
Coverage-biased Random Exploration of
Models

Marie-Claude Gaudel,a,1,2 Alain Denise,a,3

Sandrine-Dominique Gouraud,a,3 Richard Lassaigne,b,4

Johan Oudinetb,5 and Sylvain Peyronnetb,5

a LRI
Université Paris-Sud
91405 Orsay, France

b Equipe de Logique
Université Paris 7

75013 Paris, France

Abstract

This paper describes a set of methods for randomly drawing traces in large models either uniformly among
all traces, or with a coverage criterion as target. Classical random walk methods have some drawbacks.
In case of irregular topology of the underlying graph, uniform choice of the next state is far from being
optimal from a coverage point of view. Moreover, for the same reason, it is generally not practicable to get
an estimation of the coverage obtained after one or several random walks: it would require some complex
global analysis of the model topology. We present here some methods that give up the uniform choice of
the next state. These methods bias this choice according to the number of traces, or states, or transitions,
reachable via each successor.

Keywords: D.2.4 Software/Program Verification, D.2.5 Testing and Debugging, G.2.1 Combinatorics

1 Introduction

This paper describes a set of methods for randomly drawing traces in large models
either uniformly among all traces, or with a coverage criterion as target.

Classical random walk methods have some drawbacks. In case of irregular topol-
ogy of the underlying graph, uniform choice of the next state is far from being op-

1 Marie-Claude Gaudel warmly thanks the MBT08 chairs for the invitation to the workshop and to the
proceedings
2 Email: mcg@lri.fr
3 Email: {denise, gouraud}@lri.fr
4 Email: lassaign@logique.jussieu.fr
5 Email: {Johan.Oudinet, syp}@lri.fr

Electronic Notes in Theoretical Computer Science 220 (2008) 3–14

1571-0661 © 2008 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.11.002
Open access under CC BY-NC-ND license.

mailto:mcg@lri.fr
mailto:lassaign@logique.jussieu.fr
mailto:johan.oudinet@lri.fr,syp@lri.fr
mailto:denise@lri.fr,gouroud@lri.fr
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

timal from a coverage point of view. For instance, in Figure 1, when considering
traces of length 3, trace b.e.f is followed with probability 0.5 while trace a.c.d has
probability 0.03125 only. Moreover, for the same reason, it is generally not practica-
ble to get an estimation of the coverage obtained after one or several random walks:
it would require some complex global analysis of the model topology. We present

•

•

•

•

•

•

•

•

•

•

•

•

a

b

c

d

e

f

Fig. 1. Some example of irregular topology

here some methods that give up the uniform choice of the next state. They bias this
choice according to the number of traces, or states, or transitions, reachable via each
successor. The methods rely upon techniques for counting and drawing uniformly
at random words in regular languages as defined by Flajolet et al. [5] and imple-
mented in the CS package of the Mupad environment [12]. These techniques have,
in the considered cases, a linear complexity in the size of the underlying automata,
thus they allow dealing with rather large models.

Taking into account the number of traces starting from a state, it is shown in
section 2 how it is possible to ensure a uniform probability on traces of a given
length, or below a given length.

However, even linear complexity techniques cannot cope with very large models.
But it is possible to exploit the fact that most of them are the result of the concurrent
composition of several components, i.e a product, synchronised or not, of several
models. Each component is considered as an automaton defining such a language.
It is shown how it is possible to combine local uniform drawings of traces, and
to obtain some global uniform random sampling, without constructing the global
model. This is described in section 3

Considering coverage of other elements of the model than traces, such as states
or transitions, is done by maximising the minimum probability to reach such an
element, thus biasing random exploration toward classical coverage criteria such as
state coverage or transition coverage, or less classical ones. Thus the probability

M.-C. Gaudel et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 3–144

of reaching a given coverage criterion after a certain number of drawings can be
assessed. This is described in section 4.

2 Uniform generation of traces of a given length

First, let us consider traces of a given length n. Given any state s, let �s(k) be the
number of traces of length k that start from s. If s has m successors s1, s2, . . . , sm, a
condition for trace uniformity is to choose si after s with probability �si(k−1)/�s(k).
The issue is to compute these probabilities in an efficient way. Fortunately, traces
in a model can be expressed as combinatorial structures. The next subsection is
a very short introduction to these structures and powerful methods for counting
them.

