CHAPTER 17
Approximation

Many optimization and counting problems are inherently difficult and we studied
descriptive classifications in chapter 14. It is nalural 1 ask if these problems re-
main difficult if we relax the exactoess of the solution. In this chapter we define
the notions of approximation for optimization and counting problems and show
that some of these problems are casy to approximate while some others remain
hard.

We follow the descriptive point of view and give sufficient conditions for such
problems to be approximable. We also prove, using PCI” techniques thal some
problems arc not approximable,

The approximation of optimization probiems is studied in the first section while the
approximation of counting problems is studied in the second section. In the third
section, we introduce property testing , an approximation of verification problems,

1. Optimization problems

In chapler 14, we defined an optimization problem. but recall the definition. An
optimization problem specifies a set of possible solutions which satisly certain
constraints., and a cost lunction which associates a numeric value to cach solution.
The goal is o find an optimum value, maximum or minimum, for this cost function.

DEFINITION 17.1. An optimization problem is a tripler (Sol, val. goal) such
that:

o For every input &, Sol(x) is the set of possible solutions.

o The function val associates with every possible solution an integer value.

o The variable goal — maz (resp. goal = min) for maximization problems

(resp. nmunimization problems),

An optimum of the optimization problem is an element y* & Sol(z) such that
val(y*) = Maz{ val(y) : y € Sel(z)} if goal = max for maximization, or
val(y”) = Min{ val(y) : y € Sol(x)} if youl = min for minimization. The
value of the function val on the optimam is noted opt(x),

‘The parameter goal simply determines if the goal is to maximize or to minimize
the function val.
Example. In the ase of the problem CLIQUE, the input x is # graph of size n,
Sol(z) is the sct of cliques. val{y) =| ¥ | ix. the cardinality of a dique y and
303
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goal = max because we look for the size of the largest clique. This problem is called
polynomially bounded because mal{y) is smaller or equal than 5.

DERNITION 7.2, An oprimization problem is in the class NT'O if:
o There is a polynomial p such as for any y € Sol(x), | y |< p(l = |).
® The decision problem y ¢ Sol(z) is decidable in polynomial time.
o The function val Is compuiable in polynomial time.

Notice that the CLIQUE problem is in the class NPO. An algorithm A for an
optimization problem takes an input # and compules a value, y denoted by A(z).
DERNITION 17.3. An algorithm approximates up to ¢ an optimization problem if
it compuies for any input r a solution y such that:
| val(y) - opl(z) |

Maz{opt(z), val(y)} ~
An optimization problem is <-approximable if there exists € < 1 and a polynomial
time algorithm which approximates it up to «.
In the case of a maximization problem, the emror between A(x) and opt(r) is
smaller than c.opl () and A(z) > (1 —¢).opt(z), as indicated in the figure below,

Ope(x) ‘ Ervor msrgin
fam

Adx)

i

Muximtiztion Problan Mizimization Problem

: Errror
Mnilto,‘(-)

FIGURE 17.1. Approximation of & maximization or minimization problem,

The definition of an approximation can be generalized by considering ¢ dependent
on n, the size of the input, for example «(r) = log n.

DERNITION |74, The class APX is the class of NPO problems such that there
exists € for which the problem is c-approximable. The class PTAS is the class of
the problems which are e-approximable for all «.

For a problem of the ¢lass PTAS, the time of computation of the algorithm A
is polynomial in | z |, but depends on ¢. If the time of computation depends
polynomially on , we call such a schema a FPTAS, or Fully Polynomial Time
Approximation Schema.
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1.1. Examples of approximation algorithms. Lt us consider some NPO
problems which show different siluations with respect Lo the approximation:
e the VC problem. the minimum Vertex Cover, is 4-approximable ,
e the TSP problem, or Traveling Salesman Problem, is not approximable, unless
P=NP,
o the KNAPSACK problem is e-approximable for any €.
We also study the MAXSAT problem which plays an important role and which is
approximable. The decisions problems associated with these optimization prob-
lems are all NP-complete and yel completely different from the approximation
point of view. We show how logical definability illustrates these different situa-
tions.
1.1.1. Vertex cover: VC. The inpulis a graph &' — (D, I’} and Lthe problem
consists in finding a set of nodes C' of minimum size such that any edge ¢ © E has
its origin or its extremity in .

One may try 10 select first the nodes of maximum degree 1o minimize the number
of nodes spanning the edges. It is interesting to notice that this procedure does not
approximate the VC problem up to a constant. Consider the following procedure
which will approximate VC: take an edge ¢ = (u,v), add {u, ¢} to the cover
and remove the points w, v from the graph. When all the nodes arc removed, we
end up with a set ' which approximates the minimum cover. Formally, we can
describe this procedure with Lthe following instructions.

Approximation of 8 minimum cover:

1.C:=0,Go:=G, Eg:=FE, V3:=Dy.

2. Ife — (u,v) € E; add u,v to C and V;jy i— V; = {u, v}, Gy i—
(Vits, Eiyy) where Ejpy = E; 1 Vigy.

Which approximation ratio can be guaranteed? Let us show that this algorithm
approximates the VC problem up 1o 5. It chooses |c7] edges (u,v) of the graph
whose extremilies define the cover. Any cover € has o cover the edges of . in
particular the edge (#, ¢) and has to contain at Icast onc of the nodes « or v, in
particular the minimum cover 'y, . We conclude that:

v ("
| Coin 12 151
v - - C
1C1=1Cmin| (1C1-5§ 1
| S S7E 7ol T

We conclude that the cover € oblained by this algorithm approximates up (0 } the
VC problem.
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1.1.2. The traveling salesman: TSP. (iiven a graph and a cost function which
associates with every edge ¢ a weight ¢, the traveling salesman consists in find-
ing an hamiltonian' circuit of minimum cost. An important observation, known
since | Joh74], is that the existence of an approximation algorithm for TSP implics
that ' = NP. Let us call e-TSP the problem which consists in finding a solution
e-close or close up W ¢ w the TSP problem.

