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Abstract

This paper aims at showing how the tools of Algebraic Geome-
try apply to Analysis. We will review various classical constructions,
including Sato’s hyperfunctions, Fourier-Sato transform and microlo-
calization, the microlocal theory of sheaves (with some applications to
PDE) and explain the necessity of Grothendieck topologies to treat
algebraically generalized functions with growth conditions.
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Introduction

In this paper, we will show how the tools of Algebraic Geometry– sheaves,
triangulated and derived categories, Grothendieck topologies and stacks–
play (or should play) a crucial role in Analysis.

Note that, conversely, some problems of Analysis led to new algebraic
concepts. For example, one of the deepest notion related to triangulated
categories is that of t-structure, and as a particular case, that of perverse
sheaves, and these notions emerged with the study of the Riemann Hilbert
correspondence, a problem dealing with differential equations.

Another example is the Fourier transform, clearly one of the most es-
sential tools of the analysts, until it was categorified by Sato and applied to
algebraic analysis, next transposed to algebraic geometry (the Fourier-Mukai
transform).

The classical analysts are used to work in various functional spaces
constructed with the machinery of functional analysis and Fourier trans-
form, but Sato’s construction of hyperfunctions [28] in the 60’s does not
use any of these tools. It is a radically new approach which indeed has
entirely modified the mathematical landscape in this area. The functional
spaces are now replaced by “functorial spaces”, that is, sheaves of gener-
alized holomorphic functions on a complex manifold X or, more precisely,
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complexes of sheaves RHom (G,OX ), where G is an object of the derived
category of R-constructible sheaves on the real underlying manifold to X.
Putting general systems of linear partial differential equations, i.e., DX -
modules, in the machinery, one is led to study complexes RHom (G,F ),
where F = Sol(M) := RHomDX

(M,OX ) is the complex of holomorphic
solutions of a coherent DX-module M.

The main invariant attached to a coherent DX-module M is its charac-
teristic variety char(M), a closed conic involutive subset of the cotangent
bundle T ∗X. For a sheaf G on a real manifold there is a similar invariant,
the microsupport SS(G) which describes the directions of non propagation
of G, and this set is again a closed conic involutive subset of the cotangent
bundle. In case of F = Sol(M), it follows from the Cauchy-Kowalevsky
theorem that its microsupport is nothing but char(M). Therefore, in order
to study RHom (G,Sol(M)), one can forget that one is working on a com-
plex manifold X and dealing with DX -modules, keeping only in mind two
geometrical informations, the microsupport of G and that of F (see [16]).

The study of the characteristic variety of DX-modules naturally leads to
introduce the ring EX of microdifferential operators, a kind of localization
of DX in T ∗X. The ring EX was first constructed in [29] using the Sato’s
microlocalization functor, the Fourier-Sato transform of the specialization
functor. We shall briefly recall here the main steps of these constructions.

Finally, although classical sheaf theory does not allow one to treat usual
spaces of analysis involving growth conditions, these conditions being not of
local nature, we shall show here how it is possible to overcome this difficulty
by using Grothendieck topologies (see [17]).

0.1 Notations

In this paper, we mainly follow the notations of [16].
(i) We denote by k a field and by Db(kX) the bounded derived category of
sheaves of k-vector spaces on a topological space X. More generally, if A is
a sheaf of rings on X, we denote by Mod(A) the category of left A-modules
and by Db(A) its bounded derived category. If there is no risk of confusion,
we write RHom instead of RHom

kX
and similarly for RHom and ⊗.

(ii) If Z is a locally closed subset of the topological space X, we denote by
kXZ the sheaf which is the constant sheaf with stalk k on Z and which is 0
on X \ Z. If there is no risk of confusion, we write kZ instead of kXZ .
(iii) For a real manifold X, we denote by dimX its dimension and by by
orX the orientation sheaf. For a morphism of manifolds f : X −→ Y , we set
orX/Y = orX ⊗f−1 orY .
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(iv) We denote by D′
X( • ) = RHom

kX
( • ,kX) the duality functor in Db(kX)

and by ωX the dualizing complex. Recall that ωX ≃ orX [dimX ].
(v) For a (real or complex) manifold X, we denote by τ : TX −→ X and
π : T ∗X −→ X its tangent bundle and cotangent bundle, respectively. Let
f : X −→ Y be a morphism of (real or complex) manifolds. To f are associ-
ated the maps

TX

τ
%%KKKKKKKKKKK

f ′

// X ×Y TY

τ

��

fτ
// TY,

τ

��

X
f

// Y

T ∗X

π
&&MMMMMMMMMMM

X ×Y T ∗Y
fdoo

π

��

fπ
// T ∗Y

π

��

X
f

// Y.

