\/l ®7r)_(1DX 5);

In this section, we prove that, under the hypothesis of the finiteness theorem, we
have

[/ (M@ F)E ~ f[(Ma F)E].

This result was established by Kashiwara [9] when F' = Cx and f is projective. It was
also announced in a non proper case in [§].

7.1 The topology of the sheaf Cy|x(0)

Let us show that the sheaf Cy|x(0) of [18] is naturally a sheaf of topological vector
spaces and that its sections on a compact subset of Ty X form a DFN space.

Proposition 7.1 Let X be a complex analytic manifold. Assume Y is a complex
submanifold of X and denote by Cy|x(0) the sheaf of holomorphic microfunctions of
order 0 on Ty X. Then, for any compact subset K C Ty X, the space

F([X’; Cy|X(0))
has a canonical DFN topology.

Proof: Locally, we may use a coordinate system (z1,...,2Zq,Y1,...,Yn—a) Where Y is
defined by the equations
xy=0,---,24=0.

Denote by (1, -, Yn-a,&1,-..,&) the corresponding coordinates on Ty X. It follows
from [18, Theorem 1.4.5] that, for any open subset U of Ty X, the formula

0

oo = (@, )ule,y)de = 37 a;(y, €69 (p) (7.1)

j=—oo
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establishes a one to one correspondence between holomorphic microfunctions
u(z,y) € I(U;Cyx(0))
and sequences of homogeneous holomorphic functions
aj(z,§) € I(U; O x (7)) (5 <0)

such that for any compact subset K C U
0 -

j:z_:oo |aj(5675)|1(m < 400

for some € > 0.

Let us first construct the requested DFN topology in two special cases.

Case a. Assume K is a convex compact subset of 77 X on which £ # 0. Denote by
p T}*/X — Py X the canonical projection. The preceding discussion shows that the
map

I'(K;Cyx(0)) — T(p(K) x{0}; Ops xxa)
+oo i
u(z,y) —  fely,€,7) = Z:a—j(y,f/&)j—!

is an isomorphism. Using this isomorphism, we endow I'(K;Cy|x(0)) with the usual

DFN topology of I'(p(K) x {0}; Opzxxa). If, moreover, § # 0 on K, one has

fk(y7 57 T) = ff(y7 67 T&C/ff)

Hence, the DFN topology of I'( K';Cyx(0)) does not depend on k.
Case b. Let m denote the canonical projection of the bundle 7y X on its base Y

identified to the zero section. Assume K is a convex compact subset of Ty X such that
m(K) C K. It follows from (7.1) that

P(K;Cyx(0)) — I(m(K); Oy)
u(z,y) = ao(y,0)

is an isomorphism. We use this isomorphism to transport on I'(K;Cyx(0)) the usual
DFN topology of I'(m(K); Oy ).

One checks easily that, if Ky C K, are two compact subsets of Ty X of the kind
treated in case (a) or (b) above, then the restriction map

F([(Q; Cy|X(0)) — F([(l; Cy|X(0))

is continuous.
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Let K be an arbitrary compact subset of Ty X. The preceding discussion shows that
we can find a finite covering (K;);er of K by compact subsets such that I'( K;; Cyx (0))
and I'(K; N K;;Cy|x(0)) are DEN spaces. Thanks to the exact sequence

0— F(KY;CHX(O)) LN HF(K};CHX(O)) i} H F([X’Z’ N [X};wa(())),
el t,j€1

we may use « to transport on I'(K;Cyx(0)) the DFN topology of ker3. To show
that this topology is independent of the chosen covering, it is sufficient to show that
it is equivalent to the topology induced by a finer covering. Since such a topology is
obviously weaker, the conclusion follows from the closed graph theorem.

Since a direct computation shows that the above defined topology is independent of
the chosen coordinate systems, the conclusion follows easily. a

Corollary 7.2 Let X be a complex analytic manifold. Assume K is a compact subset
of T*X. Then
(K Ex(0))

has a canonical DFN topology.