THEOREM 17.1. For all 0 < ¢ < 1, if there is an algorithm which approximates
TSP close to ¢, then P = NP.

Proof :  We show how 10 neduce an NI complete problem, hamilionicity, to the ap
proximation of TSP. To decide HAM on (7, itis enough to build a new graph (7, in
polynomial time and to solve ¢- TSP on (0. Let (7, the complete graph with n nodes
where the cost of every edge of (7, is 1 and the cost of all the other edges is {7 . The cost
of the new edges of (), is grester than .

Let us decide [ AM nccording to the following simple principle: if the sigorithm which
Approximates up 1o ¢ gives a solution of cost n, then there is an hamiltonian circuit in (7.
If the solution is of cost greater than n, at lcast one of the edges is of cost (- and the cost
of the arcuil is much larger than n. I an ¢ TSP algonthm approasches TSP close to ¢, the
cont of the optimal solution is grester than 1 — ¢ tmes the cost of the solution, i.c. greater
than (1 —c).h":-)-,dmisgmtcrdnn n. Tt can pot be an hamiltonian in ¢, and there is
no hamiltonian circuit in (.. O

The previous reduction introduces a big variation between the solution and the op-
tmal solution. The approximation algorithm would allow to decide the original
NP-complete problem.

1.1.3. KNAPSACK. The inpul of the KNAPSACK problem is a sequence of
n pairs (¢, w;) of integers and an integer K. One interprets the value ¢; as the cost
of the object 7 , the value w; as the volume of the object ¢ and A’ as the capacity of
the knapsack. The goal istofind S C {1.2, ..., n} such that:

E w; < K

€S

2:(', IS Iaximum

iCS
“T'he first condition forces the solution S to satisfy the volume constraint. The sec-
ond condition is Lthe optimization condition: one looks for a solution S which max-
imizes the total cost. Another useful notation consists in writing 37—, r;.w0; < K
for the volume constraint and Maz{3_"_, #;.¢;} for the function to be maximized
wherez; = 1ifi€ Sandz; =0ifi € S.

! An hamiltoainn circuie poes through each node of the graph exactly ance. The decision prob
lem Hamiltonicity, or 1 AM . decides if there exists an hamiltonian circwit in a graph G.
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An important observation is the existence of a pseado-polynomial approximation
algorithm, The time of the algorithm is polynomial in n and in the numerical values
of the input,ie. (5. w;, K) in the case of the knapsack.
PROPOSITION 17.1. There is an algorithm for the KNAPSACK problem in time
On.K).
Proof : 1.et us define the binary function ' such that

Cle, =7

if J is the largest cost (3 ce)of aset S C {1,2,.... [} such that §_ .. . w; = w. One
can compute ({w, I} for w < K and / < » with the cquations:

Clw,0) =0
Cilw, ! | 1) = maz{C(w, I}, cr41 + Clw — wyy1.1}}
We express (he fact that Clw, ! | 1) is defined from Cw, /} by considering the maxi-
mum solution among @l the solutions which include the object 7 + 1 or don’t. After n X
computation steps, the value we arc looking forisin (C(1,n), ..., C(£,n)}.O

It is important to obscrve that this procedure does not constitute a polynomial time
algorithm for the Knapsack problem. Thesize of theinputism = ).,  loge |
Y1 nlogw; 4 log K. A polynomial time algorithin must have a time com-
plexity polynomial in log K. The solution above is called a pseudo-polynomial
algorithm, a procedure whose time complexity is polynomial in #, the number of
variables, and in the numerical values. A variation of this technique will produce
an approximation schema, i.c. a FPTAS.

THEOREM 172, For any ¢, there is an algorithm which approximates up 1o ¢ the
KNAPSACK problem,
Proof : Let us deline the binary funclion:

Wie,N=J
where J is the smallest volume (3, wy)ofaset S C {1,2, ..., [} such that } . ¢, = ¢.
One can compute W (e, 1) for ¢ < n.Mar{cy, c2,...,cn} and T < n with the equations:

“"(t, 1) =y fe=¢

W(0,N=0
Wie, I+ 1) = min{W(e, 1), wis + Wiec = ¢ig1, D}
for /] < nandc < n(, where C = Maz{eg, ¢s.....¢x]. These equations express

Wie, I + 1) as the minimum of the volumes of the sets which include the object [ | 1
ar don't indlude it. One chooses the largest ¢ such that W{c.n) < K and the dgoathm is
in O(n?.C).

