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Hyperfunctions were introduced by Mikio Sato [8] in the late fifties as cohomo-
logical objects built from holomorphic functions. More precisely, if M denotes an
n-dimensional real analytic manifold and X a complexification of M , the sheaf BM
of hyperfunctions is defined as:

BM := Hn
M(OX)⊗ orM ,

where OX is the sheaf of holomorphic functions on X and orM the orientation sheaf
on M . Using Čech cohomology, it is then possible to represent hyperfunctions as
“boundary values” of holomorphic functions defined on tuboids having M as an
edge.

For example, if M is an open interval of the real line R and X is an open subset
of C, with X ∩ R = M , then

B(M) ' O(X \M)/O(X)

and the natural map b : O(X \M)→ B(M) is called the boundary value morphism.
Set X+ = X ∩ {z ∈ C; Im z > 0}. If φ ∈ O(X+), one also writes φ(x + i0) instead
of b(φ). This is because if b(φ) is a distribution, then it is the limit (for the
topology of the space of distributions) of φ(x + iε) when ε → 0, ε > 0, but in
general φ(x + iε) has no limit in any reasonable topology and in fact B(M) has
no natural separated topology (since O(X) is dense in O(X \M)). Hence Sato’s
definition forces any holomorphic function on X \M to have a boundary value,
just as Schwartz’s definition of distributions forces continuous functions to have
derivatives.

Once one has the concept of hyperfunctions in hand, a natural problem is to
recognize where the boundary values come from. It was known after Martineau’s
work [6] that on Rn, any hyperfunction u ∈ B(Rn) may be written as a finite sum

u =
∑
α

b(φα),

where each φα is a holomorphic function in a tube Rn + iΓα, Γα denoting a convex
proper open cone in Rn, as soon as the family of the interiors of the polar cones of the
Γα’s is a covering of Rn\{0}. Hence, to define a hyperfunction, one needs in general
at least n + 1 holomorphic functions. Moreover the famous “edge of the wedge
theorem” ([7]) asserts that the above sum is zero if and only if there exist convex
proper open cones Γαβ such that Γ◦αβ (the polar cone of Γαβ) is a neighborhood of

Γ◦α∩Γ◦β (hence, Γαβ is almost the convex hull of Γα∪Γβ) and holomorphic functions
φαβ defined in the tubes Rn + iΓαβ , each φα being decomposed as a sum of φαβ .

In 1969, M. Sato introduced a fundamentally new idea, which is the cornerstone
of the so-called “Microlocal Analysis” developed in the 70’s, both by Sato’s school
and Hörmander’s school. Roughly speaking, Sato’s idea is as follows. Let M be
a real submanifold of a real manifold X . Then for some mathematical objects
(e.g. a cohomology class of some sheaf defined on X), to be supported by M is a
global property which can be read on T ∗MX , the conormal bundle to M in X . For
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that purpose one considers the family of closed tuboids in X with edge M : these
tuboids define closed tubes in the normal bundle TMX to which one associates
their polar sets in T ∗MX . For example, a hyperfunction on R is a cohomology class
of OC supported by R, and this class may be non-zero although considered as a
cohomology class supported by the closed tube {z; Im z ≤ 0} it is zero. This idea
led Sato to introduce µM (F ), the microlocalization along M of a sheaf F on X , a
sheaf (in fact, an object of the derived category of sheaves) on T ∗MX whose direct
image by the projection π : T ∗MX → X will be RΓM(F ), the cohomology of F with
support in M . When M is a real analytic manifold, X is a complexification of M
and F = OX , one gets the sheaf CM of Sato’s microfunctions. A hyperfunction u
on M is a globally defined microfunction sp(u), and the support of sp(u) in T ∗MX
is the analytic wave front set of u (see [9], and see [3] for a systematic study of
sheaves in the microlocal framework).

At the opposite of Sato’s, the point of view chosen by Cordaro and Trèves is
highly non-cohomological. Their attempt is to give a presentation of the theory
of hyperfunctions and their analytic wave front set “with bare hands”, as sums
of boundary values of holomorphic functions, with the only tool of Sjöstrand’s so-
called FBI transform. At the same time, they present a variant of the theory by
considering C∞-manifolds locally embedded in Cn and by replacing the sheaf OX
by the sheaf of holomorphic solutions of some holomorphic vector fields.

Let us describe with some details the contents of the book.
Let M be a C∞-manifold. A hypo-analytic structure on M is the data of an

open covering M =
⋃
αMα and C∞-maps φα : Mα → Cm, such that if φα =

(φ1
α, ..., φ

m
α ), then dφ1

α ∧ ...∧dφmα 6= 0, and transition functions φαβ , holomorphic in
a neighborhood of φα(Mα)∩φβ(Mβ). Let us express this in our own language with
our own notation and let us consider a complex manifold X of dimension m and a
C∞-map φ : M → X such that dφ, considered as a linear map (TM)C → TX , has
rank m.

Chapters I and II are devoted to the case where M is “totally real”, namely,
when m = dimM . Then the authors develop the theory of hyperfunctions and mi-
crofunctions. As for hyperfunctions, they follow Martineau’s approach that consists
in gluing together analytic functionals thanks to the Runge property of M in X .
Next, they define the boundary value of a holomorphic function f in a tube with
edge M by assuming first that f extends holomorphically outside a compact subset
of M , then by gluing together these boundary values modulo the relation given by
the edge of the wedge theorem. This technical procedure has been made possible
thanks to the deep analytical tool introduced by J. Sjöstrand [10, 11] under the
name of FBI-transform (FBI for Fourier-Bros-Iagolnitzer).

