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Preface

The book was written to present a proof of the following KAM theorem:
most of space-periodic finite-gap solutions of a Lax-integrable Hamiltonian par-
tial differential equation (PDE) persist under a small Hamiltonian perturbation
of the equation as time-quasiperiodic solutions of the perturbed equation. In or-
der to prove the theorem we develop a theory of Hamiltonian PDEs (section 1)
and give short presentations of abstract Lax-integrable equations (section 2)
as well as of classical Lax-integrable PDEs (sections 3-4). Next in sections 5-7
we develop normal forms for Lax-integrable PDEs in the vicinity of manifolds,
formed by the finite-gap solutions. Finally we prove the main theorem applying
an abstract KAM-theorem (sections 1 and 3 of Part II) to equations, written in
the normal form. Our presentation is rather complete; the only non-trivial re-
sult which is given without a proof is the celebrated Its-Matveev theta-formula
for finite-gap solutions of a Lax-integrable PDE. The mentioned above normal
form results and the abstract KAM theorem are important effective tools to
study nonlinear PDEs, apart from the persistence of finite-gap solutions (e.g.,
see [K] and [BoK2, KP] for some other KAM–results).

We have restricted ourselves to the so-called “finite volume case”. That
is, we are concerned with equations for functions (or vector-functions) u(t, x),
where the space-variable x belongs to a bounded domain and the equations are
supplemented by appropriate boundary conditions. The reason is that in the
infinite-volume case time-quasiperiodic solutions are very exceptional and dis-
appear under general perturbations of the equation, see [Sig]. Accordingly, all
preliminary results on Hamiltonian PDEs and infinite-dimensional Hamiltonian
systems are designed to treat PDEs in finite volume.

The book is devoted to global aspects of the “KAM for PDEs” theory and it
does not include the two local theories, namely perturbations of linear equations
and small oscillations in nonlinear equations. References for these two topics
can be found in section II.1.5 and in [K7].

The book is aimed at a reader with “standard” mathematical background.
Still, some knowledge of basic symplectic geometry, nonlinear PDEs, Sobolev
spaces and interpolation would simplify reading. As possible references for
these four subjects we may suggest [A1], [Lion] and [RS] (for the last two). No
knowledge of KAM-techniques is assumed. To help a reader to understand a
rather technical proof of the abstract KAM-theorem, we wrote an Addendum
where the same techniques and ideas are used in much easier finite-dimensional
situation to prove the classical theorem of A.N.Kolmogorov (which originated
the whole of KAM-theory).

This book finalises my research on the topic “KAM for PDEs”, started with
the papers [K1, K2]. It was written piece by piece in my home institutes and
during visits to FIM (ETH, Zürich), IHES (Bures sur Yvette), IAS (Princeton)
and University of Arizona (Tucson). I sincerely thank these institutions for
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their hospitality, excellent working conditions and for typing some parts of the
manuscript.

While working on the book (and on the whole KAM–topic), I have profited
a lot from discussions and collaboration with many colleagues. I am much
obliged to all of them. I am especially thankful to Jürgen Moser for many
discussions we had during my two-years staying at FIM and for his support
of my KAM-research. It was Professor Moser who encouraged me to complete
my research in the form, finally presented in this book.
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Notations

Sets. Everywhere in the book “domain” means “non-empty open set”. Over-
line signifies the closure of a set.

If Y is a Banach space, y ∈ Y and δ > 0, then by Oδ(y, Y ) we denote the
open δ-neighbourhood of y; if y = 0, then we abbreviate Oδ(0, Y ) to Oδ(Y ). If
F is a subset of a metric space, then F + δ is the δ-neighbourhood of F , that
is F + δ = {m | dist (m,F ) < δ} (so Oδ(y, Y ) = {y}+ δ). By Tn we denote the
n-torus Tn = Rn/(2πZn) and abbreviate T1 = S1 = S. By U(δ) we denote its
complex δ-neighbourhood,

U(δ) = {q ∈ Cn/(2πZn) | |Im q| < δ} ⊃ Tn.

For a Hilbert scale {Ys} and its complexification {Y c
s } we denote

Ys = Rn × Tn × Ys , Yc
s = Cn × (Cn/2πZn)× Y c

s .

Sets of indexes. By Z≥0 and Z0 we denote the sets of non-negative and non-zero
integers. For any n ≥ 1 and any integer n-vector V = (V1, . . . , Vn), Vj > 0, we
set

NV = {m ∈ N | m 6= Vj ∀ j},
ZV = {m ∈ Z0 | m 6= ±Vj ∀ j} = NV ∪ −NV .

If V is the vector V n = (1, . . . , n), then we abbreviate NV n to Nn and ZV n to
Zn.

Infinity. Everywhere in the book an inequality s ≥ a is understood as s > a
if a = −∞. Similar, s ≤ b is understood as s < b if b = ∞. Accordingly, a
segment [a, b] is understood as (a, b] if a = −∞, etc.

Sequences. In KAM-proofs we use positive sequences {εm}, {δm} and {e(m)}.
They are defined in section II.3.2.

Measures. mesm stands for the m-dimensional Lebesgue measure and mesHm —
for the m-dimensional Hausdorff measure.

Linear maps. All linear operators between Banach spaces are assumed to be
bounded. For a linear operator L between Hilbert spaces we denote by L∗

the conjugated operator; if the spaces are complex, then L∗ is conjugated with
respect to complex bilinear scalar products, see in section 1.1. By L̄ we denote
the operator −L−1 (provided that it is well defined). If L is a linear map from
a Hilbert scale {Xs} to a scale {Ys}, then ‖L‖a,b stands for its operator norm
as a map Xa → Yb.
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Lipschitz maps. Let M, N be two metric spaces and f, f1, f2 be maps M → N .
We write:

dist (f1, f2) = sup
m∈M

distN (f1(m), f2(m)) ,

Lip f = sup
m1 6=m2

distN (f(m1), f(m2))
distM (m1, m2)

.

If the metric space N is an Abelian group and distN (n1, n2) = distN (0, n1−n2)
for any n1, n2 ∈ N ,1 we write ‖f‖M

N = dist (0, f) (0 signifies the map which
sends all of M to the zero in N) and

‖f‖M,Lip
N = max(Lip f, ‖f‖M

N ) .

Our final notations are technical and are used in KAM-proofs only: If O is
a domain in a metric space B and f is a map from O ×M to N , we write

‖f‖O,M
N = sup

b∈O
‖f(b, ·)‖M,Lip

N ;

if N = Cn, we abbreviate ‖f‖O,M
Cn to |f |O,M .

Differentiable maps. For a smooth map f : X → Y we denote by f∗(x)
linearised maps TxX −→ Tf(x)Y and by f∗(x) — adjoint maps

(
f∗(x)

)∗ :(
Tf(x)Y

)∗ −→ (
TxX)∗. We call a smooth map f : X ⊃ O → Y a diffeomor-

phism if it is a diffeomorphism of the domain O on the range f(O).

Vector fields. If V (t, x) is a non-autonomous vector field, then Sτ
t stands for its

flow-map which sends x(t) to x(τ) (x(·) is a solution for the equation ẋ = V (x));
if the vector field V is autonomous, then we write Sτ

t = Sτ−t. By Sτ
t∗∗ we

denote flow-maps of the linearised equation, so Sτ
t∗∗ = Sτ

t∗ if the flow-maps Sτ
t

are smooth. By VH we denote the Hamiltonian vector field with a hamiltonian
H.

1Examples: N is a Banach space, or a torus, or the former times the latter
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1. Some analysis in Hilbert spaces and scales

1.1 Differentiable and analytic maps.
Throughout the book differentiability of maps between Hilbert (or Banach)

spaces is understood in the sense of Fréchet. Since the category of Cr-smooth
Fréchet maps with r ≥ 2 is rather cumbersome and since only analytic object
arise in our main constructions, we mostly restrict ourselves to the two extreme
cases: with few exceptions the maps will be either C1-smooth or analytic.
Below we fix corresponding notations and briefly recall some properties of C1-
smooth and analytic maps.

Let X, Y be Hilbert spaces and O be a domain in X. A continuous map
f : O → Y is called continuously differentiable, or C1-smooth (in the sense of
Fréchet) if there exists a bounded linear map f∗(x) : X → Y which continuously
depends on x ∈ O, such that f(x + x1)− f(x) = f∗(x)x1 + o(‖x1‖X) provided
that x, x + x1 ∈ O. We call f∗(x) a derivative of f or its tangent map. By
f∗(x) we denote the adjoint map f∗(x) = (f∗(x))∗ : Y → X.

For Ck-smooth maps with k ≥ 2 see [Ca1, La].
If f : X ⊃ O → R is a C1-smooth map, then f∗(x) ∈ X∗. Identifying X∗

with X by the Riesz theorem, we denote an element of X corresponding to
f∗(x) as ∇f(x) and call it a gradient of f at x. Thus we obtain a gradient
map ∇f : O → X. If this map is C1-smooth (that is, if f is C2-smooth), then
the tangent map ∇f(x)∗ : X → X is a symmetric (hence, a selfadjoint) linear
operator,

〈∇f(x)∗ξ, η〉X = 〈∇f(x)∗η, ξ〉X ∀ ξ, η.

Indeed, the l.h.s. equals ∂2

∂α∂β f(x + αη + βξ) |α=β=0 and the r.h.s. equals
∂2

∂β∂αf(x + αη + βξ) |α=β=0, so they coincide.
For a real Hilbert space X we denote by Xc its complexification, Xc =

X ⊗R C . That is, Xc = X ⊕ X and multiplication by i =
√−1 is given by

the formula i(x1, x2) = (−x2, x1). We extend the inner product 〈·, ·〉X of the
space X to a complex-bilinear paring Xc×Xc → C , so ‖u‖2 = 〈u, ū〉X for any
u ∈ Xc. We denote this paring as 〈·, ·〉X or 〈·, ·〉Xc .

Similar, if Z is a complex Hilbert space, then 〈·, ·〉 = 〈·, ·〉Z denotes a paring
which is a complex-bilinear symmetric quadratic form such that ‖z‖2 = 〈z, z̄〉.
Accordingly, if Z1, Z2 are complex Hilbert spaces and L : Z1 → Z2 is a linear
operator, then L∗ is a linear operator Z2 → Z1, conjugated to L with respect
to the corresponding complex-bilinear parings 〈·, ·〉1 and 〈·, ·〉2.
Examples. If X is an L2-space or a Sobolev space of real-valued functions,
then Xc is a corresponding space of complex functions. If X is an abstract
separable Hilbert space and {φj} is its Hilbert basis, then X = {∑xjφj |
xj ’s are real and

∑ |xj |2 < ∞}, while Xc = {∑ zjφj | zj ’s are complex and∑ |zj |2 < ∞}. ¤
Let Xc, Y c be complex Hilbert spaces and Oc be a domain in Xc. A map

f : Oc → Y c is called (Fréchet-)analytic if it is C1-smooth in the sense of real
5



analysis (when we treat Xc, Y c as real spaces) and the tangent maps f∗(x) are
complex-linear. Locally near any point in Oc such a map can be represented
as a normally convergent series of homogeneous maps (see [VF, PT]).

For real Hilbert spaces X,Y and a domain O ⊂ X, a map F : O → Y is
analytic if it can be extended to a complex-analytic map F : Oc → Y c, where
Oc is a complex neighbourhood of O in Xc. (The extension F : Oc → Y c is
uniquely defined if the domain Oc is connected and O is non-empty.)

A map F : X ⊃ O → Y is called δ-analytic (δ is a positive real number) if it
extends to a bounded analytic map (O+δ) → Y c (O+δ is the δ-neighbourhood
of O in Xc).

We note that compositions of analytic maps are analytic, as well as their
linear combinations. Besides, any analytic map is Ck-smooth for every k.

There is an important criterion of analyticity : a map f : Xc ⊃ Oc → Y c is
analytic if and only if it is locally bounded2 and weakly analytic, i.e., for any
y ∈ Y c and any affine complex line Λ ⊂ Xc the complex function Λ ∩ Oc →
C, λ 7→ 〈F (λ), y〉Y is analytic in the sense of one complex variable. Even more,
it is sufficient to check analyticity of these functions for a countable system
y = y1, y2, . . . of vectors in Y such that the linear envelope of this system is
dense in Y (see [PT]).

If Oc, Xc and Y c are as above and Y c
1 is a closed subspace of Y c, then a

map f : Oc → Y c
1 is analytic if and only if it is analytic as a map Oc → Y c

and f(Oc) ⊂ Y c
1 . This trivial consequence of the definition is useful to check

analyticity of some maps, given by nonlinear differential operators.
The Cauchy estimate states that if a map F : Xc ⊃ Oc → Y c admits a

bounded analytic extension to Oc + δ, then for any u ∈ Oc one has:

‖F∗(u)‖X,Y ≤ δ−1 sup
u′∈Oc+δ

‖F (u′)‖Y .

(The estimate readily follows from its one-dimensional version applied to the
holomorphic functionsOδ(C) 3 λ 7→ 〈F (u+λx), y〉Y , where ‖x‖X = ‖y‖Y = 1).
In particular, this estimate applies to δ-analytic maps between subsets of real
Hilbert spaces.

If F : Xc ⊃ Oc → Y c is an analytic map and for some point x ∈ Oc the
tangent map F∗(x) is an isomorphism, then by the inverse function theorem in
a sufficiently small neighbourhood of x the map F can be analytically inverted.
The same is true for real analytic maps. See [VF, PT].

For Banach spaces everything is much the same with one extra difficulty:
there is no canonical way to give a norm to the complexification Xc of a real
Banach space X . This difficulty should not worry us since all Banach spaces
used in this book are natural and one can immediately guess the right norms.
For example, if X is the space of bounded linear operators Y1 → Y2 where

2that is, any point x ∈ Oc has a neighbourhood, where f is bounded. In particular, any
continuous map is locally bounded.
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Y1, Y2 are Hilbert spaces, then Xc is the complex space of linear over reals
operators Y1 → Y c

2 with the natural norms, etc.

1.2. Scales of Hilbert spaces and interpolation.
Let X0 be a Hilbert space with a scalar product 〈·, ·〉 and a Hilbert basis

{φk | k ∈ Z̃}, where Z̃ is a countable set which is an even subset of some Zn

(so −Z̃ = Z̃). Let us take a positive sequence {ϑj | j ∈ Z̃} such that ϑj = ϑ−j

and ϑk → ∞ as |k| → ∞. For any real number s we define Xs as a Hilbert
space with the Hilbert basis {φkϑ−s

k | k ∈ Z̃}. By ‖ · ‖s and 〈·, ·〉s = 〈·, ·〉Xs
we

denote the norm and the scalar product in Xs :

〈u, u〉2s = ‖u‖2s =
∑

|uk|2ϑ2s
k if u =

∑
ukφk

(so 〈·, ·〉0 = 〈·, ·〉). The totality {Xs} is called a Hilbert scale, the basis {φk} is
called a basis of the scale.

We do not distinguish Hilbert scales, formed by the same spaces with equiv-
alent norms. Therefore both the basis of a scale and the sequence {ϑj} are not
uniquely defined.

A Hilbert scale may be continuous or discrete: the parameter s may be real
or integer. Below we state all results for real scales with s ∈ R , but they admit
trivial reformulations for the discrete case.

A Hilbert scale possesses the following obvious properties:
1) Xs is compactly embedded to Xr if s > r and is there dense;
2) the spaces Xs and X−s are conjugated with respect to the scalar product

〈·, ·〉: for any u ∈ Xs ∩X0 we have

‖u‖s = sup{〈u, u′〉 | u′ ∈ X−s ∩X0, ‖u′‖−s = 1};

3) for −∞ < a < b < ∞ and 0 ≤ θ ≤ 1 the space Xc, c = (1 − θ)a + θb,
interpolates the spaces Xa and Xb: in notations of [LM], Xc = [Xa, Xb]θ. In
particular, for any u ∈ Xb holds the interpolation inequality :

‖u‖c ≤ ‖u‖1−θ
a ‖u‖θ

b .

The inequality immediately follows from the Hölder one. Indeed, if u =∑
ukφk, then

‖u‖2c =
∑

|uk|2θϑ2θb
k |uk|2(1−θ)ϑ

2(1−θ)a
k ≤

≤
( ∑

|uk|2ϑ2b
k

)θ( ∑
|uk|2ϑ2a

k

)1−θ

= ‖u‖2θ
b ‖u‖2(1−θ)

a .

For more on the interpolation theory see [LM, RS].
By the property 2), the scalar product 〈·, ·〉 extends to a bilinear pairing

Xs ×X−s → R. Abusing language, we call this pairing X0-scalar product. We
7



say that we “multiply in X0 vectors us ∈ Xs and u−s ∈ X−s”, etc. For the
complexified scale {Xc

s} we denote by 〈·, ·〉 a complex-bilinear paring.
For any space Xs (real or complex) we identify its adjoint (Xs)∗ with the

space X−s.
We denote by X−∞, X∞ the linear spaces X−∞ = ∪Xs, X∞ = ∩Xs and

give them no norms. The space X∞ is dense in each Xs since it contains all
finite linear combinations of the basis vector φk. Vectors from the space X∞
are called smooth.

If {ϑk} and {ϑ′k} are two positive sequences as above such that all the ratios
ϑk/ϑ′k are uniformly bounded from below and from above, then for any s the
two corresponding spaces Xs coincide (and their norms are equivalent). In
particular, if k ∈ Zn \ 0 and 0 < ϑk = C|k|m + o(|k|m) with some m > 0, then
the sequence ϑ′k = |k|m defines the same scale {Xs}. Moreover, if ϑ̃k = |k| and
{X̃s} is the corresponding scale, then X̃ms = Xs for all s. We state this result
as

Proposition 1.1. If two Hilbert scales {Xs} and {X̃j} correspond to the same
original Hilbert space X = X0 = X̃0, to the same basis {φk} and to sequences
{ϑk | k ∈ Z (or k ∈ Z0)} and {ϑ̃k} such that 0 < ϑk = c|k|m + o(|k|m) and
ϑ̃k = |k| + 1, then for any s the identity map defines an isomorphism of the
spaces Xs and X̃ms.

Scales {Xs} of Sobolev spaces which arise naturally in PDEs (see [RS, LM]
and Examples 1.1, 1.2 below) correspond to the case when X0 is a space of
square-summable functions and {ϑk} has a power growth in |k|. After linear
stretching the index s, these scales equal some scales with ϑk ≡ |k|.
Example 1.1 (scale of Sobolev spaces). Let us take for X0 the L2-space
of 2π-periodic functions given the trigonometric basis {ϕk | k ∈ Z}, where

ϕ0 =
1√
2π

; ϕk =
1√
π

cos kx, ϕ−k = − 1√
π

sin kx for k = 1, 2, . . . (1.1)

(the minus-sign is introduced for further purposes). We choose ϑ0 = 1 and
ϑk = |k| for non-zero k. Then the space Xs equals to the Sobolev space of
2π-periodic functions Hs = Hs(S1, R), S1 = R/2πZ. In particular, for s ∈ N
the space Xs has the form

Xs = {u(x) ∈ X0 | ∂ku

∂xk
∈ X0 for k ≤ s},

where ∂k/∂xk stands for a derivative in the sense of distributions. Indeed,
Hs with s ∈ N is a Hilbert space with the scalar product 〈u, v〉s =

∫
(uv +

u(s)v(s) )dx. For the functions ϕk defined above we have: 〈ϕk, ϕl〉s = (1 +
|k|2s)δk,l. So the functions {(1 + |k|2s)−1/2ϕk} form a Hilbert basis of the
Sobolev space Hs. Hence, Hs = Xs since 1 < (1 + |k|2s)1/2/ϑs

k < 2 for all k.
8



The space X∞ is formed by smooth periodic functions; so for the Sobolev
scale smooth vectors are just smooth functions.

Complexification Xc
s of a space Xs = Hs is the space Hs(S1;C) of complex

Sobolev functions.
The operator −4 = −∂2/∂x2 sends each ϕk to k2ϕk and defines an un-

bounded selfadjoint operator in X0 with the domain of definition X2 = H2.
For s > 0, the operator (−4)s/2 as an unbounded operator in X0 has the
domain of definition Hs. So the Sobolev spaces Hs can be defined as domains
of definitions of some degrees of the minus Laplacian. Concerning this way to
construct Hilbert scales see [LM].

By Hs
0 = Hs

0(S1, R) we denote a sub-scale of {Hs}, formed by functions
with zero mean-value. For a basis of this scale we take {ϕk | k ∈ Z0}, where
the functions ϕk are the same as above. ¤
Example 1.2. Let X0 be the L2-space of complex valued functions on the
torus Tn = Rn/(2πZ)n, treated as a real Hilbert space with the scalar product

〈u(x), v(x)〉 = Re
∫

ūv dx,

and given the basis {φk = (2π)−n/2eikx | k ∈ Zn}. We choose θ0 = 1 and
θk = |k| for k 6= 0. Then Xs is the Sobolev space Xs = Hs(Tn;C) '
Hs(Tn;R2). ¤

Given two scales {Xs}, {Ys} and a linear map L : X∞ → Y−∞, we denote
by ‖L‖s1,s2 ≤ ∞ its norm as a map Xs1 → Ys2 . We say that the map L
defines a morphism of order d of the scales {Xs} and {Ys} for s ∈ [s0, s1], if
‖L‖s,s−d < ∞ for each s ∈ [s0, s1] with some fixed −∞ ≤ s0 ≤ s1 ≤ +∞.3 If in
addition the inverse map L−1 exists and defines a morphism of order −d of the
scales {Ys}, {Xs} for s ∈ [s0+d, s1+d], we say that L defines an isomorphism of
order d of the two scales for s ∈ [s0, s1]. If {Ys} = {Xs}, then an isomorphism
L is called an automorphism. We shall drop the specification “for s ∈ [s0, s1]”
and shall write ord L = d , if the segment [s0, s1] is fixed for a moment, or can
be easily recovered, or is irrelevant.

A morphism of a Hilbert scale to itself of a negative order −∆ < 0 is called
a ∆-smoothing morphism.

In particular, a bounded linear operator L : Xs0 → Ys0−d can be regarded
as a morphism of order d for s ∈ [s0, s0].

We note that an order d of a linear morphism is not uniquely defined since
any d′ > d is an order of the morphism as well.

Example. Multiplication by a Cr-smooth periodic function defines a zero-
order morphism of the Sobolev scale {Hs(S1,R)} for −r ≤ s ≤ r. In general,

3if s0 = −∞, then s > s0 since X−∞ and Y−∞ are given no norms. Similar s < ∞ if
s1 = ∞.
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it does not define a zero-order morphism of this scale for s0 ≤ s ≤ s1, where
s0 < −r or s1 > r. ¤

If L : Xs → Ys−d is a morphism of order d for s ∈ [s0, s1], then the adjoint
maps L∗ : (Ys−d)∗ = Y−s+d → (Xs)∗ = X−s form a morphism of the scales
{Ys} and {Xs} of the same order d for s ∈ [−s1 + d,−s0 + d]. We call it the
adjoint morphism.

A morphism L of a Hilbert scale {Xs}, complex or real, is called symmetric
(anti symmetric) if 〈Lu, v〉 = 〈u, Lv〉 (〈Lu, v〉 = −〈u, Lv〉) for all smooth vec-
tors u and v (we remind that in the complex case 〈·, ·〉 stands for a complex
bilinear paring). That is, L = L∗ (L = −L∗) on the space X∞.

In particular, a linear operator L : Xs0 → Ys0−d is called symmetric (anti
symmetric) if L = L∗ (respectively L = −L∗) on the space X∞.

If L is a symmetric morphism of {Xs} of order d for s ∈ [s0, d− s0], where
s0 ≥ −∞, then L∗ also is a morphism of order d for s ∈ [s0, d − s0]. Since
L∗ = L on X∞, then by continuity L = L∗ as the scale’s morphisms. We call
such a morphism selfadjoint . Anti selfadjoint morphisms are defined similar.

Example. The operator −4 defines a selfadjoint morphism of order 2 of the
Sobolev scale {Hs}. The operator ∂/∂x defines an anti selfadjoint morphism
of order one. The same operators define a selfadjoint and an anti selfadjoint
automorphisms of the scale {Hs

0}. ¤
Linear maps from one Hilbert scale to another obey the Interpolation The-

orem:

Theorem 1.1 (see [Ad, LM, RS]). Let {Xs}, {Ys} be two real Hilbert scales
and L : X∞ → Y−∞ be a linear map such that ‖L‖a1,b1 = C1, ‖L‖a2,b2 = C2.
Then for any θ ∈ [0, 1] we have ‖L‖a,b ≤ Cθ, where a = aθ = θa1+(1−θ)a2, b =
bθ = θb1 + (1 − θ)b2 and Cθ = Cθ

1C1−θ
2 . This result with Cθ replace by 4Cθ

remain true for complex Hilbert scales.

In particular, if under the theorem’s assumptions a1−b1 = a2−b2 =: d, then
L extends to a morphism of order d of the scales {Xs}, {Ys} for s ∈ [a1, a2].

Amplifications. 1) Let L = Lu, where u is a vector from a domain in some
complex Hilbert space. Let Lu analytically depends on u as an operator Xa1 →
Yb1 as well as an operator Xa2 → Yb2 and norms of these operators are bounded
uniformly in u ({Xs} and {Ys} are complex Hilbert scales). Then for any
0 ≤ θ ≤ 1, Lu analytically depends on u as an operator Xaθ

→ Ybθ
and a norm

of this operator is bounded uniformly in u and θ.
2) An obvious C1-version of this result holds if the operator depends on a

parameter from a domain in a real Hilbert space (e.g., from an interval of the
real line).

Proof. 1) For any θ the operator we discuss is weakly analytic in u; due to the
theorem its norm is uniformly bounded. Hence, the operator is analytic by the
criterion of analyticity.
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2) The result readily follows from the definition of C1-differentiability. ¤

Corollary. Let a bounded linear operator L : Xa → Xb be symmetric (or
anti symmetric) in a real or complex Hilbert scale {Xs}. Then L extends to
a selfadjoint (or anti selfadjoint) morphism of order a − b of the scale {Xs}
for s ∈ [−b, a] (or ∈ [a,−b] if −b > a). Besides, if the scale is complex, if
the operator L = Lu : Xa → Xb analytically depends on a parameter u from a
complex domain and is bounded uniformly in u, then all operators L : Xs →
Xs−a+b with s as above are analytic in u and are uniformly bounded.

Proof. Since ‖L‖a,b = ‖L∗‖−b,−a = ‖L‖−b,−a, then the first assertion follows
from the Interpolation Theorem. The second one results from the Amplifica-
tion. ¤

Both the Amplification and the Corollary admit obvious reformulation for
linear operators which depend on a parameter u continuously.

Let −∞ < a ≤ b ≤ ∞ and Os ⊂ Xs, s ∈ [a, b], be a system of domains
compatible in the following sense: Os1 ∩ Os2 = Os2 if s1 ≤ s2. Let F : Oa →
Ya−d be an analytic (or Ck-smooth) map such that its restriction to the domains
Os with a ≤ s ≤ b define analytic (or Ck-smooth) maps F : Os → Ys−d . Then
we say that F is an analytic (or Ck-smooth) morphism of the scale {Xs} of
order d for a ≤ s ≤ b.

Example 1.1., continuation. The spaces Hs with s > 1/2 are Banach algebras:
‖uv‖s ≤ Cs‖u‖s‖v‖s (see [Ad] or Appendix in [KP]). Therefore for any segment
[a, b], 1/2 < a ≤ b ≤ ∞, the map u(x) 7→ F (u(x)) where F is a polynomial,
defines an analytic map Hs → Hs of order zero for s ∈ [a, b]. If g(x) is any fixed
function, then the map u(x) 7→ F (u(x)) + g(x) defines an analytic morphism
of the Sobolev scale of order zero for s ∈ [a, b] if and only if g ∈ Hb. The
same is true for a map defined by an analytic function F . More general, this
is true for the map u(x) 7→ F (u(x), x) where F (u, x) is a Cb-smooth function
of u and x, which is δ-analytic in u with some x-independent δ > 0. Indeed,
let for simplicity s be an integer number ≥ 1. Elementary calculations show
that ‖F (u, x)‖s ≤ C(K) if ‖u‖s ≤ K and ‖Im u‖s ≤ δ/2; i.e., the map is
bounded on bounded subsets of a complex neighbourhood of the space Hs.
If u(x), v(x) are complex Sobolev functions such that |Im u(x)| < δ/2, then
for any function φj(x) from the trigonometric basis (1.1), the function λ 7→
〈F (u(x) + λv(x)), ϕj〉 is analytic in λ from some neighbourhood of the origin
in C. So the map Hs → Hs, u(x) 7→ F (u, x), is analytic by the criterion of
analyticity. ¤

Given a Ck-smooth function H : Xd ⊃ Od → R , k ≥ 1, we consider its
gradient map with respect to the scalar product 〈·, ·〉:

∇H : Od → X−d, 〈∇H(u), v〉 = H∗(u)v ∀v ∈ Xd .
11



Let us assume that k ≥ 2 and that for every u ∈ Od the linearised gradient
map is a linear map of order dH ≤ 2d, i.e., ∇H(u)∗ : Xd → Xd−dH

. Since
∇H∗ is a symmetric linear operator, i.e., 〈∇H(u)∗v1, v2〉 = 〈∇H(u)∗v2, v1〉
for smooth vectors v1, v2, then by the Corollary from Theorem 1.1, ∇H(u)∗
defines a bounded selfadjoint linear morphism of the scale {Xd} of order dH

for s ∈ [dH − d, d].
If the domain Od belongs to a system of compatible domains Os (a ≤ s ≤ b)

and the gradient map ∇H defines a Ck−1-smooth morphism of order dH in
this system of domains, we say that

ord∇H = dH .

Example. If A is a selfadjoint morphism of a scale Xs of order d and h(u) =
1
2 〈Au, u〉, then h is a smooth functional on Xs with s ≥ d/2. Now ∇h(u) = Au,
so ord∇h = d for s ∈ (−∞,∞). ¤

1.3. Differential forms.
For d ≥ 0 and a domain O in a Hilbert space Xd from a Hilbert scale {Xs}

we identify tangent spaces TxO with Xd and treat differential k-forms on O as
continuous functions

O × (Xd × · · · ×Xd)︸ ︷︷ ︸
k

−→ R ,

which are polylinear and skew-symmetric in the last k arguments (see more in
[Ca2, La]). We write 1-forms as a(x) dx, where a : O → X−d and

a(x) dx[ξ] def= 〈a(x), ξ〉 for ξ ∈ Xd.

Besides, we write 2-forms as A(x) dx ∧ dx, where

A(x) dx ∧ dx[ξ, η] def= 〈A(x)ξ, η〉 for ξ, η ∈ Xd,

and A(x) : Xd → X−d is a bounded anti selfadjoint operator.

Example. Let X0 be the Euclidean space Rn = {(x1, . . . , xn)} and A(x) be a
linear operator in X0 = Rn with an anti symmetric matrix (Aij), then

A(x)dx ∧ dx = −
∑

i<j

Aij(x)dxi ∧ dxj .

Indeed, Adx ∧ dx[ξ, η] =
∑

i6=j Aijξjηi = −∑
i 6=j Aijξiηj and

∑

i<j

Aij(x)dxi ∧ dxj [ξ, η] =
∑

i<j

Aijξiηj −
∑

i<j

Aijηiξj =
∑

i 6=j

Aijξiηj . ¤
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Usually, the forms we consider in this book are analytic, where a k-form ωk

on O ⊂ Xd is analytic if the corresponding map from O to the linear space of
skew-symmetric polylinear functions

(Xd × · · · ×Xd)︸ ︷︷ ︸
k

−→ R

is analytic.4

To define the differential dωk of a C1-smooth k-form ωk we use the Cartan
formula:

dωk(x)[ξ1, . . . , ξk+1] =
k+1∑

i=1

(−1)i−1 ∂

∂ξi
ωk(x)[ξ1, . . . , ξ̂i, . . . , ξk+1] . (1.2)

Here the vectors ξj ∈ TxO ' Xd are extended to constant vector fields on O.
So the r.h.s. of (1.2) is well-defined (and the commutator-terms in the r.h.s. of
the classical Cartan formula, see e.g. [Go, La], vanish).

This definition well agree with the finite-dimensional situation, as states the
following obvious lemma:

Lemma 1.1. Let ωk be a k-form on a domain O ⊂ Xd, L be a finite-dimen-
sional affine subspace of Xd and LO = L ∩O. Then dωk |LO= d(ω |LO ).

Proof. Both forms are given by the same formula (1.2). ¤
Example 1.3. 1) The differential of a C1-function f on O ⊂ Xd (=a zero-
form) equals df = ∇f(x) dx. 2) The differential of a 1-form a(x) dx, a : O →
X−d, equals d(a(x) dx) = (a(x)∗ − a(x)∗) dx ∧ dx. Indeed, the operator A(x) =
a(x)∗ − a(x)∗ : Xd → X−d is bounded anti selfadjoint and

d
(
a(x)dx

)
[ξ, η] = 〈a(x)∗ξ, η〉 − 〈a(x)∗η, ξ〉 = 〈A(x)ξ, η〉. ¤

Let ωt be any C1-smooth closed k-form on a domain O ⊂ Xd, C2-smoothly
depending on a parameter t ∈ [0, 1]. Let V (t; x) be a non autonomous C1-
smooth Lipschitz vector field on O. We consider the equation

ẋ(t) = V (t; x), x(t) ∈ O,

and denote by St
t0 its flow-maps, i.e., St

t0x(t0) = x(t). These maps are well-
defined and C1- smooth, see [Ca1]. We assume that a sub-domain Q ⊂ O is
such that St

0Q ⊂ O for 0 ≤ t ≤ 1 and abbreviate St
0 to ϕt.