This algorithm is pseudo-polynomial because the lime of computation is proportional to ¢
while the size of the input is of the order O(log C'). One can imagine to divide every ¢, by
2° fora b fixed in advance: this means taking into account only the most significant bits
by climinating the 6 least significant bits for every value ¢; coded in binary. Lel us define
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¢ = 2*.d; where d; = | §4 ] and the input 2’ = (w4, ..., W, K, dy, ..., du). The solution
found is the same as the solution on the inputl (wy, ..., wy, &, ¢, ..., c). The previous
algorithm ix of complexity On?.C/2%) and finds a solution 57

YazYazdd2Y 420 a)-n2
i€s i€s ies €S TEE
The first incguality uses the fact that S is optimal, the second ineguality the fact that ¢, =
¢, the third inequality the fact that 5” is optimal and the fourth the fact that ¢ = ¢; — 2,
Considering the secomd andd the fourth expression, one deduces:
ZC,‘ - Z <5 S ﬂ.?b
€Y €S’
LiesCi ~ Dies: i < Dies G = Dges G < ﬁ
Dies i 2 c A
The algorithm approsches up to ¢ for e = -°-‘:L. It 15 enough 10 choose b = log Ln'- andd the
time of computation is Of 9-;—#} —2 4/l 5}) ancl we oblain a lully polynomial approximation
schema (FPTAS). O

1.2. Approximation of optimization problems. Recall from I4the A7 (Kolaitis-
Thakur) hierarchies associated with optimization problems. In this section, we
show the important result [PY91): ifan optimization problem is in the class MAXI |,
then it is € approximable,

Itis useful 1o show certain intermediate lemmas concerning Lhe problem MAXGSAT .
a gencralization of MAXSAT, where the input b [z is a set of propositional formu-
las bfx = {&y, ..., 6y} on n variables. These formulas are not supposed clausal.

Example. Consider the 3 formulas below on the 4 variables gy, gy, ps. st
@1 & {pr Ap2 Vv -ps))

®2 : {(=p: Ap2) V ps)
@3 © (~p1 A pg)

Let us show that MAXGSAT is c-approximable under certain conditions. Let { ©
{0, 1}" a hoolean model, Var(¢;) the sct of the propositional variables of ¢;, let
us note £; © {0, 1)Vor{4l 4 model on the variables of &; und let us define:
nsat(z.1) =| {¢; € r : f satisfics ¢;} |
#sat(e) =| {t : t satisfies ¢} |
v |t st satisfies ¢} |
ol(e) = | {0, 1HVartenl |
By extension, one write:
#sallx) =| {¢ : { salislies all the ¢;} |

= #sat(g;) 2~V or®l
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Consider now a random model £ chosen with an uniform distribution. Let N, be a
random variable such as:

aens (5 if  satisfies ¢,
T 1 0 otherwise

Let n;ét(:r) the expectation of the random variable nsaf (. 1). One can then write:

nsat(z} = E(} N = Y E(N) = ) ()
=1 =1

=]
We now show how a greedy algorithm can make sure that the number of satisfied
clauses is greater than nsat(x).

LEMMA 7.1, If we can compute the number of models satisfying every o, in
time T{x), we can find a model satisfving more than nsat(z) formulas in time
Oln.nT(z)).

Proof : Let us denote ¢, 1 (resp. @, o) the formula &; where the varable p; is
replaced by the value L (resp. 0). Let us notice that:

ﬂ(él"o’g]) + ﬂ("c‘p):l))
2

Consider the following procedure to choose the values of py, ..oy ¢

ole;) =

Decision o Py, coos i ©
Frj:=1,..n
Lp; = Vi 3321, 0(@ip,=1) 2 T %, 0(d: p,=0). Otherwise p; = 0.
2. Simplily the lormulas ¢; sccording to the value allected 1o p;.
Suppose we choose py = | and let 23 = {@ 5 =1 }, thatis the new input where the boolean

valve 1 replaces the variable p in all the formulac ¢. From the remark above, NSat(z, )} is
delinable from the densilies o, ):

nsat(z) = 3 a(8) = Y eléy=1)

#ET; Lt

nsat(z:) =

Epee 7lfnizt) + Toee 0lnizt) . Toge 0lépmt) + Toes @lépu=s)
2 & 2

nsat(z.) > Y of¢) = nsat(z)
PET

We simply expressed that 50", o(dip,=1) = J.00, 0(dip,=0). Let 2; the new set of
formulas obtained from z;_;, following the same procedure applied to the vanable p;. We
then oblain:

nsat(z,) > Nsat(z,_y), ..., > nsat(z,) > nsat(z)
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1et " a hoolcan model obtained by this procedure. The value 6s.a't(.r..) is dircetly com-
putable, by cvaluating the number of formulas ¢ such as &(¢*) = 1. This procedure allows
to find * in time O(n.m.7'(x)) if we compute each density #(¢) in time O(7'(2)). O

Example. For the previous formulas &1, ds, &3, the values of the densities are:
density pr=1]p:=0
(o) 0.75 0
alos) 05 0.75
ol¢a) 0 05

| ) oo} [ 125 125

We conclude thal ngét{:;) = 1.25. The procedure chooses py = 1, but py = 0 could
also have been chosen. We obtain the new input ry = 61, 8}, 6

@ i p2aVom

65 XY
é:’;‘ )
The vilues of densities [or the choices of ps are:
density p:=1|pa=0
a(¢i ] 0
oles) 05 03
0
1

oié3) |0
S5
In this case py = | and we oblain 23 — ¢§,¢3§,é§:
87 : 1
3 : P
@3 : 0
The values of the densities for the choices of pa are:
density |py=1]py=0
o(87) 1 1
o(da) I 0
0(¢§;) 0 0
(2, ol#7) |2 1

The variable ps is chosen as ps = 1 and the model is £ = (1, 1, 1) which satislies
two fonmulas of the inpul r.

In two important cases, we can compute the number of models of a formula in
polynomial time:

e when cach formula has at most & variables,

¢ when cach formula is a disjunction.
In each case, the previous algorithm allows us to approximate MAXGSAT. We
describe the argument when the number of variables is at most &, The problem
MAXGSAT is then noted MAXGSAT |..
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THFOREM 17.3. The problem MAXGSAT ;. is e-approximable.