At this stage, let us allow a digression. The FBI transform is a Fourier-integral
transformation with complex phase, which corresponds in the language of Sato’s
school to a complex quantized contact transformation (CQCT for short). For a
suitable choice of the phase, such a CQCT interchanges (locally on T ∗X), T ∗MX
and T ∗NX where now N is the boundary of a strictly pseudo-convex open subset
Ω ⊂ X , and the sheaf CM of microfunctions on M is interchanged with the sheaf
j∗OΩ/OX (where j : Ω ↪→ X), that is, with the sheaf of boundary values on N of
holomorphic functions on Ω. This last sheaf being extremely easy to manipulate,
one sees why CQCT or else the FBI transform are powerful tools, and that is the
method used by Kashiwara for proving that the sheaf CM is flabby. The idea of
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CQCT emerged around 1977 (Boutet de Monvel, Kashiwara) and has been used by
several people (Lebeau [5], Hörmander [2], Komatsu [4]) for giving an elementary
approach to Sato’s theory.

Let us come back to the book under review, keeping as above our own notation
(in particular, avoiding the heavy use of local coordinates). We assume now that
φ : M → X factors as:

M
i−→ Y

f−→ X

where i turns M into a totally real submanifold of Y and f : Y → X is a smooth
morphism of complex manifolds. Let m = dimCX,m+ n = dimCY = dimRM .

Let us denote by ΘY the sheaf of holomorphic vector fields on Y , and by Θf the
subsheaf of vector fields tangent to the leaves of f . Let us denote by DY the ring of
holomorphic differential operators on Y and by If the left ideal generated by Θf .
Chapter III is essentially devoted to the proof of the isomorphism, for U open in
M :

ExtqDY (U ;DY /If ,BM) ' Hm+n+qRΓU (YR;RHomDY×Ȳ (DY /If × OȲ ,BYR)

where Ȳ denotes the complex manifold Y endowed with the conjugate complex
structure, YR the real underlying manifold of Y , and DY /If × OȲ is the system
associated both to the vector fields of Θf and to the Cauchy-Riemann system on
Y . Nevertheless the symbols RHom,Ext,RΓU never appear in this book and the
theorem is formulated differently, using cohomology of explicit Koszul complexes.
Notice that the result is purely algebraic and quite easy when formulated as above,
in the language of derived categories.

In Chapter IV the notion of hyperfunction on M = M ′×Rp with C∞ parameters
w.r.t. Rp is introduced, but, as pointed out by the authors, this notion is not
intrinsically defined. Let us call this sheaf BC∞. Then it is shown that if the sheaf
Θf mentioned above is “elliptic” w.r.t. Rp, then there are isomorphisms

ExtqDY (DY /If ,BC∞M ) ' ExtqDY (DY /If ,BM),

and in particular the left hand side is intrinsically defined. Here again this isomor-
phism is written using explicit Koszul complexes.

Finally, in the last pages, the authors discuss various applications and in par-
ticular the (non-) solvability in the sheaf of hyperfunctions of systems of differ-
ential operators generated by complex vector fields. Indeed, keeping in mind the
above notation, the problem of finding geometrical conditions on f in order that
ExtqDY (DY /If ,BM) vanishes for a given q is an important and open problem. The
case where n = 1 is now classical, and the other extreme case where dim X = 1
has been solved only very recently by the authors [1], and is not treated in full
generality in this book.

The reader will have understood that I am not totally convinced by the point of
view adopted here by the authors. In fact, hyperfunctions are cohomology classes,
so why represent them by functions? Most analysts feel secure working with good
concrete holomorphic functions rather than with abstract cohomology classes, but
there are plenty of situations where this is simply not possible (see [12]). Even
when this is possible, we cannot go very far with such methods: for example, take
a hyperfunction which satisfies some partial differential equation Pu = 0. Then, in
general, u will not be a sum of boundary values of holomorphic functions satisfying
this equation. Moreover, there is a high price to pay for the lack of functoriality:
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it forces one to repeat the proofs in each particular situation and hides the deep
geometrical meaning of the results. A few tools of homological algebra would avoid
writing down each time explicit complexes (use the functor Ext), a little more will
allow treating simultaneously various derived functors (such as RHom, and RΓ)
and many complicated formulas will be highly simplified. Contrary to a general
opinion, derived categories are not so difficult tools to manipulate (definitely easier
than, say, Lebesgue integral). For example, in this language, a system of partial
differential equations becomes a left DY -module M, its complex of holomorphic
solutions is the object F = RHomDY (M,OY ); and if one is interested in replacing
holomorphic solutions by other kind of solutions derived from the sheaf OY , such
as cohomology classes supported by a submanifold M , then one studies RΓM(F ).
One important piece of information is the characteristic variety ofM, and this can
be recovered from the knowledge of F (this is the micro-support of F ). At this
stage, one can even forget that we are working with linear PDE, and sometimes
one can also forget the complex structure of Y , many problems being in fact purely
topological. This is the point of view developed in [3], and this is another story.

However, even if cohomological methods are in many situations a really efficient
tool, one should keep in mind that they have their own limits. They rapidly become
very hard to manipulate when dealing with precise growth conditions, and so far,
don’t apply at all to non-linear problems, contrary to traditional methods which
often are suitable with slight modifications. This is a good reason not to reject
approaches based on explicit representations of cohomology, and this book is an
attempt in this direction.
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