4The space of polylinear functions is given the natural Banach norm which corresponds
to a function its supremum over the polysphere {‖x‖d = 1} × · · · × {‖x‖d = 1}. Thus for
k = 1 we get the (Hilbert) norm of the space X−d and for k = 2 – a norm isomorphic to the
uniform norm in the space of bounded linear operators Xd → X−d. The complexification of
the space under discussion is a space of polylinear complex functions.
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Lemma 1.2 (Cartan’s identity). For 0 ≤ t ≤ 1 we have

d

dt
ϕt∗ωt = ϕt∗ ∂ωt

∂t
+ dϕt∗(V cωt) = ϕt∗(∂ωt

∂t
+ d(V cωt)

)

everywhere in Q.5

Proof. Since ϕt is a C1-smooth map which C1-smoothly depends on t (see
[Ca1]), then both parts of the relation we have to prove are well-defined k-
forms on Q.

We abbreviate ‖ · ‖d to ‖ · ‖ and Xd to X. For N ≥ 1 we denote by X(N)

the linear envelope in Xd of the basis vectors ϕj with |j| ≤ N and denote
ON = O ∩ X(N). By continuity, to prove the identity it is sufficient to check
that for arbitrary x ∈ ON and ξ1, . . . , ξk ∈ X(N) we have

d

dt
(ωt(x(t))[ξ1(t), . . . , ξk(t)]) =

=
∂ωt

∂t
(x(t))[ξ1(t), . . . , ξk(t)] + dβt(x(t))[ξ1(t), . . . , ξk(t)], (*)

where x(t) = ϕt(x), ξj(t) = ϕt(x)∗ξj and βt = V (t, x)cωt.
For any M ≥ N let us denote by πM the natural projector X → X(M) and

denote VM = πM ◦ V . We treat VM as a map from O to X(M) or as a vector
field on OM . For M ≥ N let us consider the equation

ẋM = VM (t, xM ), xM ∈ OM ,

denote by xM (t) its solution such that xM (0) = x (we note that x ∈ ON ⊂ OM )
and denote by ϕt

M the corresponding flow-maps, so xM (t) = ϕt
M (x). Since

‖x(t) − πM (x(t))‖ → 0 as M → ∞ uniformly on the curve x(t) = ϕt(x) with
0 ≤ t ≤ 1 and since

‖ẋM (t)− πM ẋ(t)‖ ≤ ‖V (t, xM )− V (t, x)‖ ≤
≤ C‖xM − x‖ = C (‖xM − πM x‖+ ‖(1− πM )x‖) ,

then by the Gronwall lemma we have:

‖xM (t)− x(t)‖ = o(1) as M →∞ for 0 ≤ t ≤ 1.

In particular, it proves that the maps ϕt
M with 0 ≤ t ≤ 1 and sufficiently big

M are well defined in the vicinity of x in X(m).
Quite similar,

∥∥ (ϕt
M (x)∗ − ϕt(x)∗) ξ

∥∥ = o(1)‖ξ‖ for 0 ≤ t ≤ 1 and ξ ∈ X(N).

5Here V cω stands for the form (ξ1, . . . , ξk−1) 7→ ω[V, ξ1, . . . , ξk−1].
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Now (*) follows by transition to limit as M goes to infinity since for ϕt

replaced by ϕt
M (and x(t) replaced by xM (t)), (*) becomes the classical Car-

tan identity for the flow ϕt
M and the closed k-form ωt |X(M) on the finite-

dimensional space X(M) (see e.g. in [GS]). ¤
In the sequel we shall also work with k-forms in sub-domains of the direct

products Zd,
Zd = X × Yd, Zd 3 z = (x, y),

where X is a finite-dimensional Euclidean space and Yd is a space from a Hilbert
scale {Ys}.6 We write linear operators A in Zd in the block-form,

A =
(

AXX AXY

AY X AY Y

)
,

where AXY : Yd → X, AY X : X → Yd and AXX : X → X, AY Y : Yd → Yd

are bounded linear operators. The operator A is anti selfadjoint (with respect
to the scalar product in X × Y0) if AXY = −A∗Y X and AXX , AY Y are anti
selfadjoint operators. Accordingly we write the 2-form A dz ∧ dz as

A(z) dz ∧ dz = AXX(x, y) dx ∧ dx + AXY (x, y) dy ∧ dx+

+AY X(x, y) dx ∧ dy + AY Y (x, y) dy ∧ dy.

We note that in our notations

AY X(x, y) dx∧ dy[(δx1, δy1), (δx1, δy2)] = 〈AY Xδx1, δy2〉Y = −〈δx1,AXY δy2〉.

For sub-domains of the manifolds Yd, where

Yd = Rn × Tn × Yd = {(p, q, y)}, Tn = Rn/2πZn, (1.3)

we use natural versions of the notations given above. We note that Yd is
a metric Abelian group and distYd

(h1, h2) =distYd
(h1 − h2, 0) for any h1, h2

in Yd. Besides, the Hilbert space Zd = R2n × Yd covers Yd by the natural
projection π,

π : Zd = R2n × Yd → Rn × Tn × Yd,

which is a local isometry.
The Poincarè lemma states that “locally” each closed form is exact. The

proof is constructive and is well applicable to infinite-dimensional problems (see
[Ca2, La]). We shall need a version of the lemma for a closed 2-form defined in
a neighbourhood O ⊂ Yd of the set P × Tn × {0}, where P is a sub-domain of
Rn, such that fibres of the natural fibration O → Rn × Tn are convex. Below
we state the result, denoting by w points from Rn × Tn:

6Obviously, the spaces {Zs} also form a Hilbert scale.
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Lemma 1.3. If ω2(w, y) is a closed 2-form in O and ω2(w, 0) = 0, then ω2 =
dω1, where

ω1(w, y)(δw, δy) =
∫ 1

0

ω(w, ty)[(0, y), (δw, tδy)] dt.

In particular, if

ω2 = AWW (w, y)dw ∧ dw + AWY (w, y) dy ∧ dw −A∗WY (w, y) dw ∧ dy,

then ω1 = a(w, y) dw, where a(w, y) =
(∫ 1

0
AWY (w, ty) dt

)
y.

This result follows from its finite-dimensional version (see [A1, AG, Wei])
and Lemma 1.1: For any (w, y) ∈ O and ξ1, ξ2 ∈ T(w,y)Yd ' R2n × Yd = Zd

we denote by Q a sufficiently small neighbourhood of (w, y) in Yd and treat Q
as a domain in Zd. Now we take for L the affine 3-space through (w, y) in the
directions (0, y), ξ1, ξ2 and get that dω1(w, y)[ξ1, ξ2] = ω2(w, y)[ξ1, ξ2].

1.4. Symplectic structures and Hamiltonian equations.
In a domain Od ∈ Xd with d ≥ 0 let us take a closed 2-form α2 = J̄(x) dx∧dx

such that the anti selfadjoint operator J̄(x) : Xd → X−d C1–smoothly depends
on x ∈ Od and defines a linear isomorphism

J̄(x) : Xd −→∼ Xd+dJ , dJ ≥ 0.

The form α2 supplies Od with a symplectic structure. This structure is called
analytic (or Ck-smooth, k ≥ 1), if the operator J̄ analytically (Ck-smoothly)
depends on x ∈ Xd.

To a C1-smooth function h on Od the symplectic structure as above corre-
sponds the Hamiltonian vector field Vh, defined by the usual (see [A]) relation:

α2[Vh, ξ] = −dh(ξ) for all ξ ∈ TOd.

For any x ∈ Od we have 〈J̄(x)Vh(x), ξ〉 = −〈∇h(x), ξ〉 for each ξ ∈ Xd. Thus,

Vh(x) = J(x)∇h(x), where J = (−J̄)−1. (1.4)

The operators J̄(x) and J(x) are called operators of the symplectic and the
Poisson7 structures respectively.

The operator J defines an anti selfadjoint automorphism of the scale of order
dJ ,

J(x) : Xs+dJ
−→
∼

Xs, −d− dJ ≤ s ≤ d, (1.5)

7this name is justified by the Definition 1.3 below
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which C1–smoothly depends on x ∈ Od; the maps (1.5) analytically depend on
x if the symplectic structure is analytic (see the Corollary to Theorem 1.1).

Since the functional h is C1-smooth, then the gradient map ∇h : Od → X−d

is continuous. Using (1.5) we get that the vector field Vh defines a continuous
map Od → X−d−dJ

. Usually we shall impose an additional restriction and
assume that the vector field Vh is smoother than that and ord Vh = d1 < 2d+dJ .

To stress that a domain Od ⊂ Xd is given a symplectic structure as above
we shall write it as a pair (Od, α2). If the form α2 is defined on the whole space
Xs for each s ≥ s0 with some fixed s0 and is there continuous, we shall say
that ({Xs}, α2) is a symplectic Hilbert scale.

A basis {φj(x) | j ∈ Zn} of a tangent space TxOd = Xd is called symplectic
if

α2[φj(x), φk(x)] = νj(x)δj,−k (1.6)

for any j ∈ Nn and each k ∈ Zn, with some positive real numbers νj(x), j ∈ Nn.
For any C1-smooth function h on Od ×R a Hamiltonian equation with the

hamiltonian h(x, t) is the equation

ẋ(t) = J(x)∇h(x, t) =: Vh(x, t). (1.7)

If ord Vh = 0 and the vector field Vh is C1-smooth and Lipschitz in Od, then
the initial-value problem for the equation (1.7) is well-posed: for any given
initial condition x(0) ∈ Od it has a unique solution defined while it stays in
Od. This solution C1-smoothly depends on the initial condition. If the map
Vh : Od × R → Xd is δ-analytic in x ∈ Od (δ is t-independent), then the map
x(0) → x(t) is analytic. For all these facts see [Ca1, La]. The analyticity is
not discussed in these references but it directly follows from the arguments
which prove the differentiability since in the analytic case all the derivatives
are complex-linear.

A partial differential equation, supplemented by appropriate boundary con-
ditions, is called a Hamiltonian PDE if under a suitable choice of a symplec-
tic Hilbert scale ({Xs}, α2), a domain Od ⊂ Xd and a hamiltonian h it can
be written in the form (1.7). In this case the vector field Vh is unbounded,
ordVh = d1 > 0:

Vh : Od × R→ Xd−d1 . (1.8)

Usually the domain Od belongs to a system of compatible domains Os, s ≥ d0,
and the map Vh defines an analytic morphism of order d1 for s ≥ d0.

For a vector field Vh as in (1.8) with d1 > 0 different classes of solutions for
(1.7) can be considered. For this book we choose the following definition: a
continuous curve x : [0, T ] → Od is a solution of (1.7) in a space Xd if it defines
a C1-smooth map [0, T ] → Xd−d1 and both parts of (1.7) coincide as curves
in Xd−d1 . A solution x(t) is called smooth if it defines a smooth curve in each
space Xl.
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If a solution x(t), t ≥ τ , of (1.7) with x(τ) = xτ exists and is unique, we write

x(t) = St
τ xτ , or x(t) = St−τ xτ if the equation is autonomous.

The operators St
τ and St−τ are called flow-maps of the equation. In fact, it

would be more correct to name these operators “local flow-maps” since their
domains of definition might depend on t and τ . With some abuse of language
we drop the specification “local” but in each concrete case we check if the
flow-map is defined on a set we need.

If (1.7) is a Hamiltonian PDE, then this definition of its solution is close
to the definition of a classical solution of the corresponding PDE (if {Xs} is
a scale of Sobolev functions and d is sufficiently big compare to d1, then the
solutions defined above are classical solutions of the PDE, see examples below).

For an equation (1.7) with d1 > 0 there is no general existence theorem for
a solution of the corresponding initial-value problem which would guarantee
existence of the flow-maps. To prove the existence is an art we do not touch in
this book.

Example 1.4 (semilinear equation). Let (1.7) be a semilinear equation

ẋ = V (x), V = B + V 0,

where B is a linear operator, bounded or unbounded. It is assumed that the
operator B generates a continuous group of linear transformations of the space
Xd,

‖etB‖d,d ≤ C1e
C2|t|,

and the nonlinearity V 0 is Lipschitz uniformly on bounded subsets of Xd.

Proposition 1.2. If (1.7) is a semilinear equation as above (i.e., Vh = B+V 0,
where ordV 0 = 0), then for any C its flow-maps St : OC(Xd) → Xd are well
defined for |t| ≤ T , where T = T (C) > 0; if in addition the map V 0 : Xd → Xd

is C1-smooth (analytic), then the flow-maps are C1-smooth (analytic). If every
solution for (1.7) in Xd for every t satisfies an a priori estimate ‖x(t)‖d ≤
f(t, x(0)) < ∞, then all flow-maps St : Xd → Xd are well-defined and as
smooth as above.

This result admits an obvious reformulation for the case when the vector
field V is defined on a subdomain of Xd. For all these results see [Paz, K].

Some important Hamiltonian PDEs are semilinear. For example, the non-
linear Schrödinger equation:

u̇(t, x) = i(∆u + f(|u|2)u), x ∈ Tn,

where f is a smooth real-valued function (see [K]). Still, the semi-linearity
assumption is very restrictive since it fails for many important Hamiltonian
PDEs (e.g., for the KdV). ¤
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Example 1.5 (nonlinear string). Space-periodic oscillations of a nonlinear
string which obeys a nonlinear Hooke law and does not move as a whole, are
described by the following (strongly) nonlinear string equation:

utt = uxx +
∂

∂x
f
(∂u

∂x

)
, u(t, x) ≡ u(t, x + 2π),

∫ 2π

0

u(t, x) dx ≡ 0,

where f(v) is an analytic function of the form f(v) = const +av2 + . . . (a 6= 0)
at zero. We can write this equation as a system of two first order equations:
u̇ = v, v̇ = uxx + ∂

∂xf(∂u
∂x ). Denoting w = (u, v), we get for w the equation

ẇ = Aw + F (w), (1.9)

where A(u, v) = (v, uxx) and F is the nonlinear term. In the scale {Zs =
Hs

0 × Hs
0} the map A becomes a linear morphism of order 2 and F becomes

an analytic (for s ≥ 2) map of the same order. The equation (1.9) has the
Hamiltonian form (1.7) with J(u, v) = (v,−u) and h(u, v) =

∫ (
1
2 |v|2+ 1

2 |ux|2+
f(ux)

)
dx.

The nonlinear string equation possesses some rather unpleasant properties:
due to P.Lax (see [Lax2, Kl]), the only C2-smooth solution of the equation
which exists for all t, is the zero-solution. In particular, the equation (1.9) has
no nontrivial time-quasiperiodic (see Appendix 1 below) solutions in Zs, s ≥ 3.
For f = 0 all solutions of the corresponding linear equation are quasiperiodic or
almost periodic in time. Thus, arbitrarily small nonlinearity f kills all non-zero
time-quasiperiodic solutions of the linear equation. The reason for this lack of
persistence is that the equation (1.9) is strongly nonlinear: ord A=ordF . ¤

Our main concern in this book are quasilinear Hamiltonian equations, i.e.,
equations (1.7) which have the form (1.9) with ord A >ord F (A is the lin-
ear part of an equation); possibly ord F > 0 i.e., the equation may be non-
semilinear (so the nonlinearity in Example 1.5 is too strong and in Example
1.4 it is non-necessarily weak). We call a hamiltonian h quasilinear if it defines
a quasilinear Hamiltonian equation.

Let Q ⊂ Od be a sub-domain such that the flow-maps maps St
τ : Q → Od are

well-defined and are C1-smooth for T1 ≤ τ, t ≤ T2, where −∞ ≤ T1 < T2 ≤ ∞
(here and in similar situations below, t > T1 if T1 = −∞ and t < T2 if T2 = ∞).
Then differentiating a solution x(t) of (1.7) in the initial condition we get that
the curve ζ(t) := St

τ∗
(
x(τ)

)
ζ satisfies the linearised equation

ζ̇(t) = Vh∗(x(t), t)ζ(t), ζ(τ) = ζ. (1.10)

The assumption that the map St
τ is C1-smooth in a sub-domain is very restric-

tive since to check the smoothness of flow-maps for many important equations
(even for the KdV!) is a nontrivial task. To get rid of it we give the following
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Definition 1.2. Let x(t), t ∈ R, be a solution for equation (1.7). If for each
ζ ∈ Xd and each θ the linearised equation

ζ̇(t) = Vh∗(x(t), t)ζ(t) , ζ(θ) = ζ ,

has a unique solution ζ(t) ∈ Xd defined for all t and such that ‖ζ(t)‖d ≤ C‖ζ‖d

uniformly in θ, t from a compact segment, then we write ζ(t) = St
θ∗∗(x)ζ and

say that flow {St
θ∗∗(x)} of the linearised equation (1.10) is well defined in Xd.

Sometimes we shall use an obvious version of this definition for the case
when the solution x(t) (and the linearised equation) are defined only on a finite
segment of the real line.

We note that under the assumptions of this definition the maps St
θ∗∗ and

Sθ
t∗∗ are inverses of each other.
The property described in Definition 1.2 characterises the flow only in the

“infinitesimal vicinity” of a solution of (1.7). It suits well our goal to study
special families of solutions rather than the whole flow of the equation. If the
flow-maps St

τ are C1-smooth, then St
τ∗(x) = St

τ∗∗(x), but the map in the r.h.s.
of this relation can be well defined while the map in the l.h.s. is not.

Example 1.6 (equations of the Korteweg - de Vries type). Let us take
for {Xs} the scale of Sobolev spaces Hs

0 as in Example 1.1. We define a
Poisson structure by means of the operator J = ∂

∂x , so dJ = 1 and −J̄ = J−1

is the operator (∂/∂ x)−1 of integrating with zero mean-value. We get the
symplectic Hilbert scale ({Hs

0},−(∂/∂ x)−1du ∧ du). We stick to the discrete
scale {s ∈ Z}: it is sufficient since the orders of all involved operators are
integer. The trigonometric basis {ϕj | j ∈ Z0} introduced in Example 1.1 (see
(1.1)) is symplectic since for j ≥ 1 and any k we have:

α2[ϕj , ϕk] = 〈J̄π−1/2 cos jx, ϕk(x)〉 = j−1〈−π−1/2 sin jx, ϕk(x)〉 = j−1δj,−k.

For a hamiltonian h we take h(u) =
∫ 2π

0
(− 1

8u′(x)2 + f(u)) dx with some
analytic function f(u). Then ∇h(u) = 1

4u′′ + f ′(u) 8 and Vh(u) = 1
4u′′′ +

∂
∂xf ′(u). Thus the Hamiltonian equation takes the form

u̇(t, x) =
1
4
u′′′ +

∂

∂x
f ′(u) (1.11)

(for f(u) = 1
4u3 we get the KdV equation, the factor 1/4 is introduced to make

the formulas which integrate the KdV more elegant). Since Sobolev spaces
Hs with s ≥ 1 are Banach algebras, then for s ≥ 1 the maps Hs

0 → R,
u(x) 7→ ∫

f(u) dx and Hs
0 → Hs, u(x) 7→ f ′(u(x)) are analytic (see Example

8since dh(u)v =
R − 1

4
u′(x)v′(x) + f ′(u(x))v(x) dx = 〈 1

4
u′′(x) + f ′(u(x)), v(x)〉L2 .
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1.1). Now the map Hs
0 3 u 7→ Vh(u) ∈ Hs−3

0 is analytic for s ≥ 1. That is, the
vector field Vh defines an analytic morphism of order 3 for s ≥ 1.

Being supplemented by an initial condition u(0, x) = u0(x) ∈ Hs
0 with s ≥ 3,

equation (1.11) has a unique solution in Hs
0 . This solution exists for |t| <

T (‖u0‖s) (T is a continuous positive function) and the flow-maps St, |t| < T ,
are C1-smooth. This is a non-trivial result, see e.g. [Kat1].

On the contrary, if u(t, x), 0 ≤ t ≤ T , is a smooth solution of (1.11), then
the linearised equation

v̇ =
1
4
v′′′ +

∂

∂x
(f ′′(u)v), v(0, x) = v0 ∈ Hs

0 , (1.12)

has a unique solution in Hs
0 with any s ≥ 0 by trivial reasons:

To prove uniqueness we have to check that a solution v(t, x) with v(0, x) =
0 vanishes identically. We denote ∂k = (∂/∂x)k, k ∈ Z, treating ∂k as an
isomorphism of the scale {Hs

0}, and multiply the equation by ∂−4v in H0
0 , i.e.

in L2(S1, dx). We get:

1
2

d

dt
‖v(t)‖2−2 = −1

4

∫
v∂−1v dx−

∫
f ′′(u)v∂−3v dx.

The first term in the r.h.s. vanishes. Integrating by parts several times, one
finds that the second term equals

∫ (
(
1
2
∂2 − ∂)f ′′(u)

)
(∂−2v)2 dx +

1
2

∫
∂3f ′′(u)(∂−3v)2 dx.

Since f ′′(u) is a smooth function, then this implies the inequality

1
2

d

dt
‖v(t)‖2−2 ≤ C‖v‖2−2 + C1‖v‖2−3 ≤ C2‖v‖2−2,

so v ≡ 0 by Gronwall.
To prove existence we start with an a priori estimate for a smooth solution

v(t, x). Multiplying (1.12) by v(t, ·) in Hs
0 we get that d/dt‖v‖2s ≤ C(u)‖v‖2s.

Hence,
‖v(t, ·)‖s ≤ eC1t‖v0‖s for 0 ≤ t ≤ T, (1.13)

where C1 = C(T )/2. Now we can use Galerkin method and this estimate to
construct a solution v(t, x) of the equation in Hs

0 , provided that v0 ∈ H∞
0 .

In this way we get linear flow-maps St
0∗∗, defined on H∞

0 , and such that
‖St

0∗∗‖s,s ≤ eC1t. By continuity we extend these maps to the whole Hs
0 . When

t → 0, the operators St
0∗∗ remain uniformly bounded because (1.13) and con-

verge to identity on the dense subset H∞
0 ⊂ Hs

0 . Therefore, St
0∗∗ → id in the

strong operator topology of the operators in Hs
0 (see e.g., [Kat2]) and the curves

v(t, ·) = St
0∗∗v0 are continuous in Hs

0 for any v0 ∈ Hs
0 . Since they satisfy the
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equation, then they are C1-smooth in Hs−3 (these arguments are obvious for
a smooth vector v0, while a vector v0 ∈ Hs

0 has to be approximated by smooth
ones).

For any v0 ∈ Hs
0 we constructed a unique solution of the linearised equation

(1.12) in Hs
0 . Thus, the flow maps St

τ∗∗(u(τ)) of the linearised equation are
well defined “gratis”. ¤

We shall often work with equations in a sub-domain Od of the manifold
Yd (d ≥ 0) as in (1.3), given a symplectic structure by means of a 2-form
(dp ∧ dq) ⊕ (Ῡ(y)dy ∧ dy), where dp ∧ dq is the classical symplectic form on
Rn × Tn and Ῡ(y)dy ∧ dy is a closed 2-form in a domain in Yd. This sym-
plectic structure corresponds to a C1-smooth function H(p, q, y) the following
Hamiltonian system:

ṗ = −∇qH, q̇ = ∇pH, ẏ = Υ∇yH.

Solutions for these equations are defined in the same way as solutions for (1.7).

1.5. Symplectic transformations.
Let {Xs}, {Ys} be two Hilbert scales and d, d̃ ≥ 0. Let O ⊂ Xd and

Q ⊂ Yd̃ be two domains given continuous symplectic structures by 2-forms
α2 = J̄(x)dx ∧ dx and β2 = Ῡ(y)dy ∧ dy as in section 1.4. A C1-smooth map
Φ : Q → O is called a symplectic map (or a symplectic transformation, or a
symplectomorphism ) if Φ∗α2 = β2. That is, if for any y ∈ Q with Φ(y) = x ∈ O
we have

〈J̄(x)Φ∗(y)ξ, Φ∗(y)η〉X0 = 〈Ῡ(y)ξ, η〉Y0

for all ξ, η ∈ Yd̃, or
Φ∗(y) ◦ J̄(x) ◦ Φ∗(y) = Ῡ(y). (1.14)

A symplectic map Φ is an immersion since by (1.14) its tangent maps are
embeddings.

If a symplectic map Φ is such that the tangent maps Φ∗(y) define isomor-
phisms of the spaces Yd̃ and Xd, then Φ is called a symplectomorphism. Obvi-
ously, a C1-diffeomorphism Φ : Q → O is a symplectomorphism if and only if
each tangent map Φ∗(y), y ∈ Q, sends a symplectic basis of the space TyQ to a
symplectic basis of the space TΦ(y)O and νj(y) = νj(Φ(y)) for all j and y (see
(1.6)).

We shall need an obvious version of the definitions above for the case when
Oc and Qc are complex domains in complex spaces Xc

d and Y c
d̃

and the operators
J̄(x) and Ῡ(y) are anti selfadjoint with respect to complex-bilinear scalar prod-
ucts 〈·, ·〉Xc

0
and 〈·, ·〉Y c

0
. Namely, a C1-smooth map Φ1 : (Qc, α2) → (Oc, β2) is

symplectic if 〈J̄(x)Φ1∗(y)ξ, Φ1∗(y)η〉Xc
0
≡ 〈Ῡ(y)ξ, η〉Y c

0
.

Analytic symplectic forms α2 = J̄(x)dx∧dx and β2 = Ῡ(y)dy∧dy on domains
O ⊂ Xd and Q ⊂ Yd analytically extend to some complex neighbourhoods
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Oc ⊂ Xc
d and Qc ⊂ Y c

d . There they define complex symplectic structures as
above. Any analytic symplectomorphism Φ : (Q,α2) → (O, β2) analytically
extends to a sufficiently small complex neighbourhoods of Q, where it defines
a complex symplectomorphism. Below we often use this symplectic analytic
extension in the case when the forms α2 and β2 are constant coefficient.

From now on for the sake of simplicity we restrict ourselves to the case we
need below:

d = d̃ ≥ 0, ord J̄(x) = ord Ῡ(y) = −dJ ∀ x, y.

Proposition 1.3. Let us assume that J̄(x) = J̄ and Ῡ(y) = Ῡ are constant
isomorphisms of the corresponding scales of order −dJ . Then:

1) If Φ : (Qc, β2) → (Oc, α2) is an analytic symplectomorphism such that
‖Φ∗(y)‖d,d, ‖(Φ∗(y))−1‖d,d ≤ C for every y ∈ Qc, then for every y ∈ Qc and
every θ ∈ [−d − dJ , d] we have ‖Φ∗(y)‖θ,θ, ‖(Φ∗(y))−1‖θ,θ ≤ C1. The maps
Φ∗ : Yθ → Xθ and their inverse analytically depend on y ∈ Qc.

2) If Φ : (Q, β2) → (O,α2) is a C1–symplectomorphism, then a C1-version
of this result holds true.

Proof. 1) By (1.14) we have Φ∗ = −Ῡ ◦Φ−1
∗ ◦J . So ‖Φ∗(y)‖d+dJ ,d+dJ ≤ C ′ for

every y. Hence, ‖Φ∗(y)‖−d−dJ ,−d−dJ
≤ C ′ and the estimate for ‖Φ∗‖θ,θ follows

by interpolation. The estimates for Φ−1
∗ follow from the identity (Φ∗)−1 =

−J̄ ◦ Φ∗ ◦ Υ which implies that Φ−1
∗ =

(
(Φ∗)−1

)∗
= (−J̄ ◦ Φ∗ ◦ Υ)∗ is a

zero-order morphism for s ∈ [−d− dJ , d].
The maps Φ∗ and (Φ∗)−1 are analytic in y by Amplification 1 to Theorem

1.1.
2) If the map Φ is a C1-symplectomorphism, then the assertion follows from

the same estimates as above and Amplification 2 to Theorem 1.1. ¤

Literally the same arguments prove the following result:

Proposition 1.3′. Let the symplectic spaces (Xc
d, α2) and (Y c

d , β2) be as above
and Ψ(w) : Xc

d → Y c
d be a linear symplectomorphism, analytic in w from some

complex domain and bounded uniformly in w. Then for any θ ∈ [−d−dJ , d] the
map Ψ(w) defines a symplectomorphism Xc

θ → Y c
θ , analytic in w and bounded

uniformly in w and θ. An obvious C1-version of this result also holds true.

Now let us consider the case when ({Xs}, α2) = ({Ys}, β2) and Φ is a sym-
plectomorphism Φ : (Qc, α2) → (Xc

d, α2):

Proposition 1.4. 1) Let an analytic symplectomorphism Φ satisfies the as-
sumptions of item 1) of Proposition 1.3 with Qc = Oc and has the form
Φ = id+Ξ, where the map Ξ is ∆-smoothing (∆ ≥ 0) and ‖Ξ∗(x)‖d,d+∆ ≤ C
for all x ∈ Qc. Then for every s ∈ [−d − ∆ − dJ , d + ∆] the linearised map
Ξ∗(x) is analytic in x as a map Xs → Xs+∆.
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2) If Φ : Q → Q is a C1-symplectomorphism, then a C1-version of this result
holds.

Proof. 1) Due to Proposition 1.3, the maps Φ∗(x), x ∈ Qc, define zero order
automorphisms of the scale {Xs} for s ∈ [−d−∆−dJ , d+∆], which are analytic
in x.

Substituting in (1.14) Φ = id+Ξ we get that Ξ∗(x)J̄ +(id+Ξ∗(x))J̄Ξ∗(x) =
0. Hence, Ξ∗(x) = Φ∗(x)J̄Ξ∗(x)J . By assumptions, ‖J̄Ξ∗(x)J‖d+dJ ,d+∆+dJ

≤
C ′. Since adjoint maps Φ∗(x) define zero order automorphisms for s ∈ [−d −
∆, d+∆+dJ ], then the maps Ξ∗(x) : Yd+dJ → Yd+∆+dJ are analytic in x ∈ Qc;
so the maps Ξ∗(x) : Y−d−∆−dJ

→ Yd−dJ
also are. Using the assumptions

once again as well as the analyticity criterion we get that Ξ∗(x) also define
an analytic in x map Yd → Yd+∆. Interpolating these two results and using
Amplification 1 we get the statement.

2) This assertion follows from Amplification 2. ¤
This proposition admits an obvious reformulation for parameter-depending

symplectomorphisms, similar to Proposition 1.3′. We do not state this result
but use it later on.

As in the finite-dimensional case, symplectic maps transform Hamiltonian
equations to Hamiltonian. Let Φ : Q → O be a C1-smooth symplectomorphism
such that

Φ∗(y) : Ys → Xs is a linear map, continuous in y ∈ Q, for any |s| ≤ d.
(1.15)

If J̄(x) = J̄ and Ῡ(y) = Ῡ are constant isomorphisms of zero order, then the
assumption (1.15) is satisfied due to Proposition 1.3, item 2).

Theorem 1.2. Let domains O ⊂ Xd and Q ⊂ Yd, d ≥ 0, be given symplectic
structures by 2-forms α2, β2 as above with ord J̄ =ord Ῡ = −dJ . Let the vector
field Vh = J∇h of equation (1.7) defines a C1-smooth map Vh : O×R→ Xd−d1

of order d1 ≤ 2d and let Φ : Q → O be a symplectic map satisfying (1.15), such
that the vector field Vh in O is tangent to Φ(Q) in the following sense:

Vh(Φ(y)) = Φ∗(y)ξ for any y ∈ Q with an appropriate ξ = ξ(y) ∈ Yd−d1 .
(1.16)

Then the map Φ transforms solutions of the Hamiltonian equation

ẏ = Υ(y)∇yH(y, t), H = h ◦ Φ , Υ = (−Ῡ)−1, (1.17)

to solutions of (1.7).

We note right away that the assumption (1.16) becomes empty if Φ is a
symplectomorphism (to be more specific, now (1.16) follows from (1.15) since
d− d1 ≥ −d).
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Proof. Let y(t) be a solution of (1.17). By (1.15) the curve x(t) = Φ(y(t)) is
C1-smooth in Yd−d1and is continuous in Yd. It remains to check that it satisfies
(1.7). Since ẋ = Φ∗(y)ẏ and ∇yH = Φ∗(y)∇xh, then

ẋ = Φ∗(y)Υ(y)Φ∗(y)∇xh = −Φ∗(y)Υ(y)Φ∗(y)J̄(x)Vh(x).

By (1.16), Vh(x) = Φ∗(y)ξ. So the r.h.s is −Φ∗(y)Υ(y)Φ∗(y)J̄(x)Φ∗(y)ξ. By
(1.14) it equals

−Φ∗(y)Υ(x)Ῡ(x)ξ = Φ∗(y)ξ = Vh(x).

Thus, x(t) satisfies the equation (1.7). ¤
Corollary. Let O ⊂ (Xd, α2) and a Hamiltonian vector field Vh be as in the
theorem and Φ : O → Xd be a C1-smooth map, satisfying (1.15) (with Ys ≡
Xs), such that Φ∗α2 = Kα2 for some K 6= 0. Then the map Φ transforms
solutions of the equation

ẋ = K−1J(x)∇H(x, t)

to solutions of (1.7).