Proof : Every formula ¢ which can be satisfied is such that #(¢) > . let &' C x the
subset of formulas of # which can be independently satisfied and let m =| 2’ |.
By linearity of the expectation, we oblsin: nsat(x) > m.27%. The previous algorithm
finds ¢* such that

nsal(x,1%) = nsat(r) and m < MarGSATi(z)

We deduce that o
neat(z, ') . Wsatle) .,
MarGSAT(z}) = m =
MazGSAT,(x) — nsal(x,1*)
MaxGSAT(x)
and the approximation condition is satisfied. O

<1-27*

The approximation is better when & is small. In the case of & = 3, the emor
¢ = T/R and nsat(z.1t*) > Max(GSAT;(x)/8. Let us show how to generalize
this procedure to a MAXE, problem.

THEOREM 17 4. If a problem is in the class MAXE,, it is e-approximable.

Proof : I.ct A be an optimization problem of the class MAXY; and let o5y, 5) the
formula X (withowt quantifiers) such that for any structure I7 of size n:

MazAlz) = Mazs | {a: (U, S,a) F &(a,5)} |

The formula 2° is built from the explicit relations of I7 and S(y,, . ..., 5, ) where 2 is the
anty of S and g s cither a constant of the structure I or a variable among ¥ =y1, ..., Up.
1.¢t us introduce n* propositional variables: py; for S(1, ..., 1), py,_ 2 for 5(1,...,2),
P, m for S(L, ... 8), v Pa.u for S{n, ..., ). For every formula ¥ia;, ..., a5, 5} let
s write Uy, ) whene | < a, < n, the propositionsl formula obtained by substituting
every yy by 4, replacing the explicit relations on {7 by their thuth values and the instances
of (%, ..., %, ) by the corresponding propositional variables. We obtain n® propositional
formulas having each it most kg varmables, where ky is the number of distinet occurrences
of Sin v,

To maximize on S the size of the sel defined by (S, y) is equivalent to the problem
MaxGSAT,, onthe input {¢h1y, . o) = | < a; < n}. Every formula has at most &k
variables and the problem is | — 275+ approximable by the previous result, O

Let us show that there is an algorithm which approximates up to ¢ the maximum
cut problem (MAXCUT}.

Example. The MAXCU T problem consists in finding a partition ol the nodes into
two sets, one conlaiming 5 the other conlaining { such that the number of cdges be-
tween the two sets is maximal. It is definablc by the formula ©(z, y):

E(z,y) A[(S(2) A=S(0)) v (S(y) A -S(2))]
MazOUT = Mazs | {{z,8) : (U, S} ¥(z,0.9) |
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Let us apply the previous trsnsformation with kg, = 2. We obtain n® formulas Va0
on the » variables py, ..., p, of the type:

Elay, a2} A ((S(as) A=S(as)) v (S(az) A —S{ay)})
which G also be wnitlen as:

E{“I Lag) A [(pta A -‘sz) v [1'09 A pa,y )J
If (I7,a;y,as) = ~E{ay,as),ie. il there is no edge between a; and a2, the formula
Viay,az) 18 false. I (17, @y, ay) = Elay,az), ie. if there is an edge belween a; and
@z, the formula y,, . becomes:

(pﬂt A qp‘_‘] v (pﬂu A -'p'!.)
Notice that the value of MAXCUT is exactly the value of the function M az G SAT(x').
The set x' of formulas to be satisfied is determuned by m formulas of this type i m
is the number of edgcs of the graph. The algorithm finds a cut with an approximation
of 1 =272 = 3/4,

We can now oblain the main result of [PY91].

THEOREM 175. If an optimization problem is in the class MAXE,, then it is
c-approximable.

Proof : Tt A be an optimization problem of the class MAXE ;. There is a formula
Jua(z, v, S) such that:

MazAlz) = Mazg | [+: (U, S,2) & Jpo(z.p,5} |

Without loss of gencrality, let us suppose that the formula has only one Iree viriable  and
only one quantified variable y. Let us consider all the = suchthat : = fwhere | <7 <In
and the corresponding formula o; - Jy 4(4, g, 5}, Asin the previous construction, we gca-
crate a set x' of formulas which form the input of MAXGSAT on the same propositional
variables but contrary to the previous case,

MazGSAT(2'} < Alz)

whercas we hixl an equalily in the case of 25 formulas, For each formula o;, we consider
WO cascs.

Fither there is no value for y which makes Jan5(1, ¥, 5) true on the structure (U, S, i)
and we doat write any propositional formula, or there arc values for i and in this cese we
chouvse the first value ¥ — j° in the lexicographical order (any other choice would also
work). We obtin a formula (7, 7*. 5) which we write with propositional variables as
before.

The propositional variable vy ;+ is one of the formulas of the new input 2. Let & the
aamber of different occurrences of S in (7, ¥, 5). The approximation algorithm for
MAXGSATE gives us a vidue o such that:

2% |2 |€ a € MaxGSAT(d) < Alr) <| |

The important inequality is A(2) <| ' |. Indced A(2) is smaller than the number of
clauses which Gan be sstisfied. During the arbitrary selection of §*, the choices made may
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not be the best and MarGSAT(2') < A(r). The first two incgualities dircetly express
the approximation of MAXGSAT .. We conclude that:

a> 2% A(x)
Alz)—a

= — ok
Alx) = ey

Example. Consider problem MAXSAT, which is MAXY, definable, on the input 2
with the following 3 dauses on the varisbles py, pz. pa, pa:

