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Abstract

We define the notions of micro-support and regularity for ind-
sheaves, and prove their invariance by contact transformations. We
apply the results to the ind-sheaves of temperate holomorphic solutions
of D-modules. We prove that the micro-support of such an ind-sheaf
is the characteristic variety of the corresponding D-module and that
the ind-sheaf is regular if the D-module is regular holonomic.
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1 Introduction

Recall that a system of linear partial differential equations on a complex
manifold X is the data of a coherent module M over the sheaf of rings
Dx of holomorphic differential operators. Let F' be a complex of sheaves
on X with R-constructible cohomologies (one says an R-constructible sheaf,
for short). The complex of “generalized functions” associated with F' is
described by the complex RHom (F,Ox), and the complex of solutions of
M with values in this complex is described by the complex

RHom (M, RHom (F, Ox)).

One may also microlocalize the problem by replacing RHom (F,Ox)
with phom(F,Ox). In [4] one shows that most of the properties of this
complex, especially those related to propagation or Cauchy problem, are
encoded in two geometric objects, both living in the cotangent bundle T* X,
the characteristic variety of the system M, denoted by char(M), and the
micro-support of F', denoted by SS(F).

The complex RHom (F,Ox) allows us to treat various situations. For
example if M is a real analytic manifold and X is a complexification of M,
by taking as F' the dual D'(Cy;) of the constant sheaf on M, one obtains the
sheaf By of Sato’s hyperfunctions. If Z is a complex analytic hypersurface
of X and F = Cz[-1] is the (shifted) constant sheaf on Z, one obtains
the sheaf of holomorphic functions with singularities on Z. However, the
complex RHom (F,Ox) does not allow us to treat sheaves associated with
holomorphic functions with growth conditions. So far this difficulty was
overcome in two cases, the temperate case including Schwartz’s distributions
and meromorphic functions with poles on Z and the dual case including C°°-
functions and the formal completion of Ox along Z. The method was two

construct specific functors, the functor THom of [2] and the functor ® of
[5].

There is a more radical method, which consists in replacing the too
narrow framework of sheaves by that of ind-sheaves, as explained in [6].
For example, the presheaf of holomorphic temperate functions on a complex
manifold X (which, to a subanalytic open subset of X, associates the space of
holomorphic functions with temperate growth at the boundary) is clearly not
a sheaf. However it makes sense as an object (denoted by O%) of the derived
category of ind-sheaves on X. Then it is natural to ask if the microlocal
theory of sheaves, in particular the theory of micro-support, applies in this
general setting.



In this paper we give the definition and the elementary properties of the
micro-support of ind-sheaves as well as the notion of regularity.

We prove in particular that the micro-support SS(-) and the regular
micro-support SSye4(-) of ind-sheaves behave naturally with respect to dis-
tinguished triangles and that these micro-supports are invariant by “quan-
tized contact transformations” (in the framework of sheaf theory, as ex-
plained in [4]).

When X is a complex manifold and M is a coherent Dx-module, we
study the ind-sheaf Sol'(M) := RHom, (M, O%). We prove that

(i) SS(Sol*(M)) = char(M),

(i) if M is holonomic, Sol*(M) is regular if M is regular holonomic.

Finally, we treat an example: we calculate the ind-sheaf of the temperate
holomorphic solutions of an irregular differential equation.

This paper is the first one of a series. In Part II, we shall introduce the
microlocalization functor for ind-sheaves, and in Part III we shall study the
functorial behavior of micro-supports.

2 Notations and review

We will mainly follow the notations in [4] and [6].

Geometry.

In this paper, all manifolds will be real analytic (sometimes, complex an-
alytic). Let X be a manifold. One denotes by 7: TX — X the tangent
bundle to X and by 7: T*X — X the cotangent bundle. One denotes by
a: T*X — T*X the antipodal map. If S C T*X, one denotes by S the set
S\ T%X, and one denotes by S® the image of S by the antipodal map. In
particular, T*X = T*X \ X, the set T*X with the zero-section removed.
One denotes by 7: T*X — X the projection.

For a smooth submanifold Y of X, Ty X denotes the normal bundle to
Y and Ty X the conormal bundle. In particular, T X is identified with X,
the zero-section.

For a submanifold Y of X and a subset S of X, we denote by Cy (S) the
Whitney normal cone to S along Y, a conic subset of Ty X.

If S is a locally closed subset of T*X, we say that S is Rt-conic (or
simply “conic”, for short) if it is locally invariant under the action of R*. If
S is smooth, this is equivalent to saying that the Euler vector field on T* X
is tangent to S.



Let f: X — Y be a morphism of real manifolds. One has two natural
maps

(2.1) X <f— X xy T7Y f—) Y
d T

(In [4], fq is denoted by 'f’.) We denote by ¢; and g the first and second
projections defined on X x Y.

Sheaves.
Let k be a field. We denote by Mod(kx) the abelian category of sheaves of
k-vector spaces and by D?(kx) its bounded derived category.

We denote by R-C(kx) the abelian category of R-constructible sheaves
of k-vector spaces on X, and by D% (kx) (resp. D¥ 5 (kx)) the full tri-
angulated subcategory of D®(kx) consisting of objects with R-constructible
(resp. weakly R-constructible) cohomology. On a complex manifold, one de-
fines similarly the categories D(I’C_C (kx) and Dé’v_c_c (kx) of C-constructible
and weakly C-constructible sheaves.

If Z is a locally closed subset of X and if F' is a sheaf on X, recall that
Fy is a sheaf on X such that Fz|z ~ F|z and FZ|X\Z ~ (. One writes kxz
instead of (kx)z and one sometimes writes kz instead of kxz.