Proof:  Apply the preceding proposition to Caxxx(0). O

Proposition 7.3 Let X, Z be complex analytic manifolds and let Y be a complex
submanifold of X. We identify T(*ny)(Z x X) and Z x Ty X. We denote by q :
7 x Ty X — Ty X the second projection. Then, for any Stein compact subset K C 7,
one has

Rq[(Czxy|zxx(0))kxrpx] = T'(K;072) © Cyx.

Proof: Let S be a complex manifold. Denote by ps : Zx.5 — S the second projection.
By classical results of analytic geometry, we know that

Rps![(OZxS)KxS] =~ F(I(§ OZ) ® Os.

Using the explicit isomorphisms constructed in the proof of the preceding proposition,
the conclusion follows easily. a

Corollary 7.4 Let 7, Y be complex analytic manifolds and denote by
f:ZxY —Y
the second projection. Assume K is a Stein compact subset of Z. Then
Rfm[(Ezxy -y (0)xxrey] 2 T(K; O7) @ &y (0).

Proof: Apply the preceding proposition to Czxa|zx(vxv)(0). O

49



7.2 Direct image and microlocalization

Theorem 7.5 Assume f: X — Y is a morphism of complex analytic manifolds and
(M, F) is an f-elliptic pair on X with f-proper support. Then the canonical map

(M@ F)E — f(Me FIE)

is an isomorphism in D (&y).
P coh

Proof: Recall that we have the commutative diagram

t !
X / X xy T*Y L>T*Y

™| ! |

X = X Y

Hence, we have successively
Ty [[(M@ )@y, &
= Rf;r![ﬂ'_l(./\/l ® F ®1[)/X DX_)Y)] ®W;1Dy gY
= Rfﬂ[ﬂ'_l(./\/i ® F ®7§X DXﬁy) ®f7r_17r§_/1DY f;lgy]
= Rfﬂl[ﬂ'_l(M ® F) ®7€_1,DX (ﬂ'_l,DX_>Y ®f7'r_17r;'1DY f;lgy)]
Note that there is a canonical map
7T_1DX_>Y @),ﬁ—lﬂ}—/lpy f;lgy — gX_>y. (72)

Hence, we get a canonical morphism

W;I[L(M ® F)) ®ripy & — L[ﬁj—{l(j\/l RF)®, Ex]. (7.3)

—1
x Dx

When f is a closed embedding, (7.2) is an isomorphism. Hence (7.3) is an isomor-

phism for any M € D®, (Dx) and any F € Db,__(X).

coh

In the general case, consider the graph embedding
10 X — X xY

and the projection

p: X xY —Y.

Since (M,F) is an f-elliptic pair, the pair (2 M,F [X]Qy) is p-elliptic. Since our result
holds for closed embeddings and

M@ (FXICy) ~ (M F),

we are reduced to prove the theorem for the pair (i, M,F [X]Cy) and the map p.
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We may thus assume that f is the second projection from X = Z x Y to Y and
that F' = G [x] Ty where G is an object of DY__(Z). Moreover, working as in §4, we
may also assume that M = N ®DX|Y Dx where N is a coherent Dyx|y-module. In this

case,
Ty [[(M@ )@ -ip, &
= Rfn[r (M@ F) @iy (77 Dxoy Dp=tzipy fr Ev)]
= Rfn[r7'(N ©(GXICy)) ®f—1DX|Y (771 Ox @p-1,010, fr Ev)]
and

LInX M@ F) @1 Ex] = Rfn[n (N @ (GRCy)) @,

Hence, we are reduced to show that the canonical arrow

gX—)Y]-

-1 _
% Px "Dxy

T 'Ox Dj-taztoy 7€ (0) — Exv(0)
induces an isomorphism
Rfn[r' (N @ (GRCy)) ®f-1DX|Y (771 0x @p-1,010, fr Er(0)]  (74)
Ex-y(0)]

= Rfg[n7' (N @ (GRCy)) @,
As a matter of fact, Ex,y ~ Exy(0) ®-1e,(0) I[7'&y as a (Dx|y.&y)-bimodule and a

scalar extension of (7.4) gives the theorem.