(PrVpaVops Ve
(P2 V ~pq)
(~PL V pa)
The structarc is [Ty = (Dy=;, O, POS,NEG) where 1,2,3,4 are the 4 bouolean
variablcs and 5, 6, 7 the 3 clauscs. Relationsare ' = {5, 6,7},
POS = ((5,1),(5.2),(5,4),(6,2),(7,4)) and ¥ EC = {(5,3).(6,4),(7,1}}. The
SAT problem is defined by -
ATN¥=3(C{z) = ((POS(z,w) AT(y)) V (NEG(z, y} A ~T(w)})]
The MaxrSAT(x) function is then defined by:
Mazy | {z : 3p(C(z) A ((PO.‘F(:,y) AT{yh) VINEG(z,y) A=T(u)i)} |
The formula (i, 5°) is: (POS(i, )AL v (NECE J°) A =T(5°)) if the
formula can be true (for a choice of T) and its propositional representation is v .
(POS(LT") Ap;) V (NEG(F") A =pj)
Recall that py is the proposition:s variable associated with 7°(7). For example;
¥ - PL
62 M
LS e 1
In this case | £’ |=3and A(x) = 3, MarGSAT: (') = 2 and the previous inegual-
ity is satisfied.

We can conclude with the figure which gives the position of the class APX in the
KT maximization hicrarchy.

13. Reductions and completeness. In this section, we introduce a notion of
reduction between Lwo optimization problems which preserves the approximation.,
The most classical reduction is the Lir-reduction or linear reduction. defined in
[PY91]. Other more general reductions were introduced later, in particular the
PTAS-reduction of | ACP95] which we now study.,

Let us recall that if « is the input and y a solution for z, the relative error E(z, y)
is defined by:
| opt(z) — val(y) |

E(z,y} = Mazx{opt(z), val(y)}
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FIGURE 17.2. The position of the class APX in the K7 hicrarchy.

Let A and I two optimization problems with inputs z 4 and x5 which have solu-
tions y4 € Sol(x4) and yg € Sol(zg) whose oplima are val(ys) and val(yg).
The parameter ¢ is the relative crror for the problem A.

DERNITION 175. Let A and B two optimization problems in the class NPO. We
say that A is PTAS-reducible to B and write A <ppas D if there are two
Sunctions f and g such that:

e the function [ is computable in polynomial time in | x4 | and 1/,

e the function g is computable in pofynomial timein | z4 | .| yg | and 1 /¢, and

the solution y 4 is defined by the value of (x4, u8,¢),
® there is a constant 3 smaller than | which depends on « such that
E(za,9(24,98,6)) € 3.E(f(x4,€).y8) S ¢

The function [ takes an instance of A and assodiates an instance of B, while the
function g takes a solution of B and associates a solution of A, as the figure below
indicates. The error for the problem A is smaller than the ervor for the problem
B and can be made smaller than a given ¢. An Lin-reduction. noted <. s &
PTAS-reduction where the functions J and g do not depend on «.
The fundamental property of an Lin-reduction is that it preserves the approxima-
on.

1.EMMA 172, IfB € PTAS and A <1 B, then A € PT AS.

Proof : For any <, we associate 2p = f(r4,c). Because B admits a PTAS, one can
bound the error on [ such that L'(f({z.4),ys) < 5. This insures that the error on .1,
1e. F{z5,9(x4,u8,¢)) < ¢. All the computations are polynomislly bounded and the
problem A is in the class PTAS, O

DERNITION 176. Anoptimization problem A is MAX X g-complete if A ¢ MAXE,
and if any problem B € MAXY,y Is Lin-reducible 1o A.

We say thal a problem is MAXE-hard if any problem £2 € MAXE, is Lin-
reducible to A.



I OPTIMIZATION PROBLEMS s

. S

‘(xA”B]r \]} ”B

| -
XA fix J=x

FIGURE 17.3. Lin-reduction between two oplimization problems.

THEOREM 17.6. MAX3SAT is MAXTZ,-complete.

Proof : In the previous section, we showed (theorem 17.4) that any problem A of the
class MAXY, was Lin-reducible to the problem MAXGSAT . Let us show how to reduce
MAXGSAT. to MAX3SAT by an Lin-reduction.

Let x4 be the inpat of the problem A, ie. the finite structure 7. Every formula ¢; of
MAXGSAT is of constant length and contains at most & variables. There is an equiv-
alent formula ; which contains m clauses. One can so associate to the formulas \;
of MAXGSAT, a set of clauses z3c4r = f{z4). If an approximation algorithm for
MAX3SAT approximates ragsar within a constant ratio, it finds a model @ = gys 47. This
mode] o defines a set 5 = g(a) which gives an estimate for the problem MAXGSAT;, and
the problemn A within & constant rtio. Hence there exists 3 such that:

Elza.9{pasar)) = B E(f{za) wsar)
and the problem MAX3SAT is complete. O

There are many other optimization problems which are MAXE;-complete but
the reductions are much more elaborate. In particular, the problem MAXCUT is
MAXY,-complete.

An optimization problem is polynomially bounded if there exists a polynomial g
such that the function val(y) < ¢(] z |}). We write APX pg the class of polyno-
mially bounded oplimization problems. The classes APX and APX g have been
logically characterized by [KMSV94],

THEORTM 17.7. Any problem A ofthe class APX pg is Lin-reducible 1o MAX3SAT .
Any problem B of the class APX is PTAS-reducible to MAX3SAT.