2.1 A few words on counting and drawing combinatorial structures

Two major approaches have been developed for counting and drawing uniformly at
random combinatorial structures : The Markov Chain Monte-Carlo approach (see
e.g. the survey by Jerrum and Sinclair [8]) and the so-called recursive method, as
described by Flajolet et al. in [5] and implemented in [12]. Although the former is
more general in its applications, the latter is particularly efficient for dealing with
a very large class of structures, namely those formed of atoms combined by the
following constructions:

+,×,Seq,PSet,MSet,Cyc

respectively corresponding to disjoint union, cartesian product, finite sequence, set,
multiset, directed cycles. It is possible to state cardinality constraints via subscripts
(for instance Seq≤3). These structures are called decomposable structures. The size
of an object is the number of atoms it contains.

The enumeration of decomposable structures is based on generating functions.
Let Cn be the number of objects of C of size n, the corresponding generating
function is:

C(z) =
∑

n≥0

Cnzn

Decomposable structures can be translated into generating functions using classical
results of combinatorial analysis. For instance, the specification B = Z + (B × B)
that defines binary trees, becomes B = z +B2. A comprehensive dictionary is given
in [5].

The main result on counting and uniform random generation of decomposable
structures is:

Theorem 2.1 Consider a combinatorial class C, which is decomposable. Then the
counts {Cj |j = 0 . . . n} can be computed in O(n1+ε) arithmetic operations. In addi-
tion, it is possible to draw an element of size n uniformly at random in O(n log n)
arithmetic operations in the worst case.

M.-C. Gaudel et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 3–14 5

Remark 2.2 A first version of this theorem, with a computation of the count-
ing sequence {Cj |j = 0 . . . n} in O(n2) was given by Flajolet et al. in [5]. The
improvement to O(n1+ε) is due to van der Hoeven [13].

This theory has led to powerful practical tools for random generation [12]. There
is a preprocessing step for the construction of the {Cj |j = 0 . . . n} tables . Then the
drawing is performed following the decomposition pattern of C, taking into account
the cardinalities of the involved sub-structures.

2.2 Drawing uniformly at random traces of length n

Traces can be considered as decomposable structures where atoms are transitions
that are combined by products and disjoint unions. For such simple structures,
uniform drawing of size n is in O(n).

For a given length n, the number �s(k), k = 0, . . . , n of traces of length k starting
from state s is given by the following recurrence formulas:

�s(0) = 1

�s(k) =
∑

s→s′
�s′(k − 1)for k > 0

where s → s′ means that there exists a transition from s to s′.
From the theorem above, it is possible to compute these values in linear time.

However, the number of values to be stored is n times the number of states of the
model. This is the bottleneck of the method.

2.3 Generalisation to traces of length ≤ n

It is possible to generate traces of length ≤ n instead of exactly n, by performing a
small change in the model. It is sufficient to add a new state s′0 which becomes the
new initial state, with a fictive transition from s′0 to s0 and a fictive loop transition
from s′0 to itself. Each trace of length n + 1 from s′0 to a state of this new model
crosses k times the new loop transition for some k such that 0 ≤ k ≤ n and exactly
once the one from s′0 to s0. It is obvious to associate to such a trace a trace of
length n − k of the original model. It is straightforward to verify that any trace of
length ≤ n can be generated in such a way, and the generation is uniform.

2.4 Some experimental results

We report some experiments performed on models of the VLTS (Very Large Transi-
tion Systems) benchmark suite that is maintained by INRIA and CWI and available
at http://tinyurl.com/yuroxx. These first experiments have been performed on
a Intel Xeon 2.80GHz processor with 1GB memory, only. The table below was first
published in [10].

As said above, the main problem is memory. When there is enough memory to
store the �s(k), k = 0, . . . , n, it is very efficient. However, one can see in Table 1

M.-C. Gaudel et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 3–146

length

name # states
200 1000 2000 3000 5000 8000

vasy 0 1 289 0.0s 0.9s 2.9s 6.3s 15.9s 40.1s

vasy 1 4 1183 0.1s 1.0s 3.2s 6.7s 18.2s �

vasy 5 9 5486 0.0s 0.9s 2.4s 5.2s � �

vasy 8 24 8879 0.2s 0.8s 2.4s � � �

vasy 10 56 104 0.0s 1.3s � � � �

vasy 12323 27667 107 � � � � � �

Table 1
Elapsed time for uniform drawing of 100 traces of various lengths in models of various sizes. � means

there is not enough memory to build the table of the �s(i)

that it was not possible to deal with systems of size more than 104 states. Even if
the memory size of the processor was bigger, it is rather unlikely that it would be
possible to gain an order of magnitude. This is the motivation of the next section,
where we show that generating traces of composed models allows to handle up to
1027 states and more.