“1Dxy

Using the realification process as in §4, we may assume from the beginning that 7
is a complexification of a real analytic manifold M and that G is supported by M.

Since the result is local on 7*Y (hence on Y'), we may assume also that A" has a
projective resolution £ by finite free Dy y-modules (see Proposition 3.1).

As for GG, we may assume it is isomorphic to a bounded complex 7" of the type

0— - & Ck,,, — - & Ck,, —- O Cg,, —0
1a€lq ' i€l "k wely to

where the sets [; are finite and K} ;, is a subanalytic compact subset of M (see Propo-
sition 3.10).
Hence,
N@FXRCy)~ Lo (T X0y)
and the components of this last complex are finite direct sums of sheaves of the type

Dxy @ Crxy

where K is a subanalytic compact subset of M.
Note that

7T—1(DX|Y @ Crxy) ®7€_1DX|Y (7T_10X ®f7r_17r;1oy f;lgy(())) (7.5)
s ﬂ-_l(OX)I{XY ®f7r_l7r;'10Y f;lgy(())
7 (Dxjy @ Cxxy) P12y Ex-y(0) (7.6)

=5 (Exoy(0))kxry
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The right hand side of (7.5) is acyclic for f, thanks to usual properties of Stein
compact subsets. Moreover, Corollary 7.4 shows that the right hand side of (7.6) is also
acyclic for f,,. Hence, the morphism (7.4) of DP(&y (0)) is represented in C*(&y(0)) by
the morphism

fW!["T_l('C. ® (T (DY)) ®7r_1DX|Y
— falr TN L@ (T'RCY)) ®,
Let us denote by R’ the complex
e @ (T e ly) @, Oxl.
Its components are direct sums of sheaves of the type
HOx)kxy]  T(K;0z) @ Oy

which are DFN-free Oy-modules. It is easy to check that the Oy-linear differential of
R is continuous with respect to the these natural topologies. Hence, we may consider

(771 0x @1, 7 E(0))] (7.7)
Ex -y (0)]

“Dxv

R as a topological complex of DFN-free Oy-modules. Using Corollary 7.4, we have
successively

Rfr[(Exoy(0))kxry] ~ T(K;07) @ & (0)
~ [I(K;0z) & my'Oy] é%loy Ey (0)
~ 717 fil(Ox)kxy] 10, Er(0)
and (7.7) is represented as the canonical morphism
'R Qp-10, Ev(0) — 'R ®7r_10y Ey (0).

Since R has Oy-coherent cohomology, Proposition 3.13 allows us to conclude the proof.
O

Corollary 7.6 Let M be a coherent Dx-module endowed with a good filtration. As-

summe:
(i) f is proper on supp M,
(ii) fr is finite on ' f~!(charM) N (X xy T*Y), where T*Y = T*Y \ T}Y.

Then, for j # 0, H(f,M) is a flat connection (i.e. its characteristic variety is contained

in the zero section).

Proof: The second hypothesis implies that L(J\/lé') is concentrated in degree zero on
T*Y. The first hypothesis and Theorem 7.5 imply that

(fM)E =~ f(ME).
Hence, for j # 0, supp H’[(f,M)E] is contained in the zero section. Since £ is flat over

71D, the conclusion follows easily. a

This Corollary has important applications when studying correspondences of D-
modules, such as, for example, the Penrose correspondence. We refer the interested
reader to [5] for more details.
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8 Main corollaries

8.1 Extension to the non proper case

In this subsection, we shall generalize Theorems 4.2 and 5.15 to a non proper situation,
using the techniques of [8, 12].

Let f: X|S — Y|S be a morphism of complex manifolds over S and let ¢ : X —»
IR be a real analytic function. Set

A, ={(z,dp(x)): x € X}.

This is a Lagrangian submanifold of 7*X (which is not conic for a non locally constant
©). We also associate to ¢ the following subsets of X:

Z; = {z e X:p(z)<t},
Ui = {zeX:p(x) <t}

and denote by j; : Uy — X the open embedding. Recall finally that the image of a
subset S of T*X by the antipodal map is denoted by S°.