We denote by T ∗
XX the zero-section of T ∗X and by T ∗

XY = f−1
d T ∗

XX the
conormal bundle to f . If f is an embedding, we identify T ∗

XY to a sub-bundle
of T ∗Y and call it the conormal bundle to X.
(vi) For a complex manifold X, we denote by OX the sheaf of holomorphic
functions and by ΩX the sheaf of holomorphic forms of maximal degree. We
denote by dX the complex dimension of X.

1 Generalized functions

In the sixties, people used to work in various spaces of generalized functions
on a real manifold. The situation drastically changed with Sato’s definition
of hyperfunctions [28].

Consider first the case where M is an open subset of the real line R

and let X an open neighborhood of M in the complex line C satisfying
X ∩ R = M . The space B(M) of hyperfunctions on M is given by

B(M) = O(X \M)/O(X).

It is easily proved that this space depends only on M , not on the choice of
X, and that the correspondence U 7→ B(U) (U open in M) defines a flabby
sheaf BM on M .

Classically, the “boundary value” of a holomorphic function ϕ(z) defined
in the open set X ∩ {Im z > 0} of the complex line, if it exists, is the

limit (for a suitable topology) of the function ϕ(x + iy) as y
>
−→ 0. With

Sato’s definition, the boundary value always exists and is no more a limit.
Indeed, it is the class of the holomorphic function ψ(z) ∈ O(X \M) given
by ψ(z) = ϕ(z) for Im z > 0 and ψ(z) = 0 for Im z < 0.
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On a manifold M of dimension n, the sheaf BM was originally defined
as

BM = Hn
M (OX) ⊗ orM

where X is a complexification of M . Since X is oriented, Poincaré’s duality
gives the isomorphism D′

X(CM ) ≃ orM [−n]. An equivalent definition of
hyperfunctions is thus given by

BM = RHom
CX

(D′
X(CM ),OX).(1.1)

The importance of Sato’s definition is twofold: first, it is purely algebraic
(starting with the analytic object OX), and second it highlights the link
between real and complex geometry.

Let us define the notion of “boundary value” in this settings. Consider a
subanalytic open subset Ω of X and denote by Ω its closure. Assume that:

{
D′

X(CΩ) ≃ CΩ,

M ⊂ Ω.

The morphism CΩ −→ CM defines by duality the morphism D′
X(CM ) −→

D′
X(CΩ) ≃ CΩ. Applying the functor RHom( • ,OX), we get the boundary

value morphism

b: O(Ω) −→ B(M).(1.2)

Sato’s sheaf of hyperfunctions is an example of a sheaf of generalized
holomorphic functions. Another example of such a sheaf is as follows.

Consider a closed complex hypersurface Z of the complex manifold X
and denote by U its complementary. Let j : U →֒ X denote the embedding.
Then j∗j

−1OX represents the sheaf on X of functions holomorphic on U
with possible (essential) singularities on Z. One has

j∗j
−1OX ≃ RHom

CX
(CU ,OX).(1.3)

Both examples (1.1) and (1.3) are described by a sheaf of the type
RHom (G,OX ), with G a constructible sheaf (see [16] for an exposition).
Recall that a sheaf G on a real analytic manifold X is R-constructible if
there exists a subanalytic stratification of X on which G is locally constant
of finite rank (over the field k). One denotes by Db

R−c(kX) the full triangu-

lated subcategory of Db(kX) consisting of objects with R-constructible co-
homology. On a complex manifold, replacing the subanalytic stratifications
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by complex analytic stratifications, one also gets the category Db
C−c(kX) of

C-constructible sheaves.
The advantage of considering the category Db

R−c(kX) is that the prop-
erties of being constructible (in the derived sense) is stable by the six
Grothendieck operations (with suitable properness hypotheses).

To summarize, the classical functional spaces are now replaced by the
“functorial spaces” RHom

CX
(G,OX ), where G ∈ Db

R−c(CX).