1.4. Non Approximability. In this scction we prove two results of non ap-
proximability, under the hypothesis I’ £ NI*. We use the characterization of NP
in term of the probabilistic class PC P(logn, 1) defined in the previous chapter.
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We show the impossibility to approximate MAXCLIQUE up to ¢ and the impossi-
hility to approximate MAX3SAT with an approximation schema. We deduce from
it the impossibility o oblain an approximation schema for any MAX Y complete
problem,

1.4.1. Non Approximability of MAXCLIQUE. Lel cligue{(F) the size of the
largest clique in a graph G,

THEOREM L7 8B. If there is a polynomial time algorithm which approximates up 1o
¢ the problem MAXCLIQUE, then P = NP,

Proof : Let L alanguage of the class NP and V' a verifier of the class PCI'(log n, 1) for
L. For cach input z of L, let us construct a gruph G- and a function f such that if = € L,
then cligue(G) = fin) and if = & L. then dligue{G<) < f(n).{1 — 2¢). If there were a
polynomial time algorithm which would approximate up to ¢ the problem MAXCLIQUE,
one could decide L in polynomial time and one would conclude that PP = NP.

Let e = O{1) be the number of bits tested and » = d. log n the number of random bits of
the PCP protocol for L. A node of ¢ is a tuple o« = (g, 8¢, ..., 8.} where p is a random
vector (| p |= r), where 51, ... 5, are the bils tested in the proof = when the verifier V
accepts. The number of nodes is On®), hence polynomial.

The algorithm of the verifier computes the positions p, .., o depending on x and p for
which the values of = at the positions py, ..., e are $3, ..., 5, Two nodes o and o’ arc
contradictory if there are positions p; and p) such as p; = p} and 5; £ &. An cdge
connects two nodes of the graph if they are not contradictory. Observe that if 1wo nodes
(P 515 --5 8c) amd (p, 57, ..., L) are connected, then &; = & for ¢ = 1, ..., e. The verifier
will compute in bath cases the same positions py, ..., p. One can determine in polynomial
time if there is an edge between two nodes by considering all the possible p,

The size of the largest cique of G s 27, If there were a larger cligue, two tuples
(o, 87, -on ) and (p, 8. ... L) where at lcast onc 8; # & would be connected with an
cdge. which is impossible because they are contradictory. Let us show that il 2 © L then
cligue(G) = 27 andd that il » & L then cleque{G) < 27 /K for a K chosen according to «.

If € L, there is a transparent proof which accepts for all the possible choices of p. Every
nodle is compatible for the visrious g and we obtsin 2 clique of size 27, Let us show that
if 2 & L, the largest cligue is of size i: for K = 1. If there were a elique of size greater
than 3, one could build a proof = which would answer the questions of the verilier with
vidues 51, ..., 8¢ il {p, 81, ..., 5¢) 18 in the clique. For a random choice of g, the probalslity
that the point falls in the clique is %.7 = % and the probability that V' accepts = would
be greater than ﬁ-, contrlicting the hypothesis of PCT according to which if » & L, for
all =, the probabelity to accept is smaller than a constant value between ( and 1.

Tor amy language L of the class NI, we builta graph G such as if » € L. then clique (G) =
f(n) = 2 and if x & L, then clique{G) < f(n).{1 — 2) if K = 5. If there were
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a polynomial time algorithm which approximates up to ¢ the problem MAXCLIQUE, one
could decide L in polynomial time and one would have P = NP. O

Tt is also possible to show that MAXCLIQUE can not be approximated up to »°, hut
this requires much more elaborated technigues.

142, Non existence of a PTAS for MAXYg-complete problems. We now
show that the existence of a schema for the class MAXSNP implics P = NP Itis
customary o conclude that such schemas dont exist, bul il remains unproven.

THFOREM 179. If there is an approximation schema (PTAS) for a MAXT,-
complete problem, then P = NP.

Proof : Lel us show thal the existence of such schema for MAX3ISAT implies that
I' = NP. Let L be o language in the class NT and let us show how (o reduce its decision
problem to the approximation of MAX3S5AT with a schama. For any =, we construct an
instance S- of MAX3SAT such that:

e 5 issatisfiableiff x € L

e ifr & L then MaxdSAT(S ) < e | Sz |
A PTAS for MAX3SAT could then decide if # € L and this would give a polynomial time
algorithm for L which would imply that P = NP,

The language 1. has a venfier PCP(logn, 1}. Suppose that the content of cach position
of the proof 7 is coded by a boolcan variable p;. For any random vector a of length
r = logn, let us build the boolean f[unclion which expresses the lest of the verifier. As
a1 constant number of bits is tested, this function contsins i constant number of boolean
variables and is of constant length. This function can be expressed with a 3C°N F formula,
noted 5. .., and contains & clauses. The formula:

S.v = /\S.f.n
&

contains a number N = O{n") of formulas 5 .

Iz £ I, there is o proof mp such as V' oaccepts Toe any random vector o and x satisfics
S; and Maxz3SAT(S:} = N.k.

Il = & L, then for any proof = the verifier V7 accepls at most % of the S; . At least % of
the S; , are not satisfied, i.c. for cach of them at lcast onc of the & clauses is false. At least
2.N of the clauses are false. ic. & of the N.k global clauses. At most (1 — ) of them
arc satisfied.

Hence Mar3SAT(S,) < NE(1— ).