If f: X = Y is a morphism of manifolds, one denotes by wx,y the
relative dualizing complex on X and if Y = {pt} one simply denotes it by
wx. Recall that

wx =~ orx[dimg X]

where orx is the orientation sheaf and dimg X is the dimension of X as a
real manifold. We denote by D’ and Dy the duality functors on D°(kx),
defined by

D' (F) = RHom (F,kx), Dx(F) = RHom (F,wx).

If F is an object of D°(kx), SS(F) denotes its micro-support, a closed
conic involutive subset of 7*X. For an open subset U of T* X, one denotes
by D%(kx;U) the localization of the category D®(kx) with respect to the
triangulated subcategory consisting of sheaves F such that SS(F)NU = 0.

We shall also use the functor ghom as well as the operation + and refer
to loc. cit. for details.

O and D



On a complex manifold X we consider the structural sheaf Ox of holomor-
phic functions and the sheaf Dx of linear holomorphic differential operators
of finite order.

We denote by Modon (Dx ) the abelian category of coherent D x-modules.
We denote by D°(Dx) the bounded derived category of left Dx-modules
and by D?, (Dx) (resp. D} ,(Dx)), D% (Dx)) its full triangulated category
consisting of objects with coherent cohomologies (resp. holonomic coho-

mologies, regular holonomic cohomologies).

Categories. In this paper, we shall work in a given universe U, and a
category means a U-category. If C is a category, C”* denotes the category of
functors from C°P to Set. The category C” admits inductive limits, however,
in case C also admits inductive limits, the Yoneda functor A": C — C” does
not commute with such limits. Hence, one denotes by hﬂ the inductive limit

in C and by “liy” the inductive limit in Ch.

One denotes by Ind(C) the category of ind-objects of C, that is the full
subcategory of C" consisting of objects F such that there exist a small
filtrant category I and a functor a: I — C, with

F~“lim” a, ie, F~ “lim” F;, with F; € C.
el
The category C is considered as a full subcategory of Ind(C).

If p: C — C'is a functor, it defines a functor Ip: Ind(C) — Ind(C’) which
commutes with “li_n)n”.

If C is an additive category, we denote by C(C) the category of complexes
in C and by K(C) the associated homotopy category. If C is abelian, one
denotes by D(C) its derived category. One defines as usual the full sub-
categories C*(C), K*(C),D*(C), with x = +,—,b. One denotes by @ the

localization functor:
Q: K*(C) —» D*(C).

We keep the same notation @ to denote the composition C*(C) — K*(C) —
D*(C).

One denotes by Cl%t1(C) the full subcategory of C/(C) consisting of objects
F* satisfying F* = 0 for i ¢ [a,b]. If a,b € Z with a < b, there is a natural
isomorphism

Ind(Cl*?(C)) = clel(Ind(C)).



Ind-sheaves. Here, X is a Hausdorff locally compact space with a countable
base of open sets and & is a field. One denotes by I(kx) the abelian category
of ind-sheaves of k-vector spaces on X, that is, I(kx) = Ind(Mod(kx)), the
category of ind-objects of the category Mod®(kyx) of sheaves with compact
support on X. We denote by D?(I(kx)) the bounded derived category of
I(kx).

There is a natural fully faithful exact functor

Lx: MOd(kx) — I(kx),
F i “lim” Fy (U open).
Uccx
Most of the time, we shall not write this functor and identify Mod(kx)
with a full abelian subcategory of I(kx) and D®(kx) with a full triangulated
subcategory of D?(I(kx)).
The category I(kx) admits an internal hom denoted by Zhom and this
functor admits a left adjoint, denoted by ®. If F ~ “li_ng” F; and G ~
i

“lim” G, then
J
Zhom (G,F) =~ h@n“liﬂ”ﬁom(Gj,Fi)

j %
G®F ~ “H_I];l” “li_I]}”(Gj ®-Fz)
i J

2

The functor ¢x admits a left adjoint
ax: I(kx) = Mod(kx),

To F' = “lig” Fy, this functor associates ax (F) = lim F;. This functor also
il i€l
admits a left adjoint

,Bx: Mod(kx) — I(kx),

and both functors ax and Bx are exact. The functor Sx is not so easy to
describe. For example, for an open subset U and a closed subset Z, one has;

Bx (kxv) =~ “lig” kxy (V open),
vccu

Bx(kxz) ~ “liﬂ” kv (V open).
ZCV



One sets
Hom (G, F) = axThom (G, F) € Mod(kx).

One has
Homy, (G, F) = ['(X; Hom (G, F)).

The functors Zhom and Hom are left exact and admit right derived functors
RZhom and RHom.

Let f: X — Y be a morphism of topological spaces (Y satisfies the same
assumptions as X). There are natural functors

fh I(ky)) = I(kx)
for Ukx) — I(ky)
fgg: I(kx) — I(k}y).
The proper direct image functor is denoted by fi instead of fi because it
does not commute with ¢, that is ¢y fi # furx in general..
These functors induce derived functors, and moreover the functor Rfn
admits a right adjoint denoted by f*:
f7': D"(ky)) = D*(I(kx)),
Rf,: D*(I(kx)) — D°(I(ky)),
Rfu: D*(I(kx)) = D*(I(ky)),
I D*(I(ky)) = D*(I(kx)).
Let ax: X — {pt} denote the canonical map. We also introduce a notation.
We set

RIT(X;-) = Rax.().

Ind-sheaves on real manifolds. Let X be a real analytic manifold.
Among all ind-sheaves, there are those which are ind-objects of the category
of R-constructible sheaves, and we shall encounter them in our applications.