Corollary 8.1 Let M and F be objects of D (Dgas) and DY,__(X) respectively

good
and assume:

i) for each t € R, f is proper on supp M Nsupp F'N Z,
ii) p~*chargg(M) N SS(F) C TxX,
iii) there is tq € IR such that

Ay 0 (p~'charys(M) + SS(F)*) C 7 (Zy,).

Then:

a) setting
Fo = juj; ' F =~ Fu,

the canonical morphisms:
i|sz(F’f®M) — i|sz(F®M)
Lg*(D/Ft ® Dyis(M)) LS*(D/F ® Dy s M)
are isomorphisms for t > tg,

b) both
i|51(F®M) and i|5*(D/F®QX|S(M))

are objects of D]gvood(,D;pLS’)7

33



c) the natural duality morphism:
LS*(D/F ® Dy s(M)) — QY|si|5;(F ® M)
is an isomorphism.

Note that replacing SS(F') by SS(F)* in hypothesis (iii), we get a similar conclusion
after interchanging iIS' and iIS*' Also note that it would be possible to generalize to
a non proper situation the results of §6 but for the sake of brevity, we leave it to the

reader.

Proof: Llet x € X. If v € supp M Nsupp F and = & Z,,, then dp(x) € char(M) +
SS(F)* by hypothesis (iii) and in particular dp(xz) # 0. Applying Proposition 5.4.8
of [12], we find for ¢ > t¢:

SS(F) € SS(F)+IRTA,

where RTA, = {(z; Adp(z)) : 2 € X, A > 0}. Since:
p~'charys(M) N (SS(F) + RYA,) C T3 X Un~'(Z,),

again by hypothesis (iii), we obtain that (M, F}) satisfies the hypothesis of Theorems 4.2
and 5.15 for ¢ > toq. Hence, the conclusions of these theorems apply to the pair (M, F;)
and part (b) and (c) are consequences of part (a) which we shall now prove.

First, we consider the morphism

i|51(Ft®"M) —>i|S!(F®M), (81)

Set G = FoM ®{; | Dx|s—y|s- By Theorem 2.15, hypothesis (ii) and Proposition 5.4.14
X|s
of [12] we have:
SS(G) C SS(F) + p~'chargs(M).

Since

p~ ' charsis(M) = p~*chargs(M) + /(X xy T7Y),

the above morphism (8.1) is an isomorphism by Proposition 5.4.17 of [12].
To prove the second isomorphism in (a), consider the chain of isomorphisms which
follows from the regularity theorem applied first to Fy, then to F"

Rf.(D'F,® Dy sM ®£X|S Dxissy)s)
i Rf*RH()m(Ft,Qx|SM ®{;X|S ,DX|S—>Y|S)
| L
~ Rf*R]t*]t RHOTI’L(F, QXls./M ®DX|S
Rf.Rj..j7 (D'F @ Dx s M ®5X|s Dx|sov|s)-

Dx|s-v|s)

12

Set

G=D'F®DxsM®)  Dxissy|s.

X|s
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Isomorphism (8.1) applied to (D'F;, Dx|sM) tells us in particular that the projective
system
Rf*(D/Ft ® Q)qs-/\/t ®{;

Dy
s X|S—YS)

is essentially constant for ¢t > t,. Hence, the projective system Rf,Rj;,j; G is also
essentially constant for ¢ > ¢y and using the Mittag-Leffler theorem we get the isomor-
phism

Rf.G == Rf.Rj.j;'G

which completes the proof. a

8.2 Special cases and examples

In this subsection, we will consider various special situations and give the corresponding
form of Theorem 4.2 and 5.15 leaving the reader do the same thing for Theorem 6.7.
First, let us specialize our results to the non relative case taking S = {pt}.

Corollary 8.2 Let f: X — Y be a morphism of complex analytic manifolds. Assume
(M,F) is a good f-elliptic pair with f-proper support i.e.:

e M is an object of D (DY),

good

o I is an object of D __(X),

o char;(M)N SS(F) C T X,

e supp(M) N supp(F) is f-proper.
Then

o f(M®F) is an object of D _(DP),

o [ [Dx(M)® D'F] = Dy[f, (M F)].