In particular, if K = 1, then Φ preserves the set of solutions of equation
(1.7). If K > 0 and the hamiltonian H is autonomous, then Φ preserves the
set of solutions up to time-scaling.

Proof. The result follows from the theorem with {Ys} = {Xs} and β2 = Kα2

(so Ῡ = KJ̄ and Υ = K−1J). ¤

To apply Theorem 1.2 we have to be able to construct sufficient amount
of symplectic transformations. An important way to construct symplectomor-
phisms of domains in (O ⊂ Xd, α2) is to get them as flow-maps Sτ

t of an
additional nonautonomous Hamiltonian equation

ẋ = J(x)∇xf(t, x) = Vf (t, x), x ∈ O, (1.18)

where the hamiltonian f is such that the vector field Vf is Lipschitz:

Theorem 1.3. Let f be a C1-smooth function on R × O, O ⊂ Xd, such that
the map Vf : R × O → Xd is Lipschitz in (t, x) and C1-smooth in x. Let O1

be a sub-domain of O. Then the flow-maps Sτ
t : (O1, α2) → (O, α2) are sym-

plectomorphisms, provided that they map O1 to O. Moreover, ‖Sτ
t∗(x)‖d,d ≤

exp(|τ − t|C∗), where C∗ = supt,x ‖Vf∗(t, x)‖d,d. If the vector field Vf is ana-
lytic, then the flow-maps are analytic as well.

Proof. The flow-maps are C1-smooth in the smooth case and are analytic in
the analytic case, see in section 1.4. The estimates on the linearised flow-maps
hold since the curves τ → Sτ

t∗(x)ξ satisfy the linearised equation (cf. (1.10)).
25



It remains to check that the linearised maps Sτ
t∗ are symplectic. This follows

from given below Theorem 1.3′, where a more general result is proven (cf.
Definition 1.2 and its discussion). ¤

Let us assume that the form α2 is constant coefficient: α2 = 〈J̄dx, dx〉, where
J̄ is an isomorphism of the scale of order −dJ . Proposition 1.3 applies to flow-
maps Sτ

t since they are C1-smooth (or analytic) as well as their inverses, the
flow-maps St

τ ). So for any y the maps Sτ
t∗(y) define zero-order morphisms of

the scale for s ∈ [−d − dJ , d]. Let us also assume that the vector field Vf is
∆-smoothing:

‖Vf∗(t, x)‖d,d+∆ ≤ C ′ ∀ x ∈ O, ∀t
with some ∆ ≥ 0. Since

Sτ
t (x) = x +

∫ τ

t

Vf (θ, Sθ
t (x)) dθ,

then

Sτ
t∗(x) = id +

∫ τ

t

Vf∗(θ, Sθ
t (x))Sθ

t∗(x) dθ.

Since the maps Vf∗ are ∆-smoothing and the maps Sτ
t∗ satisfy the estimate

of Theorem 1.3, then the flow-maps Sτ
t are symplectomorphisms, close to the

identity up to ∆-smoothing maps:

‖Sτ
t∗(x)− id‖s,s+∆ ≤ C ′|τ − t|e|τ−t|C∗ , (1.19)

where s = d. Applying Proposition 1.4 we find that this estimate holds for any
s ∈ [d−∆− dJ , d + ∆].

We have proved the following result:

Proposition 1.5. Let us assume that the assumptions of Theorem 1.3 hold
with C∗ < ∞, that ‖Vf∗(t, x)‖d,d+∆ ≤ C ′ for all x ∈ O with some ∆ ≥ 0 and
that the form α2 is constant coefficient, namely α2 = J̄dx ∧ dx where J̄ defines
an isomorphism of the scale of order −dJ . Then the flow-maps Sτ

t : O1 → O
satisfy estimates (1.19) for all s ∈ [d−∆− dJ , d + ∆], provided that they map
O1 to O. In the analytic case the flow-maps are analytic; this result (and the
estimate (1.19)) hold both for real and complex domains O.

Now we consider Hamiltonian equations, corresponding to vector fields which
define nonlinear morphisms of the scale of a positive order:

Theorem 1.3′. Let us assume that the Hamiltonian vector field Vf defines a
C1-smooth map R×O → Xd−d1 , where O ⊂ Xd and d1 ≤ 2d + dJ . Let a point
x0 ∈ O be such that the solution x(t) = St

t0(x0) of (1.18) exists for t0 ≤ t ≤ T
and for these t’s flow-maps St

t0∗∗(x0) for the linearised equation are well defined
in Xd. Then these maps are symplectic.
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Proof. We have to check that the maps Sτ
t0∗∗ = Sτ

t0∗∗(x(t0)), t0 ≤ τ ≤ T , are
such that

α2(x(τ))
[
Sτ

t0∗∗ξ, S
τ
t0∗∗η

]
= α2(x(t0))[ξ, η]

for any ξ, η ∈ Xd. Since the map St0
t0 = id, then in order to prove the theorem

we have to check that the function

l(τ) := α2

(
x(τ)

)
[Sτ

t0∗ξ, S
τ
t0∗η]

is a τ -independent constant.
As the curve St

t0∗∗ξ =: ξ(t) satisfies the linearised equation ξ̇ = Vf (t, x(t))∗ξ
and similar with St

t0∗∗η = η(t), then l(t) = α2(x(t))[ξ(t), η(t)]. Therefore we
should check that (d/dt)〈J̄(x(t))ξ(t), η(t)〉 = 0, or

〈J̄ ′Vf
(x)ξ, η〉+ 〈J̄(x)ξ̇, η〉+ 〈J̄(x)ξ, η̇〉 = 0,

where J̄ ′Vf
stands for a derivative of the operator-valued map J̄(x) in the di-

rection Vf . The three terms in the l.h.s. are well defined. Indeed, η̇ is a
continuous curve in the space Xd−d1 and J̄(x)ξ – in the space Xd+dJ

; since
d1 ≤ 2d + dJ , then the third term is a well defined continuous function of t,
etc. Since Vf∗(t, x)ξ = J(x)(∇f)∗ξ + J ′ξ∇f , then

〈J̄ ξ̇, η〉 = 〈J̄Vf∗(t, x)ξ, η〉 = 〈J̄J(∇f)∗ξ, η〉+ 〈J̄J ′ξ∇f, η〉
= −〈(∇f)∗ξ, η〉+ 〈J̄J ′ξ∇f, η〉.

Transforming similarly the third term we find that we have to check the fol-
lowing relation:

〈J̄ ′Vf
ξ, η〉 − 〈(∇f)∗ξ, η〉+ 〈J̄J ′ξ∇f, η〉+ 〈J̄ξ, J(∇f)∗η〉+ 〈J̄ξ, J ′η∇f〉 = 0.

The forth term equals 〈ξ, (∇f)∗η〉 and cancels the second since they equal
d2f(ξ, η) and −d2f(ξ, η) correspondingly. Since ∇f = −J̄Vf , then it remains
to prove that

〈J̄ ′Vf
ξ, η〉 − 〈J̄J ′ξJ̄Vf , η〉+ 〈J̄J ′ηJ̄Vf , ξ〉 = 0. (1.20)

Differentiating the equality JJ̄ = −id in the direction ξ we find that J ′ξJ̄ +
JJ̄ ′ξ = 0, or J̄J ′ξJ̄ = J̄ ′ξ. Similar J̄J ′ηJ̄ = J̄ ′η. Now (1.20) follows since using
the Cartan formula (1.2) in the relation dα2[V, ξ, η] = 0 we get that 〈J̄ ′V ξ, η〉 −
〈J̄ ′ξV, η〉+ 〈J̄ ′ηV, ξ〉 = 0 for any V, ξ, η ∈ Xd. ¤
Corollary. If (1.18) is a semilinear equation as in Proposition 1.2 and a
nonlinear part V 0 of the vector field Vf = B + V 0 defines a C1-smooth map
R×O → Xd, then the flow-maps St

t0 are C1-smooth symplectomorphisms.

Proof. The flow-maps St
t0 are C1-smooth by Proposition 1.2. So St

t0∗∗ = St
t0∗

are bounded linear maps and the theorem applies. ¤
Let O be a domain in a symplectic space (Xd, α2 = J̄(x) dx ∧ dx).
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Definition 1.3. Let C1-smooth functions H1 and H2 on O define continuous
gradient maps of orders d1 and d2 ≤ 2d such that

d1 + d2 + dJ ≤ 2d. (1.21)

Then the Poisson bracket {H1,H2} of H1,H2 is the continuous on O function
{H1,H2}(x) = 〈J(x)∇H1(x),∇H2(x)〉.

The scalar product 〈J∇H1,∇H2〉(x) is well-defined and is continuous in x
due to (1.5). The Poisson bracket is skew-symmetric,

{H1,H2} = −{H2,H1},
since the operator J defines an anti selfadjoint morphism which satisfies (1.5).
In particular, {H, H} ≡ 0 (if ord∇H ≤ d− dJ/2 for the Poisson bracket to be
well defined).

Let functions H1, H2 and the operator J̄ be γ-analytic on a domain O ⊂ Xd

and ord∇H1 ≤ −dJ . Let Q be a sub-domain of O such that distXd
(Q,Xd\O) ≥

δ. We consider the Hamiltonian equation in O with the hamiltonian H1:

ẋ = J(x)∇H1(x) =: V1(x), (1.22)

and denote by Sτ its flow-maps.

Theorem 1.4. Let us assume that the vector field V1 analytically extends to
a complex neighbourhood O + γ ⊂ Xc

d, where its norm ‖V1‖d is bounded by
some constant K. Then the maps Sτ : Q → O, 0 ≤ τ < δ/K, are well-defined
analytic symplectomorphisms and

H2(Sτ (x)) = H2(x) + τ{H1,H2}+ O(τK)2

for x ∈ Q. In particular,

(d/dt)H2(St(x)) |t=0= {H1,H2}(x).

Proof. The flow-maps Sτ are well-defined for sufficiently small τ since the vec-
tor field V1 is Lipschitz by the Cauchy estimate. If x ∈ Q, then ‖Sτ (x)− x‖d ≤
τK and Sτ (x) stays in O for 0 ≤ τ < δ/K. So the first assertion follows from
Theorem 1.3.

Since V1(Sτ (x) = V1(x)+O(τK2) due to the Cauchy estimate, then Sτ (x) =
x + τV1(x) + O(τK)2 in Xd. Hence, H2(Sτ (x))−H2(x) equals to

〈∇H2(x), Sτ (x)− x〉+ O(‖Sτ (x)− x‖2d) = τ〈∇H2, J∇H1〉+ O(τK)2

and the theorem is proven. ¤
If ord∇H1 = d1 > −dJ , then the vector field V1 = J∇H1 is unbounded and

to state a version of the theorem we have to assume that the domain O = Od

belongs to a system of compatible domains {Os ⊂ Xs | d0 ≤ s ≤ d}, where
d0 = d− d1 − dJ :
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Theorem 1.4′. Let us assume that C1-smooth functions H1 and H2 on the
domain O ⊂ Xd as above define continuous gradient maps ∇H1 : Os → Xs−d1

and ∇H2 : Os → Xs−d2 for s ∈ [d0, d]. Let ordV1 = d1 + dJ ≥ 0, the numbers
d1, d2 satisfy (1.21) and d0 ≥ d2/2. Then for any solution x(t) of (1.22) we
have (d/dt)H2(x(t)) = {H1, H2}(x(t)).
Proof. Since d0 − d2 ≥ −d0 where d2 =ord∇H2, then H2 is a C1-smooth
function on Od0 . Since the curve x(t) is C1-smooth in Od0 by the definition of
a solution, then

d

dt
H2(x(t)) = 〈∇H2(x), ẋ〉 = 〈∇H2(x), J(x)∇H1(x)〉 = {H1,H2}(x). ¤

An immediate consequence is that if d ≥ d1 + 1
2dJ and ∇H1 defines a C1-

smooth morphism of order d1 ≥ 0 for d0 ≤ s ≤ d, then H1 is an integral of
motion for equation (1.22). That is, H1(x(t)) is a time-independent quantity
for any solution x(t). If d′ ≤ d is such that the functional H1 is continuous in
Od′ as well as the flow-maps St, then by continuity H(St(u)) is t-independent
for any u ∈ Od′ .

Example 1.7 (NLS equation). A nonlinear Schrödinger equation

u̇(t, x) = i(−uxx + P (|u|2)u), x ∈ S1, (NLS)

where P is a real polynomial, can be written in the Hamiltonian form (1.7) in
the symplectic scale of Sobolev spaces

({Zs = Hs(S1;C)}, ω2

)
. We view these

spaces as real and provide them with real inner products. In particular, the
scalar product in Z0 is 〈u, v〉 = Re

∫
uv̄ dx. Symplectic structure is defined by

the form ω2 = J du ∧ du, where Ju(x) = iu(x). For the hamiltonian h one
should take h(u) = 1

2

∫ (|ux|2 + Q(|u|2)) dx, where Q′(t) = P (t). The gradient
map ∇h : Zd → Zd−2 is an analytic morphism of the scale of order two and
its nonlinear part u 7→ P (|u|2)u defines an analytic morphism of zero order if
d > 1

2 . So (NLS) is a semilinear equation and its flow-maps St are well defined
in Zd, d > 1

2 , locally in time.9

Now dJ = 0, ord∇h = 2 and the hamiltonian is continuous in Z1. So
h(Stu) = const for u ∈ Z1.

For d ∈ ( 1
2 , 1) the flow-maps are continuous in Zd but the hamiltonian is

not. Still the assertion h(Stu) = const remains true if for u ∈ Zd \ Z1 we set
h(u) = ∞. ¤

Theorems 1.3 and 1.4 admit obvious reformulations for Hamiltonian equa-
tions in sub-domains of the symplectic manifold (Yd, β2), β2 = dp∧dq+Ῡdy∧dy
(see (1.3) and the end of section 1.4). In this case

{H1(p, q, y),H2(p, q, y)} = ∇pH1 · ∇qH2 −∇qH1 · ∇pH2

+ 〈Υ∇yH1,∇yH2〉. (1.23)

9that is, for any u0 ∈ Zd the flow-maps are defined and analytic in a neighbourhood of
u0 for |t| ≤ T (‖u0‖d), T > 0.
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Corresponding versions of the theorems are used below.

1.6. A Darboux lemma.
The classical Darboux lemma states that locally near a point any closed

non-degenerate 2-form in R2n can be written as dp∧dq. This result has several
versions which put a closed non-degenerate 2-form on a manifold to different
normal forms in the vicinity of a closed set (for the classical lemma the set
is a point), see [AG]. Some of these results admit direct infinite-dimensional
reformulations which can be proven by the same arguments due to Moser –
Weinstein. In this section we present an analytic version of the Darboux lemma
which will be used later on.

Let Yd = Rn×Tn×Yd and W be its subset of the form W = P ×Tn×{0},
where P is a bounded domain in Rn. By O, O1, . . . we denote δ-neighbourhoods
of W in Yd with different δ > 0 and suppose that in a neighbourhood O we
are given two closed analytic 2-forms ω0 and ω1. We write these forms as
ωj = J̄j(y) dy ∧ dy, where y = (p, q, y), and assume that:

i) ω0 = ω1 in TO |W ,
ii) for all t ∈ [0, 1] and all y ∈ O the map J̄ t(y) = (1− t)J̄0 + tJ̄1 defines an

isomorphism J̄ t : Zd −→∼ Zd+dJ , where Zd = Rn × Rn × Yd and dJ ≥ 0.

By ii), the map J t = (−J̄ t)−1 : Zd+dJ
−→
∼

Zd is well defined and analytically

depends on y. By Poincaré’s lemma (see Lemma 1.3 above), the form ω1 − ω0

is a differential dα of some analytic one-form α = a(y) dy such that a(p, q, y) =
O(‖y‖2d). We specify smoothness of the map a assuming that

iii) the map O1 → Zd+dJ
, y 7→ a, is Lipschitz analytic in O1.

Lemma 1.4 (Moser – Weinstein). Under the assumptions i)-iii) there ex-
ists a neighbourhood O2 and an analytic diffeomorphism ϕ : O2 → O such that
ϕ |W = id, ϕ∗ |W = id and ϕ∗ω1 = ω0. Moreover, ϕ equals to the time-one flow-
map S1

0 , corresponding to the non-autonomous equation ẏ = J ta(y) =: V (t, y).

Proof. For 0 ≤ t ≤ 1 let us consider the 2-forms ωt = (1 − t)ω0 + tω1 =
J̄ t dy ∧ dy. These forms are closed as well as the forms ω0, ω1 and are non-
degenerate in a neighbourhood O3 since ωt = ω0 = ω1 on W by i). Now we
denote by ϕt the flow-maps St

0 of equation ẏ = V (t, y); so ϕ0 = id, ϕ1 = ϕ
and (ϕ1 − id)(p, q, y) = O(‖y‖2d). The lemma will be proven if we check that
(ϕt)∗ωt = const. Because Cartan’s identity (Lemma 1.2), we have to verify
that

∂ωt

∂t
+ d(V cωt) = 0.

Since ∂ωt/∂t = ω1−ω0 = dα, then it remains to check that α+V cωt ≡ 0. But
V cωt = V cJ̄ t dy∧dy = (J̄ tV )dy. So α+V cωt = (a+J̄ tV ) dy = (a+J̄ tJ ta) dy =
0 and the lemma is proven. ¤
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Appendix 1. Time-quasiperiodic solutions.

The main goal of this book is to study time-quasiperiodic solutions x(t) of
some Hamiltonian equations (1.7). Here we recall corresponding basic defini-
tions.

Definition. A C1-curve γ : R → X in a Banach space or a manifold X is
called quasiperiodic (QP) with ≤ n frequencies if there exists a C1-smooth
map Γ : Tn → X, a vector ω ∈ Rn and a point q0 ∈ Tn such that

γ(t) ≡ Γ(q0 + ωt) . (A.1)

The vector ω is called the frequency vector and q0 is called the phase. The
minimal n such that γ(t) admits a representation (A.1) is called the number
of independent frequencies; corresponding numbers ω1, . . . , ωn are called the
basic frequencies.

Remark. We note that the vector ω formed by the basic frequencies is defined
only up to an unimodular transformation L 10 since the curve γ(t) can be also
written as γ(t) = ΓL(Lq0 + Lωt), where ΓL(q) = Γ(L−1q). What is uniquely
defined, is the Z-module Zω1 +Zω2 + · · ·+Zωn ⊂ R. We shall usually ignore
this subtlety. ¤

Let γ(t) be a QP curve (A.1) with a C1-smooth map Γ of maximal rank.11

If components of the vector ω are rationally independent (i.e., ω ·s 6≡ 0 for each
non-zero integer n-vector s), then the solenoid q0 + tω is dense in Tn (see [A1,
Section 51]) and the closure γ(R) of the curve γ equals Γ(Tn). So n equals to
the Hausdorff dimension dimH γ(R)12 and equals to the number of frequencies
(if γ admitted a representation (A.1) with a smaller n′, then dimH γ(R) would
be ≤ n − 1). If components of ω are rationally dependent, then the solenoid
q0 + tω lies in a sub-torus Tm ⊂ Tn with m < n and the number of frequencies
is less than n. Finally: a curve (A.1) with a C1-smooth map Γ of maximal
rank has n frequencies if and only if components of the frequency vector ω are
rationally independent.

The closure γ(R) is called the hull of γ. If components of ω are rationally
independent, then the hull equals Γ(Tn).

Example. Let f(t) be a periodic real-valued function with a period 2π/ω and
a mean-value f0. Then its integral modulo 2π, x(t) =

∫ t

0
f(τ) dτ ∈ S1 := R/2π,

is a QP function with frequencies f0 and ω. Indeed, x(t) = f0t + F (t), where
F (t) =

∫ t

0
(f(τ)− f0) dτ is an 2π/ω-periodic function. So we can write x(t) as

x(t) = Γ(f0t, ωt), Γ : T2 → S1, Γ(q1, q2) = q1 + F (q2/ω) mod 2π. ¤
10L is a volume-preserving linear operator in Rn such that its matrix has integer entries.

It defines an automorphism of the torus Tn = Rn/2πZn.
11i.e., rank Γ∗(q′) = n for some q′ ∈ Tn.
12i.e., mesHn γ(R) is finite and positive, see Appendix 1 in Part II.
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We call a solution x of (1.7) a (time-) quasiperiodic solution, if the curve
x : R → Xd is QP, and call it analytic quasiperiodic if the corresponding map
Γ is analytic of maximal rank. The hull Γ(Tn) of an analytic QP solution
of the form (A.1) with n basic frequencies is an invariant analytic n-torus of
the equation. This torus is an analytic submanifold of X if the map Γ is an
immersion.

Appendix 2. Hilbert matrices and the Schur criterion.

Let X and Y be two Hilbert spaces with the bases {ϕj | j ∈ J } and
{ψl | l ∈ L} respectively (J and L are some countable sets). A bounded linear
operator A : X → Y defines an infinite matrix a = {ajl | j ∈ J , l ∈ L}, where

A
( ∑

j∈J
xjϕj

)
=

∑

l∈L

( ∑

j∈J
aljxj

)
ψl.

Clearly,
alj = 〈Aϕj , ψl〉Y . (A2)

The matrix a is called a Hilbert matrix of the operator A.
Applying the operator A to vectors ϕj we readily get that

∑

l

a2
lj ≤ ‖A‖2X,Y ∀ j.

The following result which estimates the operator norm of A in terms of the
matrix a is known as the Schur criterion:

Theorem. Let us define the numbers K1 and K2 as K1 = supl

∑
j |alj | and

K2 = supj

∑
l |alj |. Then ‖A‖2X,Y ≤ K1K2.

Proof. For any x =
∑

xjϕj , we use the Schwartz inequality to get that

‖Ax‖2Y =
∑

l

( ∑

j

aljxj

)2

≤
∑

l

∑

j

|alj |
∑

j

|alj | |xj |2 ≤

K1

∑

j

|xj |2
∑

l

|alj | ≤ K1K2‖x‖2X .

Now the assertion follows. ¤
Let {Xs} and {Ys} be two Hilbert scales with bases {ϕj | j ∈ Z0} and

{ϕ̃j | j ∈ Z0}, corresponding to sequences {ϑj} and {ϑ̃j} as in section 2.3.
For any s and r, {ϑ−s

j ϕj} and {ϑ̃−r
j ϕ̃j} are Hilbert bases of the spaces Xs and

Yr. According to (A2), for an operator A : Xs → Yr its Hilbert matrix is the
matrix {aij | i, j ∈ Z0}, where

aij = ϑ−s
j ϑr

i 〈Aϕj , ϕi〉. (A3)
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For the Hilbert scales as above let {Xc
s} and {Y c

s } be corresponding com-
plexified scales. For bases of these scales we shall often choose the complex
bases {ψj | j ∈ Z0} and {ψ̃j | j ∈ Z0}, where

ψj = 1√
2
(ϕj − iϕ−j), ψ−j = 1√

2
(ϕj + iϕ−j) ∀j ∈ N,

and similar with {ψ̃j}. Since 〈ψj , ψ̄k〉 = 〈ψj , ψ−k〉 = δj,k for any j, k (we
remind that 〈·, ·〉 is the complex-linear paring), then the Hilbert matrix for a
complex-linear operator A : Xc

s → Y c
r has the entries

aij = ϑ−s
j ϑr

i 〈Aψj , ψ−i〉. (A4)
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2. Integrable subsystems of Hamiltonian
equations and Lax-integrable equations

We consider a Hilbert scale {Zs} as in section 1.2, defined by means of a
sequence {θk | k ∈ Z̃ ⊂ Z} of algebraical growth: 0 < θk = C|k|m + o(|k|m) (if
originally the parameter-set Z̃ was an even subset of Zn, we re-parameterise it
by points of Z or Z \ {0}). Stretching linearly the index s we achieve m = 1,
see Proposition 1.1. Accordingly, below we assume that

C−1k ≤ ϑk ≤ Ck, k ∈ Z̃ ⊂ Z.

We provide the scale with a symplectic structure by means of a constant coeffi-
cient 2-form α2 = J̄ dz ∧ dz, where J̄ defines an anti selfadjoint automorphism
of the scale of a non-positive order −dJ ≤ 0. To a hamiltonian H,

H = 1
2 〈Az, z〉+ H(z),

where A is a selfadjoint morphism of the scale of order dA, the symplectic
structure corresponds the Hamiltonian equation

u̇ = J∇H(u) = J(Au +∇H(u)) =: VH(u), J = (−J̄)−1. (2.1)

We assume that the hamiltonian H is analytic quasilinear, that is, the func-
tional H is analytic on a domain Od ⊂ Zd, d ≥ dA/2, and defines an analytic
gradient map of order dH < dA,

∇H : Od → Zd−dH .

By interpolation, for any u ∈ Od the map ∇H(u)∗ defines a selfadjoint mor-
phism of the scale {Zs} of order dH for s ∈ [−d + dH , d] (see the Corollary in
section 1.2).

Denoting by d1 an order of the vector field VH we have:

d1 = dA + dJ ≤ 2d + dJ .

We do not assume that the flow maps of the equation are defined on the
whole domain Od (i.e., we do not assume that the equation can be solved for
any initial condition u(0) ∈ Od).

Quasilinear Hamiltonian PDEs with analytic coefficients have the form (2.1),
where Od usually equals to the whole space Zd and the gradient map ∇H is
analytic of some order dH for all sufficiently smooth spaces Zd. The following
three examples and their perturbations will be the main through our work:

2.1. Three examples.
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Example 2.1 (KdV equation., cf. Example 1.4). Let us take for a scale
{Zs | s ∈ Z} the scale {Hs

0(S1;R)} of 2π-periodic Sobolev functions with zero
mean value, defined in Example 1.1. We choose J = ∂/∂x, A = 1

4∂2/∂x2

and H(u) = 1
4

∫
u3 dx, so H(u) =

∫ (
− 1

8u′2 + 1
4u3

)
dx. Then equation (2.1)

becomes the Korteweg - de Vries equation (KdV):

u̇ =
1
4

∂

∂x
(uxx + 3u2). (KdV)

It is considered under the zero mean-value periodic boundary conditions:

u(t, x) ≡ u(t, x + 2π),
∫ 2π

0

u(t, x) dx ≡ 0,

which are satisfied automatically since we are looking for solutions in a space
Hs

0 . The gradient map Zd → Zd, u 7→ ∇H = 3
4u2, is analytic of zero order for

d ≥ 1 (see in Example 1.6).
Now we have ord A = dA = 2 and ord J = dJ = 1. ¤

Example 2.2 (higher KdV equations). The KdV equation is an equa-
tion from an infinite hierarchy of Hamiltonian PDEs, called the KdV-hierarchy
[DMN, McT, ZM]. The l-th equation from the hierarchy can be written as an
equation (2.1) in the same symplectic Hilbert scale ({Hs

0}, 〈J du, du〉). It has
a hamiltonian Hl of the form

Hl(u) =Kl

∫ 2π

0

(
(−1)lu(l)2+

+ 〈higher order terms with ≤ l − 1 derivatives〉
)

dx,

where Kl is a non-zero constant (H1 is just the KdV-hamiltonian). In partic-
ular, the hamiltonian H2 has the form

H2 =
1
8

∫
(u2

xx − 5u2uxx − 5u4) dx

and the corresponding Hamiltonian equation is the fifth order partial differen-
tial equation:

u̇ =
1
4
u(5) − 1

4
∂

∂x
(5u2

x + 10uuxx + 10u3).

The gradient map of the non-quadratic part of hamiltonian H2,

u(x) 7→ −1
4

(5u2
x + 10uuxx + 10u3),

defines an analytic morphism of the Sobolev scale {Hs
0} of order dH = 2 for

s ≥ 2. The order dA of the linear part equals 4 and dJ = 1. ¤
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Example 2.3 (Sine-Gordon equation). The Sine-Gordon (SG) equation
on the circle,

ü = uxx(t, x)− sinu(t, x), x ∈ S = R/2πZ, (SG)

is a semilinear equation with a bounded nonlinearity. Multiplying the equation
by u̇(t, ·) in L2(S), we get the a priori estimate:

1
2

d

dt

(|u̇|2L2
+ |u′x|2L2

) ≤ C|u̇|L2 ,

which implies for |t| ≤ T with any T a bound for the norm r(t) = |u̇(t)|L2 +
|u′x(t)|L2 in terms of r(0) and T . Accordingly, for any u0 ∈ H1(S) and u1 ∈
L2(S) the equation has a unique solution u(t, x),

u ∈ C(R,H1) ∩ C1(R, L2) ∩ C2(R,H−1),

such that u(0, x) = u0 and u̇(0, x) = u1. Moreover, if u0 ∈ Hs(S) and u1 ∈
Hs−1(S), then u ∈ C(R,Hs)∩C1(R,Hs−1). This is almost obvious, see [Paz].

The equation (SG) can be written in a Hamiltonian form in many different
ways.

1. The most straightforward way is to write (SG) as

u̇ = −v, v̇ = −uxx + sin u(t, x). (2.2)

To see that these equations are Hamiltonian, we take the symplectic scale({Zs = Hs(S)×Hs(S)}, α2 = 〈J̄dξ, dξ〉), where ξ = (u, v) ∈ Zs and J(u, v) =
(−v, u) (so J̄ = J). For a hamiltonian H we choose H = 1

2 〈Aξ, ξ〉+H(ξ), where
A(u, v) = (−uxx, v) and H(u, v) = − ∫

cosu(x) dx. Then ∇H(u, v) = (sin u, 0)
and the Hamiltonian equation ξ̇ = J∇H = J(Aξ + ∇H(ξ)) coincides with
(2.2).

The Hamiltonian form (2.2) is traditional (cf. [McK, FT]) and is convenient
to study explicit (“finite-gap”) solutions of (SG), but not to carry out detailed
analysis of the equation since the linear operator A as above defines a self-
adjoint morphism of the scale {Zs} of order two, which is not an order-two
automorphism (the inverse map A−1 defines a morphism of order 0, not -2).

2. To derive a hamiltonian form of the SG equation, convenient for its
analysis, we take the shifted Sobolev scale {Zs = Hs+1(S)×Hs+1(S)} , where
the space Z0 is given the H1-scalar product

〈ξ1, ξ2〉 =
∫

S

(
ξ′1x · ξ′2x + ξ1 · ξ2

)
dx , ξj = (uj(x), wj(x)),
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and any space Zs – the product 〈ξ1, ξ2〉s = 〈Asξ1, ξ2〉. Here As stands for
the sth degree of the differential operator A = −∂2/∂x2 + 1. Obviously, the
operator A defines an order one self-adjoint automorphism of the scale.

The operator
J(u,w) = (−

√
Aw,

√
A u)

defines an order one anti self-adjoint automorphism. For a symplectic 2-form
in the scale {Zs} we take the form β2 = 〈J̄dξ, dξ〉.

By Cos u we denote the function Cos u = − cos u + 1 − 1
2u2, and consider

the functional

H(u,w) =
∫

S

Cos u(x) dx.

It is analytic in any space Zs with s ≥ 0 and its gradient (with respect to the
H1-scalar product 〈·, ·〉) is13

∇H(u,w) = (A−1Cos′ u(x), 0) = (A−1(sinu− u), 0).

Since ord A−1 = −1, then ∇H is a one-smoothing analytic map, ∇H : Zs →
Zs+1 if s ≥ 0.

The functional H(ξ) = 1
2 〈ξ, ξ〉+ H(ξ) is a hamiltonian of the equation

ξ̇ = J∇H(ξ), (2.3)

which can be written as the system

u̇ = −
√

A w, ẇ =
√

A (u + A−1(Cos ′u(x)). (2.4)

The u-component of a solution for (2.4) satisfies the equation

ü = −A
(
u + A−1(Cos′ u(x))

)
= −Au− sin u + u = uxx − sin u,

i.e. the SG-equation.
In accordance with discussions in in the item 1, the flow-maps of the equa-

tion (2.3), St : Zs → Zs, are well defined for any t if s ≥ 0. These maps are
C1-smooth. This is obvious for integer s and remain true for real s [Paz]. In
particular, flow-maps of the linearised equation are well defined in Zs and equal
linearisations of the flow-maps St; so by Theorem 1.3′ they are symplectomor-
phisms.

We note that the (u, v)-variables as in equation (2.2) and (u,w)-variables as
in (2.4) are related by the linear isomorphism (u, v) 7→ (u,A−1/2v) = (u,w).
This map is not symplectic with respect to the symplectic forms α2 and β2.

13Indeed, 〈∇H(ξ), ξ1〉 = dH(ξ)(ξ1) =
R

Cos ′u(x)u1(x) dx = 〈A−1(Cos ′u, 0), ξ1〉.
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3. (Even periodic boundary conditions). If u(t, x) is any solution of (SG)
such that the initial conditions (u0(x), u1(x)) = (u(0, x), u̇(0, x)) are even pe-
riodic functions, i.e.,

u0(x) ≡ u0(x + 2π) ≡ u0(−x) (EP)

and similar with u1, then u−(t, x) = u(t,−x) is another 2π-periodic solution
for (SG) with the same initial conditions. Since a solution of the initial-value
problem for (SG) is unique, then u−(t, x) ≡ u(t, x). That is, the space of even
periodic functions is invariant under the SG-flow and we can study the equation
under the boundary conditions (EP). These conditions clearly imply Neumann
boundary conditions on the half-period:

(
u′0x, u′1x

)
(0) =

(
u′0x, u′1x

)
(π) = (0, 0). (N)

The former can be viewed as a “smoother version” of the latter since for any
smooth even periodic function all its odd-order derivatives (not only the first
one) coincide at x = 0 and x = π.