We denote by R-C¢(kx) the full abelian subcategory of R-C(kx) con-
sisting of R-constructible sheaves with compact support. We set

IR—c(kx) = Ind(R-C¢(kx))

and denote by Dy _(I(kx)) the full subcategory of D’(I(kx)) consisting
of objects with cohomology in IR—c(kx). (Note that in [6], IR—c(kx) was
denoted by Ig_c(kx).)



Theorem 2.1. The natural functor D*(IR—c(kx)) — Dby _.(I(kx)) is an
equivalence.

There is an alternative construction of IR—c(kx), using Grothendieck
topologies. Denote by Opx the category of open subsets of X (the mor-
phisms U — V are the inclusions), and by by Opy,  its full subcategory
consisting of open subanalytic subsets of X. One endows this category with
a Grothendieck topology by deciding that a family {U;}; in Opy_ is a cov-
ering of U € Opy,, if for any compact subset K of X, there exists a finite
subfamily which covers U N K. In other words, we consider families which
are locally finite in X. One denotes by Xy, the site defined by this topology.

Sheaves on X, are easy to construct. Indeed, consider a presheaf F
of k-vector spaces defined on the subcategory Op%, of relatively compact
open subanalytic subsets of X and assume that the sequence

0o FUUV)—> FU)® F(V) = F(UNYV)

is exact for any U and V in Opf%_ . Then there exists a unique sheaf F

on X,, such that F(U) ~ F(U) for all U € Op%,,- Sheaves on X, define
naturally ind-sheaves on X. Indeed:

Theorem 2.2. There is a natural equivalence of abelian categories
IR—c(kx) = Mod(kx,,),
given by
IR—c(kx) 3 F + (Op%,, U = Homp ) (ku, F)).

As usual, we denote by C§ the sheaf of complex-valued functions of class
C™, by Dbx (resp. Bx) the sheaf of Schwartz’s distributions (resp. Sato’s
hyperfunctions), and by Dx the sheaf of analytic finite-order differential
operators.

Let U be an open subset of X. One sets C¥(U) =T'(U;C¥).

Definition 2.3. Let f € C¥(U). One says that f has polynomial growth at
p € X if it satisfies the following condition. For a local coordinate system
(z1,...,zy) around p, there exist a sufficiently small compact neighborhood
K of p and a positive integer N such that

(2:2) sup,e ey (dist(z, K\ U))" | (@)] < oo

It is obvious that f has polynomial growth at any point of U. We say
that f is tempered at p if all its derivatives have polynomial growth at p.
We say that f is tempered if it is tempered at any point.



For an open subanalytic set U in X, denote by C}o’t(U) the subspace of
C¥(U) consisting of tempered functions. Denote by Db’ (U) the space of
tempered distributions on U, defined by the exact sequence

0 = Tx\y(X; Dbx) — I'(X; Dbx) — Dby (U) — 0.

It follows from the results of Lojasiewicz [8] that U — C¥(U) and U —
Db (U) are sheaves on the subanalytic site X,,, hence define ind-sheaves.

Definition 2.4. We call X" (resp. Db) the ind-sheaf of tempered C-
functions (resp. tempered distributions).

One can also define the ind-sheaf of Whitney C*°-functions, but we shall
not recall here its construction. These ind-sheaves are well-defined in the
category Mod(8xDx). Roughly speaking, it means that if P is a differential
operator defined on the closure U of an open subset U, then it acts on
CX(U) and Db (U).

Let now X be a complex manifold. We denote by X the complex conju-
gate manifold and by X® the underlying real analytic manifold, identified
with the diagonal of X x X. We denote by Dx the sheaf of rings of finite-
order holomorphic differential operators, not to be confused with Dyr. We
set

o = RIhomﬂpy(,BOy, ’DthR)
One can prove that the natural morphism

RThom gy, (BOx,C3') = RThom g, (BOx, Dbyx)

is an isomorphism. One calls O% the ind-sheaf of tempered holomorphic
functions. One shall be aware that in fact, O% is not an ind-sheaf but an
object of the derived category D’(I(Cx)), or better, of D?(8xDx). It is not
concentrated in degree 0 as soon as dim X > 1.

Let G € D} _(Cx). It follows from the construction of O% that:

RHom (G,0%) ~ THom (G, Ox),

where THom (-, Ox ) denotes the functor of temperate cohomology of [2] (see
also [5] for a detailed construction and [1] for its microlocalization).



3 Complements of homological algebra

The results of this section are extracted from [7]. Let C denote a small
abelian category. We shall study some links between the derived category
D*(Ind(C)) and the category Ind(D®(C)).

We define the functor J: D®(Ind(C)) — (D®(C))" by setting for F €
D*(Ind(C)) and G € D*(C)

Theorem 3.1. (i) The functor J takes its values in Ind(D®(C)).

(ii) Consider a small and filtrant category I, integers a < b and a functor
I — Cl*(C), i » F. IfF € D(Ind(C)), F ~ Q(“liy’ F;) and
G € D°(C), then: i

(a) J(F) = “lig” Q(F;),
(b) Hom py 140 (G F) = lilgHome(c)(GaFi)-

(iii) For each k € Z, the diagram below commutes.

D®(Ind(C)) y Ind(D%(C))
Ind(C)

Lemma 3.2. Assume that C has finite homological dimension. Let p: X —
Y be a morphism in Ind(D®(C)) and assume that ¢ induces an isomorphism
TH*(p): TH*(X) = TH*(Y) for every k € Z. Then ¢ is an isomorphism.