3 Uniform trace generation in products of models

Fortunately, huge models are rarely stated from scratch. They are obtained by com-
position of smaller ones, the main source of state number explosion being parallel
compositions. We show here how to use uniform random walks in the components
to perform (approximately) uniform random walks in the global system.

3.1 Parallel composition without synchronisation

When there is no synchronisation, the parallel composition of r models
Mod1, . . . , Modr is the product of the underlying automata [1]. The set of states is
the cartesian product of the states of the Modi models. Transitions are labelled by
the union of the labels of the Modi models. Traces are interleavings of local traces,
namely of traces of the Modi models. A brute force method to uniformly drawing
traces is to build the product and to use the methods above. Since it is possible
for moderate sizes only (more or less 104 states) we have developed an alternative
method that avoids the construction of the global model. This method is presented
in detail in [3] and [10]. We sketch it below.

• Given n the length of the global trace to be drawn
• Choose some lengths n1, . . . , nr such that

∑
i=1,...,r ni = n, with adequate proba-

bilities (see below)
• For each Modi, draw uniformly at random some trace wi of length ni

M.-C. Gaudel et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 3–14 7

• Interleave the r wi in a randomised way that ensures uniformity among interleav-
ings.

Let �(n) be the number of global traces of length n, and �i(k), i = 1, . . . , r the
number of traces of length k in Modi. The choice of the n1, . . . , nr should be done
with the probability below:

Pr(n1, . . . , nr) =

(
n

n1,...,nr

)
�1(n1) . . . �r(nr)

�(n)
(1)

where the numerator is the number of interleavings of length n that can be built
with r local traces of lengths n1, . . . , nr. Since computing the exact value of �(n)
would require the construction of the global model and of the corresponding tables,
we use the following approximation from [4]:

�(n) ∼ Cωn.(2)

where C and ω are two constants. A sufficient, but not necessary, condition for this
approximation to hold is aperiodicity and strong connectivity of the automaton,
which is satisfied by any LTS with a reset. Details of weaker conditions can be
found in [4]. This approximation is precise enough even for small values of n since
Cωn/�(n) converges to 1 at exponential rate.

Using the same approximations for the �i(ni), i = 1, . . . , r, we get (see [3]):

�(n) ∼ C1 . . . Cr(ω1 + . . . + ωr)n(3)

and then

Pr(n1, . . . , nr) ∼
(

n
n1,...,nr

)
ωn1

1 ωn2
2 . . . ωnr

r

(ω1 + ω2 + . . . + ωr)n
.(4)

This avoids the computation of �(n), and the constants ωi, i = 1, . . . , r are com-
putable in polynomial time with respect to the size of the Modi. It means that the
complexity is dependent on the size of the components only, and not of the size of
the global model.

In [3], we provide an algorithm for drawing n1, . . . , nr with this probability
without computing it: draw a random sequence of n integers in {1, . . . , r}, with the
probability to choose i equal to Pr(i) = ωi

ω1+ω2+...+ωr
; then take as ni the number of

occurrences of i in this sequence.
This concludes the issue of the choice of the n1, . . . , nr. Below, we recall a

classical randomised way of interleaving r wi of lengths ni that ensures uniformity.

Algorithm 1 w ← ε; n ← ∑
i=1...r ni;

while n > 0 do {
choose i in {1, . . . , r} with probability ni/n ;
put the first symbol of wi at the end of w ;
remove the first symbol of wi ;
ni ← ni − 1;n ← n − 1 }

done

M.-C. Gaudel et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 3–148

To summarise, we have presented a way of drawing traces of length n approximately
uniformly at random in a product of r models Modi, without constructing the
product. The complexity of the method is:

• polynomial (cubic) in the sizes of the Modi models for the computations of the
constants ωi, that are done once only for each i, i = 1, . . . , r, as pre-processing
the drawings of the ni,

• linear in n for the drawing of the ni,
• linear, in the sizes of the Modi models and in n, for pre-processing the uniform

local drawings of the wi, to be done once only for each i, i = 1, . . . , r,
• linear in ni for the drawing of the local wi,
• linear in n for the interleaving of the wi.