2 D-modules

References for the theory of D-modules are made to [8, 9].
The theory of D-modules appeared in the 70’s with Kashiwara’s thesis

[8] and Bernstein’s paper [2]. However, already in the 60’s, Sato had the
main ideas of the theory in mind and gave talks at Tokyo University on
these topics. Unfortunately, Sato did not write anything and it seems that
his ideas were not understood at this time. (See [1, 30].)

Let X be a complex manifold. One denotes by DX the sheaf of rings of
holomorphic (finite order) differential operators. A system of linear differen-
tial equations on X is a left coherent DX -module. The link with the intuitive
notion of a system of linear differential equations is as follows. Locally on
X, M may be represented as the cokernel of a matrix ·P0 of differential
operators acting on the right. By classical arguments of analytic geometry
(Hilbert’s syzygies theorem), one shows that, locally, M admits a bounded
resolution by free modules of finite type, that is, M is locally isomorphic to
the cohomology of a bounded complex

M
•

:= 0 −→ DNr

X −→ · · · −→ DN1

X
·P0−−→ DN0

X −→ 0.(2.1)

Let us introduce the notation:

Sol( • ) :=RHomDX
( • ,OX).(2.2)

The complex Sol(M) of holomorphic solutions of M may be locally calcu-
lated by applying the functor HomDX

( • ,OX) to M
•

. Hence

Sol(M) ≃ 0 −→ ON0

X
P0·−−→ ON1

X −→ · · · −→ ONr

X −→ 0,(2.3)

where now P0· operates on the left.
One defines naturally the characteristic variety char(M) of a coherent

DX -module M. This is a closed complex analytic subset of T ∗X, conic
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with respect to the action of C
× on T ∗X. For example, if M has a single

generator u with relation Iu = 0, where I is a locally finitely generated
ideal of DX , then

char(M) = {(x; ξ) ∈ T ∗X;σ(P )(x; ξ) = 0 for all P ∈ I}

where σ(P ) denotes the principal symbol of P . A fundamental result of
[29] asserts that for a coherent D-module M, char(M) is an involutive (i.e.,
coisotropic) subset of T ∗X. The proof uses infinite order microdifferential
operators and quantized contact transformations. Of course, the involutivity
theorem has a longer history, including the previous work of Guillemin-
Quillen-Sternberg [6], and culminating with the purely algebraic proof of
Gabber [5].

We denote by Db
coh(DX) the full triangulated subcategory of Db(DX)

consisting of objects with coherent cohomologies. However, we need a refined
notion. A DX -module M is “good” if on each relatively compact open
subset U of X, M is generated by a coherent OX |U -modules. We denote by
Db

good(DX) the full triangulated subcategory of Db(DX) consisting of objects
with good cohomologies.

Operations on D-modules

Let f : X −→ Y be a morphism of complex manifolds. The sheaf

DX−→Y := OX ⊗f−1OY
f−1DY(2.4)

is naturally endowed with a structure of a (DX , f
−1DY )-bimodule, but one

shall be aware that the left action of DX is not simply its action on OX (see
[9] for details).

The inverse image functor Df−1 for D-modules is given by

Df−1N = DX−→Y

L
⊗f−1DY

f−1N , N ∈ Db(DY ).

One says that f is non characteristic for N ∈ Db
coh(DY ) if (see Notations 0.1)

f−1
π char(N ) ∩ (T ∗

XY ) ⊂ X ×Y T ∗
Y Y.

In this case, Df−1N ∈ Db
coh(DX) and the Cauchy-Kowalevsky-Kashiwara

theorem asserts that there is a natural isomorphism

f−1Sol(N ) ∼−→ Sol(Df−1N ).(2.5)
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The proper direct image functor Df ! for (right) D-modules is given by

Df !M :=Rf !(M
L
⊗DX

DX−→Y ), M ∈ Db(Dop
X ).

One defines the direct image functor Df ! for left D-modules by using the
line bundles ΩX and ΩY (or their inverse) which interwine the left and
right structures. If M ∈ Db

good(DX) and f is proper on the support of M,
one deduces from Grauert’s direct images theorem that Df !M belongs to
Db

good(DY ). Moreover, there is a natural isomorphism

Rf !Sol(M) [dX ] ≃ Sol(Df !M) [dY ].(2.6)

(Recall that dX (resp. dY ) is the complex dimension of X (resp. Y ).)