Theorem 3.3. Let 1: D°(Ind(C)) — D°(Ind(C")) be a triangulated functor
which satisfies: if F € D°(Ind(C)), F =~ Q(“lim” Fy) with F; € Clabl(C), then
%
HE)(F) ~ “ling” H*)(Q(F;)). Assume moreover that the homological di-
i
mension of C' is finite. Then there exists a unique functor Jiy: Ind(D°(C)) —
Ind(D®(C")) which commutes with “lim” and such that the diagram below

commutes:
D*(Ind(C)) —;— D*(Ind(C"))

d |

Ind(D(C)) -2~ nd(D(C")).

10



Remark 3.4. The functor J: D°(Ind(C)) — Ind(D®(C)) is neither full nor
faithful. Indeed, let C = Mod®(kx) and let F' € Mod(kx) considered as a
full subcategory of I(kx). Then

On the other hand,

Homy, g pb (vode (kx ))) (I (Bx ), S (F[n])) = lim H™(U; F).
vccxX

Let 7 be a full triangulated subcategory D®(C). One identifies Ind(7")
with a full subcategory of Ind(D%(C)).

Let F € D°(Ind(C)). Let us denote by T the category of arrows G — F
in D®(Ind(C)) with G € T. The category T is filtrant.

Lemma 3.5. For F € D°(Ind(C)), the conditions below are equivalent.
(i) J(F) € Ind(T),

(ii) for each k € Z, one has H¥(F) ~ “ling” H(G).
G—FeTrp

Definition 3.6. Let 7 be a full triangulated subcategory of D°(C). One de-
notes by J~!'Ind(7) the full subcategory of D®(Ind(C)) consisting of objects
F € Db(Ind(C)) such that J(F) € Ind(T).

Proposition 3.7. The category J~'Ind(T) is a triangulated subcategory of
D*(Ind(C)).

We will apply these results to the category I(kx) = Ind(Mod®(kx)).

Hence J is the functor:
J: D*(I(kx))—Ind(D®(Mod(kx)))-
By the definition one has
J(F) ~ “ling” J(Fy) for any F € D°(I(kx)).
Uccx

As a corollary of Theorem 3.3, one gets:

Proposition 3.8. For G € D%(kx) and F € D°(I(kx)), assume that

J(F) ~ “limg” J(F;) with F; € D%kx). Then there are natural isomor-
phisms: i

(32) HGOF) = i’ JE®F),
(3.3) J(RZhom (G,F)) =~ “lilg” J(RThom (G, F;)).

11



4 Micro-support and regularity

Let v be a closed convex proper cone in an affine space X. One denotes by

~° its polar cone,

v° ={¢ € X*(z,&) >0forall z € 7}.

Let W C X be an open subset. We introduce the functor @, 1 : D(I(kx)) —
D(I(kx)) as follows. Denote by g1,g2: X x X — X the first and second
projections and denote by s: X x X — X the map (z,y) — = —y. One sets

B (F) = Raun(ky-1mg-twngs tw ® @2 - F)-

One writes ®, instead of ®, x. Define the functor S w by replacing the
ker.nel ks_lmq;lw,-nq;lw \-)vith the complex ks—lmqf_ll{/nq;l_w — kzs—l(o) %n
which k,-1(g) is situated in degree 0. We have a distinguished triangle in

D*(1(kx))

— 1
Qyw(F) = F = @ (F) — .

Note that if F € D°(kx), then

supp(®,,w (F)) C W,

®,(F) — F is an isomorphism on X X Inty°,
SS(®.(F)) C X x 7°.

SS(2 w (F)NW x Inty® =0

Lemma 4.1. Let F € D*(I(kx)) and let p € T*X. The conditions (1a)—(4b)
below are all equivalent. Moreover, if F € Dby (I(kx)), these conditions
are equivalent to (5a).

(1a) Assume that for a small and filtrant category I, integers a < b and
a functor I — Cl@Y(Mod(kx)), i — F; one has F ~ Q(“li_n}”ﬂ-).
i€l
Then there exists a conic open neighborhood U of p in T*X such that
for any i € I there exists a morphism © — j in I which induces the
zero-morphism 0 : F; — Fj in D(kx;U).

(Ib) There ezist a conic open neighborhood U of p in T*X, a small and
filtrant category I, integers a < b and a functor I — Cl%¥(Mod(kx)),
i — F;, such that SS(F;)NU =0 and F ~ Q(“liﬂ” F;) in a neighbor-
hood of 7 (p). i

12



(2a)

Assume that for a small and filtrant category I, integers a < b and a
functor I — DI*bl(ky), i — F; one has J(F) ~ “lim” J(F;). Then
i€l

there exists a conic open neighborhood U of p in T*X such that for
any ¢ € I there exists a morphism 1 — j in I which induces the zero-
morphism 0 : F; — Fj in D*(kx;U).

There ezist a conic open neighborhood U of p in T*X, a small and
filtrant category I, integers a < b, a functor I — D®(kx), i — F; and
F' isomorphic to F in neighborhood of w(p) such that SS(F;)NU = ()
and J(F') ~ “ling” J(F;).

i

There exists a conic open neighborhood U of p in T*X such that for
any G € Db(kx) with supp(G) CC n(U), SS(G) CUUT%X, one has
Home(I(kx)) (G, F) =0.
There exists a conic open neighborhood U of p in T*X such that for
any G € Db(kx) with supp(G) cC =(U), SS(G) C U* UT%X, one
has RIT'(X;G® F) = 0.

Assume now that X is an affine space and let p = (z9;&o)-

(4a)

(4b)

(5a)

There exist a relatively compact open neighborhood W of o and a
closed convezx proper cone y with § € Inty° such that @, w(F) ~ 0.

There exist F' € D°(I(kx)) with F' ~ F in a neighborhood of zo and
F' has compact support, and a closed convex proper cone v as in (4a)
such that ®,(F") ~ 0 in a neighborhood of zo.