Denoting for any real s by Ze
s a subspace of Zs, formed by even functions,

we observe that the equation (SG)+(EP) can be written in the Hamiltonian
form (2.3)=(2.4) in the symplectic scale

({Ze
s}, β2 = 〈J̄dξ, dξ〉).

As before, the flow-maps of the equation (2.3), (EP) define C1-smooth sym-
plectomorphisms of the symplectic spaces (Ze

s , β2), s ≥ 0.
We note that for s = 1 the space Ze

1 is formed by the vector-functions from
H2[0, π]×H2[0, π] which satisfy (N) (the functions are assumed to be extended
to the segment [0, 2π] in the even way). That is, for solutions of the equation
(SG) in the Sobolev space H2, the boundary conditions (OP) and (N) are
equivalent.

4. (Odd periodic boundary conditions). Similarly, the SG-equation under
the odd periodic boundary conditions

u(t, x) ≡ u(t, x + 2π) ≡ −u(t,−x) (OP)

can be written in the Hamiltonian form (2.3)=(2.4) in the symplectic scale({Zo
s}, β2 = 〈J̄dξ, dξ〉), where

Zo
s = {ξ(x) ∈ Zs | ξ satisfies (OP) }.

These boundary conditions imply the Dirichlet:
(
u0, u

′
1

)
(0) =

(
u0, u

′
1

)
(π) = (0, 0). (D)

For s = 0 or 1, the space Zo
s is formed by even extensions to the segment

[0, 2π] of vector-functions from Hs+1([0, π];R2) which satisfy (D). So for solu-
tions of (2.4) in the Sobolev spaces H1 and H2 the boundary conditions (OP)
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and (D) are equivalent. In this case (i.e., for s = 0 and s = 1) it is convenient to
replace the odd periodic boundary conditions by Dirichlet (cf. section II.2.4).

In particular, for s = 0 the phase-space is
◦
H1([0, π];R2), where the space

◦
H1 is

formed by vector-functions from H1 which vanish for x = 0 and x = π (while

in terms of the (u, v)-variables the phase-space is
◦
H1[0, π]× L2[0, π]). ¤

2.2 Integrable subsystems.
We assume that equation (2.1) possesses an invariant submanifold T 2n ⊂

Od ∩ Z∞, such that restriction of the equation to T 2n is integrable. For some
important examples the manifold T 2n may have singularities and the restricted
symplectic form α2 |T 2n may degenerate at some points. Since our objects are
analytic, these degenerations can only happen on singular subsets of positive
codimension and do not affect the final KAM-results which neglect subsets of
small measure: at some point we shall cut out the singular subsets with their
small neighbourhoods. But our preliminary arguments are global . To carry
them out we have to develop global notations. We shall do it to an extent
which is sufficient to cover main examples of integrable Hamiltonian PDEs.

We assume that T 2n = Φ0(R×Tn) where Tn = {z} is the standard n-torus
and R is a connected n-dimensional real analytic set which is the real part of
a connected complex analytic subset Rc of a domain Πc ⊂ CN .14 By Rc

s we
denote any proper analytic subset of Rc which contains its singular part and
denote by Rs the real part of Rc

s, i.e., Rs = Rc
s ∩R.

We assume that the map Φ0 is analytic and the form α2 |T 2n does not
degenerate identically:

i) The map Φ0 : R × Tn → Zl is analytic for each l. That is, for some
δ > 0 it extends to an analytic map Πc × {|Im z| < δ} → Zc

l .
ii) Rc contains a proper analytic subset Rc

s1 such that the analytic 2-form
Φ∗0α2 is non-degenerate in (R \ (Rs ∪Rs1))×Tn, where Rs1 = Rc

s1 ∩R.
We call Rc

s1 and its real part the sets of degeneracy of the form Φ∗0α2. For
brevity we re-denote Rs := Rs ∪ Rs1 and similar re-denote Rc

s. We set Rc
0 =

Rc\Rc
s and R0 = R\Rs. Since Rs and Rc

s comprise singularities of the analytic
sets R and Rc as well as of the map Φ0 (i.e., they contain the points where the
linearisation is not well-defined or its rank drops), then the sets R0 and Rc

0 are
smooth analytic manifolds and the map

Φ0 : R0 × Tn → Zl , Φ0(R0 × Tn) =: T 2n
0 ,

is an analytic immersion.
Now we specify the integrability of equation (2.1), restricted to T 2n:

14That is, Rc is formed by zeroes of an analytic map Πc → CN−n such that at some
points of Πc its linearisation has full rank. For elementary facts concerning analytic sets,
real and complex, see [Mil] and [GR], sections II, III.
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iii) The set T 2n
0 is a smooth analytic submanifold of each space Zl, invariant

for the equation (2.1), as well as the tori Tn(r) = Φ0({r}×Tn), r ∈ R0.
The restricted to Tn(r) equation takes the form ż = ω(r), where ω
extends to an analytic map ω : Πc → Cn.

Due to ii) and iii), the manifold T 2n
0 is filled with smooth time-quasiperiodic

solutions of the equation (2.1).
The frequency map r 7→ ω(r) is assumed to be non-degenerate:
iv) for almost all r ∈ R0,

the tangent map ω∗(r) : TrR0 → Rn is an isomorphism. (2.5)

The nondegeneracy property (2.5) can be viewed as an amplitude-frequency
modulation: changing the amplitude vector r one can change the frequency
vector ω in a prescribed direction.

By Theorem 1.2 the equation restricted to the symplectic manifold T 2n
0 is

Hamiltonian. Because conditions iii), iv), this equation is integrable:

Lemma 2.1. A Hamiltonian equation (2.1) which satisfies i) – iv) is Liouville
– Arnold integrable in T 2n

0

Proof. Since the map r 7→ ω(r) is analytic non-degenerate, then for almost all r
components of the vector ω(r) are rationally independent and the flow ż = ω(r)
on Tn(r) is ergodic (see [A1]). A torus Tn(r) with the ergodic flow is Lagrangian
in T 2n

0 . Indeed,15 since the flow-maps of equation (2.1) are symplectic, then
their restrictions to the torus preserve the form Ω2 = α2 |T n(r). Since the
flow on the torus is ergodic, then Ω2 =

∑
aij dzi ∧ dzj with some constant

coefficients aij . A coefficient aij equals averaging of Ω2 along the two-torus
{z | zl = 0 if l 6= i, j}. So it vanishes because the form Ω2 is exact as well as
the form α2. By continuity, all the tori Tn(r) are Lagrangian.

For any r ∈ R0 we choose coordinates r1, . . . , rn in the vicinity of the torus
Tn(r) in T 2n

0 and consider the functions

fj : T 2n
0 3 Φ0(r, z) 7→ rj , j = 1, . . . , n.

As fj ’s are constant on each torus Tn(r), then for any z ∈ Tn(r) and every
tangent vector ξ ∈ Π := TzT

n(r) we have:

0 = 〈dfj(z), ξ〉 = −ω2(Vfj (z), ξ).

Thus, the vectors Vfj (z) lie in the skew-orthogonal complement to Π, equal
Π because the torus Tn(r) is Lagrangian. Hence, the functions fj ’s are in
involution: {fj , fk} = Vfj (fk) = 0 for all j, k. Similarly each fj commutes with

15we repeat arguments from [Her1]
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the hamiltonian of the equation and the lemma follows since the equation has
n commuting integrals of motion. ¤

By the last lemma and the Liouville – Arnold theorem, R0 can be covered
by a countable system of domains R0j , R0 = R01 ∪ R02 ∪ . . . , such that the
equation (2.1) restricted to each manifold T 2n

j = Φ0(R0j ×Tn) admits action-
angle variables (p, q) with actions p ∈ Pj b Rn and angles q ∈ Tn. I.e.,
ω2 = dp ∧ dq and the equation restricted to T 2n

j takes the form

ṗ = 0, q̇ = ∇h(p), h = H ◦ Φ0. (2.6)

Besides, the actions p depend only on r.
Constructing the action-angles (p, q) we can choose the cycles Q1, . . . , Qn,

Ql = {(q1, . . . , qn) | ql ∈ S1 and qj = 0 for j 6= l },

to be homotopic to any n cycles forming a basis of H1(Tn;Z). Our choice is

Ql ∼ Zl := {pt} × · · · × S1 × · · · × {pt} ⊂ Tn (2.7)

(the circle stands on the lth place).

Lemma 2.2. Under the assumptions i)-iii) and the choice (2.7) the gradient
∇h(p(r)) equals ω(r). If in addition holds (2.5), then q = z + q0(r).

Proof. Since ∂h/∂pj equals to the large-time limit of the number of intersec-
tions of any trajectory on Tn(r) with the cycle Qj , divided by the time, and ωj

equals to the similar limit with Qj replaced by the homotopic cycle Zj , then
the first assertion follows.

To prove the second we note that (d/dt)(q−z) = ∇h−ω = 0, so q−z = const
along each trajectory. By (2.5), the trajectories are dense in a torus Tn(r) with
typical r and the second assertion follows by continuity. ¤

2.3 Lax-integrable equations.
Let us consider a Hamiltonian PDE, supplemented by appropriate boundary

conditions, and write it in the Hamiltonian form

u̇ = J∇H(u) (2.8)

in some symplectic Hilbert scale ({Zs}, α2 = 〈J̄dz, dz〉). This equation is called
Lax-integrable (or an equation of Lax type)16 if there exist linear operators
Lu,Au which depend on u ∈ Z∞ and define linear morphisms of finite orders

16It would be more systematic to introduce a notion of a Lax-integrable boundary value
problem, but we do not wish to change the received terminology.
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of some additional real or complex Hilbert scale {Zs}, such that a curve u(t) is
a smooth solution of (2.8) if and only if

d

dt
Lu(t) = [Au(t),Lu(t)]. (2.9)

The operators Lu and Au are said to form an L-A pair (or a Lax–pair of the
equation (2.8).

We specify dependence of the L,A-operators on u and assume from now on
existence of integers s′, d′ such that for all s ≥ s′ the maps

Zs → L
(
Zd, Zd−d′

)
, u 7→ Lu and u 7→ Au (2.10)

are analytic, provided that d ≤ s. (This is a non-restrictive assumption which
holds for all ‘classical’ Lax-integrable PDEs.) Due to this assumption, the l.h.s.
of (2.9) is well defined for any C1-smooth curve u(t) ∈ Zs if s ≥ s′.

We abbreviate Lt = Lu(t) andAt = Au(t), where u(t) is a smooth solution for
(3.4). A crucial property of the L,A-operators is that spectrum of the operator
Lt is time-independent and its eigen-vectors are preserved by the flow, defined
by the operators At:

Lemma 2.3. Let χ0 ∈ Z∞ be a smooth eigenvector of L0, i.e., L0χ0 = λχ0.
Let us also assume that the initial-value problem

χ̇ = Atχ, χ(0) = χ0, (2.11)

has a unique smooth solution χ(t) ∈ Z∞. Then

Ltχ(t) = λχ(t) (2.12)

for every t.

Proof. Let us denote the l.h.s. of (2.12) by ξ(t), the r.h.s. – by η(t) and
calculate their derivatives. We have:

d

dt
ξ =

d

dt
Lχ = [A,L]χ + LAχ = ALχ = Aξ

and
d

dt
η =

d

dt
λχ = λAχ = Aη .

Thus, both ξ(t) and η(t) solve the problem (2.11) with χ0 replaces by λχ0 and
coincide for all t by the uniqueness assumption. ¤

In many important examples of Lax-integrable equations, {Zs} is the So-
bolev scale of L-periodic in x (vector-) functions and L,A are u-dependent
differential operators, acting on complex vector-functions. In this case it is
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natural to take for the scale {Zs} the Sobolev scale of L-periodic complex
vector-functions. So L-periodic (discrete smooth) spectrum of the operator
Lu is an integral of motion for the equation (2.8) if the linear equation (2.11)
defines a flow in the space of smooth L-periodic vector-functions. The set of
integrals which we obtain in this way usually is incomplete. To get missing
integrals we note that an L-periodic in x solution u(t, x) can be also treated
as an Lm-periodic solution for any m ∈ N. Accordingly, we can consider the
same L,A-operators under mL-periodic boundary conditions and take for {Zs}
the Sobolev scale of mL-periodic vector-functions. Due to the lemma, the mL-
periodic spectrum of L is an integral of motion if the equation (2.11) defines a
flow in the corresponding space Z∞. This set of integrals contains the initial one
since any L-periodic in x eigenfunction of L is an mL-periodic eigenfunction
as well.

Similar the L-antiperiodic smooth spectrum of the operator Lt is an integral
of motion provided that the operators Lt and At define linear morphisms of
the corresponding scale and the equation (2.11) defines a flow in the space of
smooth L-antiperiodic functions.

In many cases the set of integrals of motion of a Lax-integrable equation,
formed by the L-periodic and L-antiperiodic spectra, is complete and can be
used to construct invariant manifolds T 2n as above.

Both KdV and SG equations are of Lax type. Below we show how to use
the periodic and antiperiodic spectra of their L-operators to obtain for these
equations the manifolds T 2n.
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3. Finite-gap manifolds for the
KdV equation and theta-formulas

In this section we study famous finite-gap solutions of the KdV equation
under zero-meanvalue periodic boundary conditions:

u̇ =
1
4

∂

∂x
(uxx + 3u2), u(t, x) ≡ u(t, x + 2π),

∫ 2π

0

u dx ≡ 0. (KdV)

The finite-gap solutions fill invariant submanifolds T 2n ⊂ Hs
0(S1) with inte-

grable dynamics on them, as in section 2.2. To study the manifolds T 2n we use
the Its - Matveev formula which represents the finite-gap solutions in terms of
theta-functions. This formula does not apply well to small-amplitude solutions
and to study the manifolds near the origin we use normal forms techniques.
The two approaches jointly provide us with the information we need to study
embeddings of the manifolds T 2n to function spaces and examine their persis-
tence under perturbations of the hamiltonian.

The approach to study finite-gap manifolds we develop in this section is
rather general. In the next section we apply it to the Sine-Gordon equation.

3.1. Finite-gap manifolds.
The L,A–operators for the KdV equation are:

Lu = − ∂2

∂x2
− u, Au =

∂3

∂x3
+

3
2
u

∂

∂x
+

3
4
ux.

Indeed, calculating the commutator [A,L]v one sees that most of the terms
cancel and there is nothing left except ( 1

4uxxx + 3
2uux)v. Thus, [A,L] is an

operator of multiplication by the r.h.s. of KdV and the equation can be written
in the form (2.9). For the scale {Zs} we take one of the following scales of
complex Sobolev functions: or the scale of 2π-periodic functions, or the scale
of 2π-antiperiodic functions, or the scale of 4π-periodic ones.

It is well-known [Ma, MT] that the spectrum of the Sturm - Liouville oper-
ator Lu acting on twice differentiable functions of period 4π, is a sequence of
simple or double eigenvalues {λj | j ≥ 0}, tending to infinity:

λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < · · · ↗ ∞.

Corresponding eigenfunctions are smooth if the potential u(x) is. The spectrum
{λj} can be also described without doubling the period: it equals the union
of the periodic and antiperiodic spectra of the operator Lu, considered on the
segment [0, 2π]. Below we denote λ = {λ0, λ1, . . . } and refer to the sequence
λ = λ(u) as to the periodic/antiperiodic spectrum of the operator Lu.
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Example 3.1. For u = 0 we have λ2k = k2/4, k ≥ 0, and λ2l−1 = l2/4, l ≥ 1.
Corresponding eigen-functions are (2π)−1/2 cos kx/2 and (2π)−1/2 sin lx/2. ¤

If u(t, x) is a smooth x-periodic function, then the linear equation

v̇ = Au(t,x)v, v(0, x) = v0(x),

has a unique smooth x-periodic solution v(t, x) for any given smooth periodic
initial data v0(x) (this follows from an abstract theorem in [Paz], section 5.2).
Hence, Lemma 2.3 with {Zs = Hs(R/4πZ)} implies that the sequence λ is an
integral of motion:

λ(u(t, ·)) is time-independent if u(t, x) is a solution of the KdV. (3.1)

The segment ∆j = [λ2j−1, λ2j ], j = 1, 2, . . . , is called the jth spectral gap.
The gap ∆j is open if λ2j > λ2j−1 and is closed if λ2j = λ2j−1. See Fig. 3.1.

Fig. 3.1. A spectrum of a 2-gap solution, V = (1, 3) (the gap ∆2 is
closed and the gaps ∆1, ∆3 are open)

Let us fix any integer n-vector V,

V = (V1, . . . ,Vn) ∈ Nn, V1 < · · · < Vn,

and consider a set T 2n
V ,

T 2n
V = {u(x) | the gap ∆j(u) is open iff j ∈ {V1, . . . ,Vn}}.

This set equals to the union of isospectral subsets Tn(r) = Tn
V (r) with pre-

scribed lengths of the open gaps:

T 2n
V =

⋃

r∈Rn
+

Tn
V (r), where Tn

V (r) = {u(x) ∈ T 2n
V | |∆Vj | = rj ∀ j}.
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By (3.1) each set Tn
V (r) is invariant for the KdV-flow.

Remarkably, the whole spectrum λ of an n-gap potential is defined by the n-
vector r and analytically depends on it [GT]. Each set Tn

V (r) is not empty and is
an analytic n-torus in any space Hs

0 = Hs
0(S1). The tori Tn

V (r) are analytically
glued together, so T 2n

V is an analytic submanifold of each space Hs
0 (even

more, each finite-gap potential u(x) ∈ Tn
V (r) is an analytic function!). – These

are well-known results from the inverse spectral theory of the Sturm-Liouville
operator Lu, see [Ma] and [Mo2, GT, MT].

So the inverse spectral theory provides us with KdV-invariant 2n-manifolds
foliated to invariant n-tori. In the next section 3.2 we shall construct analytic
maps Φ0 which represent these manifolds in the form Φ0(R×Tn) as in section 2.

When any gap – say, ∆Vn
– shrinks to a point, the n-gap potential u(x) ∈

Tn
V (r) degenerates to an (n − 1)-gap potential from T 2n

(V1,...,Vn−1)
. This degen-

eration occurs in an analytic way:

Theorem 3.1. The closure T 2n
V of T 2n

V in any space Hs
0 , s ≥ 1, is a 2n-

dimensional analytic submanifold of Hs
0 , diffeomorphic to R2n = {z}. This

manifold contains all finite-gap manifolds T 2m
Vm , where Vm ⊂ V (m < n). It

passes through the origin and its tangent space there is spanned by the vectors
e±l ∈ Hs

0 , l = 1, . . . , n, where

e+
l =

1√
π

cosVlx =
∂

∂z2l−1
, e−l = − 1√

π
sinVlx =

∂

∂z2l
. (3.2)

For any function u = π1/2
∑j=∞

j=1 (u+
j cos jx− u−j sin jx) from T ≤2n

δ we have:

z2k−1 = u+
Vk

+ O(‖u‖2s), z2k = u−Vk
+ O(‖u‖2s), k = 1, . . . , n. (3.3)

The z-coordinates are such that

z2
2j−1 + z2

2j = r2
j ∀ j.

The second assertion of the theorem justifies the notation

T 2n
V = T ≤2n

V = T ≤2n

which we use from now on. We call both manifolds T ≤2n and T 2n the n-gap
manifolds.

For the theorem’s proof see [GT, MT] and [Kap, BKM]. For our purposes we
need only a local version of this result, related to the set T ≤2n

δ = T 2n∩Oδ(Hs
0).

Below we state it and give an elementary proof.
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Theorem 3.1′. The set T ≤2n
δ with sufficiently small positive δ satisfies obvious

local versions of all assertions of Theorem 3.1.

Proof. To simplify notations we suppose that V = (1, . . . , n) and abbreviate
Oδ(Hs

0) to Oδ. Let us take any function u(x) ∈ Oδ and write it using the
trigonometric basis (1.1):

u(x) = π−
1
2

∞∑

k=1

(u+
k cos kx− u−k sin kx), ‖u‖s = γ < δ.

Let us consider the differential operator L = Lu = −∂2/∂x2− u, acting on 4π-
periodic functions. It is an γ-small perturbation of the operator L0 = −∂2/∂x2.
Its eigenvalues λ2j−1(u), λ2j(u) are Cγ-close to the double eigenvalue j2/4
of the operator L0 since by Rellich’s theorem [Kat2] they analytically de-
pend on u. An invariant plane Πj = Πj(u) of the operator Lu, correspond-
ing to the eigenvalues λ2j−1(u) and λ2j(u), is Cγ2-close to the eigen-plane
Π0

j of the operator L0, spanned by the vectors φj0 = (2π)−1/2 cos jx/2 and
φ−j0 = −(2π)−1/2 sin jx/2 (see Example 3.1).17 Since the plane Πj analytically
depends on u, than it has a uniquely defined analytic in u basis {φj(u), φ−j(u)}
such that: 1) the basis is orthonormal with respect to the scalar product in
L2(R/4πZ), 2) for u = 0 it equals {φj0, φ−j0}, and 3) φj(u) is a unit vector in
Πj which is the closest to the subspace formed by even functions.

This basis is well defined if δ is not too big. Since the plane Πj(u) is O(γ2)-
close to the plane Π0

j , then the vectors φ±j(u) are O(γ2)-close to φ±j0.
Let us take u be equal to εv, where v(x) = π−

1
2

∑∞
k=1(v

+
k cos kx−v−k sin kx)

∈ Hs
0 and ε ¿ 1. For j ≥ 1 let Mj(εv) be a matrix of the selfadjoint operator

−Lεv |Πj in the basis, constructed above. It analytically depends on ε. Since
φ±j(εv) is ε2-close to φ±j0, then ∂

∂εMj(εv) |ε=0 equals to the derivative in ε at
ε = 0 of a matrix of the quadratic form of the operator −Lεv, restricted to the
plane Π0

j and calculated in the basis {φ±j0}. Therefore,

∂

∂ε
Mj(εv) |ε=0 =

(
aj
1 aj

12

aj
12 aj

2

)
,

where

aj
1 =

∫ 4π

0

v(x)ϕj0(x)2 dx =
1
π

∫ 2π

0

v(x) cos2
1
2
jx dx =

1
2
v+

j ,

aj
2 =

∫ 4π

0

v(x)ϕj0(x)ϕ−j0(x) dx =
1
π

∫ 2π

0

v(x) sin2 1
2
jx dx = −1

2
v+

j ,

aj
12 =

∫ 4π

0

v(x)ϕ−j0(x)2 dx = − 1
π

∫ 2π

0

v(x) sin
1
2
jx cos

1
2
jx dx =

1
2
v−j .

17to prove this assertion one can write the spectral projection to Πj as a contour integral
(see [Kat 2]), decompose it in series in γ and observe that the term corresponding to γ
vanishes.
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For a 2 × 2-matrix M its deviator MD equals to the traceless matrix M −
( 1
2 tr M)E, where E is the identity 2 × 2-matrix. Following [Kap] we consider

the map

MD : u(x) 7→ (MD
1 (u),MD

2 (u), . . . ), u ∈ Oδ.

Let Hs be the space of all sequences L = (L1, L2, . . . ) of traceless symmetric

2 × 2-matrices with the finite norm
(∑∞

j=1 j2s|Lj |2
)1/2

, and let Hs
n be a sub-

space formed by sequences (L1, . . . , Ln, 0, . . . ). Then T ≤2n
δ =

(
MD

)−1(Hs
n).

Straightforward calculations show that the map MD : Oδ −→ Hs is analytic if
s ≥ 1.18 Due to our preceding arguments linearisation of this map at zero sends
a function v = π−

1
2

∑∞
j=1(v

+
j cos jx−v−j sin jx) to the sequence (MD

1 ,MD
2 , . . . ),

where

MD
j (v) =

1
2

(
v+

j v−j
v−j −v+

j

)
,

so it defines an isomorphism of the two spaces. Now by the implicit function
theorem (see [La]), the set T ≤2n

δ = (MD)−1(Hs
n) is an analytic submanifold of

Oδ such that
i) the map MD composed with the natural projection Hs → Hs

n defines its
analytic isomorphism with a neighbourhood of the origin in Hs

n,
ii) the tangent space T0T ≤2n

δ equals (MD(0)∗)−1Hs
n.

By ii), the tangent space T0T ≤2n
δ is spanned by the vectors e±1 , . . . e±n defined

in (3.2), as states Theorem 3.1′.
For j = 1, . . . , n let us write MD

j (u) as

MD
j =

1
2

(
z2j−1 z2j

z2j −z2j−1

)
.

Then z = (z1, . . . , z2n) is a coordinate system in Hs
n, so by i) the functions

zj ◦MD form a coordinate system on T ≤2n
δ . For any function u ∈ T ≤2n

δ the
relations (3.3) clearly hold. So the tangent vector ∂/∂z2l−1 ∈ T0T ≤2n

V equals
e+
l and ∂/∂z2l equals e−l .

By construction of the matrix MD
j , a size of the j-th open gap rj = |∆j |

equals to the difference of its eigenvalues and equals z2
2j−1 + z2

2j . The theorem
is proven. ¤

For further use we note that our calculations prove the following small-gap
spectral asymptotic for a small-amplitude potential u = π−1/2

∑∞
k=1 (u+

k cos kx

18even if s = 0 – see [Kap].
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−u−k sin kx):

λ2j−1 =
j2

4
− 1

2
(|u+

j |2 + |u−j |2
)1/2 + O(‖u‖2s) ,

λ2j =
j

4

2

+
1
2
(|u+

j |2 + |u−j |2
)1/2 + O(‖u‖2s) ,

λ0 = O(‖u‖2s) ,

(3.4)

for any s ≥ 1. Indeed, λ2j−1 and λ2j are eigenvalues of the matrix

Mj(u) =
1
2

(
u+

j u−j
u−j −u+

j

)
+ O(‖u‖2s),

so the first two relations in (3.4) follows since the eigenvalues analytically de-
pend on u. The classical perturbation theory, applied to the single eigenvalue
λ0, implies the last relation.

The way to study local (near the origin) structure of finite-gap manifolds we
have described, is rather general and applies to other Lax-integrable equations:
locally they are quite similar. On the contrary, global structure of finite-gap
manifolds can be rather different. Cf. section 4 and see [Kap, KKM] for global
coordinates MD

j in the KdV-case.

Since restriction of the symplectic form α2 to the tangent space T0T ≤2n
V is

non-degenerate by (3.2), then it also is non-degenerate in the manifold T ≤2n
δ ,

provided that δ > 0 is sufficiently small. It is known since the first works
on space-periodic solutions of KdV [Lax1, N] that each torus Tn(r) (and the
whole manifold T ≤2n

δ ) are invariant for the vector fields of all equations from
the KdV hierarchy, see Example 2.2 and [DMN, MT, ZM]. So KdV restricted
to T ≤2n

δ has n commuting integrals of motion H0, . . . ,Hn−1 (where H1 is the
KdV-hamiltonian). SinceHj = const

∫
u(j)2+. . . dx (the dots stand for higher-

order terms) and u(x) = π−1/2
∑(

u+
k cos kx−u−k sin kx

)
, where u+

Vk
= z2k−1 +

O(|z|2), u−Vk
= z2k + O(|z|2) and u±l = O(|z|2) if l 6= Vk for all k, then near the

origin a hamiltonian Hm |T ≤2n
δ

has the following form:

Hm(z) = Cm

n∑

j=1

V2m
j

(
z2
2j−1 + z2

2j

)
+ O(|z|3).

The system of quadratic forms
∑V2m

j (z2
2j−1 + z2

2j), m = 0, . . . , n − 1, is non-
degenerate in the sense that determinant of the matrix {V2m

j | 1 ≤ j ≤ n, 0 ≤
m ≤ n − 1} is nonzero (due to Vandermonde). Therefore Vey’s version of
the Liouville – Arnold theorem near a singularity provides us with analytic

49



Birkhoff coordinates, see [Vey, Ito]. Also see Appendix 1 in [BoK2], where
this result is obtained without Vey’s theorem and without the extra integrals
of motion, using instead given below in section 3.2 Lemma 3.3 (the lemma’s
proof, presented in Appendix 6 is independent of Theorem 3.2). We arrive at
a result which specifies Theorem 3.1′:

Theorem 3.2. If δ is sufficiently small and s ≥ 1, then there exists δ1 > 0
and an analytic map

U : Oδ1(R2n
y ) → T ≤2n

V ⊂ Hs
0 , y 7→ U(·; y),

such that its image is contained in T ≤2n
δ . The transformation y 7→ z =

z(U(·, y)) is a diffeomorphism of the form z = y + O(|y|2) (so y(0) = 0).
Besides,

1) U∗α2 =
∑n

l=1 V−1
l dy2l−1 ∧ dy2l,

2) pull-back under this map of the hamiltonian of the KdV equation is an
analytic function hn of the arguments y2

1 + y2
2 , . . . , y2

2n−1 + y2
2n,

3) for any l ≤ n, the submanifold formed by potentials u(x) such that |∆Vl
| =

0 corresponds to the subspace {y | y2l−1 = y2l = 0},
4) the finite-gap tori T 2n(r) in the y-coordinates take the form {y2

2l−1+y2
2l =

Cl(r)}.
The last assertion holds since by the Vey theorem the hamiltonians H0, . . . ,

Hn−1 all are functions of y2
2l−1 + y2

2l and since they are constant on each finite-
gap torus.

The coordinate y provide us with analytic action-angle variables (I, q) on
the manifold T 2n

V , where

Ij =
1

2Vj
(y2

2j−1 + y2
2j), qj = Arg (y2j−1 + iy2j). (3.5)

These coordinates are symplectic since U∗α2 = dI ∧ dϕ by the first assertion
of Theorem 3.2. The KdV-hamiltonian is an analytic function hn(I) of the
actions I and the KdV-equation restricted to T ≤2n

V takes the form

İ = 0, q̇ = ∇hn(I).

Abusing notations, we denote the map U , written in the (I, q)-variables, also
as U . Then the finite-gap solutions which fill the n-gap manifold T 2n

δ can be
written as

u(t, x) = U(x; I, q + t∇hn(I)). (3.6)

For further usage we note that since a point U(y) has z-coordinate z =
y+O|y|2 and since by (3.2) a point in T ≤2n

V with a coordinate z is the function
π−1/2

∑
(z2l−1 cosVlx− z2l sinVlx) + O|z|2, then

U(x; I, q) = π−1/2
∑√

2VlIl (cos ql cosVlx− sin ql sinVlx) + O(I)

= π−1/2
∑√

2VlIl cos(ql + Vlx) + O(I).
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By the last assertion of Theorem 3.2 the actions Ij are functions of the radii
r1 > 0, . . . , rn > 0. These functions analytically extend to the origin:

Lemma 3.1. Each action Ij is an analytic at zero function of r2
1, . . . , r

2
n of

the form Ij = r2
j

2Vj
(1 + O(|r|2)).

Proof. We recall that r2
j = z2

2j−1+z2
2j and denote by w±j the complex numbers

wj = z2j−1 + iz2j = rje
iϕj , w−j = wj , j = 1, . . . , n.

Since Ij is an analytic at zero function of z, then it can be written as a con-
vergent series Ij =

∑
s∈Z2n

≥0
asw

s, where Z≥0 = N∪{0} and ws = w
s−n

−n . . . wsn
n .

Or

Ij =
∑

s∈Z2n
≥0

aj
s

n∏
p=1

rsp+s−p
p eiϕp(sp−s−p).

Since each Ij does not depend on the angles ϕ but only on the radii r1, . . . , rn,
then as 6= 0 only if sp = s−p for each p, i.e. s = (l, l) for some n-vector l ∈ Zn

≥0.
Then Ij =

∑
l∈Zn

≥0
bj
l r

2l, bj
l = aj

l,l. By the third assertion of Theorem 3.2, Ij

vanishes with rj . It means that bj
l = 0 if lj = 0; so Ij equals r2

j

2Vj
times an

analytic function of r2
1, . . . , r

2
n. Since y = z + O(|z|2), then I2

j − r2
j /(2Vj) =

O(|z|3) and the analytic function as above is (1 + O(|r|2)). ¤

3.2. The Its – Matveev theta-formulas.
To check that the n-gap manifolds T ≤2n

V of the KdV equation possess the
properties i)-iv) from section 2.2, we have to present an analytic map Φ0 as in
section 2.2 and to study its properties. We shall write the map Φ0 in terms
of theta-functions, following the works [D, BB]. An alternative presentation
of the small-amplitude part T ≤2n

δ of the n-gap manifold T ≤2n
V in the desired

form, is given by Theorem 3.2, and formula (3.6) can be used to construct the
map Φ0(r, z) for |r| ¿ 1. The reader can skip this section and just take for
granted that each n-gap torus Tn

V is filled with solutions, given by the formula
(3.17) below, where the function G(z; r) and the vector W (r) are analytic in
z ∈ Tn, r ∈ Rn

+.
Our notations “almost” agree with [BB] and mostly agree with [D]. All

results on Riemann surfaces, given without a reference, can be found in [S].
Let us take any n-gap potential u(x) ∈ Tn

V (r) and denote by E1(r) < E2(r) <
· · · < E2n+1 end points of the open gaps plus λ0 (so E1 = λ0 and ∆V1 =
[E2, E3], . . . , ∆Vn = [E2n, E2n+1]), see Fig. 3.1, 3.2. The Riemann surface
Γ = Γ(r) of genus n,

Γ = {P = (λ, µ) | µ2 = R(λ; r) :=
2n+1∏

j=1

(λ− Ej(r))},
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has branching points at E1, . . . , E2n+1 and ∞.
After the curve Γ is cut along ovals which lie above the segments [E1, E2], . . . ,

[E2n−1, E2n], [E2n+1,∞], it falls into two sheets Γ+ and Γ−, chosen in such a
way that µ is positive on the upper edge of the cut [E2n+1, E∞] in Γ+. We
denote by π the projection

π : Γ → C ∪ {∞} , π(P ) = λ ,

and by τ the anti holomorphic involution of Γ,

τ : Γ → Γ, (λ, µ) 7→ (λ,−µ)

(its linearisations define half-linear complex maps). The cuts as above are
invariant for τ , as well as the sheets Γ+,Γ−.