The product M
L
⊗OX

L of two left DX-modules is naturally endowed with

a structure of a left DX -module. We denote it by M
D
⊗L.

Holonomic systems

Since the characteristic variety of a coherent DX-module M is involutive, it
is natural to study with a particular attention the extreme case where this
characteristic variety has minimal dimension.

Definition 2.1. A holonomic system on X is a coherent DX -module whose
characteristic variety is Lagrangian in T ∗X.

Denote by Db
hol(DX) the full triangulated subcategory Db(DX) consist-

ing of objects with holonomic cohomology and recall that we set Sol( • ) =
RHomD( • ,OX). The first fundamental result of the theory of holonomic
D-modules is Kashiwara’s constructibility theorem:

Theorem 2.2. [10] The functor Sol induces a functor

Sol : (Db
hol(DX))op −→ Db

C−c(CX).

Simple examples in dimension one show that this functor is not fully
faithful, but Kashiwara-Oshima [15] and Kashiwara-Kawai [14] gave the
definition of a “regular holonomic” D-module and Kashiwara [11] proved
the Riemann-Hilbert correspondence, that is, the equivalence of categories

(Db
reg−hol(DX))op ∼−→ Db

C−c(CX)

where now Db
reg−hol(DX) denotes the full triangulated subcategory of Db(DX)

consisting of objects with regular holonomic cohomology.
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Integral transforms

In this subsection, we shall study the action of integral transforms on D-
modules and their sheaves of generalized solutions.

Consider two complex manifolds X and Y , of complex dimension dX and
dY respectively, and the correspondence:

X × Y
f

zzvv
vv

v g

$$HH
HH

H

X Y

For G ∈ Db(CY ) and L ∈ Db(CX×Y ), we set

L ◦G = Rf !(L⊗ g−1G).(2.7)

For M ∈ Db(DX) and L ∈ Db(DX×Y ), we set

M
D
◦ L = Dg!(Df

−1M
D
⊗L).(2.8)

Now we consider

M ∈ Db
good(DX), L ∈ Db

reg−hol(DX×Y ), G ∈ Db(CY ),

and we make the hypotheses:
{
f−1 supp(M) ∩ supp(L) is proper over Y ,
(char(M) × T ∗

Y Y ) ∩ char(L) ⊂ T ∗
X×Y (X × Y ).

(2.9)

Theorem 2.3. (See [4].) Set L = RHomDX×Y
(OX×Y ,L) and assume (2.9).

One has the isomorphism

RHom
CY

(G,Sol(M
D
◦ L)) ≃ RHom

CX
(L ◦G,Sol(M)) [dX − 2dY ].

This result was first stated (in a slightly less general formulation) in [4].
Its proof makes use of the isomorphisms (2.5) and (2.6).

This result admits several variants: one may replace OX with its tem-
perate version or formal version (see § 5 below and [17, Ch. 7]), there are
twisted versions and also G-equivariant versions (see [13]).

Many applications of this theorem are exposed in [3], in particular to
projective duality, Penrose transform and, more generally, Grasmanniann
correspondences.

Remark 2.4. The kernel L appearing in Theorem 2.3 is regular holonomic.
However, irregular kernels may naturally appear which makes the situation
much more intricate. The Laplace transform is such an example of irregular
kernel (see [20]).
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3 Microsupport

References for this section are made to [16].
Let X denote a real manifold of class C∞ and let F ∈ Db(kX). The

microsupport SS(F ) of F is the closed conic subset of T ∗X defined as follows.

Definition 3.1. Let U be an open subset of T ∗X. Then U ∩ SS(F ) = ∅ if
and only if for any x0 ∈ X and any real C∞-function ϕ : X −→ R such that
ϕ(x0) = 0, dϕ(x0) ∈ U , one has:

(RΓϕ≥0(F ))x0
= 0.

In other words, F has no cohomology supported by the closed half spaces
whose conormals do not belong to its microsupport. One again proves that
the microsupport is a closed conic involutive subset of T ∗X.

Assume now that X is a complex manifold, that we identify with its real
underlying manifold. The link between the microsupport of sheaves and the
characteristic variety of coherent D-modules is given by:

Theorem 3.2. Let M be a coherent D-module. Then SS(Sol(M)) = char(M).