Same condition as (3a) with G € D% (kx).

Proof. The plan of the proof is as follows:

(20) (3a) (20)

Ll

(la) (5a) (1b)

7~

(3b) (4a) (4b)

(2a) = (1a) follows from F ~ Q(“liy” ;) = J(F) = “limy” J(Q(F})).

(la) = (3b). Let F ~ Q(“li_n}” F;) and let ¢ € I. There exists ¢ — j such
i

that the morphism F; — F; in D®(kx) is zero in D°(kx;U). Hence, there

13



exists a morphism F; — Fz’j in D?(kx) which is an isomorphism on U and
such that the composition F; — Fj — Fj; is the zero-morphism in Db(kx).
Consider the commutative diagram in which the row on the bottom is a
distinguished triangle in D®(kx) and SS(F;;) NU = 0

1
Fij Fj Fz,] i

Since the arrow F; — FZ’J is zero, the dotted arrow may be completed, mak-
ing the diagram commutative. Hence, we may assume from the beginning
that for any ¢ € I there exists ¢ — j such that the morphism F; — F;
factorizes as F; — Fj; — F; with SS(F;;) NU = 0.

We may assume X is affine and U = W x X where W is open and
relatively compact and X is an open convex cone. Then SS(G®F;;)NU =0,
and the sheaf G ® Fj; has compact support. Hence, RI'(X;G ® Fj;) ~ 0
which implies H/RIT(X;G ® F) ~ “ling” HIRT'(X;G @ F;) ~ 0 for all j.

7
We conclude therefore RIT'(X;G ® F) ~ 0.
(3b) = (4a). Let F = Q(“liy” F;), with F; € C1*¥/(Mod(kx)). Set
i

H, = {z;{x — w0; &) > —¢}

and let K CC 7(U) be a compact neighborhood of zy. Then there exist
an open convex cone <y and an open neighborhood W of z( satisfying the
following conditions:

W CH.NK,
(z+v)NH CW forallz € W,
W x° C UUTEX.

Set

Gg; = k(.’b+’)’“)ﬂH5’ G = @ Gw
zeW

Since supp(G) CC 7(U) and SS(G) C W x 7°%, we get by the hypothesis:

“li” H*RT(X;G © F;) =~ 0.
i

14



Hence,
“Uim” (P H*RI'(X;G, @ F;)) = 0.
2 TeW

Hence one obtains:

for any i € I, there exists i — j such that H*R['(X; G, ® F;) —
HERTD(X; G, ® F;) is zero for any z € W and any k € Z.

On the other-hand,
H*(®,w(F;))e ~ H¥RL(X; G, ® F).

Therefore, for any ¢ € I there exists 1 — j such that for any k € Z, the
morphism H*(®, w(F;)) — H*(®,w(F};)) is the zero morphism, and this
implies

H (Do, (F)) = “lim” H @y (F;) = 0.
i

This gives the desired result: @, (F) = 0.
(4a) = (4b) is obvious by taking Fy as F'.

(4b) = (1b). Let W be an open relatively compact neighborhood of z such
that Flw ~ F'|y and @, (F')|w ~ 0.
Then one has a distinguished triangle:

_ 1
Rauu(Ky-1(7 jopyngrtw ® %2 LF) = &, (F)w — Fly >,

and hence one obtains Rq“!(ks*l(y\{o})anlw[l] ® ¢y 'F') ~ Fl,. Let F' =
Q(“liﬂ” F;) with F; € C1*"(Mod(kx)), and take a finite injective resolution

2
I of ks,l(,y\{o})mql—lw[].]. Since I ® F; is a finite complex of soft sheaves,

R(I1g(ks_1(7\{0})nq;1w[1] ® ;' F;) is represented by F! := q1,(I ® ¢; ' F}).
Hence one has

RQI!!(ksfl(,y\{o})mql—lw ® QEIFI) = Q(“HQ” Fj).

Since SS(F]) N W x Inty° = (b, we obtain the desired result.
(1b) = (2b) is obvious.
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(2b) = (3a). Let J(F) ~ “lim” J(F;). If G € D*(kx), we get the isomor-
i

phism:
Home(I(kx)) (G, F) ]gHome( )(G F )

We may assume that X is affine and U = W x A where W is open and X is
an open convex cone. Then the micro-support of RHom (G, F;) is contained
in SS(F;) + \* and this set does not intersect X x A. Since RHom (G, F;)
has compact support, Hom (G, F;) is zero.

(3a) = (2a). We may assume that X is affine, p = (z0;&) and U =
X' x Inty°, with & € Inty° for a neighborhood X’ of zy. Let V' be an open
neighborhood of zy and let W = {z; (x — z¢;&) > —e}. Then by taking V'
and € small enough, the sheaf ®,(Hyy )y satisfies the condition in (3a) for
any H € D*(kx). Let J(F) = “lﬂ J(Fi). Then li @Homm(k (G, Fi) ~0

for any G = @, (Hw)v. Let i € I and choose H = F;. There exists ¢ — j

such that the composition (®(F;w))y — F; = Fj is zero. The morphism

(®,((Fsw))v — F; is an isomorphism on U’ := (V NW) x Inty°. Therefore,

F; — Fj is zero in Db(kx; U").

(3a) = (5a) is obvious.

(5a) = (3b). (Assuming F € D?; _(I(kx)).) Let (2a-rc) denote the condi-
[a,b]

tion (2a) in which one asks moreover that F; € D" (kx). Define similarly
(la-rc). Then the same proof of (3a) = (2a) = (la) = (3b) can be applied
to show (ba) = (2a-rc) = (la-rc) = (3b).

g.e.d.