Let a1, . . . , an be the ovals in Γ lying above the open gaps ∆V1 , . . . , ∆Vn

(i.e., aj = π−1∆Vj ). We supplement them by n b-circles b1, . . . , bn as in Fig.
3.2.

Fig. 3.2. Circles on Γ

The b-circles lie in Γ+ and we choose them in such a way that for each j the
circle τ(bj) equals bj as a set.19 Since τ inverts orientations of the circles, then

τ(bj) = −bj , j = 1, . . . , n. (3.7)

Because R(λ) is negative on the gaps (E2j , E2j+1), the µ-components of the
points from a-ovals are pure imaginary and the ovals are fixed for τ :

τ(aj) = aj , j = 1, . . . , n. (3.7′)

19For this end the loops π(bj) should be invariant for the complex conjugation λ 7→ λ.
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Moreover, there are no fixed points of τ outside these ovals. The a- and b-circles
are chosen in such a way that they have the canonical intersection matrix:

ai ◦ aj = bi ◦ bj = 0, ai ◦ bj = δij .

Next we take a basis dω1, . . . , dωn of holomorphic differentials on Γ, nor-
malised by the conditions

〈dωj , ak〉 :=
∮

ak

dωj = 2πiδjk.

These differentials exist and are uniquely defined by the normalisation. Since
〈dωj , ak〉 = 〈τ∗dωj , τak〉 = 〈τ∗dωj , ak〉, then 〈−τ∗dωj , ak〉 = −〈dωj , ak〉 =
2πiδjk. Each differential −τ∗dωj is holomorphic and meets the normalisation.
So it equals dωj :

−τ∗dωj = dωj . (3.8)

Since the differentials (λl/µ) dλ, l = 0, . . . , n− 1, are holomorphic in Γ and
the space of holomorphic differentials is n-dimensional (see [S, ZM]), then each
dωj can be written as

dωj =
polynomial of λ degree ≤ n− 1

µ
dλ. (3.9)

By (3.8) the polynomial in the numerator has real coefficients.
The Riemann matrix B = B(r) = (Bjk) of the curve Γ is defined as the

matrix of b-periods of the differentials dωj :

Bjk = 〈dωj , bk〉.

Using (3.7) and (3.8) we get:

Bjk = 〈dωj , bk〉 = −〈τ∗dωj , bk〉 = 〈τ∗dωj , τbk〉 = 〈dωj , bk〉 = Bjk.

Therefore, under our choice of the a, b-cycles, the matrix B is real. Its sym-
metric part is negatively defined due to general properties of the Riemann
matrices.

Now we define the theta-function θ of the curve Γ = Γ(r):

θ = θ(z; r) =
∑

s∈Zn

exp
(

1
2
(B(r)s, s) + (z, s)

)
, z ∈ Cn,

(the sum converges due to the properties of the Riemann matrix B). Clearly
the function is 2π-periodic in imaginary directions:

θ(z + 2πiek) = θ(z),
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where ek is the k-th basis vector of Cn.
The differentials dωj analytically depend on the parameter r ∈ Rn

+ as well
as the matrix B(r), formed by their b-periods.20 Therefore the function θ(z; r)
is analytic in r ∈ Rn

+.
Since the matrix B is real, then θ is real and even:

θ(z) = θ(z), θ(z) = θ(−z).

In particular, this function is real both in real and pure imaginary directions:

θ(z), θ(iz) ∈ R if z ∈ Rn.

Next on the surface Γ(r) we consider Abelian differentials of the second kind
dΩ1, dΩ3 with vanishing a-periods and with the only poles at infinity of the
form

dΩ1 = dk + (c + O(k−2)) dk−1, k = i
√

λ →∞,

dΩ3 = dk3 + O(1) dk−1,
(3.10)

where c is an unknown constant. The normalisation (3.10) defines the differ-
entials uniquely, see [S, ZM, BBE].

The following lemma, proven in Appendix 4, comprises some useful proper-
ties of these differentials :

Lemma 3.2. The differentials dΩ1 and dΩ3 can be written in the form

dΩ1 =
i

2
λn + . . .

µ
dλ, dΩ3 = −3

2
i
λn+1 + . . .

µ
dλ, (3.11)

where the dots stand for real polynomials of degree n − 1. Each open interval
(E2j , E2j−1), j = 1, . . . , n, contains exactly one zero of dΩ1(λ) and a zero of
dΩ3(λ).

Let us define complex n-vectors iV(r) and iW(r) as the vectors of b-periods
of these differentials:

iVj = 〈dΩ1, bj〉, iWj = 〈dΩ3, bj〉.

The vector V is called the wave-number vector and W – the frequency vector.
Since the circle bj can be deformed to [E1, E2j ]∪ [E2j , E1] (the first segment

stands for a path through the upper edge of the cut and the second – through
the lower edge), since by (3.11) dΩ1,2 changes its sign when we cross a cut and

20in Appendix 4 we prove similar statement for the differentials dΩ1, dΩ3 (defined below)
and for their b-periods.

54



since integrals of dΩ1,2 along open gaps vanish due to the normalisation (cf.
Appendix 4), then

iVj = 2
∫

[E1,E2j ]

dΩ1, iWj = 2
∫

[E1,E2j ]

dΩ3.

As the dots in (3.11) stand for real polynomials, then

τ∗ dΩ1 =
i

2
λ̄n + . . .

−µ̄
dλ̄ = dΩ1, τ∗ dΩ3 = dΩ3.

That is, the differentials dΩ1,2 are real (with respect to the anti holomorphic
involution τ). Accordingly,

iVj = 〈dΩ1, bj〉 = 〈τ∗ dΩ1, bj〉 = −〈τ∗ dΩ1, τbj〉 = −〈dΩ1, bj〉 = −iVj

(we use (3.7)). Thus the vector V is real. Similar with W:

V, W ∈ Rn.

One of the top achievements of the finite-gap theory is the Its–Matveev
formula, which represents any n-gap potential u(x) ∈ Tn(r) in the form

u(x) = u(x; r, z) = 2
∂2

∂x2
ln θ(iVx + iz; r) + 2c. (3.12)

Here the constant c is the same as in (3.10) and the phase iz is

iz = −A(D)−K ,

where K is the vector of Riemann constants (see [D, BB] or Appendix 3 be-
low) and A(D) is the Abel transformation of a positive divisor D = D(u),
D = D1 . . . Dn, Dj ∈ aj . I.e., A(D) is a complex n-vector such that its jth
component A(D)j equals

A(D)j =
n∑

r=1

∫ Dr

∞
dωj ,

where {dωj} are the holomorphic differentials on Γ as above. The divisor D is
a divisor of Dirichlet eigenvalues, i.e. Dj = (λj , µj), where λj is an eigenvalue
of the operator Lu subject to Dirichlet boundary conditions ϕ(0) = ϕ(2π) = 0
(each gap ∆j contains exactly one point from the Dirichlet spectrum, see [Ma,
MT]).21 In particular, every point Dj analytically depends on the potential u.

21This divisor can be also described a divisor of poles of the Baker – Akhiezer eigenfunction

ϕ(x; P ) of the operator Lu, Luϕ = π(P )ϕ, normalised at infinity as ϕ ∼ ei
√

λ x. See [D, BB]
or section 6.2 below, where this function is denoted as χ (the notation ϕ agrees with [D,BB]).
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The phase vector z turns out to be real (see Appendix 3.i)), so θ(iVx + iz)
is a real valued function of x. The theta-function is nonzero at any imaginary
point iξ ∈ iRn (see in [BB] Lemma 3.7 on p.68 and its proof). Since this
function is periodic, then

|θ(iξ)| ≥ C(r) > 0 ∀ ξ ∈ Rn. (3.13)

Hence, the r.h.s. of (3.12) is analytic in z ∈ Tn.
Due to the periodicity, we can treat z as a point in the torus Tn. Thus we

get an analytic map:
Tn(r) → Tn, u(·) 7→ z.

This map has the analytic inverse given by the formula (3.12).22 The coordinate
z on Tn(r) are called the theta-angles.

The r.h.s. of (3.12) defines a quasiperiodic function with the frequencies
V1, . . . , Vn (see Appendix 1). Since u(x) is 2π-periodic, then the wave-number
vector is integer:

V ∈ Zn. (3.14)

The condition (3.14) is clearly sufficient for the periodicity. Its necessity is
“obvious” but still has to be proven. We prove it in Appendix 3.iii).

Since the mean-value of the r.h.s. in (3.12) equals 2c, then we must have

c = 0. (3.15)

In Appendix 4 we show that

Vj = −i〈dΩ1, bj〉 → Vj as T 2n
V 3 u → 0.

Comparing this relation with (3.14) we get that

V ≡ V.

Everywhere below we write V instead of V. In particular, we denote n-gap
manifolds as T ≤2n

V and T 2n
V

Time-evolution u(t, x) of the n-gap potential u(x) ∈ Tn(r) as in (3.12) along
the KdV flow is given by the following formula, also due to Its – Matveev:

u(t, x; r, z) = 2
∂2

∂x2
ln θ(i(Vx + Wt + z); r) (3.16)

(we use that c = 0 by (3.15)).

22Strictly speaking we have to check that for each z ∈ Tn the vector iz can be represented
in the form iz = −A(D)−K. We prove this in Appendix 3 (see (A3.3)).
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Let us denote by Φ0(r, z)(x) the function of x, defined by the r.h.s. of (3.16)
with t = 0. The map (r, z) 7→ Φ0(r, z)(·) represents the n-gap torus in the form

Tn(r) = Φ0(r,Tn) ⊂ Hd
0 .

In terms of the function Φ0(r, z)(·) the n-gap solution (3.16) can be written as

u(t, x; r, z) = Φ0(r, z + W(r)t)(x). (3.17)

This shows that in the (r, z)-variables the KdV-flow on T 2n takes the form

ż = W(r).

I.e., the theta-angles z integrate the KdV-equation on any torus Tn(r).
Let R be a sub-cube of the octant Rn

+ of the form

R = {r ∈ Rn
+ | 0 < rj < K}

with some K > 0, and

T 2n = Φ0(R× Tn) ⊂ T 2n
V

for any fixed wave-number vector V. The set T 2n ⊂ Hd
0 , d ≥ 1, is an invariant

manifold of the KdV equation. It meets the assumptions i) – iii) from section 2.2
since: The map Φ0 is an analytic embedding and T 2n is an analytic submanifold
of Hd

0 . The form Φ∗0 α2 is analytic and is non-degenerate for small r by (3.2),
so the set of its degeneracy is a proper analytic subset of the cube R (in fact,
it is empty – see in section 6 the Amplification to Theorem 6.2 and its proof).

The non-degeneracy assumption iv) also holds for KdV, as states the follow-
ing Nondegeneracy Lemma, proven in Appendix 6:

Lemma 3.3. The determinant det{∂Wj/∂rk} is nonzero almost everywhere.

3.3. Small-gap solutions.
In this section we fix any finite-gap manifold T ≤2n

V and prove that the cor-
responding frequency vector W depends on the small radii-vector r in the
following way:

Wj(r) = −1
4
V 3

j +
3

8Vj
r2
j + . . . , j = 1, . . . , n. (∗)

This asymptotic is important for forthcoming constructions since it implies the
non-resonance relations we have to check to apply to the KdV our abstract
theorems. To prove (∗) we have to consider a moduli manifold G, formed by
all surfaces Γ(r) such that 0 < rj ≤ δ for each j, and to study its closure G.
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It turns out that G is an analytic manifold and the frequency map G → W
analytically extends to G. It remains to expand W to series of µ, where µ is
a coordinate in the vicinity of the point r = 0 in G, and to check that this
expansion coincide with (∗).

There are classical ways to construct the analytic coordinate µ (i.e., to“nor-
malise Ḡ”), see [Fay] and [BB], section 5. These coordinates can be used to
prove (∗) (see [BoK1]). Since (∗) implies that det ∂W /∂r 6≡ 0, then in this way
one also gets an alternative proof of Lemma 3.3.

Unfortunately, the classical ways to normalise G and to decompose specific
functions on Γ = Γ(µ) (like components of the frequency vector W ) to series
in µ are very technical, this book hardly is a proper place to present them.
Below we choose another (a“non-classical”) way to normalise G, using the y-
coordinates provided by the Vey theorem (Theorem 3.2). To calculate the first
two terms of a decomposition of W to series of y, needed to check (∗), we exam
closer small-amplitude 2-gap solutions. This way to expand W to series of r is
general and straightforwardly applies to other Lax-integrable equations.

In Appendices 2,3 we present elementary calculations which specify small-
gap behaviour of the frequencies Wj :

Wj = −i〈dΩ3, bj〉 −→ −1
4
V 3

j as T 2n
V 3 u → 0. (3.18)

To study small-gap solutions from T ≤2n
V further, we shall use the Birkhoff

coordinates y = (y1, . . . , y2n). Since in the action-angle variables (I, q) (see
(3.5)) the KdV-hamiltonian is an analytic function hn(I), then by (3.16) and
Lemmas 2.2, 3.3 we have that

∇hn = W (3.19)

and
q − z = q0(r). (3.20)

Let us denote
Rj =

√
y2
2j−1 + y2

2j =
√

2VjIj .

Then the symplectic form U∗α2 equals 1
2

∑
dR2

j ∧ dqj and

W is an analytic function of R2
1, . . . ,R2

n

because of (3.19) and item 2) of Theorem 3.2. By Lemma 3.1,

Rj = rj

(
1 + O(|r|2)), j = 1, . . . n. (3.21)

Below to study small-gap solutions we use the R-variables rather than r.
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Let us take any n-gap solution u(t, ·) ∈ Tn(r) such that |r| ¿ 1. Using (3.6)
and (3.19) we write it as u = U(x;R, tW (R)+q). Since this solution can be also
written in the form (3.16), then U(x;R, tW (R)+q) = U(0;R, tW (R)+xV +q).
Therefore, denoting

G(q,R) = U(0;R, q)

we write the solution u as

u(t, x;R, q) = G(W (R)t + V x + q,R). (3.22)

The function G is analytic in q ∈ Tn and in R, |R| ¿ 1. Using the small-gap
limit for the map U , given after Theorem 3.2, we find that

G(q,R) =
1√
π

∑
Rj cos qj + O(|R|2). (3.23)

Since the map U is analytic in the y-variables, then the function G is analytic
in the y-variables as well as in the complex variables w±j , j = 1, . . . , n, where
wj = y2j−1 + iy2j = Rje

iqj and w−j = w̄j . Hence,

G(q,R) =
∑

s∈Z2n
≥0

Csw
s =

∑

s∈Z2n
≥0

Cs

n∏
p=1

Rsp+s−p
p eiqp(sp−s−p), (3.24)

where ws = w
s−n

−n . . . wsn
n .

Example 3.2 (one-gap potentials). For n = 1 and for V = V1 = k the one-
gap manifold T 2

k is a union of time-periodic solutions w(t, x) for the (KdV)
of the form w = G(kx + Wt + q;R). Here G(Y ;R) is an analytic function,
2π-periodic in Y , and W is analytic in R2. Since

∫
w dx = 0, then

∫
GdY = 0.

Using (3.18) and (3.23) we write the functions G and W as follows:

G(Y,R) = R 1√
π

cosY +R2g2(Y ) +R3g3(Y ) + . . . ,

W = −1
4
k3 +R2W2 + . . . .

Substituting w to the KdV equation we get that WG′ = 1
4k3G′′′ + 3

4k(G2)′,
where prime stands for ∂/∂Y . Or

k3G′′ − 4WG + 3kG2 = const .

First-order inR terms in the l.h.s. cancel. Equating to zero terms of the second
and the third order we the get the two equations:

k3g′′2 + k3g2 +
3k

π
cos2 Y = const ,

k3g′′3 + k3g3 − 4W2 cosY + 6kg2 cosY = const .
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Since
∫

g2 dY = 0, then from the first equation we find that g2 = 1
2k2π cos 2Y .

So the second one takes the form:

−k3(g′′3 + g3) =
( 3
2kπ

− 4W2

)
cos Y +

3
2k

cos 3Y.

For this equation to be solvable we must have W2 = 3/(8kπ).
Thus, one-gap solutions from a torus T 1

k (R), R¿ 1, have the form

w(t, x;R, q) = Rw1(Y ) +R2w2(Y ) + . . . , (3.25)

where
w1 =

1√
π

cos Y, w2 =
1

2k2π
cos 2Y

and Y = kx + Wt + q with

W (R) = −k3

4
+

3R2

8kπ
+ O(R4). ¤ (3.26)

For any n-vector U and any m ≤ n we denote by U m̂ the (n − 1)-vector
obtained by dropping the m-th component, i.e. U m̂ = (U1, . . . , Ûm, . . . , Un).

For m ≤ n let us consider the (n − 1)-gap submanifold T 2n−2
Vm̂ of T ≤2n

V ,
obtained by closing the mth open gap. Since W = ∇hn and hn |Rm=0= hn−1

by Theorem 3.2, then

Wm̂(R) |Rm=0= W(Rm̂), (3.27)

where the (n − 1)-vector in the r.h.s. is a frequency vector corresponding to
the manifold T 2n−2

Vm̂ .

Proposition 3.1. 1) For any m ≤ n and for a sufficiently small vector R ∈ Rn

such that Rm = 0 and Rl > 0 for l 6= m, the function

un−1(t, x;Rm̂, q) = G(Vx + Wt + q;R)

is an (n−1)-gap solution from Tn−1
Vm̂ (Rm̂) with the frequency vector Wm̂. This

solution is independent of qm.
2) Let Rε be the vector (R1, . . . , ε, . . . ,Rn) (ε stands on the mth place).

Then for any qm ∈ S1 the function v = (∂/∂ε)G(Vx +Wt + q,Rε) |ε=0 solves
the KdV equation, linearised about un−1:

v̇ − 1
4
vxxx =

3
2

∂

∂x
(un−1v). (3.28)

Proof. The first part of the first statement follows from item 3) of Theorem
3.2 and from (3.27). By the formula (3.24) the function G |Rm=0 is qm-
independent; therefore un−1 is qm-independent as well.

The second statement is obvious: since the solution G(Vx + Wt + q,Rε)
smoothly depends on ε, then its ε-derivative at zero satisfies (3.28). ¤

The example to this result given below is straightforward and technical. It
is important since it implies the asymptotic (∗) which is the main goal of this
section.
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Example 3.3 (two-gap potentials). Let us choose any m 6= k and consider
a two-gap solution u ∈ T 2(Rk,Rm) ⊂ T ≤2

k,m, where 0 ≤ Rm ¿ Rk ¿ 1:

u(t, x;Rk,Rm, q) = G(Vx + Wt + q;Rk,Rm) , (3.29)

where V = (k, m), W = (Wk,Wm) and q = (qk, qm) (we abuse notations and
write (Wk,Wm) and (qk, qm) instead of (W1,W2) and (q1, q2); besides possibly
k > m). The function w(t, x;Rk) = u(t, x;Rk, 0) is the one-gap potential from
Example 3.2 with R = Rk (see (3.25)). By the Proposition 3.1, the function
v = u′Rm

(t, x;Rk, 0) solves the linearised equation (3.28) with un−1 = w. Due
to (3.27), Wk(Rk, 0) equals to the frequency W (Rk), so Wk satisfies asymptotic
(3.26) with R = Rk. This function is analytic in Rk and in qk, qm.

Below we abbreviate Rk to R.
Since the frequency vector W(Rk,Rm) is an analytic function of R2

k and
R2

m, then W′
Rm

(R, 0) = 0. So differentiating (3.29) we get that u′Rm
|Rm=0=

G′Rm
(V + Wt + q;R, 0). Analysing (3.24) we see that non-zero contributions

to G′Rm
|Rm=0 come from terms with sm = 1, s−m = 0 and sm = 0, s−m = 1.

Hence, denoting

Z = mx + Wmt + qm, Y = kx + Wkt + qk,

we can write v in the form

v = C1(1 + f(Y,R))eiZ + C2(1 + g(Y,R))e−iZ ,

where f(Y, 0) = g(Y, 0) = 0 and |C1|+ |C2| 6= 0 (the latter holds since by The-
orem 3.2 linearisation at zero of the map y 7→ U(·; y) ∈ Hs

0 is non-degenerate).
Constructing an appropriate linear combination of solutions v with shifted
phase qm (or taking v̄ instead of v if C1 = 0) we get a solution for (3.28)
of the form

v = eiZH(Y,R), H = 1 +Rh1(Y ) +R2h2(Y ) + . . . .

This function satisfies the equation (3.28) with un−1 = w. Substituting there
v = eiZH and multiplying the equation by e−iZ we get that

e−iZ
( ∂

∂t
− 1

4
∂3

∂x3

)
eiZH =

3
2
e−iZ ∂

∂x
(weiZH) . (3.30)

Due to (3.18), the function Wm(R, 0) has the form Wm(R, 0) = −m3/4 +
ω2R2 + O(R4) with some unknown ω2. Hence,

e−iZ(
∂

∂t
− 1

4
∂3

∂x3
)eiZ = iω2R2 + O(R4).
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Noting that ∂H
∂t = WkH ′

Y (Y ) = −k3

4 H ′
Y (Y ) + O(R3) (since Wk = −k3/4 +

O(R2) and H ′
Y = O(R)) and that ∂pH

∂xp = kpH
(p)
Y (Y ) for any p, we get:

e−iZ
( ∂

∂t
− 1

4
∂3

∂x3

)
eiZH = iω2R2H +

( ∂

∂t
− 1

4
∂3

∂x3

)
H

−3
4
e−iZ

( ∂

∂x
eiZ ∂2

∂x2
H +

∂2

∂x2
eiZ ∂

∂x
H

)
+ O(R4)

= iω2R2H − k

4
∂

∂Y
M

( ∂

∂Y

)
H + O(R4),

where M(∂/∂Y ) = M is the following differential operator: M(f(Y )) =
k2f ′′ + 3imkf ′ + (k2 − 3m2)f . Hence, the l.h.s. of (3.30) is

e−iZ
( ∂

∂t
− 1

4
∂3

∂x3

)
eiZH = −Rk

4
∂

∂Y
Mh1 +R2

(
iω2 − k

4
∂

∂Y
Mh2

)
+ . . . .

Using (3.25) we find that the r.h.s. of (3.30) equals
3
2
e−iZ ∂

∂x
(weiZH) =

3
2
imwH +

3
2
k

∂

∂Y
(wH) =

=
3
2
R(

imw1 + k
∂

∂Y
w1

)
+

3
2
R2

(
(imw2 + imw1h1 + k

∂

∂Y
(w1h1 + w2)

)
+ . . . .

Now we equate the first- and the second-order in R terms in (3.30) to get two
equations:

−k

4
Mh1 =

3
2
im

(
∂

∂Y

)−1

w1 +
3
2
kw1 =

3
2
√

π
(im sinY + k cos Y ),

−k

4
Mh2 = i

(
∂

∂Y

)−1[3
2
m(w2 + w1h1)− ω2

]
+

3
2
k(w1h1 + w2).

From the first equation we find that h1 = −(i/
√

πm) sin Y . For the r.h.s. of
the second one to be well-defined, the mean-value of the function in the square
brackets must vanish:

0 =
〈3
2
m(w2 + w1h1)− ω2

〉
=

〈3
2
m

(cos 2Y

2k2π
− i

mπ
sinY cos Y

)− ω2

〉
= −ω2 ,

where the angle brackets stand for averaging in Y . So ω2 = 0 and the solution
v we are discussing has the form

v = ei(mx+Wmt+qm)
(
1− iR

m
√

π
sin (kx + Wkt + qk) + O(R2)

)
,

where Wm = −m3/4+O(R4). Since Wk(R) satisfies (3.26), then the frequency
vector W = W(Rk,Rm) = (Wk,Wm) obeys the following asymptotics as
Rk = R→ 0 and Rm = 0:

Wk = −k3

4
+

3R2

8kπ
+ O(R4), Wm = −m3

4
+ O(R4). ¤ (3.31)
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Lemma 3.4. For any finite-gap manifold T ≤2n
V the corresponding frequency

vector W(R) has the following asymptotic as R = (R1, . . . ,Rn) → 0:

Wj(R) = −1
4
V 3

j +
3

8πVj
R2

j + O(|R|4), j = 1, . . . , n.

This result remains true with R-variables replaced by r-variables.

Proof. The zero-order term of this asymptotic follows from (3.18). For small
R each Wj is an analytic function of the arguments µl = R2

l , l = 1, . . . , 0.
Applying (3.27) iteratively we get that Wj(0, . . . ,Rj , . . . , 0) is the frequency
of the one-gap solution from Example 3.2, so (3.26) implies that ∂Wj/∂µj(0) =
3/(8πVj). Using (3.27) once again we find that the function Wj(0, . . . ,Rj , 0, . . . ,
Rl, . . . , 0) with l 6= j is a first component of the frequency vector of a two-gap
solution. Applying (3.31) with m = j and k = l to Wj |Rj=0 we get that
∂Wj/∂µl(0) = 0 and the asymptotic follows.

The last assertion results from (3.21). ¤

3.4. Higher equations from the KdV hierarchy.
Let us take any n-gap manifold T 2n

V . The manifold itself and each torus
Tn(r) ⊂ T 2n

V are invariant for all Hamiltonian equations with the hamiltonians
H0, H1, . . . from the KdV-hierarchy (see Example 2.2). The flow of any l-
th KdV equation on T 2n

V is very similar to the KdV-flow: it is given by the
theta-formula (3.16) where the frequency-vector W should be replaced by an n-
vector W(l) with iW

(l)
j equal to the bj-period of an Abelian differential dΩ2l+1,

normalised by the conditions that its a-periods vanish and near infinity it has
the form:

dν−2l−1 + regular part, ν =
1

i
√

λ
(3.32)

(see [DMN, ZM], cf.(3.10) where l = 1).
All results of sections 3.1-3.3 till Proposition 3.1 have obvious reformulations

for the higher KdV-equations, valid for the same arguments as in the KdV-
case. Our proof of Lemma 3.4 is rather concrete. Instead of trying to repeat
its calculations for a general l-th equation from the KdV-hierarchy, it is easier
to expand the vector W (l) to series of r using the mentioned in section 3.3
classical coordinates on the moduli manifold G. We state the corresponding
result without a proof: The vector W(l) is analytic in r2

1, . . . , r
2
n and

W
(l)
j (r) = W

(l)
j0 + W

(l)
j1 r2 + O(|r|4) (3.33)

for any j = 1, . . . , n, with some non-zero constants W
(l)
j1 .

Any manifold T 2n
V treated as an invariant manifold of an lth KdV equation

satisfies assumptions i)-iv) for the same reason as for l = 1 (i.e., as in the
KdV-case).
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Appendix 3. On the Its – Matveev formulas.
Here we prove that the vector z(D), defined by the relation

iz(D) = −A(D)−K, D = D1 . . . Dn, Dj ∈ aj ,

is real, that for each z ∈ Tn the formula (3.12) defines a finite-gap solution and
prove that the vector V in (3.12) has to be integer for a function u(x) to be
2π-periodic.

i) The vector K equals to the minus one-half of the Abel transformation
of the canonical class C of Γ, where C is an equivalence class of the divisor
of zeroes and poles of any Abel differential dΩ (see [D, section 2.7]). Let us
choose for dΩ the differential

dΩ = (λ− E2) . . . (λ− E2n)µ−1 dλ.

It has a double zero in each E2j and a double pole at infinity. Therefore,

Kj = −
n∑

r=1

∫ E2r

∞
dωj .

As Dr ∈ ar, then

izj(D) =
n∑

r=1

( ∫ E2r

∞
dωj −

∫ Dr

∞
dωj

)
=

n∑
r=1

∫ E2r

Dr

dωj ∀ j (A3.1)

Since dωj = −τ∗ dωj (see (3.8)) and each ar is a fixed oval for the anti holo-
morphic involution τ (see (3.7′)), then

izj(D) =
∑

r

∫ E2r

Dr

dωj = −
∑

r

∫ E2r

Dr

τ∗ dωj = −
∑

r

∫ E2r

Dr

dωj = −izj(D).

Thus the vector z is real as stated.
ii) Now let us take any point z1 from the real n-torus Tn, and consider the

following equation for a divisor D = D1 . . . Dn in Γ:

A(D) = iz1 −K =: η1, (A3.2)

(the equality holds in the Jacobian of Γ, i.e., modulo periods of the theta-
function). By the Riemann theorem (see [D, BB]) this equation has a unique
solution D if the function on Γ which sends P to θ(A(P )−η1−K) = θ(A(P )−
iz1) does not vanish identically. At infinity the function equals θ(iz1) which
is not zero (see (3.13)), so (A3.2) has a unique solution D = D1 . . . Dn. The
divisor D satisfies (A3.1) with z replaced by z1.
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Now we show that the points Dj , forming D, are τ -invariant. Conjugating
relation (A3.1) with z = z1 and making use of (3.8) we get that

iz1j = −iz1j =
n∑

r=1

∫ E2r

Dr

dωj = −
n∑

r=1

∫ E2r

Dr

τ∗ dωj =
n∑

r=1

∫ E2r

τDr

dωj ∀ j.

Thus, the divisor τD also solves (A3.2), so it must equal D.
To show that the points Dj are τ -invariant, we take a point η0 = iz0 −K

with any iz0 of the form iz0 = A(D0)+K, where the divisor D0 is as in item i)
(i.e., D0

j ∈ aj) and denote by zt, 0 ≤ t ≤ 1, any curve in Tn which connects z0

with z1. For t ∈ [0, 1] the equation (A3.2) with z1 replaced by zt has a unique
solution Dt. This solution continuously depends on zt and is τ -invariant. Since
for t = 0 we have τDt

j = Dt
j , j = 1, . . . , n, since |Dt| ≡ n and since the τ -

invariant circles aj do not intersect, then during the deformation each aj still
contains exactly one point of Dt. So τDt

j = Dt
j for all t and j. We have proved

that

for each z1 ∈ Tn there exists a unique divisor D ,

D = D1 . . . Dn, Dj ∈ aj , which satisfies (A3.2).
(A3.3)

iii) Now we show that the vector V corresponding to any (periodic) n-gap
potential u(x) ∈ Tn(r) is integer. Since V is analytic in r ∈ Rn

+ (see Appendix
4), then it suffice to prove that it is integer for small r or, equivalently, for
small R.

Let us consider an n-gap potential (3.22) with t = 0, with zero phase q and
small R. As the function G is analytic in q and R, then using (3.23) we write
it as

G(q,R) =
1√
π

n∑

j=1

Rj cos qj +
∑

s∈Zn

gs(R) cos s · q + 〈sine-series〉,

where the Fourier coefficients gs = O(|R|2) are analytic in R. We fix any j,
extract from the second sum all terms corresponding to s such that s ·V(r) ≡
Vj(r) and write the n-gap potential as

u(x;R) =− 1√
π

(Rj + O(|R|2)) cosVj(R)x

+
∑

fs(r) cos(s ·V(R))x + 〈sine-series〉,

where the sum is taken over all s such that s ·V 6= Vj for almost all R. Since
u is 2π-periodic in x, then all Fourier coefficients corresponding to cosλx with
a non-integer λ must vanish. As Rj + O(|R|2) is nonzero for small R, then Vj

must be integer for almost all small R, therefore – for all R and r. ¤
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Appendix 4. On the vectors V and W.
Here we study differentials dΩ1, dΩ3 on a surface Γ(r) and vectors V(r),

W(r), corresponding to an m-gap potential u(x) with open gaps ∆V1 , . . . , ∆Vm
,

where |∆Vj
| = rj .

The differential i
2

λndλ
µ is holomorphic outside infinity, where it has the form

dk + f(k−1)dk−1 with k = i
√

λ and with some analytic at zero function f .
Since dΩ1 has at infinity the same asymptotics (see (3.10)), then the former
differential differs from the latter by a holomorphic differential. Hence,

dΩ1 =
i

2
λm + fm−1λ

m−1 + · · ·+ f0

µ
dλ =

i

2
Pm(λ)

µ
dλ (A4.1)

(cf. the arguments used to prove (3.9)). Since dΩ1 has zero a-periods, then the
coefficients fm−1, . . . , f0 satisfy the following system of linear equations:

m∑

j=1

fm−j

〈 i

2
λm−jdλ

µ
, al

〉
= −

〈 i

2
λmdλ

µ
, al

〉
, l = 1, . . . , m.