Table 2 gives the average times for drawing 100 traces of lengths 200 to 8000 in
compositions of the vasy 0 1 model (see Table 1) with itself 6 . The vasy 0 1 model
has 289 states.

length

components
200 500 1000 2000 4000 8000

2 0.58s 0.91s 1.83s 4.71s 14.93s 37.39s

4 0.91s 1.25s 2.42s 5.09s 14.57s 36.05s

6 1.37s 1.73s 3.00s 6.39s 18.31s 42.21s

8 1.78s 2.20s 3.70s 7.91s 22.61s 49.88s

10 2.16s 2.76s 4.57s 9.30s 26.82s 58.61s

12 2.65s 3.41s 5.31s 11.23s 31.36s 68.73s

Table 2
Average times for drawing 100 traces in composed models without synchronisation (vasy 0 1 is composed

with itself).

We observe that 28912 is of the same order as 1027. It means that this method
is applicable to very large models. Other experiments are reported in [10].

3.2 Parallel composition with synchronisation

We present here the generalisation of the method above to synchronised products
when there is one synchronised transition in every model. Let note α its label, s→α

i

its origin state in Modi, and sα→
i its target state in Modi model.

A trace in the synchronised product [1] of the Modi models has the following

6 This table is slightly different from the one presented during the workshop, and it is also the case for
Table 3. New experiment campaigns have been performed with a new implementation where pre-processings
and drawings are no more performed with MUPAD, but with a specific C++ library. Each figure in these
new tables corresponds to the average time for ten drawings.

M.-C. Gaudel et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 3–14 9

shape:
W0αW1αW2α . . . αWm

where m is the number of occurrences of α and

• W0 is some interleaving of r local traces w0
i , i = 1, . . . , r, without α, that respec-

tively start from the initial state of Modi and lead to s→α
i ,

• W1 is some interleaving of r local traces w1
i , i = 1, . . . , r, without α, that re-

spectively start from sα→
i and lead to s→α

i ; W2, . . . , Wm−1 are defined in similar
ways.

• Wm is some interleaving of r local traces wm
i , i = 1, . . . , r, without α, that respec-

tively start from sα→
i and lead to any state of Modi.

Moreover, there is a special case for m = 0, namely interleavings of r local traces
wi, i = 1, . . . , r, without α, that respectively start from the initial state of Modi

and lead to any state of Modi.
The definition above leads to consider four sub-languages of traces without α

for each Modi, i.e. four sub-models.
The generalisation of the method of subsection 3.1 is sketched below:

• Given n the length of the global trace to be drawn,
• Choose some m with probability �(n, m)/�(n) where �(m, n) is the number of

global traces of length n with m synchronisations α,
• Choose some lengths i0, . . . , im for the W0, . . . , Wm such that

∑
k=0,...,m ik =

n − m, with adequate probabilities,
• For each Wk, draw uniformly at random some global trace of length ik in the

product of the r relevant sub-models using the method of subsection 3.1,
• Build the concatenation of the m + 1 Wk interspersed with m occurrences of α.

Details on the computations of the suitable probabilities, using the same approxi-
mation as in subsection 3.1 can be found in [3] and in [9]. The approximate com-
putation of the values �(n, m)/�(n) is in O(n3 + r) operations and needs to be done
once only for a given n. Drawing is quadratic in n. The various pre-processings are
polynomial in the size of the biggest Modi model.

We performed some experiments using a modified version of the vasy 0 1 model
(see Table 1), where we picked at random a transition and labelled it as synchro-
nised, that we composed with itself several times (2 to 12). Table 3 gives the
average times for drawing 100 traces of lengths 100 to 600 in these compositions.
The limitation to 600 is due, again, to memory overflow during the pre-processing.

The generalisation to several synchronisations is sketched in [9] and is the topic
of an on-going Ph.D. thesis. Preliminary results on complexity let think that it will
be practicable in the case of a small number of synchronisations only. However,
in presence of many synchronisations, the synchronised product is smaller and a
brute-force method, where it is constructed and used for uniform drawings, may
become feasible. Actually, practical solutions are probably combinations of these

M.-C. Gaudel et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 3–1410

length

components
100 200 300 400 500 600

2 0.57s 1.17s 2.05s 4.97s 7.16s 9.50s

4 1.09s 1.71s 3.96s 6.09s 13.37s 18.38s

6 1.53s 2.44s 5.87s 9.15s 13.99s 27.01s

8 1.93s 3.22s 5.64s 11.92s 18.05s 25.53s

10 2.38s 4.01s 6.85s 10.47s 23.04s 32.18s

12 3.01s 4.80s 8.17s 12.54s 27.29s 38.38s

Table 3
Average time for drawing 100 traces in composed systems with synchronisation (the modified version of

vasy 0 1 is composed with itself).

two approaches depending on the architecture of the global system. The classifica-
tion of architecture patterns accordingly to such combinations is also part of this
on-going work.