Definition 4.2. Let F € D°(I(kx)). The micro-support of F, denoted by
SS(F), is the closed conic subset of T*X whose complementary is the set
of points p € T* X such that one of the equivalent conditions in Lemma 4.1
is satisfied.

Proposition 4.3. (i) For F € D(I(kx)), one has SS(F) N T(X =
supp(F).
(i) Let F € D%kx). Then SS(1xF) = SS(F).
(iii) Let F € D*(I(kx)). Then SS(axF) C SS(F).

(iv) Let Fy — F» — F3 *L bea distinguished triangle in D®(I(kx)). Then
SS(F;) C SS(Fj) USS(Fy) if {i,4,k} ={1,2,3}.
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Proof. (i) supp(F) C SS(F) follows for example from (1b) of Lemma 4.1.
The other inclusion is obvious.

(ii) The inclusion SS(F) C SS(txF) follows from (2a) since J(F) is
“lig” F'. The converse inclusion follows from (1b).

(iii) is obvious, using condition (3b).

(iv) is obvious by (3b).

q.e.d.

Definition 4.4. Let A;,7 € I be a family of closed conic subsets of T*X,
indexed by the objects of a small and filtrant category I. One sets

! JcIjet
where J ranges over the family of cofinal subcategories of I.

In other words, p € T*X does not belong to lém A; if there exists an open
3

neighborhood U of p and a cofinal subset J of I such that A; NU = 0 for
every j € J.

It follows immediately from the definition that if J(F) ~ “lim” J (Fy),
i

then

(4.1) SS(F) C lim SS(F).

It follows from Proposition 3.8 that if G € D?(kx), one has the inclusions

SS(G®F) C lim (8S(G)+S8S(F)),
(42) SS(RThom (G, F)) C lim (SS(G)*FSS(Fy)).

Example 4.5. Let X = R? endowed with coordinates (z,y) and denote by
(z,y;&,m) the associated coordinates on T*X. Let

Y = {(=,9);y =0},
U = {(z,y);2* <y},
ZE = {(7

17



Set F. = kz, and F = ky ® fBx (k{o}) ~ “lig” F.. Then
£

SS(ky) = Ty X ={(z,y;&,m); y=E£=0},
SS(F.) = {(z,4;0,0); 2> <y <%}

@, y;6,m); y =% |2 <e, £ = —2an, n <0}
@, y;6m); y =€ lal <e, £=0, n<0}
{(£e,€%6,m) 5 0 < ££ < —2¢en, n <0},
SS(F) = {(z.y;{&n)sz=y=¢=0,7<0}.
On the other-hand, one has
SS(F) = lim SS(F.),
RHom (ky, F) ~ kyoy [-2],
lim (Ty XFSS(F.)) = Tjy X,
Ty X+SS(F) = {(z,y;¢,m);z =y = € = 0}
G SS(RHom (ky, F)).

Note that SS(F') is not involutive.

Recall that subanalytic isotropic subsets of T7*X are defined in [4]. Let
us say for short that a conic locally closed subset A of T*X is isotropic if A

is contained in a conic locally closed subanalytic isotropic subset.

Definition 4.6. (i) We denote by D? (I(kx)) the full triangulated
subcategory of D?; (I(kx)) consisting of objects F such that SS(F)
is isotropic. We call an object of this category a weakly R-constructible

ind-sheaf.

(ii) Let us denote by D%_.(I(kx)) the full triangulated subcategory of

Db

w—R—c

(I(kx)) consisting of objects F' such that one has RHom (G, F)

€ D} (kx) for any G € D} _(kx). We call an object of this category

an R-constructible ind-sheaf.

Note that the functor ax induces functors

ax: D?IV—R—C(I(kX)) — DSV—R—C(kX)’
ax: Dy _o(I(kx)) = Df_o(kx).

The last property follows from ax(F) = RHom (Cx, F).

18



Conjecture 4.7. Let F € D? (I(kx)) and let G € D? (kx). Then

w—R—c w—R—c

RTZhom (G,F) and G ® F belong to D® (I(kx))-

w—R—c

Example 4.5 shows that the knowledge of SS(F) and SS(G) does not
allows us to estimate the micro-support of RHom (F,G) by the one for
sheaves, and that is one reason for the definition below.

Definition 4.8. Let F € D°(I(kx)).

(i) Let S C T*X be a locally closed conic subset and let p € T*X. We
say that F' is regular along S at p if there exist F’ isomorphic to F in a
neighborhood of 7(p), an open neighborhood U of p with SNU closed in
U, a small and filtrant category I and a functor I — DI@Y(kx), i — F;
such that J(F') ~ “liﬂ” J(F;) and SS(F;)NU C S.

3

(ii) If U is an open subset of 7*X and F' is regular along S at each p € U,
we say that F' is regular along S on U.

(iii) Let p € T*X. We say that F' is regular at p if F is regular along
SS(F) at p.

If F is regular at each p € SS(F), we say that F' is regular.

iv) We denote by 5S,¢,(F') the conic open subset of SS(F') consisting of
g
points p such that F' is regular at p, and we set

SSirr(F) = SS(F) \ SSreq(F).

Note that SSi(F) = SS(F) for F in Example 4.5.

Proposition 4.9. (i) Let F € D°(I(kx)). Then F is reqular along any
locally closed set S at each p ¢ SS(F).
(ii) Let F} — Fy — Fj th bea distinguished triangle in D°*(I(kx)). If F;
and Fy, are regular along S, so is F; fori,j,k € {1,2,3},7 # k.
(iii) Let F € Dbkx). Then vxF is regular.