When we take F' = Cx in the preceding corollary we recover the coherence theorem
for D-modules of Kashiwara [9] (who treated only projective morphisms). Moreover,
using Corollary 8.1, we also recover the finiteness theorem for non proper morphisms
of [8] and the corresponding duality result of [24].

It is well known that an Ox-module F is coherent if and only if the induced Dx-
module 7' @, Dx is itself coherent. Moreover, this scalar extension process is com-
patible with direct images and duality (see Proposition 5.11). Applying the preceding
corollary to the pair (F @, Dx,lx) we recover Grauert’s coherence theorem [6] and
Ramis-Ruget-Verdier’s relative duality theorem [15, 16] in the important special case
of analytic manifolds.

Taking Y = {pt} in the preceding corollary, we get the following absolute result:

Corollary 8.3 Let X be a complex analytic manifold. Assume (M,F')is a good elliptic
pair with compact support i.e.:
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e M is an object of D (DY),

good

e I is an object of D% __(X),
e char(M)NSS(F) CT3X,
e supp(M) Nsupp(F') is compact.
Then the complexes
RO(X; M@ Fey Ox)  and  RI(X; RHomp (M ® F,Qx[dx]))
have finite dimensional cohomology and are dual one to each other.

In the special case where F' = Cx, we get an absolute finiteness and duality result
for good Dx-modules which was considered by Mebkhout in [14]. For coherent analytic
sheaves, the preceding corollary corresponds to the very classical Cartan-Serre [4] and
Serre [26]’s theorems.

In the case Y = S, Theorem 4.2 and 5.15 give information on analytic families of
absolute elliptic pairs.

Corollary 8.4 Let X|S be a relative analytic manitold and let (M, F') be a relative
elliptic pair on X|S i.e.:

e M is an object of D® (D%S),

good
o F is an object of DY __(X),
° p_lcharX|5(./\/l) NSS(F)C Ty X,
o supp(M) N supp(F) is ex-proper,
where p : T*X — T*X|S is the canonical projection. Then
Ri(FoM@L Ox) and Rf;RHomels(F@QM,QX|5[dX|S])

Dx|s
are objects of D® , (Os), dual one to each other, i.e. the canonical morphism:

RfiRHom, (F © M, Qxsldx|s]) — RHom o (RfI(F @ M ®1§X|S Ox),Os)
is an isomorphism.

Combining the preceding corollary with the base change formula, we get:

Corollary 8.5 Let X|S be a relative analytic manifold. For any s € S, denote by b
the canonical inclusion of {s} in S. Assume (M,F) is a good relative elliptic pair with
e-proper support on X|S. Then for any s € S, (M, ,Fy,) is a good elliptic pair with
compact support (on a neighborhood of supp M, in Xs,, the fiber of X over s) and
the Euler-Poincaré index:

X(RT(Xp; My, @ Fy, @ Ox,,))

is a locally constant function on S.
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Proof: Let us denote by 7 the ideal of holomorphic functions vanishing at s. The base
change Theorem 6.5 tells us that:

RI(X;,; My, @ Fy, ®gxb Ox,,) = [0s/I @5 Re.(M @ F @5}('5 Ox)]s.
We know by the finiteness theorem that
Re, (M@ F ®1§Xls Ox)

has Og coherent cohomology. Hence, it is locally quasi-isomorphic to a bounded com-
plex of finite free Og-modules. The conclusion follows easily since [Os/Z]s = C.
O

Remark 8.6 let Fy: ¥ — F, P, : E — F be two complex analytic linear differen-
tial operators between holomorphic vector bundles on X. Assume that their principal
symbols induce the same morphism of fiber bundles

o7 'E — a'F

Then, P\ = (1 — A)Fy + APy is a one parameter analytic family of operators with
principal symbols equal to . Combining this remark with the preceding corollary, we
recover, for example, the fact that the index of an elliptic operator on a compact real
analytic manifold depends only on its principal symbol.

Let us now consider a few explicit examples. For the sake of brevity, we only consider
non-relative situations.