The inclusion SS(Sol(M)) ⊂ char(M) is the most useful in practice. Its
proof only makes use of the Cauchy-Kowalevsky theorem in its precise form
given by Leray (see [23] or [7, § 9.4]) and of purely algebraic arguments.

Now consider a space of generalized functions RHom (G,OX ) associated
with an R-constructible sheaf G, and a system of linear partial differential
equations, that is, a coherent DX-module M. The complex of generalized
functions solution of this system is given by the complex

RHomDX
(M, RHom (G,OX )) ≃ RHom (G,Sol(M)).

Setting F = Sol(M), we are reduced to study RHom (G,F ). Our only
information is now purely geometrical, this is the microsupport of G and
that of F (this last one being the characteristic variety of M). Now, we can
forget that we are working on a complex manifold and that we are dealing
with partial differential equations. We are reduced to the microlocal study
of sheaves on a real manifold [16].

Application: ellipticity

Let us show how the classical Petrowsky regularity theorem may be obtained
with the only use of the Cauchy-Kowalevsky-Leray Theorem, and some sheaf
theory.

The regularity theorem for sheaves is as follows.
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Theorem 3.3. Let X be a real analytic manifold and let F,G ∈ Db(kX).
Assume that G is R-constructible and SS(G) ∩ SS(F ) ⊂ T ∗

XX. Then the

natural morphism

RHom (G,kX ) ⊗F −→ RHom (G,F )(3.1)

is an isomorphism.

Let us come back to the situation where X is a complexification of
a real manifold M and choose k = C. Set G = D′

X(CM ) and F =
RHomDX

(M,OX ). A differential operator P on X is elliptic (with respect
to M) if its principal symbol σ(P ) does not vanish on the conormal bundle
T ∗

MX, outside of the zero-section. More generally a coherent DX-module M
is elliptic with respect to M if

char(M) ∩ T ∗
MX ⊂ T ∗

XX.

By Theorem 3.2, SS(F ) ∩ T ∗
MX ⊂ T ∗

XX. Let AM = CM ⊗OX denotes the
sheaf of analytic functions on M . The regularity theorem for sheaves gives
the isomorphism

RHomDX
(M,AX) ∼−→ RHomDX

(M,BX).

In other words, the two complexes of real analytic and hyperfunction so-
lutions of an elliptic system are quasi-isomorphic. This is the Petrowsky’s
theorem for D-modules.

Of course, this result extends to other sheaves of generalized holomorphic
functions, replacing the constant sheaf CM with an R-constructible sheaf G.
For further developments, see [31].

4 Microlocal analysis

For a detailed exposition, see [16].

Fourier-Sato transform

Let τ : E −→M be a finite dimensional real vector bundle over a real manifold
M with fiber dimension n, π : E∗ −→ M the dual vector bundle. Denote by
p1 and p2 the first and second projection defined on E ×M E∗, and define:

P = {(x, y) ∈ E ×M E∗; 〈x, y〉 ≥ 0}

P ′ = {(x, y) ∈ E ×M E∗; 〈x, y〉 ≤ 0}
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Consider the diagram:

E ×M E∗

p1

yyss
ss

ss p2

&&LL
LL

LL

E

τ %%LL
LL

LL
L E∗

πxxqqqqqq

M

Denote by Db
R+(kE) the full triangulated subcategory of Db(kE) consisting of

conic objects, that is, objects F such that for all j, Hj(F ) is locally constant
on the orbits of the action of R

+ on E. One defines the two functors

Db
R+(kE)

( • )∧
// Db

R+(kE∗)
( • )∨

oo

by setting for F ∈ DR+(kE) and G ∈ DR+(kE∗)

F∧ = Rp2!(p
−1
1 F )P ′ , G∨ = Rp1!(p

!
2G)P .

The main result of the theory is the following.

Theorem 4.1. The two functors ( • )∧ and ( • )∨ are equivalences of cate-

gories inverse to each other. In particular, for F1 and F2 in Db
R+(kE), there

is a natural isomorphism:

RHom(F1, F2) ≃ RHom(F∧
1 , F

∧
2 ).(4.1)

Example 4.2. (i) For a convex cone γ in E, denote Intγ its interior, by
γa = −γ its image by the antipodal map and by γ◦ its polar cone in E∗.
Then, for a closed convex proper cone γ with M ⊂ γ,

(kγ)∧ ≃ kIntγ◦ .