This system has real coefficients and its solution is unique since the differential
dΩ1 is uniquely defined. Hence, fm−1, . . . , f0 are real numbers, analytic in
r ∈ Rm

+ : The differential dΩ1 analytically depends on r ∈ Rm
+ .

For j = 1, . . . ,m we have:

0 = 〈Ω1, aj〉 = 2
∫ E2j

E2j−1

Pm(λ)
−i

√
R(λ)

dλ.

In the interval (E2j−1, E2j) the denominator −i
√

R(λ) is a non-vanishing
real function of a constant sign. Hence, the polynomial Pm(λ) has a root
in (E2j−1, E2j). Thus, all m roots of Pm are localised and the differential dΩ1

has the form, stated in Lemma 3.2
Quite similar, the differential dΩ3 has the form (3.11) and analytically de-

pends on r.
Now we examine limiting behaviour of the differentials dΩ1 and dΩ3 when

r = (r1, . . . , rm) → 0. Denoting Qj(λ) = (λ − xj)/
√

(λ− E2j)(λ− E2j+1),
where xj = xj(r) is a root of the polynomial Pm (see (A4.1)) in the interval
(E2j−1, E2j), we write dΩ1 as

dΩ1 =
i

2
√

λ− E1

Q1(λ) . . . Qm(λ) dλ.

Elementary calculations show that for any l integral of the function |Ql(λ)|
over the interval ∆Vl

+ |r|1/2 converges to zero when r → 0; in the same time
Ql converges to one uniformly outside this interval.

66



Since E1 → 0 and E2j , E2j+1 → V2
j /4 (see (3.4)), then we get small gap

limits of the wave numbers:

iVj(r) = 2
∫ E2j

E1

dΩ1 → i

∫ V2
j /4

0

λ−1/2 dλ = iVj as r → 0.

That is,
Vj(r) → Vj as r → 0. (A4.2)

Since λ2p → p2/4 as r → 0 for any p, then also

∫ λ2p

E1

dΩ1 → i

2

∫ p2/4

0

λ−1/2 dλ =
ip

2
. (A4.3)

Now let us take a vector r ∈ Rm
+ and fix any j ≤ m. We denote by rĵ

the (m − 1)-vector (r1, . . . , r̂j , . . . , rm) and denote rε = (r1, . . . , ε, . . . , rm) (ε
stands instead of rj). Repeating the arguments above we get that for a suitable
sequence εM → 0 the differential dΩ(m)

1 with r = rεM converges to a limit

i
Q1(λ) . . . Q̂j(λ) . . . Qm(λ) dλ

2
√

λ− E1

, (A4.4)

where Ql(λ) as above depends on a limiting point xl. The limiting vector
(x1, . . . , x̂j , . . . , xm) a priori depends on the sequence {εM}. Any limiting
differential (A4.4) is a holomorphic differential on the Riemann surface Γ(rĵ)
of genius m− 1. It inherits from dΩ1 the normalisations:

0 =
∫ E2l+1

E2l

i

2
√

λ− E1

Q1 . . . Q̂j . . . Qm dλ, l = 1, . . . , ĵ, . . . ,m.

Hence, this differential equals dΩ(m−1)
1 (rĵ). Since the limit does not depend

on the sequence {εM}, then the convergence to dΩ(m−1)
1 holds as rj = ε → 0.

Passing to the limit in the formula for iV
(m)
j (r), we get that

V
(m)
j (r) =− 2i

∫ E2j(r)

E1

dΩ(m)
1 (r) −→

− 2i

∫ E2j=E2j+1(r
ĵ)

E1

dΩ(m−1)
1 (rĵ) as rj → 0.

Applying the same arguments to the differential dΩ3 we get that

∫ λ2p

E1

dΩ3 −→ −3i

2

∫ p2/4

0

√
λ dλ = −i

(p

2

)3

as r → 0
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for any p. In particular, we have recovered small-gap limits of the frequencies:

Wj −→ −1
4
V3

j as r → 0. (A4.5)

Similar asymptotic holds when we shrink only one open gap:

W
(m)
j (r) → −2i

∫ E2j=E2j+1(r
ĵ)

E1

dΩ(m−1)
3 (rĵ) as rj → 0. (A4.6)

Besides, since the forms dΩ1, dΩ3 and the eigenvalues E1, . . . , E2m+1 are
analytic in r, then the vectors V, W are analytic in r ∈ Rm

+ .

Appendix 5. A small-gap limit for the theta-function.
Here we discuss some elementary properties of the theta-functions, corre-

sponding to potentials u(x) from Tm(r), where |r| ¿ 1. These potentials are
small: ‖u‖s ≤ Cs|r| for each s (see [Ma] or see the proof of Theorem 3.1′ in
section 3.1).

Let us consider any holomorphic differential dωj as in section 3.2, written in
the form (3.9). Since each ap-period of the differential with any p 6= j vanishes,
then the numerator in its polynomial presentation (3.9) has a root yj

p in each
open gap ∆Vp except the gap ∆Vj . So we can write dωj as

dωj = Cj
Qj,1(λ) . . . Q̂j,j(λ) . . . Qj,m(λ)√
(λ− E1)(λ− E2j)(λ− E2j+1)

dλ,

where Qj,p = (λ − yj
p)/

√
(λ− E2p)(λ− E2p+1). Using again vanishing of the

ap-periods of dωj with p 6= j we find that the point yj
p is close to the middle of

the pth gap: yj
p = 1

2 (E2p + E2p+1) + O(|r|2).23 Hence,

Qj,p(λ) = 1 + O(|r|2) if dist (λ,∆p) ≥ C > 0. (A5.1)

Since E1 = O(|r|2), E2j−1 = V 2
j /4 − rj/2 + O(|r|2) and E2j = V 2

j /4 +
rj/2 + O(|r|2) (see (3.4)), then we can use (A5.1) to write the normalisation
〈dωj , aj〉 = 2πi as

π =
∫ E2j+1

E2j

Cj(1 + O(|r|2)) dλ√
(λ− E1)(λ− E2j)(E2j+1 − λ)

=
Cj(1 + O(|r|2))

Vj/2

∫ 1

0

dx√
x(1− x)

.

23Proof: On the (m − 1)-cube K = {−1 ≤ xp ≤ 1 | 1 ≤ p ≤ m, p 6= j} we consider the

vector field F (x) = (F1, . . . ,cFj , . . . , Fm), where Fp(x) equals the ap-period of the form as

above with yj
p = yj

p(x) = (E2p + E2p+1)/2 + Cr2
pxp. Straightforward estimate show that

Fp > 0 if xp = 1 and Fp < 0 if xp = −1, provided that r is sufficiently small and C was
chosen sufficiently big. Now degree arguments (see [Nir]) show that F vanishes at some point

x ∈ K. Corresponding points yj
p(x) (p ≤ m, p 6= j) define the form dωj .
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As
∫ 1

0
(x(1− x))−1/2 dx = π, then Cj = Vj/2 + O(|r|2).

So far we have examined integrals of dωj over open gaps. Now we use (A5.1)
to estimate integrals over the intervals between them:

∫ E2p

E2p−1

dωj =





Cp + O(|r|), p 6= j, j + 1,

ln rp + Cp + O(|r|), p = j,

− ln rp + Cp + O(|r|), p = j + 1.

Here the first asymptotic follows from (3.4) and (A5.1), while the last two
result from calculations, similar to those used to estimate the integral over
∆Vj

.24 Thus,

Bjp = 2
∫ E2p

E1

dωj =

{
O(1), j 6= p,

2 ln rp + O(1), j = p,

and for any integer vector s we have e
1
2 (Bs,s) = Cs(r)

∏
r

s2
j

j , where Cs, C
−1
s =

O(1) as r −→ 0. We arrive at the following small-gap asymptotic for the
theta-function:

θ(iz) = 1 +
m∑

j=1

Cjrj
eizj + e−izj

√
π

+ O(|r|2)

= 1 + 2
m∑

j=1

Cjrj
cos zj√

π
+ O(|r|2),

(A5.2)

where {Cj} are some new constants and O(|r|2) stands for a function on Tm

such that each its Ck-norm is O(|r|2).
Because (A5.2), for small r the n-gap potential (3.16) |t=0 equals

2
∂2 ln θ(iVx + iz, r)

∂x2
= −4

m∑

j=1

CjV
2
j rj

cos(Vjxj + zj)√
π

+ O(|r|2).

By (3.4), its Vj-th gap (i.e., the j-th open gap) has the size 4CjV
2
j rj +O(|r|2).

Hence, 4CjV
2
j = 1 + O(|r|) and we arrive at a small-gap limit for the theta-

function:
θ(iz; r) = 1 +

1
2
√

π

∑
V −2

j rj cos zj + O(|r|2) . (A5.3)

For the same reason as in Appendix 4, the differentials dωj analytically
depend on r ∈ Rn

+ (i.e., the multi-valued functions (dωj/dλ)(λ; r) are analytic
in r ∈ Rn

+ and in λ outside the singularities). Hence, the Riemann matrix and
the theta-function both are analytic in r ∈ Rn

+.

24different signs for the integrals along the upper edges of the cuts [E2p−1, E2p] and

[E2p+1, E2p+2] in Γ+ are due to the fact that the function
p

(λ− E2p)(λ− E2p+1) is neg-
ative on the former and positive on the latter: for small rp it behaves there like λ− (E2p +
E2p+1)/2.
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Appendix 6. A Nondegeneracy Lemma.
In this appendix we prove a stronger statement which implies Lemma 3.3.
Let E1 < · · · < E2n+1 be any real numbers and Γ = Γ(E) be a Riemann

surface of the equation µ2 = R(λ) :=
∏

(λ − Ej). We define differentials
dΩ1, dΩ3, vectors V ,W and the theta-function θ as in Section 3.2. Now the
vector V may be non-integer and the formula (3.12) defines a function u(x)
which is a quasiperiodic n-gap potential, see [D,DMN,BB] (properties of u(x)
are irrelevant for results of this Appendix).

Theorem. The analytic map

E = (E1 < E2 < · · · < E2n+1) 7→ (V , W , c) ∈ R2n+1 (A6.1)

is nondegenerate everywhere (c stands for the same constant as in (3.10) and
(3.12)).

The theorem implies the assertion of Lemma 3.3 in a stronger form. Indeed,
since W (r) is a restriction of the map (A6.1) to the n-manifold which is a
pre-image of the n-dimensional affine space {V =const, c = 0}, then the map
r 7→ W (r) is nondegenerate everywhere in Rn

+.
The proof we present below is based on a scheme, proposed by I.Krichever

in [Kr1], which was completed in full details in [BiK2].

Proof of the theorem. We shall need the following properties of zeroes of the
differentials dΩ1 and dΩ3:

Proposition. 1) All zeroes of the differential dΩ1 lie outside branching points
of Γ; 2) at least 2n zeroes of dΩ3 lie outside the branching points; 3) zeroes of
the differential dΩ1 lie outside zeroes of dΩ3.

Proof. The first two assertions follow from Lemma 3.2. Moreover, due to the
lemma, dΩ1 has 2n roots of the form P±j = (λj ,±µj), j = 1, . . . , n, where each
interval ∆0

j = (E2j , E2j+1) contains exactly one point λj .
To prove the last assertion let us suppose that some zero Pi of dΩ1(P )

coincides with one of dΩ3(P ). Then there exists a real constant ξ, such that
the differential

dΩ̃(P ) = (ξdΩ1 + dΩ3)(P )

has double zeroes at the points P+
i = (λi, µi) and P−i = (λi,−µi), λi ∈ ∆0

i .
Since a-periods of this differential obviously vanish, then each interval ∆0

i ,
i = 1, . . . , n, contains its zero (cf. Lemma 3.2 and its proof in Appendix 4). As

dΩ̃(λ) = i
real polynomial of degree n + 1

µ
dλ,

then dΩ̃(λ) has exactly n+1 finite zeroes and all of them are localised. There-
fore, dΩ̃(λ) has no other zeroes (except the double zero λi) in ∆0

i . But in such
a case

∫
∆0

i
dΩ̃(λ) 6= 0, in contradiction with the normalisation

∮
ai

dΩ̃ = 0. ¤
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If the map (A6.1) degenerates at a point E = (E1, . . . , E2n+1), then we can
construct an analytic deformation Γ(τ) = Γ(E(τ)) of the initial curve Γ (i.e.
E(0) = E), such that for the vectors V (τ), W (τ), c(τ) we have

V (τ) = V + O(τ2), W (τ) = W + O(τ2), c(τ) = c + O(τ2), (A6.2)

and the vector of branching points E(τ) has a non-zero τ -derivative at τ = 0.
Below we prove that such a deformation Γ(τ) can not exist: the relations (A6.2)
imply that E′τ (0) = 0.

We define Abel integrals Ωj(P, τ), j = 1, 3 as follows. Let γP be any path
in Γ(τ) from σP to P , where σ is the involution

σ : (λ, µ) 7→ (λ,−µ).

We set
Ωj(P, τ) =

1
2

∫

γ

dΩj(P, τ), j = 1, 3.

Each integral Ωj is multivalued (it is defined up to half-periods of the differential
dΩj) and

Ωj(Er(τ), τ) 3 0 ∀ j = 1, 3, ∀ r = 1, . . . , 2n + 1. (A6.3)

Let E∗ be any finite branching point of Γ(τ) and γ0 be a path from E∗ to P .
We can take γP = −σγ0 ∪ γ0. As the differentials dΩj are odd with respect to
σ (this readily follows from (3.11)), then we have:

Ωj(P, τ) =
1
2
(
∫

γ0

−
∫

σγ0

) dΩj =
∫

γ0

dΩj , γ0 is a path from E∗ to P . (A6.4)

In particular, differential of Ωj equals dΩj .
Let P = (λ, µ) be any point in Γ outside the branching points. Then we

can identify P with its projection λ. For τ small enough the point λ lies
outside the branching points of Γ(τ). So for j = 1, 3 we can define the function
∂τΩj(λ, τ)|τ=0 .

Lemma 1. The functions

P = (λ, µ) 7→ ∂τΩj(P ) := ∂τΩj(λ, τ)|τ=0, j = 1, 3, (A6.5)

may be extended to meromorphic functions on the curve Γ. These functions
are regular outside the finite branching points E1, . . . , E2n+1, where they have
first order poles with

ResP=Em∂τΩj(P ) = xj
−1(m)∂τEm(0), j = 1, 3, m = 1, . . . , 2n + 1,

and x1
−1(m), m = 1, . . . , 2n + 1, are non-zero constants. The functions (A6.5)

are regular at infinity and vanish there. Moreover, for j = 1 the function (A6.5)
is O(|u|3) as u = λ−1/2 tends to zero.
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Proof. Due to the relations (A6.2), b-periods of the differentials dΩj(P, τ), j =
1, 3, are constant up to O(τ2). Since their a-periods vanish, then different
branches of the Abel integrals Ωj(P, τ) differ by const + O(τ2), hence the
functions (A6.5) are well-defined and analytic outside the branching points.

In the vicinity of any finite branching point Em of Γ, not λ but (λ−Em)1/2 is
an analytic coordinate. Using (3.11) we expand there the differentials dΩ1, dΩ3

as follows:

dΩj(λ, τ) =
∞∑

k=−1

(λ− Em)k/2 xj
k(Em, τ) dλ, j = 1, 3. (A6.6)

Due to the first statement of the Proposition the coefficients x1
−1(Em, 0), m =

1, . . . , 2n + 1, are non-zero.
From (A6.4) with E∗ = Em and (A6.6) we obtain that near Em the function

∂τΩj can be written as

∂τΩj(λ, 0) =
∞∑

k=1

(2
k

∂τxj
k−2(Em, 0)(λ− Em)k/2+

+xj
k−2(Em, 0)(λ− Em)(k−2)/2∂τEm

)
.

The r.h.s. of the last formula defines near Em a meromorphic function with a
first order pole at Em.

For P = (λ, µ) with λ large enough we shall define Ωj using (A6.4), where
γP is the lift to Γ(τ) of the circle in Cλ of the radius |λ|, cut at the point λ.
As near infinity we have

dΩ3 = 3iu−4du + dΩ0
3, u = λ−1/2,

where the differential dΩ0
3(u, τ) is regular for sufficiently small u (see (3.10),

then

Ω3(P, τ) = −iu−3 +
1
2

∫

γP

dΩ0
3(u, τ).

Hence the function ∂τΩ3(P ) = 1
2

∫
γP

∂τdΩ0
3(u, 0) is analytic near infinity and

vanishes at infinity.
For j = 1 we have by (3.10):

Ω1(P, τ) = iu−1 + ic u + O(|u|3),

so ∂τΩ1 = O(|u|3) by (A6.2) and the lemma is proven. ¤

As all the numbers x1
−1(m) are nonzero, we have a consequence of the lemma:
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Corollary. To prove the theorem it is sufficient to check that

∂τΩ1(P ) ≡ 0. (A6.7)

To prove (A6.7), we construct a function Ω̇3 equal to the “τ -derivative of
Ω3 with Ω1 fixed”. To do it we fix a point P ∈ Γ such that

dΩ1(P, 0) 6= 0, (A6.9)

and consider the following equation for a point P (τ) ∈ Γ(τ):

Ω1(P (τ), τ) = Ω1(P, 0). (A6.9)

Due to (A6.9) and the implicit function theorem, equation (A6.9) may be
uniquely solved for small τ .

We define the function Ω̇3 as

Ω̇3(P ) :=
d

dτ
Ω3(P (τ), τ)|τ=0. (A6.10)

Due to the theorem’s assumptions, replacement of the branch of the integral
Ω1, used in (A6.9), will change the curve P (τ) by O(τ2), and replacement of
the branch of Ω3 in (A6.10) will change Ω3(P (τ), τ) by const + O(τ2) and will
not change the r.h.s. in (A6.10). So the function Ω̇3 is single-valued.

Lemma 2. The function Ω̇3 extends to a meromorphic function on Γ .

Proof. We claim that

Ω̇3(P ) = ∂τΩ3(P )− ∂τΩ1(P )
dΩ3(P, 0)
dΩ1(P, 0)

(A6.11)

outside the branching pints of Γ and zeroes of dΩ1. Indeed, identifying a
point P (τ) = (λ(τ), µ(τ)) ∈ Γ(τ) such that P (0) is not a branching point of Γ
with its projection λ (we can do this if τ is sufficiently small), we write dΩ1

as ∂λΩ1dλ and get from (A6.9) that ∂τλ(0) = −∂τΩ1(λ, 0)/∂λΩ1(λ, 0). Now
(A6.11) follows.

The formula (A6.11) proves the lemma since by Lemma 1 its r.h.s. extends
to a meromorphic function. ¤

By assertion 1) of the Proposition, (A6.9) holds at the points Ej , j =
1, . . . , 2n + 1. By (A6.3) the solution P (τ) of (A6.9) with P = Ej is P (τ) =
Ej(τ) and Ω3(Ej(τ), τ) ≡ 0. So we have

Ω̇3(Ej , 0) = 0 ∀ j = 1, . . . , 2n + 1, (A6.12)
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and the function Ω̇3 has 2n + 1 zeroes in the finite branching points of Γ.
By (A6.11), (A6.12) and Lemma 1, the only possible finite poles of Ω̇3 lie in

the 2n zeroes of dΩ1. To study Ω̇3 near infinity let us observe that there

∂τΩ3 = O(|u|), ∂τΩ1 = O(|u|3),
by Lemma 1, and dΩ3/dΩ1 = O(|u|−2) by (3.10). So Ω̇3(∞) = 0. Altogether
the function Ω̇3 has at least 2n + 2 zeroes and no more then 2n poles. Hence
Ω̇3 ≡ 0 (see [S], p.175) and

∂τΩ3 dΩ1 = ∂τΩ1 dΩ3. (A6.13)

All the poles of ∂τΩ1 lie in the finite branching points. So by statement
2) of the Proposition the r.h.s. of (A6.13) has at least 2n zeroes outside the
branching points. The differential dΩ3(λ) has one more zero λn+1 ∈ C. To
complete the proof we should distinguish two cases:

a) λn+1 lies outside the branching points. Then the r.h.s. in (A6.13) has
2n + 2 zeroes in Γ \ {E1, . . . , E2n+1}. The zeroes of dΩ1 lie outside them by
statement 3) of the proposition. Thus the function ∂τΩ3 vanish at these points.
So ∂τΩ3 has 2n + 2 finite zeroes, the zero at infinity and no more than 2n + 1
poles. Hence it vanish identically, ∂τΩ1 ≡ 0 by (A6.13) and the theorem is
proven.

b) λn+1 = Ej∗ for some 1 ≤ j∗ ≤ 2n + 1. Then the r.h.s. is regular in
Ej∗ . As dΩ1(Ej∗) 6= 0, then the function ∂τΩ3 also is regular in Ej∗ . So it has
no more than 2n poles. This function vanish at first 2n zeroes of dΩ1 and at
infinity. Thus ∂τΩ3 ≡ 0, ∂τΩ1 ≡ 0 by (A6.13) and the proof is completed. ¤

The scheme to prove nondegeneracy of the map (A6.1) presented above is
rather general: If for a given integrable equation and its finite-gap solutions
we take the statements of the Proposition for granted, we can proceed just as
above to construct the functions ∂τΩ1, ∂τΩ3 and Ω̇3 which are meromorphic on
the spectral curve of the solution. If the vector of additional parameters c(τ)
is chosen in such a way that the function Ω̇3 vanishes at the infinite points of
the spectral curve provided that (A6.2) holds, then the vector (V , W , c) gives
the parametrisation we look for. (Observe that in the given proof the function
Ω̇3 vanish at infinity due to the last statement of Lemma 1 and, finally, due to
the “clever” choice of the parameter c).

Our proof of the Proposition applies to equations with selfadjoint L-opera-
tors (for these equations vectors E of the branching points are real). For
some integrable equations with non-selfadjoint L-operators an analogy of the
Proposition can be obtained if the corresponding potential u(x) is small (this
happens e.g., to the SG equation, see in section 4.3). In this case the argu-
ments above prove the following local version of the Theorem: “the map (A6.1)
is nondegenerate at points E such that the corresponding gaps |E2j+1 − E2j |
are sufficiently small”. This weaker version of the result still implies the Non-
degeneracy Lemma.
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4.Sine-Gordon equation

In this section we consider the SG equation under periodic and even periodic
boundary conditions (see Example 2.3 in section 2.1). The results are parallel
to the KdV case and our presentation is much shorter. Missing details can be
found in [McK], [BB] and in [BiK], [BoK2].

4.1. The L, A - pair.
We recall that the SG equation can be written in a Hamiltonian form both

in the variables (u, v = u̇) and in the variables (u,w = (−∂2/∂x2 +1)1/2u̇), see
in section 2.1. In the variables (u, v) the SG equation takes the form

u̇ = −v, v̇ = −uxx + sin u. (4.1)

The equation (4.1) is Lax-integrable and can be written in the Lax form

L̇ = [A,L],

where L = L(u,v) and A = A(u,v) stand for the following differential operators:

L = −
(

J 0
0 0

)
∂

∂x
+

(
Ã B̃
B̃ 0

)
,

A =
(−E 0

0 E

)
∂

∂x
− 2

(
0 JB̃

B̃J 0

)
.

(4.2)

Here E is the identity 2 × 2-matrix, J =
(

0 1
−1 0

)
and Ã, B̃ stand for the

operators

Ã =
i

4
(v + u′x)

(
0 1
1 0

)
, B̃ =

1
4

(
e

i
2 u 0
0 e−

i
2 u

)
,

see [McK, FT]. The operators L and A act on vector-functions, valued in C4,
under 2π-periodic/antiperiodic or 4π-periodic boundary conditions. For the
scale {Zs} we take one of the corresponding scales of Sobolev vector-functions.

For any smooth 2π-periodic functions u(t, x) and v(t, x) and any smooth
complex vector-function ξ0(x) which is 2π-periodic/antiperiodic or 4π-periodic,
the corresponding boundary-value problem for the equation

ξ̇ = Aξ, ξ(0, x) = ξ0(x)

has a unique smooth solution [Paz]. So by the general results described in
section 2.3, the set of eigenvalues of the operator Lt = L(u(t,·),v(t,·)) under a
boundary conditions as above is t-independent if (u, v) is a solution for (4.1).
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The 4-dimensional eigenvalue problem Lf = µf can be reduced to a 2-

dimensional one since denoting f =
(

f−
f+

)
, f± ∈ C2, we have:

−J
∂

∂x
f− + Ãf− + B̃f+ = µf−, B̃f− = µf+.

So that
−J

∂

∂x
f− + (Ã + B̃2µ−1)f− − µf− = 0, (4.3)

if µ 6= 0.
Now let M(x), 0 ≤ x ≤ 2π, be a monodromy matrix for the linear equation

(4.3), i.e.,

∂

∂x
M + J(Ã + B̃2µ−1)M − µJM = 0, M(0) = E. (4.4)

Since this is a traceless linear equation, then det M(x) = 1 for every x. So a
complex number m is an eigenvalue of M(2π) if

0 = det (mE −M(2π)) = m2 − 2∆m + 1, ∆ = 1
2 trM(2π).

The function ∆ = ∆(µ; u, v) is a discriminant of the spectral problem we
discuss.

A complex number µ 6= 0, ∞ is a periodic (antiperiodic) eigenvalue of L if
the equation (4.3) has a non-trivial 2π-periodic (antiperiodic) solution. That
is, if m = 1 (m = −1) is an eigenvalue of the matrix M(2π), or, equivalently,
if ∆ = 1 (respectively ∆ = −1). Finally, µ 6= 0, ∞ is a periodic/antiperiodic
eigenvalue if

∆2(µ; u, v) = 1. (4.5)

Since f−-components of the corresponding (vector) eigenfunctions f =
(

f−
f+

)

satisfy (4.3), then the eigenfunctions are smooth.
This implicit description of the spectrum will provide us with the inverse

spectral information which in the KdV-case (section 3.1) we extracted from the
classical theory of the Sturm – Liouville operator. The “discriminant approach”
is general and applies to other integrable equations (including the KdV, see
[MT]).

The potentials (u, v) we consider in this section are assumed to be bounded:

‖u‖C1 + ‖v‖C0 ≤ C],

where C] is a real constant. Besides, for technical reasons we denote

λ = 16µ2

76



and use below the spectral parameter λ as well as µ.
Elementary analysis of equation (4.4) (see [McK]) shows that the set of

periodic/antiperiodic eigenvalues of L(u,v) is invariant under the symmetry

µ 7→ −µ ; (4.61)

if the potential (u, v) is real — then under the complex conjugation

µ 7→ µ̄, (4.62)

and if the potential is even or odd — then under the inversion

λ 7→ 1
λ

. (4.63)

The first symmetry explains advantages of the µ-coordinate compare to λ:
using the former we factorise the symmetry (4.61).

To investigate the periodic/antiperiodic eigenvalues of the L-operator, i.e.
roots of the equation (4.5), we first compute them for the zero potential u =
v = 0. In this case the equation (4.4) simplifies to

∂

∂x
M =

(
µ− 1

16µ

)
JM, M(0) = E.

So M(x) = exp((µ − 1/16µ)xJ) and M(2π) = ±E if (µ − 1/16µ) is a half-
integer number. That is, if µ = ±µ0

k for some k, where

µ0
k =

k + k∗

4
, k ∈ Z , (4.7)

and
k∗ ≡

√
k2 + 1 .

All these roots are real and double since for any ±µ0
k as in (4.7) both eigenvalues

of the matrix M(2π) equal +1 or −1. Corresponding eigenfunctions form bases
of the spaces of periodic and antiperiodic functions. In the λ-presentation the
eigenvalues are lk, k ∈ Z , where

lk = (4µ0
k)2 = (k + k∗)2.

We note that
lk · l−k ≡ 1 (4.8)

and

lj =





4j2 + 1 + O(j−2), j →∞,

1
4
j−2 + O(j−4), j → −∞.

(4.9)
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— The eivenvalues lj accumulate to infinity and to zero.
Now we discuss periodic/antiperiodic spectrum of the operator L, when the

potential ξ = (u, v) is small in the space

X = C1(S1)× C0(S1), ‖ξ‖X = ‖u‖C1 + ‖v‖C0 ,

or in its complexification Xc. Applying the classical perturbation theory (see
in [Kat2]25) we get that for ξ in Oδ∗(X

c) (δ∗ > 0 is sufficiently small) the
operator Lξ has eigenvalues µ±j (ξ), j ∈ Z, which are algebraic functions26 of ξ

such that µ±j (ξ) → µ0
j as ξ → 0.

The eigenvalues µ±j extend to algebraic functions on the ball OC]
(Xc). To

show this we note that since Lξ is a bounded zero-order perturbation of the
operator L0, then due to the asymptotical perturbation theory [Kat2], there
exists a number j1(C]) such that for |j| > j1 the eigenvalues µ±j and λ±j are
double-valued algebraic functions of ξ ∈ OC]

(Xc), different from other eigen-
values:

λ±j 6= λ±k if max (|j|, |k|) > j1 and ‖ξ‖Xc ≤ C]. (4.10)

The eigenvalues µ±j and λ±j are asymptotically close to µ0
j and lj , respectively.

In particular,





λ±j = lj + O(j−2) = 4j2 + 1 + O(j−2), j →∞,

λ±j = lj + O(j−4) =
1
4
j−2 + O(j−4), j → −∞,

(4.11)

(we use (4.9)).
Due to (4.10), for ξ ∈ OC]

(Xc) the eigenvalues µ±j with |j| ≤ j1 form a
system of 2j1 + 1 solutions for the equation (4.5), isolated from the rest of
solutions. Since the discriminant ∆(µ; ξ) is an analytic function, then these
eigenvalues form a (2j1 + 1)-valued algebraic function.

Finally we note that due to (4.62) the branches λ±j form pairs such that for
any real ξ either both λ+

j (ξ) and λ−j (ξ) are real, or these eigenvalues form a
conjugation-invariant pair. It turns out ([McK], p.207) that the second alter-
native happens:

λ+
j = λ−j ∀ j (4.12)

(maybe λ+
j = λ−j is a double real eigenvalue). We enumerate branches λ+

j and
λ−j in each pair in such a way that Imλ+

j ≥ 0 and Im λ−j ≤ 0 for each j, if
ξ ∈ X.

We have proved the following result:

25The theory has to be applied to the spectral problem for L, rewritten in the form (4.3).
26See the short appendix to section 4 where we discuss algebraic function of infinite-

dimensional arguments.
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Lemma 4.1. The double eigenvalues λ = lj, j ∈ Z, of the periodic/antiperio-
dic spectral problem L0f = µf , written in the λ-coordinate λ = 16µ2, extend to
algebraic functions λ±j (ξ), ξ ∈ OC]

(Xc), which are periodic/antiperiodic eigen-
values of Lξ. These functions satisfy relations (4.10) as well as the asymptotics
(4.11) and λ±j is a double-value algebraic function if |j| ≥ j1. For real potentials
the eigenvalues satisfy (4.12) and Imλ+

j ≥ 0, Imλ−j ≤ 0.

Since an algebraic function is analytic outside its branching points, then we
have the following corollary from the lemma:

Corollary. If the potential analytically depends on a finite-dimensional pa-
rameter r and for some j we have λ+

j (r) ≡ λ−j (r) and λ+
j (r) 6= λ±l (r) if l 6= k,

then λ+
j is an analytic function of r.

4.2. Theta-formulas.
In complete analogy with the KdV-case, a smooth 2π-periodic vector-func-

tion (u(x), v(x)) is called an g-gap potential if the corresponding equation (4.5)
has exactly 2g non-double solutions. (In particular, zero is a zero-gap poten-
tial). Finite-gap periodic potentials form several distinct families with rather
different properties [DNat]. We are concerned with those potentials which can
be deformed to zero. In view of Lemma 4.1 this means that we shall dis-
cuss families of finite-gap potentials (u, v) such that for some g and some set
Υ = {Υ1, . . . , Υg} ⊂ Z , Υ1 < · · · < Υg , we have:

{
λ+

j = λ−j if j ∈ ZΥ ,

λ+
j 6= λ−j if j ∈ Υ.

These potentials can be written in terms of theta-functions, similar to the Its
– Matveev formula (3.12). We discuss corresponding formulas below in this
section.

All potentials which we consider are assumed to have sufficiently small com-
plex parts. Moreover, to simplify presentation we decrease the family of poten-
tials assuming that

∣∣∣λ±Υj

∣∣∣ <
∣∣∣λ±Υj+1

∣∣∣ for j = 1, . . . , g − 1.

The decreased family is assumed to contain all sufficiently small potentials
from the original one (this assumption agrees with the last restriction since
λ±j (0) = lj). For potentials from this family, spiral segments γΥj which join
λ−Υj

with λ+
Υj

, j = 1, . . . , g, do not intersect each other.27 For the theory of
finite-gap solutions of the SG equation which we present below, these segments

27For real potentials we have |λ+
j | ≡ |λ−j | by (4.12), so each γΥj

is a segment of a circle.
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play the same role as the open gaps ∆Vj
play in the KdV-theory (cf. section

3.2).
Let (u, v) be a g-gap potential as above and

E2j−1 = λ+
Υj

, E2j = λ−Υj
, j = 1, . . . , g,

be single eigenvalues of the operator L(u,v) (abusing language we call a λ-
eigenvalue single if the corresponding µ-eigenvalue, µ =

√
λ/4, is single). By

our assumptions, Im E2j−1 > 0, Im E2j < 0 and

|E2j−1|, |E2j | < |E2j+1|, |E2j+2| for j = 1, . . . , g − 1, (4.13)

and
E2j−1 = E2j , E2j−1 6= E2j ∀ j (4.14)

if the potential is real. We denote E = {E1, . . . , Eg} and view E both as a set
and as the complex g-vector (E1, . . . , Eg).