4 Combination of weaker coverage criteria and random-
ness

Until now, we have considered as coverage criterion the coverage of all paths of
length ≤ n. This criterion is very demanding and in practice other ones are used,
such as all transitions or all states. In this section we discuss the following questions:
How a randomised selection of paths can ensure a good coverage of such elements
of a model? What does it mean to “satisfy” a coverage criteria in a randomised
framework? Then we provide some method for drawing traces according to such
coverage criteria.

4.1 Quality of a random distribution on traces w.r.t. a coverage criterion

Let G be some graph, and Ω some distribution on its paths (bounded by a
given length if there are loops). Given a coverage criterion C that requires a set
{e1, . . . , em} of elements of G to be covered, Ω defines some probabilities pi to reach
ei, i = 1, . . . , m when drawing a path in G. Let pmin = min(p1, . . . , pm). Similarly
to Thévenod-Fosse and Waeselink in [11] we start with the idea that pmin char-
acterises the quality of distribution Ω w.r.t. coverage criterion C. Thus it seems
natural, for a given G and a given C to define the Ω distribution in a way such that
pmin is maximum.

However, maximising pmin must not lead to give up the randomness of the
method. It may happen, for instance, when there is a path in G going through
all the elements e1, . . . , em to be covered. In this case, maximising pmin leads to
give probability 1 to this path and 0 to all the other ones, yielding a deterministic

M.-C. Gaudel et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 3–14 11

exploration strategy of the graph...
It turns out that biasing random walks toward coverage criteria in an optimal

way is a somewhat difficult multi-criteria problem that would requires, in addition
to the maximisation of pmin, a non null probability for any path traversing an
element to be covered. Even more, to be coherent with the maximisation of pmin,
the minimal probability on such paths should be maximised. But there are cases
where these requirements are contradictory (see [7], [6]).

In the next sub-section, we present a method that slightly weakens these re-
quirements. It makes it possible to draw paths at random in such a way that: any
path traversing an element to be covered must have a non-null probability and the
minimal probability of reaching by a path any element to be covered is maximum.

4.2 A drawing method in two steps

Given a graph G and a set S = {e1, . . . , em} of elements to be covered (vertices or
arcs of G), drawing a path of length ≤ n is performed in the following way:

(i) Draw non uniformly some e among the e1, . . . , em with probabilities πi, i =
1, . . . , m (the determination of these probabilities is given below),

(ii) Draw uniformly a path of length ≤ n among those traversing e.

Let αi the number of paths of length ≤ n in G traversing ei, and αi,j the number
of paths of length ≤ n in G traversing both ei and ej , the probability of an element
ei, i = 1, . . . , m to be reached when drawing a path is:

pi = πi +
∑

j∈[1..m]−{i}
πj

αi,j

αj
,

which simplifies to

pi =
m∑

j=1

πj
αi,j

αj
(5)

since αi,i = αi. Note that using techniques for counting combinatorial structures
as seen in subsection 2.1, the αi and αi,j can be efficiently computed. More details
can be found in [2].

We now explain how to compute the πi values in order to fulfill the two require-
ments stated in the above sub-section. The values πi, i = 1, . . . , m must satisfy the
following two first constraints:

π1 + . . . + πm = 1, ∀i = 1, . . . , m, πi ≥ ε

The second constraint is sufficient to ensure that any path traversing an element to
be covered has a non-null probability. The choice of the value of ε is a matter of
balance between the two requirements: the bigger it is, the smaller is the maximum
possible value of pmin. Moreover, pmin must satisfy the following constraints, that
are linear in πi:

∀i ≤ m, pmin ≤ pi =
m∑

j=1

πj
αi,j

αj

M.-C. Gaudel et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 3–1412

Therefore, the maximisation of pmin is just a linear programming problem where
the unknowns are the πi, i = 1, . . . m. Thus standard methods that are polynomial
in m can be used.

This method was implemented and experimented on some C programs. Some
experimental results are reported in [6] and [2].