Proof. (i) and (iii) are obvious and the proof of (ii) is similar to that of
Proposition 4.3 (iv). q.e.d.

It is possible to localize the category D°(I(kx)) with respect to the micro-
support, exactly as for usual sheaves.

Let V be a subset of 7*X and let Q@ = T*X \ V. We shall denote by
D% (kx) the full triangulated subcategory of D’(kx) consisting of objects
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F such that SS(F) C V, and by D°(kx;) the localization of D’(kx) by
Db (kx).

Similarly, we denote by D% (I(kx)) the full triangulated subcategory of
D®(I(kx)) consisting of objects F such that SS(F) C V.

Definition 4.10. One sets
D*(I(kx; Q) = D°(I(kx))/ D% (I(kx)),
the localization of D°(I(kx)) by D% (I(kx)).

Let Fy and F, are two objects of D®(I(kx)) whose images in D®(I(kx; ()
are isomorphic. There exist a third object F3 € D°(I(kx;Q)) and distin-
guished triangles in D°(I(kx)): F; — F3 — G; RaN (¢ = 1,2) such that
SS(G;) N = 0. It follows that SS(F1)NQ = SS(F3) NQ = SS(Fy)NQ.

Therefore if F € D°(I(kx;)), the subsets SS(F) and SS;,(F) of  are
well-defined.

5 Invariance by contact transformations

It is possible to define contact transformations on ind-sheaves. We shall
follow the notations in [4] Chapter VII.

We denote by p; and po the first and second projections defined on
T*(X xY) ~T*X x T*Y, and we denote by p§ the composition of py with
the antipodal map on T*Y.

We denote by 7: X XY — Y x X the canonical map and we keep the
same notation to denote its inverse.

By a kernel K on X x Y we mean an object of D?(kxyxy). To a kernel
K one associates the kernel on ¥ x X

K* :=r.RHom (K,wx xy/v)-
One defines the functor

(5.1) dg: D(ky) — Dkx)
G ~ Rq(K®q'G).

Consider another manifold Z and a kernel L on Y x Z. One defines the
projection g1 from X XY X Z to X X Y, and similarly with g¢o3, ¢13.
One sets

(5.2) K oL = Rgiai(qi3 K © g3' L)
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Choosing Z = {pt}, one has ®x(G) = K o G for G € D’(ky).

Let Qx and Qy be two conic open subsets of 7* X and T*Y, respectively.
One denotes by N (Qx, Qy) the full subcategory of D®(kxxy;Qx x T*Y) of
objects K satisfying;

53) { SS(K)N (Qx x T*Y) C Qx x Q4

p1: SS(K)N(Qx x T*Y) — Qx is proper.
Let us recall some results of loc. cit.

(i) Let K € N(Qx,Qy). Then the functor ®x induces a well-defined
functor: % : DP(ky;Qy) — Db(kx; Qx).

(ii) Let L € N(Qy,Qz). Then Ko L € N(Qx,Qz). Moreover, the two
functors ®% . and ®% o &/ from D®(kz;Qz) to D®(kx;Qx) are iso-
morphic.

We construct the functor analogous to the functor @i for ind-sheaves
by defining

(5.4) dy: DP(I(ky)) — DP(I(kx))
G = Rgy(K®q'G)
Applying Theorem 3.3, we get:
Lemma 5.1. Let G € D(I(ky)) and assume that J(G) ~ “ling” J(G;), with

7
I small and filtrant and G; € D*(ky). Then J(®x(G)) ~ “lim” J(Px(Gy)).
%

Now assume that dim X = dimY and that there exists a smooth conic
Lagrangian submanifold A C Qx x 5, such that p;: A = Qx and p§: A —
Qy are isomorphisms. In other words, A is the graph of a homogeneous
symplectic isomorphism y: Qy = Qy.

Let K be a kernel satisfying the assumptions of Theorem 7.2.1 of loc.
cit., that is:

K is cohomologically constructible,
(5.5) (pr(2x) Ups ™' (Qy)) N SS(K) C A,
kn = phom(K,K) on Qx x Q%.

Theorem 5.2. Assume (5.5).
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(i) The functor O induces a well-defined functor: % : D (1(ky;Qy)) —
D (I(kx;Qx)). Similarly, the functor ® g« induces a well-defined func-
tor: ®h.: D'(I(kx;Qx)) — DP(I(ky; Qy)).

(i) The functor ®%: D*(I(ky;Qy)) — D°(I(kx;Qx)) and the functor
CT?“K*: DP(I(kx;Qx)) — D°(I(ky;Qy)) are equivalences of categories
inverse one to each other.

(iii) If G € D (I(ky)), then SS(®x(G)) N Qx = x(SS(G) N Qy).

(iv) If G is regular at p € Qy, then ®x(G) is regular at x(p) € Qx. In
other words, SSir+(Px(G)) N Qx = x(SSir(G) N Qy).

Proof. (i) Let G € D°(I(ky)) and assume that SS(G)NQy = (). Let us prove

that SS(®x(G)) NQx = 0. Let px € Qx and let py = x '(px). There

exist an open neighborhood Uy of py in Qy and an inductive system such

that J(G) ~ “lim” J(G;), and for any i € I there exists ¢ — j such that the
i€l

morphism G; — G is zero in D’(ky; Uy). Applying Lemma 5.1 we find that

J(®k(Q)) ~ “lig” J(®x(G;)). Since the morphism ®x(G;) = Px(Gj) is
7

zero in D®(kx;Ux), the result follows.

(ii) One has the isomorphism K o K* ~ ka, in N(€Qx,Qx) and the iso-
morphism K* o K ~ ka, in N(Qy,Qy). Hence, it is enough to remark
that

(5.6) b0 Db, = B o,

which follows from the fact that the two functors ® K © ) K+ and ) KoK*,
from D?(I(kx)) to D*(I(kx)) are isomorphic.