We restrict ourselves to a bounded part of the family as above and assume
that

|Ej | < C ∀ j (4.15)

in addition to (4.13). Since we consider potentials with small imaginary parts,
then the corresponding vectors E ∈ C2g lie in a small neighbourhood of the
real subspace, defined by (4.14).

Since the periodic/antiperiodic discrete spectrum of the operator L is in-
variant under the SG-flow, then the set of g-gap potentials with a fixed single
spectrum {E1, . . . , E2g} is flow-invariant as well.

Let Γ = {(λ, z)} be a Riemann surface of genus g > 0, defined by the
equation

z2 = λ

2g∏

j=1

(λ− Ej).

We make the cut γ0 = [0, +∞) and make cuts along the segments γΥ1 , . . . , γΥg ,
defined above. After Γ is cut, it falls into two sheets Γ+ and Γ−. We choose
a canonical basis of cycles (aj , bj) on Γ (j = 1, . . . , g), so that the cycle aj go
around the cut γΥj (see Fig. 4.1) and the cycles have the canonical intersection
matrix:

ai ◦ aj = bi ◦ bj = 0, ai ◦ bj = δij .

As in section 3.2 we take a basis dω1, . . . , dωg of holomorphic differentials
on Γ, normalised by the conditions

〈dωj , am〉 = 2πiδjm, j, m = 1, . . . , g.
80



Fig. 4.1. The spectral curve with the canoni-
cal basis

We define the Riemann matrix B as Bjk = 〈dωj , bk〉 for j, k = 1, . . . , g, and the
theta-function – as

θ(z) =
∑

s∈Zn

exp(
1
2
(Bs, s) + (z, s)).

We consider Abelian differentials dΩ1, dΩ2 with zero a-periods and such that
dΩ1 has the only pole at the infinity while dΩ2 has the only pole at zero:

dΩ1(P ) = d(
√

λ + . . . ), P = (λ, z) →∞,

dΩ2(P ) = d(
1√
λ

+ . . . ), P → 0.
(4.16)

Denoting the b-periods of dΩ1 and dΩ2 as B1 and B2, that is B1,2
j = 〈dΩ1,2, bj〉 ,

we define the wave-number vector V and the frequency vector W as follows:

V =
1
4
(B1 −B2), W =

1
4
(B1 + B2).

Arguments, similar to those used in section 3.2, show that the vectors V and
W are real, provided that (4.14) holds (see [BiK, BoK3]). Let us denote by
i∆ = i(π, . . . , π) the vector of half-periods of the theta-function. Finite-gap
solutions of the SG-equation with the single spectrum (E1, . . . , E2g) are given
by the following theta-formula:

u(t, x;E, D) = 2i log
θ(i(Vx + Wt + D + ∆))

θ(i(Vx + Wt + D))
, (4.17)

where D ∈ Tg = Rg/2πZg is a phase of the solution. On the contrary, for any
D ∈ Tg and any vector E ∈ Cg which satisfies (4.14), both the numerator and
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the denominator under the log sign in (4.17) do not vanish and the formula
(4.17) defines a real solution for the SG equation, see [KK, BB].28 This solution
is 2π-periodic if and only if

V = V(E) ∈ Zg, (4.18)

cf. Appendix 3. A set of all vectors E which satisfy (4.13)–(4.15) form a 2g-
dimensional domain. So a set of all vectors which meet (4.13)–(4.15), (4.18)
form a g-dimensional29 algebraical set. Hence, the set of g-gap potentials given
by the formulas (4.17), (4.18) form a 2g-dimensional invariant set for SG equa-
tion as in section 2.1.

Remark. Let E be any connected open bounded subset of the real linear space
{E ⊂ Cg | E satisfies (4.15)}, which contains in its closure the vector lΥ =
(lΥ1 , lΥ1 , . . . , lΥg , lΥg ) and is formed by vectors which meet (4.14). Let us as-
sume that a system of non-intersecting paths γ1, . . . , γg can be constructed
such that γj = γj , γj joins E2j with E2j−1 (j = 1, . . . , g) and, first, the paths
continuously depend on E ∈ E and, second, each path γj degenerates to the
point lΥj when E → lΥ.

The set of finite-gap solutions (4.17) with E ∈ E can be used in our con-
structions instead of the set with vectors E as in (4.13)-(4.15). Clearly, for any
given real g-gap solution (4.17), corresponding to a vector E0 which satisfies
(4.14), (4.17), a set E as above can be constructed to contain E0.

4.3. Even periodic and odd periodic solutions.
Now let us consider the SG equation under the even periodic or odd periodic

boundary conditions:

u(x) ≡ u(x + 2π) ≡ u(−x), (EP)

u(x) ≡ u(x + 2π) ≡ −u(−x). (OP)

They imply correspondingly Neumann or Dirichlet boundary conditions on the
half-period (see Example 2.3 in section 2.1). If (u, v) solves (4.1) and u satisfies
(EP) or (OP) then v satisfies the same boundary condition in view of the first
equation in (4.1).

Elementary arguments based on symmetries of the curve Γ (see [BiK1] and
[BoK2, BoK3]) distinguish among the finite-gap solutions (4.17) those which
are even or odd:

28The assumption (4.13) is not needed for this statement to be true since for any vector E
as above one can find paths γj which join E2j with E2j−1, are real in the sense that γj = γj

and do not intersect each other. Using these paths instead of the spirals γΥj
one also gets a

real solution for the SG equation. The assumption (4.13) is imposed to choose the paths in
a canonical way, continuous in E, cf Remark below.

29equations (4.18) form a non-generate system, cf. Lemma 4.3 below.
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Lemma 4.2. The solution (4.17) is even if and only if the set E is symmetric
with respect to the inversion λ 7→ λ−1 and the phase D ∈ Tg satisfies TD = D,
where T is the involution

T (U1, . . . , Ug) = (Ug, . . . , U1).

The solution is odd if and only if the set E is as above but

TD = D + ∆ (4.19)

(∆ is the same vector as in (4.17)). Both in the even and odd cases we have:

TW = W , TV = −V . (4.20)

Due to complete analogy between the (OP) and (EP) cases in what follows,
we restrict ourselves to the (OP) boundary conditions (for the (EP)-case see
[BoK2], [BoK3]). The cases of even and odd g have to be treated separately
but very similar. For short we consider the even case only, so

g = 2n

everywhere below.
Comparing the lemma with (4.13) we get that for any even or odd real

solution (4.17) the following relations hold:

E2j · E2(2n−j+1) = E2j−1 · E2(2n−j+1)−1 = 1 ∀ j = 1, . . . , n. (4.21)

By Lemma 4.1, for a small finite-gap potential the corresponding vector E is
close to some vector LΥ = (lΥ1 , lΥ1 , . . . , lΥ2n , lΥ2n), where lΥi < lΥj if i < j.
If the potential is odd (or even), then we get from (4.21) that lΥj lΥ2n−j+1 ≡ 1,
that is

TΥ = −Υ

(see (4.8)). Since lΥj ’s are distinct real numbers, then Υj 6= 0 for all j. Using
(4.13) we get that

Υ1 < · · · < Υn < 0 < Υn+1 < · · · < Υ2n.

Integer n-vectors l = (l1, . . . , ln), where lj = Υn+j ∈ N, numerate different
families T 2n

l of odd periodic 2n-gap solutions, contractible to the zero solution.
To simplify presentation, we shall discuss only the family, formed by finite-gap
solutions such that all their first gaps are open. These solutions form the family
T 2n

l , where l is the vector
l = (1, 2, . . . , n). (4.22)
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This means that Υ1 = −n, . . . , Υ2n = n (and no Υj equals zero). We abbrevi-
ate this family to to T 2n.

The set T 2n is a subset of a linear space of potentials (u(x), v(x)). By
Lemma 4.2 it is a union of n-tori, where the finite-gap solutions which fill any
torus are parameterised by the reduced phase vector D̃,

D̃ = (D1, . . . , Dn) ∈ Tn

(other components of the vector D can be recovered using (4.19)). Finite-gap
tori which jointly form the set T 2n are parameterised by vectors E ∈ R, where

R = {E ∈ E0 | V (E) ∈ Z2n},

and
E0 = {E ∈ C4n | E satisfies (4.13)–(4.15) and (4.21)}.

Due to (4.21), every 2n-vector E ∈ E0 is uniquely defined by the n-vector
Ẽ = Ẽ(E), formed by its last n coordinates, and we shall view the set E0 as a
subset of the complex space C2n, formed by vectors Ẽ = (E2n+1, . . . , E4n), as
well as the subset of C4n. The half-dimension real subspace LR ⊂ C2n,

LR = {Ẽ | E2j−1 = E2j ∀ j},

is real, i.e., LR ∩ iLR = {0}, since the space iLR is formed by vectors Ẽ such
that E2j−1 ≡ −E2j . Any vector ξ ∈ C2n can be uniquely decomposed as a sum
of its real part Re ξ ∈ LR and imaginary part Im ξ ∈ iLR. Noting that E0 is a
bounded domain in LR, we define a domain Πc ⊂ C2n as

Πc = {Ẽ | Re Ẽ ⊂ E0, |Im Ẽ| < δ} ,

where δ > 0 is sufficiently small. Then E0 is a real part of the complex domain
Πc, E0 = Πc ∩ LR, and R is a real part of the corresponding complex analytic
set Rc ⊂ Πc .

Let us denote by Ṽ and W̃ vectors, formed by the last n components of the
vectors V and W respectively. Due to (4.20), V (E) is an integer vector if and
only if Ṽ (E) is one. In particular the set R is formed by vectors E ∈ E0 such
that

Ṽ (E) ∈ Zn. (4.23)

Elements of the set R will be denoted r. We treat R as a subset of C4n = {E},
or as a subset of C2n = {Ẽ}.
Lemma 4.3. The set E0 ⊂ C4n contains in its closure the vector

L = (l−n, l−n, . . . , l−1, l−1, l1, l1, . . . , ln, ln).
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For r sufficiently close to L the map

E0 → R2n, r 7→ (Ṽ , W̃ ), (4.24)

is non-degenerate and Ṽ (r) ≡ l = (1, . . . , n).

Theory of “small gap” finite-gap solutions (4.17), i.e. of solutions corre-
sponding to vectors E close to L, is very similar to the KdV-theory. In partic-
ular, replacing for convenience the cuts γj as they were defined above by the
segments [λ−j , λ+

j ], one can use elementary perturbation theory to prove that
the differentials dΩ1 and dΩ2 are dΩ1 = P1(λ)µ−1 dλ and dΩ2 = P2(λ)µ−1 dλ,
where P1 and P2 stand for real polynomials of degree g = 2n (cf. Appendices
4 and 5, where similar arguments are used). After this the proof of the Non-
degeneracy Lemma, given in Appendix 6 for the KdV-case, applies to the map
(4.24) with minor modifications. The relation Ṽ ≡ l follows from (4.23) and a
small-gap limit for the vector Ṽ (r), cf. (A4.2).

For another proof of the lemma, based on direct calculations, see [BoK3].
By the lemma, the system of equations (4.23) has the full rank, so the set

R is an n-dimensional analytic set, smooth near the point L. It is unknown if
the set R is connected or not. We bypass this subtlety and replace the set R
as it is defined above by its connected component which contains L in
its closure. Comparing (4.23) with the last assertion of Lemma 4.3 we see that

Ṽ ≡ l in R.

From now on we shall study the SG equation in the (u,w)-variables. Ac-
cordingly, it takes the form

u̇ = −
√

Aw, ẇ =
√

A (u + A−1(sinu− u)),

where A = − ∂2

∂x2 +1, see (2.4). This is a Hamiltonian equation in the synplectic
Hilbert scale ({Zo

s}, β2). We recall that the space Zo
s is a subspace, formed by

odd periodic vector-functions from the Sobolev space Hs+1(S)×Hs+1(S) and
that β2 = 〈J̄(du, dw), (du, dw)〉, where J(u,w) = (−√Aw,

√
Au) and 〈·, ·〉

signifies the H1-scalar product. Below s ≥ 0.
For r ∈ R let us denote by Φ0(r, D̃)(x) the vector-function (u(x), A−1/2u̇(x)),

where u(x) is the r.h.s. of (4.17) and u̇(x) is its time-derivative, calculated for
t = 0. Now we write the finite-gap solutions, forming the set T 2n, as

(u,w) = Φ0(r, D̃ + W̃ (r)t)(x).

The theta-map Φ0 provides global parametrisation of T 2n:

T 2n = Φ0(R× Tn).

This formula shows that T 2n is a union of invariant finite-gap n-tori:

T 2n =
⋃

r∈R

Tn(r), Tn(r) = Φ0({r} × Tn).
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4.4. Local structure of finite-gap manifolds.
When r → L, the theta-function θ(z, r) converges to 1 (cf Appendix 5)

and the finite-gap solution (4.17) converges to zero. That is, Φ0(r, D̃) → 0 as
r → L, for any D̃. By Lemma 4.3, a sufficiently small neighbourhood R0 of
L in R is an analytic n-manifold. A corresponding part of the set T 2n also is
smooth, as well as its closure:

Lemma 4.4. If δ > 0 is suficiently small, then the set T ≤2n
δ = T 2n ∩Oδ(Zo

s ),
s ≥ 0, is a 2n-dimensional analytic submanifold of Zo

s . It passes through
the origin and its tangent space there is spanned by the vectors (sin kx, 0) and
(0, sin kx), k = 1, . . . , n. For any k ≤ n − 1 and any subset {l1, . . . , lk} ⊂
{1, . . . , n}, a closure of the manifold T 2k

(l1,...,lk) ∩Oδ(Zo
s ) is an analytic subman-

ifold of T ≤2n
δ .

In [BoK3] this result is proven by hard direct calculations. In the next
section we present another proof, based on the same ideas as in the KdV-case
(cf. Theorem 3.1′). For the SG-case the corresponding arguments are more
involved since now the L-operator is not selfadjoint.30

Due to the lemma, a “small gap” part T 2n
δ of a finite-gap set T 2n is smooth.

In striking difference with the KdV-case, we can not prove that the whole
set T 2n is smooth.31 Still abusing language we call the sets T 2n finite-gap
manifolds.

The finite-gap manifolds T 2n and the corresponding maps Φ0 satisfy the
assumptions i)- iv) from section 2.2. Indeed, to prove i) (the analyticity) we
remind that R is the real part of the algebraic set Rc ⊂ Πc ⊂ C2n. For any
vector Ẽ = (E2n+1, . . . , E4n) ⊂ Πc we take the vector E = (E1, . . . , E4n) such
that Ẽ(E) = Ẽ and E2jE2(2n−j+1) ≡ 1. The constructions of section 4.2
correspond to this vector E and any point D̃ ∈ Tn a complex SG-solution
u(t, x), given by the formula (4.17), where D ∈ T2n satisfies (4.19) and D̃ is
the vector, formed by its last n coordinates. By Lemma 4.3 the solution u is
odd. So denoting Ψ(Ẽ, D̃) = (u(0, x), u̇(0, x)) |x∈[−π,π] we get an analytic map
Ψ : Πc × {|Im D̃| < δ} → Hs

o , where δ > 0 is sufficiently small, s is any integer
and Hs

o stands for a subspace of the Sobolev space Hs = Hs([−π, π];C2),
formed by odd vector-functions. Let Hs

op ⊂ Hs be the subspace, formed by
odd periodic functions, and π : Hs

o → Hs
op be the corresponding orthogonal

projection. The map

Ψ0 = π ◦Ψ : Πc × {|Im D̃| < δ} −→ Hs
op

30This complifies the proof because for a non-simmetric real 2 × 2-matrix there is no
linear criterion to check if the matrix has a double eigenvalue, while for a symmetric matrix
a criterion exists: the matrix has a double eigenvalue if and only if its deviator vanishes.

31Simply because it is non-smooth. We do not wish to touch here the difficult problem
of structure of its singularities.
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is analytic and for Ẽ ∈ R it coinsides with the map Φ0, written in terms of the
(u, v)-variables (rather then (u,w)). Hence, for any s the map Φ0 analytically
extends to a map Πc × {|Im D̃| < δ} −→ Zs.

The property ii) holds since by Lemma 4.4 the form Φ∗0β2 is nondegenerate
for r close to L; iii) follows from the analyticity of the map Φ0 and from the
formula (4.17). Finally, iv) results from Lemma 4.3.

Due to lemma 4.4 we can continue to study small-gap solutions of the SG
equation in the same way as in sections 3.1 and 3.3 we study the KdV: since the
SG equation has infinitely many integrals of motion (see [McK, FT]), then due
to Vey’s theorem the equation restricted to the manifold T ≤2n

δ admits analytic
at zero Birkhoff coordinates y1, . . . , y2n, where y = 0 corresponds to r = L,
i.e. to the zero solution (cf. Theorem 3.2 and see Appendix 1 in [BoK2] for
another proof of this normal form result). The radii R1, . . . ,Rn, where

Rj =
√

y2
2j−1 + y2

2j ,

form a coordinate system on the manifold R0 (which is a small neighbourhood
of L in R); the form β2 restricted to T ≤2n

δ equals 1
2

∑
dR2

j ∧ dqj , where qj ’s
are corresponding angles,32 and the frequency vector W̃ is an analytic at zero
vector-function of the actions Ij = R2

j/2. Repeating arguments from section
3.3, coefficients of decomposition of the vector W̃ to series in I1, . . . , In can be
calculated. In particular,

W̃j(0) =
√

j2 + 1 =: j∗ , j = 1, . . . , n, (4.25)

and linear part of the decomposition is given by the following relations:

∂Wj

∂Ik
|I=0=

{
−16/j∗, j 6= k,

−12/j∗, j = k.
(4.26)

We recall that all the first gaps are assumed to be open, see (4.22). Relations
similar to (4.25), (4.26) hold for any finite-gap manifold T 2n

l . In particular,

Wn+j(0) = W̃j(0) = l∗j = Υ∗n+j ,

where W is a frequency vector, corresponding to this manifold.

4.5. Proof of Lemma 4.4.
In this section we abbreviate Oδ(Zo

s ) to Oδ.
Since λ-spectrum of the L-operator with an odd periodic potential (u,w) is

inversion-invariant (see (4.63)) and continuously depends on the potential, then

32i.e., qj = Arg (y2j−1 + iy2j)
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to prove that a small odd periodic potential belongs to the finite-gap manifold
T 2n we only have to check that λ+

j (u,w) 6= λ−j (u,w) if 1 ≤ j ≤ n and λ+
j = λ−j

if j ≥ n + 1.
Let us denote by L(u,w) = Lµ

(u,w) the operator in the l.h.s. of (4.3). Abusing
language we say that µ0 6= 0 is its eigenvalue, if the operator Lµ0

(u,w) has a
non-trivial kernel. We have checked (see (4.7)) that the set of 4π-periodic
eigenvalues of the operator L0 equals to the set of its 2π-periodic/antiperiodic
eigenvalues and is {±µ0

k | k ∈ Z}. Every eigenvalue is double and for any
k ≥ 1 33 eigenvectors, corresponding to the eigenvalue µ0

k, are ξ1
k and ξ2

k, where

ξ1
k =




sin
k

2
x

cos
k

2
x


 , ξ2

k =




cos
k

2
x

− sin
k

2
x


 .

Going back to the operator L0 we find that its eigenvectors Ξ1
k and Ξ2

k with
the eigenvalue µ0

k, are

Ξj
k0 = ck




E

1
µk

B̃


 ξj

k = ck




E

1
4µk

E


 ξj

k, j = 1, 2.

Here ck =
√

µ0
k(π(4µ0

k + 1))−1 is the normalising factor, so the vectors have
unit norm in the space L2 = L2(R/4πZ; Ck).

By Lemma 4.1, for a small potential (u,w) the operator L(u,w) has two
eigenvalues, close to µ0

k. Corresponding invariant plane Πk = Πk(u,w) ⊂ L2 is
close to the plane Π0

k, spanned by the vectors Ξ1,2
k0 . 34 The plane Πk analytically

depends on the potential (u,w) and is O(δ2)–close to Π0
k if ‖(u, w)‖ = δ (for

the same reasons as in the KdV-case, cf. the proof of Theorem 3.1′). It has an
L2-orthonormal basis Ξ1,2

k (u, v), equal to Ξ1,2
k0 for (u,w) = (0, 0), continuous in

(u,w) and uniquelly defined by the following normalisation: The vector Ξ1
k is

a vector in Πk which is the closest to the subspace of L2, formed by vector-
functions such that their first components are odd functions of x.

For k = 1, 2, . . . let us denote by Mk(u,w) a matrix of the operator L |Πk

with respect to the basis Ξ1,2
k , and denote by MD

k the deviator, MD
k = Mk −

1
2 (tr Mk)E. We consider its matrix elements (MD

k )ij and abbreviate

(MD
k )11 = M1

k , (MD
k )12 = M2

k .

33below we do not use eigenvalues −µ0
k and eigenvalue µ0

k with k ≤ 0.
34A spectral projector on the plane Πk can be written as a contour integral of a resolvent

of the operator L. The resolvent can be expressed in terms of the operator (Lµ
(u,w)

)−1, so it

is well defined.
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Clearly MD
k has zero eigenvalues and Mk has a double eigenvalue if M1

k =
M2

k = 0.35 Therefore, T 2n contains the set Θ \Θ0, where

Θ = {(u,w) ∈ Oδ | M1
k = M2

k = 0 ∀ k ≥ n + 1}
and

Θ0 = {(u,w) ∈ Θ | λ+
j = λ−j , for some 1 ≤ j ≤ n}.

Lemma 4.5. There exists a diffeomorphism F = Fn : Oδ −→ Zo
s such that

F (0) = 0, F∗(0) = id , (4.27)

and Oδ1(L) ⊂ F (Θ) ⊂ L for some δ1 > 0, where L is the 2n-demensional
linear subspace of Zo

s , spanned by the vectors (sin jx, 0) and (0, sin jx) with
j = 1, . . . , n. Besides, the set F (Θ0) is a closed nowhere dense subset of F (Θ).

We are proving the lemma at the end of this section. Now we show how
this result implies Lemma 4.4. Decreasing the manifold R0 we achieve that
Φ0(R0 × Tn) ⊂ Oδ. Now let us consider the composition

G = F ◦ Φ0 : W0 = R0 × Tn → Zo
s ,

where F is the map from Lemma 4.5. Since T 2n contains the set Θ \Θ0, then
range of G contains a domain in the space L; we denote it Q. We claim that

G(W0) ⊂ L. (4.28)

To prove this assertion we take any system ψ1, ψ2, . . . of vectors in Zo
s which

form an orthogonal complement to L in the Hilbert space Zo
s . We consider all

vectors ψj such that 〈G,ψj〉 6≡ 0. If this set of vectors is empty, then (4.28)
is proven. Otherwise let us take any vector ψj as above and consider the set
K = {w ∈ W0 | 〈G(w), ψj〉 = 0}. This is a proper analytic subset of W0,
so mes K = 0, where mes = mes2n stands for the 2n-dimensional Lebesgue
measure. Let us denote by Π the orthogonal projection Zo

s −→ L. Then
Q ⊂ Π ◦ G(K). The map Π ◦ G is a Lipschitz mapping of the 2n-manifold
W0 to the 2n-dimensional space L, so it sends zero-measure subsets of W0 to
zero-measure subsets of L.36 Hence, mes Π ◦ G(K) = 0 and mes Q = 0. This
contradiction shows that the set of vector ψj defined above is empty and (4.28)
follows.

We have proved that F (T 2n) ⊂ L. Since T 2n ⊃ Θ \ Θ0, then F (T 2n) ⊃
F (Θ) \F (Θ0) and the closure F (T 2n) = F (T 2n) contains the ball Oδ1(L

2n) as
in Lemma 4.5 because the set F (Θ0) is nowhere dense. That is,

Oδ1(L) ⊂ F (T 2n) ⊂ L, (4.29)

35Since MD
k has zero eigenvalues if and only if its determinant vanishes.

36This follows e.g. from (A2) in Appendix 2 in Part II since the 2n-dimensional Hausdorff
measures in W and L are equivalent to the Lebesgue measures, see [Fal, Fe].
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and the first assertion of the lemma is proven for some new sufficiently small
δ > 0. Due to (4.27) and (4.29), T0T 2n = F∗(0)−1L2n = L2n, so the assertion
conserning the tangent space follows. To prove the last claim of the lemma we
note that F

(T 2k
(l1,...,lk)∩Oδ

)
is a neighbourhood of the origin in the space L2k

which is the subspace of L, spanned by the vectors (sin ljx, 0) and (0, sin ljx) ,
(j = 1, . . . , k). This follows from (4.29), where the manifold T 2n is replaced by
T 2k = T 2k

(l1,...,lk), since the map F restricted to T 2k is exactly the corresponding
map F k for the finite-gap manifold T 2k, see construction of F in the proof of
Lemma 4.5. ¤

Proof of Lemma 4.5. For s ≥ 0 let us define a space Hs as the set of all sequences
m = (m1

1,m
2
1,m

1
2,m

2
2, . . . ) with finite norm ‖m‖2s =

∑
j2s

(
(m1

j )
2 + (m2

j )
2
)
.

Then for any s ≥ 1 the map

MD : Oδ = Oδ(Zo
s ) −→ Hs, ξ = (u,w) 7−→ (M1

1 (ξ),M2
1 (ξ),M1

2 (ξ), . . . )

is well defined and analytic. To calculate the linearised map MD
∗ (0), for any

ξ ∈ (u,w) ∈ Zo
s ,

u =
1√
π

∑
uk sin kx, w =

1√
π

∑
wk sin kx, (4.30)

we have to calculate d
dεMD(εξ) |ε=0. To do this we argue as in the proof

of Theorem 3.1′: since the basis vectors Ξ1
k(εξ) and Ξ2

k(εξ) are such that
Ξ1,2

k (εξ) = Ξ1,2
k0 + O(ε2), then to calculate matrix elements of the operator

Lεξ |Πk(εξ) up to terms O(ε2) we can replace the basis Ξ1,2
k (εξ) by Ξ1,2

k0 . Ac-
cordingly, denoting the matrix elements by M ij

k (ε), 1 ≤ i, j ≤ 2, we have

M11
k (ε) =

∫ 4π

0

(LεξΞ1
k0(x), Ξ1

k0(x)
)
dx + O(ε2)

= c2
k

∫ 4π

0

( (
E 1

4µ0
k
E

) · Lεξ ·
(

E
1

4µ0
k
E

)
ξ1
k(x), ξ1

k(x)
)

dx + O(ε2).

Denoting by Ã, B̃ the matrices as in (4.2) with the potential (u, v) replaced
by (εu, εv) = (εu, ε(−∂2/∂x2 +1)−1/2w), where u and w are defined in (4.30),
we calculate the product of the three matrices under the integral sign in the
r.h.s. of the last equality. Denoting by const different ε-independent matrices,
we get that the product equals to

Ã +
1

2µ0
k

B̃ + const =
iε

4
(v + u′x)

(
0 1
1 0

)

+
iεu

16µ0
k

(
1 0
0 −1

)
+ const + O(ε2).
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Therefore,

M11
k (ε) =

iεc2
k

4

∫ 4π

0

(v + u′x)2 sin
k

2
x cos

k

2
x dx+

iεc2
k

16µ0
k

∫ 4π

0

u(sin2 k

2
x− cos2

k

2
x) dx + O(ε2) + const =

iεc2
k

2

∫ 2π

0

(v + u′x) sin kx dx− iεc2
k

8µ0
k

∫ 2π

0

u cos kx dx + O(ε2) + const .

Since v = (−∂2/∂x2 + 1)1/2w = 1√
π

∑
k∗wk sin kx, then

M11
k (ε) =

iεc2
k

√
π

2
k∗wk + O(ε2) + const .

Similar calculations show that

M22
k (ε) =

−iεc2
k

√
π

2
k∗wk + O(ε2) + const ,

M12
k (ε) =

iεc2
k

√
π

2

(
k +

1
4µk

)
uk + O(ε2) + const ,

and M21
k (ε) equals M12

k (ε) up to const + O(ε2). The deviator MD
k equals the

matrix Mk up to O(ε2) + const; hence,

MD
∗ (0)(u, v) =

i
√

π

2
(m1

1,m
2
1,m

1
2, . . . ),

where
m1

k = c2
kk∗wk, m2

k = c2
k

(
k +

1
4µk

)
uk, k = 1, 2, . . . .

Since ‖(u, v)‖2s =
∑

k

(
1 + |k|2s+2

)
(u2

k + w2
k), then the map MD

∗ (0) defines
an isomorphism between Zo

s and Hs. Now we define an analytic map F as
F = MD

∗ (O)−1 ◦ MD. Then F satisfies (4.27), so by the inverse function
theorem F defines a diffeomorphism Oδ → Zo

s . By the construction of this
map, Θ = F−1(L), so Θ is a 2n-manifold and F satisfies the first assertion of
the lemma.

To prove the last assertion we note that a point (u,w) ∈ Θ belongs Θ0 if and
only if for some k ≤ n the 2× 2-matrix Mk(u, v) has a double eigenvalue. This
happens if and only if

∏n
k=1 detMD

k = 0. Given above calculations of matrix
elements of Mk(u, v) show that

MD
k (u, v) = M0D

k +
(

m1
k m2

k

m2
k −m1

k

)
+ O(|u, v|2).

Since the vector (m1
1,m

2
1, . . . ,m

2
n) = m forms a cordinate system on Θ and

O(|u, v|2) = O(|m|2), then the analytic functions detMD
k , 1 ≤ k ≤ n, do not

vanish identically, as well as their product. Hence, Θ0 is a proper analytic
subset of Θ and the lemma is proven. ¤
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Appendix 7. On algebraic functions of infinite-dimensional argu-
ments.

Let X and Xc be a Banach space and its complexification and Oc signifies a
connected domain in Xc. For some n ≥ 1, let f1, . . . , fn be complex functions
on Oc such that the set-valued map x 7→ f = {f1(x), . . . , fn(x)} is continuous
on O.

The set f of functions is called an algebraic function if for any m, any
connected complex domain Q ⊂ Cm and any analytic map F : Q −→ Xc, the
set of functions f ◦F is an algebraic function on Q (for the classical definition
of an algebraic function of a finite-dimensional argument see [BM] or Definition
5.1 below).

Functions f1, . . . , fn are called “branches of the algebraic function f”. Abus-
ing language we also call them algebraic functions.

In nontrivial cases the branches fj are discontinuous functions37 and to
study them their sets of discontinuity have to be specified. In this book we are
mostly concerned with functions of real arguments and with algebraic functions
which are analytic extentions of some continuous functions of real arguments.
Accordingly, branches of analytic functions we consider are continuous on real
domains Oc ∩X.

37since otherwise by the criterion of analyticity each fj is an analytic function.
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5. Linearised equations and their Floquet solutions

5.1. The linearised equation. Below (Z, α2) stands for a symplectic space
(Z = Zd, α2 = J dz ∧ dz) with some fixed d, as in section 2. We continue to
study a quasilinear Hamiltonian equation

u̇ = J∇H(u) = J(Au +∇H(u)) =: VH(u), (5.1)

where ord A = dA, ord∇H = dH < dA, ord J = dJ and d ≥ dA/2. The
equation is assumed to possess a 2n-dimensional invariant manifold

T 2n ⊂ Z, T 2n = Φ0(R× Tn),

with the regular part T 2n
0 = Φ0(R0 × Tn). We recall (see section 2) that R is

a connected n-dimensional analytic set which is the real part of a connected
complex analytic subset Rc of complex domain Πc ⊂ CN ; Rs is a proper
analytic subset of R which contains its singularities and R0 = R \ Rs. The
invariant manifold T 2n

0 is analytic and equation (5.1) defines on T 2n
0 a non-

degenerate integrable system. Besides, the assumptions i)-iv) from section 2
have to be satisfied. For convenience we repeat them here:

i) for any l, the map Φ0 extends to an analytic map Πc × {|Im z| < δ} 7→
Zc

l ;

ii) the pull-back form Φ∗0α2 is non-degenerate on R0 × Tn;

iii) the pull-back of equation (5.1) to R0×Tn by the map Φ0 has the form
ṙ = 0, ż = ω(r), where ω extends to an analytic map Πc 7→ Cn;

iv) for almost every r ∈ R0 the tangent map ω∗(r) : TrR0 7→ Rn is non-
degenerate.

By iii), any solution u0(t) of (5.1) in T 2n
0 has the form:

u0(t) = u0(t; r0, z0) = Φ0(w0(t)),

where w0(t) = (r0, z0 + tω(r0)) ∈ R0 × Tn. We linearise (5.1) about a solution
u0 as above to get the nonautonomous linear equation

v̇ = J

(
Av + (∇H)∗(u0(t))v

)
=: JAt(t)v, (5.2)

which is our concern in this section. We recall that linear flow-maps of equa-
tion (5.2) (if they exist) are denoted as St

τ∗∗(u0(τ)) (see Definition 1.2), and
supplement the assumptions i)–iv) by

v) for any solution u0 of (5.1) in T 2n
0 the flow-maps St

τ∗∗(u0(τ)), −∞ <
τ, t < ∞, are well defined in the space Z = Zd.
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By Theorem 1.3′ the flow-maps St
τ∗∗(u) (u ∈ T 2n

0 ) are symplectomorphisms
of the symplectic space (Z, α2).