For an open convex cone λ in E:

(kλ)∧ ≃ kλ◦a ⊗ orE∗/M [−n].

(ii) Let E denote the Euclidian space R
n and let x = (x1, . . . , xn) be

the coordinates. Let n = p + q with p, q ≥ 1 and set x = (x′, x′′) with
x′ = (x1, . . . , xp), x

′′ = (xp+1, . . . , xn). We denote by u = (u′, u′′) the dual
coordinates on the dual space E∗.

Let γ denote the closed solid cone in E,

γ = {x;x′
2
− x′′

2
≥ 0}
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and let λ denote the closed solid cone in E∗:

λ = {u;u′
2
− u′′

2
≤ 0}.

We have (see [20]):

k∧
γ ≃ kλ [−p].

Specialization and microlocalization

Let X be a real manifold (say of class C∞), M a closed submanifold. Denote
by τ : TMX −→ M and π : T ∗

MX −→ M the normal bundle and the conormal
bundle to M in X, respectively. Let F ∈ Db(kX). The specialization of
F along M , denoted νM (F ), is an object of Db

R+(kTM X). Its cohomology
objects are described as follows. If V is an open cone in TMX, then

Hj(V ; νM (F )) ≃ lim
−→
U

Hj(U ;F )

where U ranges over the family of open subsets of X which are “tangent”
to V , that is, open tuboids in X with wedge M whose “profiles” is V . (For
a precise definition, refer to [16, § 4.2].)

The Sato’s microlocalization of F along M , denoted µM(F ), is the
Fourier-Sato transform of νM(F ), an object of Db

R+(kT ∗

M
X). It satisfies:

Rπ∗µM (F ) ≃ RΓM(F ),

Hj(µM (F ))(x0;ξ0) ≃ lim
−→
U,Z

Hj
U∩Z(U ;F ),

where, in the last formula, (x0; ξ0) ∈ T ∗
MX, U ranges over the family of open

neighborhoods of x0 in X and Z ranges over the family of closed tuboids in
X with wedge M whose profiles λ in TMX satisfy (x0; ξ0) ∈ Intλ◦a.

Using the diagonal ∆ of X × X, one defines the bifunctor µhom by
setting:

µhom (G,F ) = µ∆RHom (q−1
2 G, q!1F )

where qi (i = 1, 2) denotes the i-th projection on X ×X. Note that

Rπ∗µhom (G,F ) ≃ RHom (G,F ),

µhom (kM , F ) ≃ µM(F ),

suppµhom (G,F ) ⊂ SS(G) ∩ SS(F ).
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Now assume that M is a real analytic manifold and X is a complexification
of M . The sheaf of Sato’s microfunctions on T ∗

MX is defined by:

CM = µhom (D′
XCM ,OX).

(It is proved that this complex is concentrated in degree 0.) Hence, a hyper-
function is nothing but a microfunction globally defined on T ∗

MX. Denote
by spec the natural isomorphism:

spec: BM
∼−→ π∗CM .

If u is an hyperfunction, Sato defines its analytic wave front set as:

WF(u) = supp(spec(u)),

a closed conic subset of T ∗
MX. As an application, consider the situation of

the construction of the boundary value morphism in (1.2). Let ϕ ∈ O(Ω) and
assume that ϕ is solution of a system of differential equations, that is, ϕ ∈
HomDX

(M,OX) for a coherent DX -module M. Set F0 = HomDX
(M,OX ).

Since the boundary value morphism factorizes through µhom (CΩ, F0) and
SS(F0) ⊂ char(M), we get

WF(b(ϕ)) ⊂ T ∗
MX ∩ SS(CΩ) ∩ char(M).(4.2)

Remark 4.3. A new microlocalization functor µ has been constructed in
[21], taking its values in the category of ind-sheaves on T ∗X. It is related
to the functor µhom by the formula

µhom (G,F ) ≃ RHom (π−1G,µ(F )).

Microdifferential operators

The sheaf of microfunctions allows us to analyze hyperfunctions microlocally,
that is, in the cotangent bundle. A similar localization may be performed
with respect to the sheaf of differential operators. Let X be a complex
manifold of dimension dX and denote by ∆ the diagonal of X × X. The
sheaf of microlocal operators is defined in [29] by

ER
X := µ∆(O

(0,dX )
X×X ) [dX ].