(iii) For an open subset Uy C Qy, set Ux = x(Uy). Then K € N(Ux,Uy)
and K satisfies (5.5) with Q replaced with U. Let G € D°(I(ky)) with
SS(G) = 0 in a neighborhood of py- € Qy. By the proof of (i), SS(®x (G)) =
() in a neighborhood of x(py)-

(iv) The proof is similar to that of (iii). q.e.d.

6 Ind-sheaves and D-modules

Let now X be a complex manifold and let M be a coherent Dx-module.
We set for short

Sol(M) = RHomy (M, Ox),
Sol' (M) = RThomg 5 (BxM,O%).
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Theorem 6.1. One has
SS(Sol'(M)) = char(M).
Proof. (i) The inclusion char(M) C SS(Sol*(M)) follows from
SS(Sol(M)) = char(M), ax(Sol'(M)) =~ Sol(M).

and Proposition 4.3 (ii).

(ii) Let us prove the converse inclusion using condition (5a) of Lemma 4.1.
Assume that G € D} __(Cx) satisfy SS(G)Nchar(M) C T%X. One has the
morphisms

R’Hom(G,RIhomBXDX(ﬂXM,OE()) ~ RHomp, (M, THom (G,0Ox))
— RHomp, (M, RHom (G, Ox)).

It follows from [1, Corollary 4.2.5] that the second morphism is an iso-
morphism. Hence the result follows from SS(Sol(M)) = char(M) and
Lemma 4.1 (5a). g-e.d.

The following conjecture is a consequence of Conjecture 4.7.

Conjecture 6.2. If M is a holonomic Dx-module, then Sol'(M) belongs
to D}_ (I(Cx)).

Theorem 6.3. If M is a regular holonomic Dx-module, then Sol'(M) —
Sol(M) is an isomorphism.

Proof. This is a reformulation of a result of [2] which asserts that for any
G € D} .(Cx), the natural morphism

RHomp (M, THom (G,0x)) = RHom (M, RHom (G, Ox))
is an isomorphism. g.e.d.

We conjecture the following statement in which “only if ” part is a con-
sequence of the theorem above.

Conjecture 6.4. Let M be a holonomic Dx-module. Then M is reqular
holonomic if and only if Sol*(M) is regular.
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7 An example

In this section X = C endowed with the holomorphic coordinate z, and
we shall study the ind-sheaf of temperate holomorphic solutions of the Dx-
module M := Dx exp(1/z) = Dx/Dx (2?0, + 1). We set for short

St:= H(Sol'(M)) ~Thomg, p, (BxM, O%),
S:= H°(Sol(M)) =~ Homp, (M, Ox).
Notice first that O% is concentrated in degree 0 (since dim X = 1), and
it is a sub-ind-sheaf of Ox. It follows that the morphism S — S is a

monomorphism.
Moreover,

S ~ (CX,X\{O} . exp(l/z).

Lemma 7.1. Let V C X be a connected open subset. Then T'(V;S%) # 0 if
and only if V.C X \ {0} and exp(1/z)|v is tempered.

Proof. The space I'(V'; S) has dimension one and is generated by the function
exp(1/z). Hence, the subspace T'(V;S) ~ I'(V;8) NT(V;O) is not zero
if and only if exp(1/z) € T'(V;0%), that is, if and only if exp(1/2)|y is
tempered. q.e.d.

Let us set z = z + 1y.

Lemma 7.2. Let W be an open subanalytic subset of P*(C) with oo ¢ W.
Assume that there exist positive constants C and A such that

(7.1) exp(z) < C(1+ 22 +y*)N on W.
Then there exists a constant B such that £ < B on W.

Proof. If z is not bounded on W, then there exists a real analytic curve
7v: [0,e[— P'(C) such that Rey(0) = co and (t) € W for ¢t > 0. Writing
v(t) = (z(t),y(t)), one has

y(t) = cx(t)? + O(z(t)17°).

for some ¢ € Q, ¢ € R and € > 0. Then (7.1) implies that exp(z) has a
polynomial growth when z — oo, which is a contradiction. g.e.d.

Let Bg_denote the closed ball with center (¢,0) and radius € and set
U. =X\ B..
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Proposition 7.3. One has the isomorphism

(7.2) “ling” Cxy, > Thom 5, 5 (Bx M, O%).
e>0

Proof. Tt follows from Lemma 7.2 that exp(l/z) is temperate (in a neigh-
borhood of 0) on an open subanalytic subset V' C X \ {0} if and only if
Re(1/%) is bounded on V, that is, if and only if V' C U, for some ¢ > 0.
Let V be a connected relatively compact subanalytic open subset of
X \ {0}. Then a morphism Cy — Cx\ o) - exp(1/z) factorizes through a
morphism Cy — S? if and only if it factorizes through Cy.. Hence we get
the isomorphism (7.2) by Theorem 2.2. g-e.d.

Remark 7.4. In fact one can show
HY(Sol'(M)) = H'(Sol(M)) ~ Cy.
The isomorphism H'(Sol(M)) = Ox/(2%0, + 1)Ox = Cy is given by
(Ox)o 2 v(z) — fv(z)z_Q exp(—1/z) dz.
Note that ¢(z):=z"2exp(—1/z) is a solution to the adjoint equation
(—0,2% + 1)p(z) = 0.
The distinguished triangle
St = Sol' (M) — HY(Sol'(M))[-1] =

gives a non-zero element of Ext?(Cy,S?) = Ext?(Cy,Cx) ~ C.
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