We found a constant interval 10 separite > € L from > ¢ L forthe function Mar3SAT(S, ).
A PTAS for MAX3SAT would allow to distinguish these two siteations and to decide in
polynomial timeif 2 € L. 0
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2. Counting problems

The non deterministic class NP admits a generalization in terms of a counting
class, introduced in chapter [4, Recall that a function F of Y.¥ — Nis in the class
#P if there is a p-predicatc £ computable in polynomial time and a constant k
such as forall x € :

F(x) =| {y : R(x,y)}| and |y |<] x|
The counting problems play an important role in complexity theory. We show
the connection between the logical definability of the counting problems and the
approximation of these problems,

2.1. Approximation of counting problems. We intraduce the notion of a
randomized approximation schema used to approximate counting functions. Recall
the definitions of chapler 14 for these [unctions and their descriptive hierarchics,
The goal is to approximate a counting function £ : X.* — N with a randomized
algorithm whose relative error is bounded by ¢ with a high probability, for all c.
DEANITION 17.7. An algorithm A is a polynomial time randomized approxi-
mation schema’ or PRAS for a funciion F : ©* — Wif for every ¢ and x,

Prob{A(x,¢) ¢ [(1 - .F(x),(1+ .F(x)]} = I’

and A(X, <) stops in polynomial time in | X |. The algorithm A is an FPRAS if the

rime of computation is also polynomialin 1 /¢.

If the algorithm A is deterministic, one speaks of a PAS and of a FPAS. A

PRAS(4) (resp. FPRRAS(4)), is an algorithm A(x, ¢, é) such that:
Prob{A(x,¢,8) € [(1 = L.F(x), (1 +).F(x)]} = 1-4

und whose time complexity is also polynomial in log(1/8). The error probability

is lcss than ¢ and let us show how to amplify the probability of success from 3 /4

to 1 — § at the cost of extra computation of length polynomial in log(1/4).

One of the most classical results used for the analysis of prohahilistic algorithms
is the Hoeffding-Chernoff"s hound |Hoe63|. It cxpresses the probability of devi-
ation of the sum of independent Bemnouilli varables [rom its mean (see theorem A
40l [AS92a]).

THEOREM 17.10. If Xy, ..., Xy, are n independent random variables with value 1
with probability p and ) with probability | — pandY = 3%, | X, then:

~22°n

ProblY — np > a.npl < e
LEMMA 173, Ler F a funciion: F = X° — N. If F admits an PRAS (resp.
FPRAS), then F admits an PRAS(S) (resp. FPRAS(4)) algorithm A(C, ¢, §)
whose error probability is & and whose time complexity is polynomial in | x |,
log(1/8) (and 1/« for an FPRAS).

2PRAS is the ubbreviation of Polynomial time Randomized Approximation Schema and
FPRAS is the abbeeviation of Fully Polymomiul-time Randomized Approximation Schem.
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Proof : let A’ a PRAS (resp. FPRAS) for F and let Xy, X4, .... X the valucs
obtained after X independent runs of A, Let Z the median value, i.e. the value X; suich
that

[ X =182 X =1
which is the new estimated value. Each of the values .X; is in the interval
[£(x) - {1 =), '(x} - (1 4 )] with probability greater than 3/4. If at least the majority
(e (K +1)/2 where K is odd) of the X; are in this interval, 7 is also in the interval.
The error probability is:

Prob[|(i: X [P(x)(L4e)Fix) (1=2)]) |2 (K +1)/2] <4

Let ¥; a random variable whose vilue is 1if X; & [FP{x) (1 =z}, F(x} - (1 + ¢)] and 0
otherwise. Observe that Prob[Y] = 1] = | /4 and ProbY] = 0] = 3/1. However,

Probl} 4i : X, & [F(x)- (1 = ¢), F(x) - (1 + )]} |2 (K +1)/2] =

K
Prob} " Y; = (K +1)/2)
iel
because K is odd and one can apply the HoelTding-Chernofl s bound. Hence,

x 3
Proﬂz Yir (K )2<e®K =3

where ¢ — 433 — 2. One concludes from the inequality c=29°K 2 5 that K > 8103} 1
suflices. The algorithm which estimates the median value from mndmn r.llua X1,---s XK
is an FPRAS.O

2.2. Approximation of £DNF. A probabilistic method consists in sampling
random valuations and (o Lest if they satisly the property expressed by a DNF for-
mula. If we compute the fraction of valvation which satisfy the property, we may
approximate the real valuc with high probability.

Suppose we try (o compute the size of a set A € D, for a fixed 2. In the casc of
#SAT, the set 1) is the set of possiblc valuations, | /) |= 2™ and A is the sct of
valuations which satisfy the formulas. We can randomly choose N valuations and
test if each one satisfies the formulas. If K valuations satisfy the formulas, a possi-
ble estimate would be 5. In the general case, this estimate is an (¢. &)-cstimator,
ic. an FPRAS, after an exponential number N of random selections, because K
can be exponentially small. In certain cases, one can however [ind in polynomial
time a good estimator.

An importanl case is when | 4 |> l%l for a constant b (which can be also be
polynomially bounded). The set 4 is of mpmmtml size and Jet X' = "-‘J‘ Lthe
estimated value. If 4 is the Chernofl's bound. the minimum number of necessary
trials to bound the difference between the real valve | A | and the estimated value
X less than = with probahility greater than 1 — 4 is given by the following result.
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PROPOSITION 172. If N 2 4-b-log(%)/é*, then
Probf| A|-(1=s) < X <] A|(1+=}]=1-4

In this casc, the sampling method is an FPRAS. Let us show how to apply this
technique to the £DNF problem. In this case D = {0,1}" and | D |= 2" but the
set A of valuations which satisfy the formulas can be exponentially small.

letz = {¢y, .., €5} the inputof the problem £DNF where each ¢; is a conjunction.
We wish to count the number of valuations o which satisfy \/T" «; but we need to
design a clever way todoit. Let /)y = {(i,#) : i = I,..., mand o satisfies ¢;}
and A; the set of (1, &) such that ¢; is the first conjunction satisfied by o

Ay ={(i,e) : (i,o)c Dyandif j < i, then (j,0) ¢ Dy}

Fach valuation in the set we try to count satisfies one ¢; and the valueis | 4) |. Let
us note C; the set of valuations satisfying the clause ¢;.
Observe that | Dy |= 30, | C; | and that | 4; |2 Maz; | C; | because there
are more valuations satislfying the disjunction of the ¢; than valuations satislying a
particular ¢;. One concludes that

"hl /Z:II(.|I &

<,

[A | ~ Max:|C:| ~
and one can directly apply the random sampling method.

m

Esumation of #£DNF

X: =0; Irerate N times:

1. Choose i € {1, ..., m} with probability E—:—'I

2. Choose  uniformly among the valuations of ;.

3. (i,0) € Ay (if o satisfies ¢; and does not satisl(y ¢y, ..., ci— ) X: =X+1.