Here, O
(0,dX )
X×X = OX×X ⊗q−1

2 OX
q−1
2 ΩX . One proves that ER

X is concen-

trated in degree 0 and is naturally endowed with a structure of a sheaf of
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C-algebras. Moreover, for G ∈ Db(CX), the object µhom (G,OX ) is well
defined in Db(ER

X) (see [21]). This applies in particular to the sheaf CM of
microfunctions.

The algebra ER
X is extremely difficult to manipulate, but it contains the

C-algebra EX of microdifferential operators which is filtered and admits a
symbol calculus. When X is affine and U is open in T ∗X, a section P ∈
ET ∗X(U) is described by its “total symbol”

σtot(P )(x; ξ) =
∑

−∞<j≤m

pj(x; ξ), m ∈ Z, pj ∈ Γ(U ;OT ∗X(j)),

with the condition:
{

for any compact subset K of U there exists a positive constant
CK such that sup

K
|pj| ≤ C−j

K (−j)! for all j < 0.

(Here OT ∗X(j) denotes the subsheaf of OT ∗X of functions homogeneous of
degree j in the fiber variable.) The total symbol of the product is given by
the Leibniz rule. If Q is an operator of total symbol σtot(Q), then

σtot(P ◦Q) =
∑

α∈Nn

1

α!
∂α

ξ σtot(P )∂α
xσtot(Q).

If ϕ : T ∗X ⊃ U ∼−→ V ⊂ T ∗Y is a homogeneous complex symplectic iso-
morphism, it can be locally “quantized” (see [29]), that is, extended as an
isomorphism of algebras

Φ: ϕ∗ET ∗X
∼−→ ET ∗Y .

However, this isomorphism Φ is only locally defined and not unique. That is
why, in general, it is not possible to define such sheaves EX of microdifferen-
tial operators on a homogeneous complex symplectic manifold X. However,
Kashiwara [12] has shown that such a construction was possible when weak-
ening the notion of a sheaf of algebras by that of an algebroid stack. (Refer
to [19] for an introduction to stacks.)

Further developments and open problem

A complex cotangent bundle T ∗X is endowed with the sheaf ET ∗X . This
sheaf is conic for the action of C

× on T ∗X and one can eliminate this
homogeneity by adding an extra central variable ~. One gets the algebra
WT ∗X over a field k, a subfield of k̂ = C((~)). The algebra WT ∗X admits
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a formal version ŴT ∗X over k̂ which is extremely popular and known as a
deformation-quantization algebra. If X is affine, a section P ∈ ŴT ∗X(U) on
an open subset U ⊂ T ∗X is a series, called its total symbol:

σtot(P )(x;u, ~) =
∑

m≤j<∞

pj(x;u)~
j , m ∈ Z, pj ∈ OT ∗X(U),(4.3)

and the total symbol of the product P ◦Q is given by the Leibniz rule:

σtot(P ◦Q) =
∑

α∈Nn

~
|α|

α!
∂α

u (σtotP )∂α
x (σtotQ).

Note that ŴT ∗X has a natural filtration for which ~ has order −1 and
ŴT ∗X(0) may naturally be considered as a deformation of the Poisson alge-
bra OT ∗X .

By replacing again the notion of a sheaf of algebras by that of an alge-
broid stack, one can define such objects on complex symplectic manifolds
(see [22, 27]).

A natural question would be to perform an analogous construction for
sheaves on real manifolds, that is, to construct a non conic microlocal theory
of sheaves on real symplectic manifolds. This problem is closely related to
Mirror Symmetry (see [25]).

5 The use of Grothendieck topologies

References for this section are made to [17, Ch. 7].
Let X be a real analytic manifold. The usual topology on X does not

allow one to treat usual spaces of analysis with the tools of sheaf theory.
For example, the property of being temperate is not local, and there is no
sheaf of temperate distributions. One way to overcome this difficulty is
to introduce a Grothendieck topology on X. Recall that a Grothendieck
topology is not a topology, and in fact is not defined on a space but on a
category. The objects of the category playing the role of the open subsets
of the space, it is an axiomatization of the notion of a covering. A site is a
category endowed with a Grothendieck topology.