Example 8.7 Let M be a real analytic manifold with X as a complexification and M
a good Dy-module. Then, as we have already noticed in the introduction, M is elliptic
on M in the classical sense if and only if (M, Ca) is elliptic. In fact, SS(Crr) = Ti; X.
Since Ty ® Ox = Ay, the sheaf of real analytic functions on M and

RHom(D'Cprr, Ox) = Bur
the sheaf of Sato’s hyperfunctions, the regularity theorem 2.15 entails the isomorphism:
RHomp (M, An) ~ RHom (M, B ). (8.2)

This is the Petrowski theorem for D-modules which is often proved using micro-diffe-
rential equations as in [18]. Moreover, if M is compact and M is good, Corollary 8.3
asserts that the spaces

H'(RI(M; RHom , (M, Buy))) = Ext]bM(M; M, By)

and

H™/(RD(M; Qs @5, M) = Tor™ (M; Qar, M),

are finite dimensional and dual to each other. Note that for solutions of elliptic operators
the duality and finiteness theorems are well-known results.
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Example 8.8 Let X be a complex manifold, /' an open subset with real analytic
boundary. Then (M, Cy) is an elliptic pair if and only if the boundary 9U is non
characteristic for M, that is, char(M) N 715, X C T3 X. The regularity theorem yields
the isomorphism:

RHomp (M, (Ox)g) =+ RHomp (M, RI'y(Ox)). (8.3)

In other words, the holomorphic solutions on U of the system M extend holomorphically
through the boundary. If U is relatively compact, and M is good, we get that the spaces
Ext]bx (U, M,Ox) and Tor?fn (U;Qx, M) are finite dimensional and dual to each other.

Note that the regularity theorem is due to Zerner [27] (for the 0-th cohomology)
and [2], both in case of one equation with one unknown, then to Kashiwara [10] for
systems. The finiteness theorem is due to [2], this last result being extended in various
directions by Kawai [13].

Example 8.9 One can generalize both preceding examples as follows. Let M be a real
analytic manifold, X being a complexification of M and let U/ be an open subset of
M with real analytic boundary. Then (M, Cy) is an elliptic pair if and only if M is
elliptic on M on a neighborhood of U and moreover the conormal vectors to U in M
are hyperbolic with respect to M. Then we get the isomorphism:

RHomDX(/\/l, (Am)p) == RHomDX (M, Tu(Bum)).

(i.e.: the hyperfunction solutions of M on U are real analytic and extend analytically
through the boundary), and we also get finiteness and duality results that we do not
develop here.

Example 8.10 A general situation including the preceding examples is the following.
Let X =[], X, be a subanalytic p-stratification (cf. [12, Chap. VIII]) and assume:

{ SS(F) C U.Tx. X, (8.4)

char(M)NT5. X C TxX Vo

(In other words, F'is locally constant on the strata X, and these strata are non
characteristic for M.)

Then of course, the pair (M, F) is elliptic. If, moreover, supp(M) N supp(F') is
compact we may apply Theorem 4.2 and Theorem 5.15 and we obtain new finiteness

and duality results.

Example 8.11 For any F € Ob(DY%__(X)), the pair (Ox, F) is elliptic. Since F ~
Qx ®{;X Ox ® F[—n| and D'F ~ RHomDX(F ® Ox,Ox), one recovers the classical
finiteness and duality theorem on constructible sheaves. In fact if M is a real analytic
manifold and i : M — X denote a complexification of M, to G € Ob(DY%__(M)) one
associates the elliptic pair (Ox,1.G).

a8



Example 8.12 Let M be a holonomic Dx-module and let 29 € X. Let B(xo,¢) denote
the open ball with center z¢ and radius € > 0 in some local chart at zo. By a result of
Kashiwara [10], the pair (M, Cp(y,,e)) is elliptic for 0 < ¢ < 1. If X is open in €™ and
F € Ob(D},_.(X)) has compact support, one proves similarly that (M, F'* Cgqo,)) is
elliptic for 0 < ¢ <« 1. (Here “¢” denotes the convolution of sheaves; cf. [12] Exercise
2.20.)
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