4.3 Assessing coverage satisfaction

For deterministic testing methods, coverage satisfaction is a binary concept: either
it is achieved by a test set, or not. Moreover, the minimal required number of
tests can be determined. In the case of randomised testing methods, coverage
satisfaction becomes a probabilistic concept: what is the probability of satisfying a
given criterion after a certain number of tests? What number of tests are required
to satisfy it with a given probability?

Given a random test method based on some distribution Ω on the paths of a
graph G, and a coverage criterion C characterised by a set S = {e1, . . . , em} of
elements to be covered, the probability to reach element ei after N tests is greater
than 1− (1− pmin)N . This gives a minorant of the probability to satisfy C after N

tests.
Conversely, the number N of tests to reach criterion C with a given probability

pC satisfies the inequality:

N ≥ log(1 − pC)
log(1 − pmin)

(6)

We get the minimum required number of tests to satisfy C with a given probability.

5 Conclusion

In this paper, we have briefly presented how to combine random exploration of
models and coverage criteria. We have reported some promising first results in this
area. A common basis of these various pieces of work is that they are based upon
powerful techniques on counting and drawing uniformly at random combinatorial
structures. It is our belief that these techniques could bring much to simulation,
model based testing, structural testing or model-checking.

References

[1] Arnold A. , “Finite Transition Systems”, Prentice-Hall, 1994.

[2] A. Denise, M.-C. Gaudel et S.-D. Gouraud. A Generic Method for Statistical Testing, 15th IEEE Int.
Symp. on Software Reliability Engineering (ISSRE), 25-34, (2004).

[3] Denise A., M.-C. Gaudel, S.-D. Gouraud, R. Lassaigne and S. Peyronnet. Uniform Random Sampling
of Traces in very Large Models. 1st Int. ACM Workshop on Random Testing (2006), 10 -19, ACM
Press.

[4] Ph. Flajolet and R. Sedgewick. Analytic combinatorics: functional equations, rational, and algebraic
functions, INRIA Research Report RR4103, January 2001, 98 pages. Part of the book project “Analytic
Combinatorics”. URL: http://algo.inria.fr/flajolet/Publications/books.html.

M.-C. Gaudel et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 3–14 13

[5] Flajolet Ph., and P. Zimmermann, and B. Van Cutsem. A Calculus for the Random Generation of
Labelled Combinatorial Structures, Theoretical Computer Science, 132 (1994), 1-35.

[6] Gouraud S.-D. “Utilisation des Structures Combinatoires pour le Test Statistique”. PhD thesis,
Université Paris-Sud 11, Orsay, 2004.

[7] Gouraud S.-D., A. Denise, M.-C. Gaudel, and B. Marre. A new way of automating statistical testing
methods. In IEEE Int. Conf. on Automated Software Engineering (ASE), 5-12, 2001.

[8] Jerrum M., and A. Sinclair. The Markov chain Monte Carlo method: an approach to approximate
counting and integration. in “Approximation Algorithms for NP-hard Problems”, D.S.Hochbaum ed.,
PWS Publishing, Boston, 1996.

[9] Oudinet J. “Uniform random walks in concurrent models”. Master thesis, Université de Paris-Sud,
2007 URL: http://www.lri.fr/~oudinet/publis/07/mthesis.pdf

[10] Oudinet J. Uniform random walks in very large models. 2nd Int. ACM workshop on Random testing
(2007) 26-29, ACM Press.

[11] Thévenod-Fosse P. and H. Waeselynck. An investigation of software statistical testing. Journal of
Software Testing, Verification and Reliability, 1(2), (1991), 5-26.

[12] Thiéry N. M. Mupad-combinat algebraic combinatorics package for MUPAD.
URL: http://mupad-combinat.sourceforge.net/.

[13] van der Hoeven J. Relax, but dont be too lazy, Journal of Symbolic Computation, 34(6) (2002),
479-542.

M.-C. Gaudel et al. / Electronic Notes in Theoretical Computer Science 220 (2008) 3–1414

http://www.lri.fr/~oudinet/publis/07/mthesis.pdf
http://mupad-combinat.sourceforge.net/

	Introduction
	Uniform generation of traces of a given length
	A few words on counting and drawing combinatorial structures
	Drawing uniformly at random traces of length n
	Generalisation to traces of length n
	Some experimental results

	Uniform trace generation in products of models
	Parallel composition without synchronisation
	Parallel composition with synchronisation

	Combination of weaker coverage criteria and randomness
	Quality of a random distribution on traces w.r.t. a coverage criterion
	A drawing method in two steps
	Assessing coverage satisfaction

	Conclusion
	References