We denote by OpX the category whose objects are the open subsets of
X and the morphisms are the inclusions of open subsets. One defines a
Grothendieck topology on OpX by deciding that a family {Ui}i∈I of subob-
jects of U ∈ OpX is a covering of U if it is a covering in the usual sense.
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Definition 5.1. Denote by OpXsa
the full subcategory of OpX consisting of

subanalytic and relatively compact open subsets. The site Xsa is obtained
by deciding that a family {Ui}i∈I of subobjects of U ∈ OpXsa

is a covering
of U if there exists a finite subset J ⊂ I such that

⋃
j∈J Uj = U .

Let us denote by

ρ : X −→ Xsa(5.1)

the natural morphism of sites. As usual, we have a pair of adjoint functors
(ρ−1, ρ∗):

Mod(kX)
ρ∗

// Mod(kXsa
).

ρ−1

oo

The functor ρ−1 also admits a right adjoint ρ!. For F ∈ Mod(kX), ρ!F is
the sheaf associated to the presheaf U 7→ F (U), U ∈ OpXsa

.
Let us denote by C∞

X the sheaf of complex valued C∞-functions on X.

Definition 5.2. Let f ∈ C∞
X (U). One says that f has polynomial growth at

p ∈ X if it satisfies the following condition. For a local coordinate system
(x1, . . . , xn) around p, there exist a sufficiently small compact neighborhood
K of p and a positive integer N such that

supx∈K∩U

(
dist(x,K \ U)

)N
|f(x)| <∞ .(5.2)

It is obvious that f has polynomial growth at any point of U . We say that
f is temperate at p if all its derivatives have polynomial growth at p. We
say that f is temperate if it is temperate at any point.

For an open subanalytic subset U of X, denote by C∞,t
X (U) the subspace

of C∞
X (U) consisting of temperate functions.
Using Lojasiewicz’s inequalities [24], one easily proves that the presheaf

C∞,t
Xsa

, given by U 7→ C∞,t
X (U), is a sheaf on Xsa. One calls it the sheaf of

temperate C∞-functions on Xsa. Note that the sheaf ρ∗DX does not operate
on C∞,t

Xsa
but ρ!DX does.

Now let X be a complex manifold. We still denote by X the real un-
derlying manifold and we denote by X the complex manifold conjugate to
X. One defines the sheaf of temperate holomorphic functions Ot

Xsa
as the

Dolbeault complex with coefficients in C∞,t
Xsa

. More precisely

Ot
Xsa

= RHomρ!DX

(ρ!OX , C
∞,t
Xsa

).(5.3)
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Note that the object Ot
Xsa

∈ Db(ρ!DX) is not concentrated in degree zero in
dimension > 1. Nevertheless, it should have many important applications.
Let us mention two of them:

(a) One proves that Sato’s construction of hyperfunctions, when applied to
Ot

Xsa
, gives the sheaf of Schwartz’s distributions.

(b) Very little is known on irregular holonomic D-modules (see [26]) in di-
mension higher than one, and even in dimension one, there is no (to
our opinion) totally satisfactory results. In [18], one calculates the tem-
perate holomorphic solutions of the DX -module M := DX exp(1/z) =
DX/DX(z2∂z + 1), where X = C. The result obtained shows that the
sheaf of temperate holomorphic solutions gives more informations than
the classical sheaf of holomorphic solutions.

The sheaf Ot
Xsa

is simply an example which shows that the methods of
Algebraic Analysis may be applied to treat generalized functions with growth
conditions.

References

[1] E. Andronikof, Interview with Mikio Sato, Notices of the AMS, 54 Vol
2, (2007).

[2] I. Bernstein Modules over a ring of differential operators, Funct. Anal-
ysis and Appl. 5 pp 89–101 (1971).

[3] A. D’Agnolo, Sheaves and D-modules in integral geometry, in Contemp.
Math., 251 Amer. Math. Soc., pp 141 (2000).

[4] A. D’Agnolo and P. Schapira, Leray’s quantization of projective duality,

Duke Math. Journ. 84 pp 453–496 (1996).

[5] O. Gabber, The integrability of the characteristic variety, Amer. Journ.
Math. 103 pp 445–468 (1981).

[6] V. Guillemin, D. Quillen and S. Sternberg, The integrability of charac-

teristics, Comm. Pure and Appl. Math. 23 39–77 (1970)
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