The estimation is: ‘_Eié.ﬂ and is an (¢, 4)-cstimation of | A; |. Onc verifies
that cvery clement of 1J; is chosen with the same probability and this procedure is
an FPRAS.

2.2.1. Approximabilityof £T;. Lel us show that as in the case of oplimization
problems, if a counting problem is defined by an existential formula, then it has an
FPRAS.

THEOREM 17.11. If F is a counting function definable by a formula T, then I

admits an TPRRAS.

The proof is similar 1o the one presented for the oplimization problems and is based
on a reduction to the problem #3DNF.
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Proof : Let ¥ a counting function definable by a formula Jy¢'(z, y. 1) in the language
associated with a dass K with the additional relational symbol T'. Suppose thi:

FU) =] {{Tie) : (U 20c) E Iy ¥l 0. 1) |
where 1"is unary. I {’ is a structure of the class K with n elements, one con wrile:

(U.T,c) E 3y dle,y.T)iff (U, T.c) E \/ ¢ie,d,T)

d=1

Every ¢le, d, T) can be written in 1 3DNF form as

V wilc,d, T)

i=1
where cach ¢; has at most three atoms. For cach ¢ let us count the number of relations T
which satisly V-, v(c,d,7") und let us make the sum for ¢ = 1,...,n (if we assume ¢
unary).

Let us introduce the propositional variables py, ..., p, [or the n atoms of the type 1'(a; ).

Let ¢ the formula 3DNF where we replaced in \_, ¥(e.d, T) cach atom using an ex
plicit relation by the the truth value on the model U7 and every 1'(a;) by p;. Let n.. the
number of propositional variables which appear in ¢'.. Let £DNI (¢, ') the function which
counts the number of valwtions on py, ..., pig of the propositionsal formuli. The number of
possible T is

2%~"< ZDNF(e, ¢)
and the total number of tuples (T, ¢} is:

n
PUy=Y" 2" " LONI{c,v)
c=1
Every function £DNI (¢, ') is approximable by an FPRAS and /(L) admits also an
FPIRAS because the estimalion is preservexd by addition and multiplication by positive
constants. O

The problem 4 3DNF admits a deterministic approximation schema (FPAS) [AWSS,
NW94, LV91]. It is an example of derandomization. Consequently every prob-
lem of #X; also admits a deterministic approximation schema. The relation be-
lween Lhe approximation classes FPRAS, FPAS and the SST hierarchy [SST92]
is given in the figure below.

3. Approximate verification
Consider the Hamming distance between two structures of the same cardinality n.
On binary words, it measures the number of positions where two words disagree
and the relative distance is the distance divided by #. On ordered graphs, it mea-
sures the number of pairs where the two graphs disagree, and the relative distance
is the distance divided by n. as we deal with binary relations. More generally, if
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FIGURE 17 4. The approximation classes FPAS and FPRAS in
the 551" hicrarchy for counting classes: #Yo, 721, #1L, #22
and £11;.

4, and U are two structures of the same cardinality on a class of ordered relational
structures K with a relation 7t of arity &,

Dist(Uy 1) =] {(ay, .. ap) : [Riay,...,ax)] £ [Rlay,....ar)F?} |
and the relative distance dist is defined by:
| {(a;. sy a;,-) . lR(G;. weny ak)]”‘ # [R(ab Sy “k)]“a} *

n¥

Two structures 4, and iz are «-close if their relative distance is less than ¢ for
0 < ¢ < 1. Otherwise, they are e-far.

dist(Ly 1) =

Given a language L or a subclass K' C K, the distance from a structure I w0 K’
is the minimum of the distances dist ({4, 1{") with i’ € K’ and we write dist({{, L.}
for this relative distance. Similarly, we say that I{ is e-close 1o L if their relative
distance is less than ¢,

There are other measures. in particular the Fdit Distance for words | WF74| which
allows to compare two different strings and counts the number of deletions, inser-
tions and modifications.

A tesier 18 a randomized algorithm which queries the inpuls on some inslances,
and the guery complexity is the number of such queries.

DEANITION 178, A property P on a class K is ¢ testable if there exists a poly

nomial time probabilistic algorithm which accepts every structure which has the
property and rejects with probability 2/3 structures which are «far from the prop-
erty and such that the number of queries depends on € and not on n.

One of the classical example is the XCOL property, i.c. the property that the graph
can be partitioned in & subsets such thal no edge connects two nodes of the same
subset. Tn the case of 3COL, it produces a constant time algorithm which approx-
imates an NP-complete problem. Exercise 8 details intermediate lemmas needed
1o show that 2COL has a tester, which can be generalized 10 ACOL.
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On the class of finite words, [AKNS99] prove:
PROPOSITION 17.3. Regular properties are -testable,

On the class of graphs [AFKS00] prove:

PROPOSITION 174. I; properties of graphs are «-testable.
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