To study equation (5.1) near T 2n we shall impose an integrability assump-
tion on the linearised equation (5.2). Roughly speaking, this assumption means
that the equation (5.2) has a complete system of time-quasiperiodic Floquet
solutions. In section 6 we show how to construct for any Lax-integrable equa-
tion as in section 2 an infinite sequence of complex Floquet solutions, naturally
parametrised by an index j ∈ Zn. It is rather difficult to prove directly the
completeness of this system (cf. [Kr1, Kr2] and [EFM1]). Instead we shall
prove (see Lemma 5.4 below) that a system of Floquet solutions is complete if

1) when |j| → ∞, these solutions behave as elements of a fixed complex
basis of the complexified space Zc times oscillating exponents;

2) Floquet exponents of the solutions depend on r0 but not on the angle z0.
As functions of r0 they do not satisfy identically resonance relations from a list
of relevant resonances defined below.

In section 6 we show how to verify the properties 1) and 2) for solutions of
Lax-integrable equations.

Formal definitions of the properties, given below in section 5.3, are rather
cumbersome since our goal was a friendly easy-to-check definition rather than
an elegant and deceptively short one (like on p. 144 of [K5]).

The time-flow of (5.2) is formed by linear symplectomorphisms which pre-
serve tangent spaces to T 2n

0 . Therefore this flow also defines symplectomor-
phisms of skew-orthogonal complements T⊥u0

T 2n
0 to spaces Tu0T 2n

0 in tangent
spaces Tu0Z ∼ Z.38

5.2. Floquet solutions. We call a non-zero solution v(t) of the equation
(5.2) a Floquet solution if there exists a section Ψ of the complexified tangent
bundle to Z, restricted to T 2n

0 ,

T cZ|T 2n
0y Ψ

T 2n
0

Φ0←−−−−
∼

R0 × Tn ,

and a complex function ν(r) such that the solution v has the form

v(t) = v(t; r0, z0) = eiν(r0)tΨ(w0(t)), w0 = (r0, z0 + tω(r0)). (5.3)

It is assumed that v(t) solves (5.2) for any choice of r0 ∈ R0 and z0 ∈ Tn. We
call the function ν(r) the (Floquet) exponent of a Floquet solution v.

38a space T⊥u0
T 2n
0 is formed by all vectors ξ ∈ Tu0Z such that α2(ξ, η) = 0 for each

η ∈ Tu0T 2n
0 .
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A Floquet solution v(t) is called a skew-orthogonal Floquet solution if Ψ in
(5.3) is a section of the complexified skew-orthogonal bundle T⊥cT 2n

0 (its fibres
are complexifications of the spaces T⊥u0

T 2n
0 ).

We note that the exponent ν(r) of a solution v is not uniquely defined since
substituting in (5.3) Ψ = eis·zΨ1(r, z) with any integer n-vector s we write
v in terms of the new section Ψ1 as v = ei(ν(r0)+ω(r0)·s)tΨ1(w0(t)). So the
exponent ν(r) is defined up to an element of the Z–module ω(r) · Zn, treated
as a submodule of R (it is dense in R unless all components of the vector
ω(r) are proportional). Corresponding factor-frequency ν̃(r), equal to the class
ν(r) + ω(r) ·Zn ∈ R/(ω(r) ·Zn), is a well defined element of the factor-module
R/(ω(r) · Zn). Moreover, we show below in Lemma 5.4 that in a non-resonant
situation Floquet solutions with the same factor-frequency ν̃ are proportional.

Let us assume that equation (5.2) has an infinite family of Floquet solutions
v = vj(t) such that different solutions have different exponents. Clearly if vj is a
Floquet solution, then vj is a solution with the exponent −νj(r), corresponding
to the section Ψj . We add this solution to the family; if a solution with the
exponent −νj(r) already was there, we replace it by vj . Now the family is
invariant with respect to the complex conjugation and the set of all exponents
is invariant with respect to the involution ν → −ν. In addition we suppose
that the set of exponents is invariant with respect to the complex conjugation
ν → ν (this assumption holds trivially if all the frequencies are real); hence the
set is invariant with respect to the involution ν → −ν.

It is convenient to enumerate the Floquet solutions by integers from the set
Zn = {±(n + 1),±(n + 2), . . . }. We do it in such a way that, first, ν−j(p) ≡
−νj(p) and, second, Ψ−j ≡ Ψj if νj is real. So below we consider the following
system of Floquet solutions :

vj(t; r0, z0) = eiνj(r0)tΨj(r0, z0 + tω(r0)), j ∈ Zn ; ν−j(r) ≡ −νj(r). (5.4)

For each index k we denote by k̂ an index such that νk̂ = νk. Clearly ˆ̂
k = k

for any k and k̂ = k if νk is real. We note that the hat-map is r-independent
in any connected sub-domain of R0 where all the functions νj(r) are different.

Let us consider any Floquet solution vk. Then vk is a Floquet solution
with the exponent −νk. A solution with this exponent can be obtained as
vk 7→ v−k 7→ vc−k

, or as vk 7→ vk̂ 7→ v−k̂. These solutions must coinside since
the family (5.4) contains no more than one solution with a given exponent; so
the hat-map is odd: −̂k = −k̂. As the two solutions coinside with vk, then
Ψ−k̂ = Ψk. We have got that:

Ψ−k̂ = Ψk and − k̂ = −̂k ∀ k. (5.4′)

Now we impose some rather non-restrictive smoothness assumptions on the
solutions (5.4). To do this in the right way we note that the sections Ψj ,
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restricted to a torus Tn(r), are eigenvectors of the linearised time-one shift
operator S1

0∗ which acts on sections of the skew-orthogonal complex bundle
T⊥cT 2n

0 |T n(r). Indeed, we have S1
0∗Ψj = eiνj(r)Ψj .39 The operator S1

0∗ analyt-
ically depends on the parameter r ∈ R and by analogy with classical spectral
problems (see Example 5.1 below) it is plausible to assume that its eigenvalues
eiνj(r) and their logarithms iνj(r) are algebraic functions of r which might have
algebraic singularities at the set

Λj = {r | νj(r) = νp(r) for some p 6= j}.

In particular, νj is analytic in r if the set Λj is empty. Situation becomes
too intricate if there are infinitely many nontrivial sets Λj . To avoid this
complexification we assume that

a) there is a point r ∈ R0 where νj 6= νk if j 6= k. Besides, there exists
j1 (depending on T 2n) such that νj(r) 6= νk(r) for all r, all k and all j
such that |j| ≥ j1, j 6= k.

Since ν−j = −νj , then by this assumption νj 6= 0 if j ≥ j1.
The exponents νk with |k| ≥ j1 are assumed to be real analytic:
b) for any k such that |k| ≥ j1, νk is a real-valued analytic function on R

(so νk ≡ −ν−k and Ψ−k = Ψk). The section Ψk extends to an analytic
map Πc×{| Im z| < δ} → Zc and νk extends to an analytic function on
Πc.

In particular, k̂ = k if |k| ≥ j1.
For sophisticated integrable equations like the SG equation, some exponents

νk(r) with |k| < j1 have non-trivial algebraic singularities (see section 6). Re-
covering later in this section global properties of the system of Floquet solutions
(5.4) we treat them as algebraic functions on the analytic set R. Next we cut
out of R the set of algebraic singularities to work with the reduced set. Nothing
unexpected happens on this way. The reader who trust this claim, or is not
concerned with the “sophisticated” equations, can assume that all the expo-
nents are analytic functions (i.e., j1 = n + 1) and ignore the assumptions c),
d) below, where we specify the algebraic singularities.

The assumptions we shall impose now on the exponents νk with |k| < j1 are
made ad hoc: they are met by Floquet solutions of Lax-integrable equations.

Below an index k ∈ Zn is called small (big) if |k| < j1 (respectively |k| ≥ j1).

Definition 5.1. An N -valued continuous complex function {λ1, . . . , λN} on
Πc is called an algebraic function if there exists a holomorphic function F (r, λ)

39The operator S1
0∗ is a well-known tool to study hyperbolic invariant sets (see e.g. [Pes,

section 2.10]). The tori T n(r) we consider usually are elliptic and the operator S1
0∗ has

its spectrum in the unit circle. Sections Ψj give rise to eigenvectors of S1
0∗ of the form

eis·qΨj(q), s ∈ Zn, j ∈ Zn. If the system of Floquet solutions is complete (see below), then
these vectors form a basis of an appropriate Hilbert space of sections of the bundle. In this
case the operator S1

0∗ has a point spectrum which is dense in the circle.
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on Πc × C of the form

F (r, λ) = λN + fN−1(r)λN−1 + · · ·+ f0(r), (5.5)

with uniformly in Πc bounded holomorphic coefficients fj , such that the points
{λ1(r), . . . , λN (r)} exhaust all N roots of the equation F = 0 and the discrim-
inant ∆ of F ,

∆(r) =
∏

j 6=k

(λj(r)− λk(r)),

does not vanish identically. The graph of this N -valued function denotes Gλ,
i.e. Gλ = F−1(0) ⊂ Πc × C .

The functions λj are called branches of the algebraic function, or, shortly,
algebraic functions. They are not uniquelly defined. Usually the branches of
analytic functions we consider in this book are specified to be continuos on the
real domain Πc ∩ RN .

The holomorphic function F (r, λ) of the form (5.5) is called a Weierstrass
polynomial .

Now we specify singularities of the exponents νk with small k. We denote
M = j1 − n− 1.

c) The functions νj with small j are continuous in R and are analytic in
R \ Λ, where Λ = ∪|j|<j1Λj . They have the form

νj(r) = ν̃(λj(r), r), j = ±(n + 1), . . . ,±(n + M),

where {λj(r)} is some 2M -valued algebraic function and ν̃ is an analytic
complex function on Πc × C, such that ∂ν̃/∂λ 6≡ 0.

The functions νj are analytic in Πc outside the discriminant set D = ∆−1(0).
We note that D ∩ R is a proper analytic subset of R since by the assumption
a) no two exponents νj , νk coincide identically in R.

Remark 1. The multi-valued map r 7→ {νj(r)}, j = ±(n + 1), . . . ,±(n + M),
is analytic bounded outside the discriminant set D and is formed by roots of
the polynomial

∏
(ν − νj(r)). This polynomial can be written in the form

(5.5), where the coefficients are symmetric polynomials of νj ’s. So they are
holomorphic functions, bounded in Πc \ D, and their singularities at D can
be removed (see [BM, GR]). Thus, the exponents νj(r) with small j form
the 2M roots of a Weierstrass polynomial. We could treat {νj} as a 2M -
valued algebraic function, but do not do this since in applications the multi-
valued function {λj(r)} appear naturally (as eigenvalues of the corresponding
L-operator) and since the corresponding sections Ψj ’s also are functions of the
λj ’s, see item d) below. ¤
Remark 2. Let us take any two connected components O1, O2 of R \D and a
smooth path from O1 to O2 in Rc \ (D ∪ Rc

s) (it exists since codimension of
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D ∪ Rc
s in Rc is at least two, see [BM, GR]). For any small j we analytically

continue the functions λj and λ−j along the path from O1 to O2. Since the
relation νj + ν−j ≡ 0 is preserved by this continuation, we get in O2 functions
νj′ and ν−j′ with some small j′. This means that the exponents νj and the
functions λj form pairs, invariant under the monodromy. ¤

The set D∩Rc contains algebraic singularities of the Floquet exponents and
is contained in the set Λ, defined in c). The latter is a proper analytic subset of
Rc since it is formed by zeroes of the non-trivial analytic function

∏
(νj − νk)

(the product is taken over all small j 6= k). We note that Λ contains zeroes of
the exponents νj since they are odd in j. We add Λ to the singular set Rc

s:

Rc
s := Rc

s ∪ (Λ ∩Rc), Rs := Rs ∪ (Λ ∩R) ,

and modify the regular set R0 = R \Rs accordingly.

Example 5.1. Eigenvalues {λj} of a real matrix B(a) which analytically de-
pends on a real vector-parameter a are zeroes of the characteristic equation
det(B(a) − λE) = 0 and are algebraic functions of a. A priori they have sin-
gularities at the sets Λjk = {λj = λk}. Some of these singularities can be
removed by re-enumerating the eigenvalues before or behind the sets Λjk. In
particular, if the matrix B(a) is symmetric, then under proper enumeration the
eigenvalues have no singularities at all (this is Rellich’s theorem). However, if
λj and λk are real “before” Λjk and have nontrivial imaginary parts “behind”
Λjk, then a singularity at this set is unremovable. For example, eigenvalues of

the matrix
(

1 −a
1 −1

)
are real for a < 1 and are complex for a > 1. At a = 1

they have unremovable algebraic singularities. ¤

Now we pass to smoothness of the sections Ψj with |j| < j1:

d) There exists an analytic map Ψ̃ : Πc×{|Im z| < δ}×C→ Zc, such that
Ψj(r, z) = Ψ̃(r, z;λj(r)) for (r, z) ∈ R0 × Tn and all small j. Range of
the map Ψ̃ is contained in Zc

∞ and Ψ̃ is analytic as a map, valued in
any space Zc

s .

This assumption agrees with smoothness of eigenvectors in finite-dimensional
spectral problems:

Example 5.1, continuation. Let us denote by Bj the n×n matrix Bj(a) =
B − λj(a)E, so Bξ = λjξ if Bjξ = 0. Let us assume that rkBj(a) = n− 1 for
a /∈ Λj =

⋃
k Λjk. Then for a 6∈ Λj some (n− 1)× n-submatrix of Bj also has

rank n−1. Assuming for simplicity that this rank has the matrix formed by the
first n−1 lines, we denote by ξm(a), 1 ≤ m ≤ n, an algebraic complement to the
element Bj

nm(a) in the matrix Bj . Then the vector ξ = (ξ1, . . . , ξn) is nonzero
for a /∈ Λj and

∑
m Bj

lmξm = 0 since: for l = n the sum equals det Bj = 0
and for l 6= n it vanishes by an elementary linear algebra. The vector ξ is an
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eigenvector of B, Bξ = λj(a)ξ. It is a polynomial in the eigenvalue λj and in
elements of the matrix B. It vanishes at Λj . ¤

Since the exponents λj(r), λ−j(r) with small j form monodromy-invariant
pairs, then the function

b(r, z) = −
n+M∏

j=n+1

(
α2[Ψ̃(r, z; λj(r)), Ψ̃(r, z, λ−j(r))]

)2

is well-defined, bounded and analytic in Πc×{| Im z| < δ} outside the branching
set D × Cn. Since the discriminant set D is a proper analytic subset, the
singularity at D may be removed (see [BM, section VIII.5] or [GR]) and b
extends analytically to the whole domain Πc × {| Im z| < δ}. We use this
function in section 5.3 below.

5.3. Complete systems of Floquet solutions. Let us take any basis {ϕj |
j ∈ Z0} of the Hilbert scale {Zs} as in the beginning of section 2 and assume
that the basis is symplectic, i.e.,

α2[ϕj , ϕ−k] = 〈Jϕj , ϕ−k〉 = δj,kµj for all j ∈ N, k ∈ Z0, (5.6)

where µj are some positive real numbers. For −j < 0 we set µ−j = −µj , so
now the numbers µj are defined for j ∈ Z0. Since {ϕj} is a Hilbert basis, then
Jϕk = µkϕ−k for every k ∈ Z0. Denoting

νJ
j = µ−1

j

and using that J is an isomorphism of the scale {Zs} of order −dJ ≤ 0, we get:

C−1
1 jdJ ≤ νJ

j ≤ C1j
dJ ∀ j ≥ 1

with some C1 ≥ 1.
Given the basis {ϕj} we define a complex Hilbert basis {ψj | j ∈ Z0} as

follows:

ψj =
1√
2
(ϕj − iϕ−j), ψ−j = ψ̄j =

1√
2
(ϕj + iϕ−j) ∀ j ∈ N.

Due to (5.6), for any j and k we have :

α2[ψj , ψ−k] = iδj,kµj . (5.7)

Since J̄ϕk = µkϕ−k for every k, then the operators J̄ and J are diagonal in
this basis:

J̄ψj = iµjψj , Jψj = iνJ
j ψj . (5.8)

.
For any real s we denote by Ys the following subspace of Zs of codimension

2n:
Ys = span{ϕj | j ∈ Zn} ⊂ Zs .

The spaces {Ys, α2 |Ys} form a symplectic Hilbert scale with the basis {ϕj | j ∈
Zn}.
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Example. If {ϕj} is the trigonometric basis as in (1.1), i.e. ϕk = π−1/2cos kx

and ϕ−k = −π−1/2sin kx, then the complex basis {ψk} is the exponential basis
ψk = (2π)−1/2eikx. ¤

Let {vj} be a system of Floquet solutions as in section 5.2 and {Ψj} are
the corresponding sections. For any (r, z) ∈ R0 × Tn we denote by Φ1(r, z) a
complex-linear map from Y c = Y c

d to Zc which identifies ψj with Ψj :

Φ1(r, z) : Y c → Zc, ψj 7→ Ψj(r, z) , ∀j ∈ Zn . (5.9)

The map Φ1 will be used to formulate an important notion of completeness
of a system of Floquet solutions. Before to do this we cut out the set R0 a
“neighbourhood of infinity” and a neighbourhood of the singular set Rs to get
an open domain R1,

R1 b R0 = R \Rs.

Possibly, R1 is disconnected. To simplify notations we assume that the domain
R1 belongs to a single chart of the analytic manifold R0 and treat R1 as a
bounded domain in Rn. We fix any bounded complex domain Rc

1 which contains
R1 with its complex δ-neighbourhood and does not intersect the singular set
Rc

s. We denote by W1 the set

W1 = R1 × Tn

and denote by W c
1 its complex neighbourhood ,

W c
1 = Rc

1 × {|Im z| < δ}.

Definition 5.2. A system of Floquet solutions (5.4) which satisfies the ana-
lyticity assumptions a)–d) is called complete (in the space Z = Zd) if :

0) it is formed by skew-orthogonal Floquet solutions,
and for any (r, z) ∈ R0 × Tn we have:

1a) the functions βj = −iα2[Ψj(r, z), Ψ−j(r, z)], j ∈ Zn, are z-independent:
βj = βj(r),

b) there is a non-empty sub-domain of R0 where no function βj(r) vanishes
identically,

c) the vectors {Ψj(r, z)} form a skew-orthogonal system in the space
T⊥c

Φ0(r,z)
T 2n, that is:

α2[Ψj , Ψ−k] = iβj(r)δj,k ∀j, k . (5.10)

2) The vectors {Ψj(w)}, w = (r, z) ∈ W c
1 , are analytic in w and are uniformly

asymptotically close to the complex basis {ψj} and the exponents νj(r) are close
to constants. Namely,
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a) the linear map Φ1(w) analytically depends on w ∈ W c
1 as an operator

Y c → Zc and equals the natural embedding ι : Y c ↪→ Zc up to a ∆-smoothing
operator, ∆ > 0:

‖Φ1(w)− ι‖d,d+∆ ≤ C1 for all w ∈ W c
1 ; (5.11)

b) for large j the functions βj(r) in (5.10) are analytic in Rc
1 and are there

close to the constants µj , defined in (5.6) (cf. (5.8)):

|βj(r)− µj | ≤ C2|j|−dJ−∆ for r ∈ Rc
1; (5.12)

c) the exponents νj analytically extend to Rc
1 and are there “asymptotically

close to constants”. Namely, for any r ∈ Rc
1 we have |νj(r)| ≤ C3|j|dA+dJ and

|∇νj(r)| ≤ C4|j|e∆ , (5.13)

with some real ∆̃ < dA + dJ .

The constants C1−C4 in this definition may depend on the domain R1 but
not on j.

Since the vectors Ψj analytically extend to W c
1 by item 2), then functions

βj are analytic in Rc
1 and the relation (5.10) holds in W c

1 .
Since Ψ−j(w) = Ψj(w) for real w and big j, then the corresponding functions

βj are real and β−j ≡ −βj . As µj ≥ C−1j−dJ , then by the assumption (5.12)
we have:

|βj(r)| ≥ 1
2
µj for r ∈ Rc

1 and j > j2 (5.14)

with some new constant j2. We consider the product

b̃(r) =
j2∏

j=n+1

β2
j (r) = b(r)

j2∏

j=j1

β2
j (r),

where the function b =
∏j1−1

j=n+1 β2
j was introduced at the end of section 5.2 and

was shown to be analytic; now it is z-independent due to the assumption 1a).
The functions βj with big j also are z-independent analytic. So b̃ is analytic in
Πc and due to 1b) a set of its zeroes is a proper analytic subset of Rc. We add
it to the complex singular set Rc

s,

Rc
s := Rc

s ∪ b̃−1(0),

and accordingly modify the sets Rs and R0. If it is necessary, we also decrease
the domain R1 so that the inclusion R1 b R0 \Rs still holds true.
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Remark 3. The set Rs as it is defined now is the final singular set for our
constructions. It comprises: 1) the singular part of the algebraic set R, 2) the
set of degeneracy of the pull-back symplectic form Φ∗0α2, 3) algebraic singular-
ities of the Floquet exponents and 4) points where any two of them coincide.
Finally, it contains 5) the zero-set of the function b̃ we have just constructed.
The last set is a set of degeneracy of the system {Ψj} since a vector Ψj(r, z)
is skew-orthogonal to the tangent space TuT 2n and to all the vectors Ψk(r, z)
as soon as βj(r) = 0 (see (5.10)). In the same time in Lemma 5.1 below we
prove that the vectors {Ψj} form a basis of the skew-orthogonal space T⊥c

u T 2n

if r /∈ Rs. ¤
The set R1 b R \ Rs may be chosen to occupy most of R0 in the sense of

measure: If R̃ is a bounded chart of the manifold R0, mesn is the Lebesgue
measure in R̃ and γ is any positive number, then R1 can be chosen in such a
way that

mesn(R̃ \R1) ≤ γ. (5.15)

Let us denote by T 2n,c the 2n-dimensional complex manifold Φ0(W c
1 ) and

for u = Φ0(w) ∈ T 2n,c define the space T⊥u T 2n,c as the set of all vectors z ∈ Zc

such that α2[z, ξ] = 0 for every ξ ∈ TuT 2n,c. For any real u = Φ0(w) ∈ T 2n we
have

T⊥u T 2n,c = T⊥c
u T 2n.

A complete system of skew-orthonal Floquet solutions span the skew-orthogo-
nal spaces T⊥u T 2n,c, in conformity with the term “complete” we use:

Lemma 5.1. For any w ∈ W c
1 and for u = Φ0(w) the map Φ1(w) defines an

isomorphism of the spaces Y c and T⊥u T 2n,c, as well as of Y c
d+∆ and T⊥u T 2n,c∩

Zc
d+∆. In particular, the vectors {Ψj(w)} form a skew–orthogonal basis of the

space T⊥u T 2n,c.

Proof. By (5.11) the map Φ1(w) is a compact perturbation of the embedding
ι : Y c → Zc, so indCΦ1(w) = ind ι = 2n. As range of Φ1 lies in T⊥u T 2n,c, then
dimCCokerΦ1 ≥ 2n. So if we can show that Ker Φ1 = {0}, then the range of
Φ1 equals T⊥u T 2n,c and the assertion concerning the spaces Y c and T⊥u T 2n,c

will follow. Suppose that the kernel is non-trivial. Then it contains a nonzero
vector ξ =

∑
yjψj and we have

0 = Φ1ξ =
∑

yjΨj(w).

By (5.10), skew-product of the right-hand side with any vector Ψ−j(w) equals
i yjβj(r). Thus, yj ≡ 0 since βj 6= 0 outside Rc

s (we recall that this set contains
zero-set of the function β̃). So ξ = 0. Contradiction.

The assertion concerning the spaces Y c
d+∆ and T⊥u T 2n,c∩Zc

d+∆ follows by the
same arguments since due to (5.11) the map Φ1(w) is a compact perturbation
of the embedding ι : Y c

d+∆ → Zc
d+∆. ¤

Decreasing in a need the complex neighbourhood W c
1 of W1 we get the

following result:
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Lemma 5.2. For any s ∈ [−d− dJ −∆, d + ∆] the operator Φ1(w) : Y c
s → Zc

s

analytically depends on w ∈ W c
1 and is uniformly bounded. Moreover, for any

s as above the map Φ1(w)− ι : Y c
s → Zc

s+∆ is analytic in w ∈ W c
1 as well.

Proof. We consider the linear space R2n =span {ϕj | j = ±1, . . . ,±n} ⊂
(Z,α2) and provide it with the induced symplectic structure. Next for any
point w in the closure of W1 we take its complex neighbourhood Oc ⊂ W c

1 and
choose a linear symplectomorphism Ψ0 = Ψ0(w) : C2n → TwT 2n,c ⊂ Zc

d+∆

which is real for real w and analytically depends on w ∈ Oc. (It can be
constructed using any analytic Darboux coordinates in the vicinity of Φ0(w)
in T 2n). By Lemma 5.1 the linear map

Ψ(w) : Zc
d+∆ = C2n ⊕ Y c

d+∆ → Zc
d+∆, (z, y) 7→ Ψ0(w)z + Φ1(w)y,

defines a symplectomorphism, analytic in w ∈ Oc; the inverse map Ψ(w)−1

also is bounded and analytic in w. By Proposition 1.3′, applied to the linear
maps Ψ(w), the operators Ψ(w) : Zc

θ → Zc
θ , −d − dJ −∆ ≤ θ ≤ d + ∆ , are

bounded and analytic in w ∈ Oc.
Since Ψ |{0}⊕Y c= Φ1, then the map Φ1(w) : Y c

s → Zc
s analytically depends

on w ∈ Oc. To prove the first assertion of the lemma it remains to cover W1 by a
finite system of domains Oc as above and choose a new complex neighbourhood
W c

1 which is contained in the union of these domains.
The second assertion follows from Proposition 1.4, applied to the map Ψ

(see the remark made after the Proposition). ¤
Example 5.3 (Birkhoff-integrable systems, see [K3] and [Kap, BKM]). Let
Z = Z0 be a space of sequences ξ = (x1, y1; x2, y2; . . . ), given the l2-norm and
given the “usual” symplectic structure by means of the 2-form J dξ∧dξ, where
J(x1, y1; . . . ) = (−y1, x1; . . . ). We do not specify the scale {Zs} and the orders
of operators, involved in the constructions below.

Let us denote pj = (x2
j + y2

j )/2, qj = Arg(xj + iyj) and consider an analytic
hamiltonian h(p1, p2, . . . ). The subspace T 2n ⊂ Z, formed by all vectors ξ such
that 0 = xn+1 = yn+1 = . . . , is invariant for the Hamiltonian vector field Vh

and the restricted to T 2n system obviously is integrable. Let us abbreviate
(p1, . . . , pn) = pn, (q1, . . . , qn) = qn and denote by νj the functions

νj(pn) =
∂h(pn, 0, . . . )

∂pj
, j ≥ 1.

We shall identify any pn with the vector (pn, 0, . . . ).
The manifold T 2n is filled with solutions

ξ(t) = {pn = const , qn = tνn(pn) + ϕn; pr = 0 for r > n},

where ϕn ∈ Tn and νn = (ν1, . . . , νn). For any j > n let us consider a smooth
variation ξ(t, ε) of a solution ξ(t), which changes no action pl except pj and
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makes the latter equal ε2. That is, ξ = (x1, y1; , . . . ), where

pn(t) = pn, qn(t) = tνn(pn) + qn
0 (ε) + O(ε2);

xl(t) = yl(t) = 0 if l > n, l 6= j,

and
xj(t) = ε cos(tνj(pn) + ϕ(ε)) , yj = ε sin(tνj(pn) + ϕ(ε)) .

Here qn
0 (ε) ∈ Tn and ϕ(ε) ∈ S1 are phases of the solution ξ(t, ε). The curve

ṽj = ξ′ε(t, 0) is a solution of the equation, linearised about the solution ξ(t). It
equals

ṽj(t, ϕ) = {δpn = 0, δqn = (qn
0 )′ε(0); δx(t), δy(t)},

where δxl(t) = δyl(t) = 0 if l > n, l 6= j and

δxj = cos(tνj(pn) + ϕ), δyj = sin(tνj(pn) + ϕ), ϕ = ϕ(0).

The curve vtriv(t) = {δpn = 0, δqn = qn
0
′
ε(0); δx = δy = 0} is a trivial solution

of the linearised equation (it may be obtained using the variation of ξ(t), cor-
responding to a shift of the phase-vector ϕn). An appropriate complex linear
combination of the solutions ṽj(t, 0), ṽj(t, π) and the trivial solution as above
takes the Floquet form

vj(t) = eiνj(p
n)tΨj , Ψj = (0, . . . ; i, 1; 0, . . . )

(the pair (i, 1) stands on the jth place).
Let us suppose that |νj | ≤ CjdA for some dA and that (5.13) holds. Then

the system of Floquet solutions {vj , vj | j ≥ n + 1} is complete in the sense of
Definition 5.2. ¤

This example illustrates well the definition but it is too simple and too
restrictive: to be Birkhoff integrable a finite-dimensional system has to have
dim Z/2 integrals of motion, but to have a complete system of Floquet solutions
for the equations linearised about solutions in T 2n it needs only n of them (see
a Floquet-like theorem in section 5.4 below).

To be useful in analytical studies of the equation (5.1) and its perturbations,
a system of Floquet solutions should be complete and non-resonant :

Definition 5.3. A system of Floquet exponents {νj(r) | j ∈ Zn} satisfying
the assumptions a)–c) from section 5.2 is called non-resonant if:

3) there exists a domain O ⊂ R0 such that for all s ∈ Zn and all j, k ∈ Zn,
j 6= −k, we have:

ω(r) · s + νj(r) 6≡ 0 in O, (5.18)

ω(r) · s + νj(r) + νk(r) 6≡ 0 in O. (5.19)
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The system of Floquet solutions with non-resonant exponents also is called
non-resonant.

The functions in the left-hand side of (5.18) and (5.19) are called resonance
functions, or resonances. We note that the assumptions (5.18), (5.19) admit
a compact reformulation in terms of the factor-frequencies ν̃j , introduced in
section 5.2:

ν̃j(r) 6≡ 0 and ν̃j(r) 6≡ ν̃k(r) in O for any j and each k 6= j.

Zero-set of any resonance is nowhere dense:

Lemma 5.3. If a system of Floquet exponents is non-resonant, then each res-
onance function as in (5.18), (5.19) is nonzero almost everywhere.

Proof. Let f be any resonance as in (5.19). Since the function f is analytic,
we should only check that it does not vanish identically in any connected com-
ponent O1 of the set R0. Let us assume the opposite: f ≡ 0 in O1. Since Rc

s

is a proper analytic subset of Rc, then we can find a smooth path in Rc
0 from

O1 to O and analytically extend f along this path (see [BM]). In O we get the
relation: ω · s + νj′ + νk′ ≡ 0, where νj′ and νk′ are analytic continuations of
νj and νk respectively. By Remark 2 in section 5.2, j′ 6= −k′. So the obtained
relation contradicts (5.19).

By the same arguments the lemma’s assertion also holds true for any reso-
nance as in (5.18). ¤

Finally we give

Definition 5.4. A system of Floquet solutions (5.4) satisfying a)–d) is called
complete non-resonant if it satisfies assumptions 0)–3) from Definitions 5.2,
5.3.

It turns out that the assumptions 0), 1a) and 1c) follow from 3):

Lemma 5.4. Any non-resonant system of Floquet solutions satisfy assump-
tions 0),1a) and 1c) from Definition 5.2.

Proof. To check 1c) we should prove that for any j 6= −k the function F (r, z) =
α2[Ψj , Ψk] vanishes identically. To do this let us consider the auxiliary function
f(t; r, z),

f := α2[vj(t), vk(t)] = ei(νj+νk)tα2[Ψj(w(t)), Ψk(w(t))] = ei(νj+νk)tF,

where w(t) = (r, z + tω(r)). Since the skew-product of any Floquet solutions
vj and vk is time-independent (see Theorem 1.3′ and the assumption v) from
section 5.1), then

0 =
df

dt

∣∣∣
t=0

= i(νj + νk)F + OzF · ω.
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Let us expand F in Fourier series, F =
∑

eis·zF̂ (r, s). From the last identity
we get that

F̂ (r, s)(νj + νk + s · ω(r)) = 0

for all s and all r. By Lemma 5.3 the second factor is nonzero for almost all r,
so F̂ (r, s) ≡ 0 and F (r, z) ≡ 0.

To check 1a) we note that for k = −j we have:

const ≡ α2[vj(t), v−j(t)] = α2[Ψj(w(t)), Ψ−j(w(t))].

Because (2.5), the curve w(t) is dense in the tori {r} × Tn for almost all r. So
α2[Ψj , Ψ−j ] is a z-independent function for almost all r. By continuity, it is
z-independent for all r, as states 1a).

To check 0) we take any variations δr, δz of the initial conditions for the
curve w(t) and get the corresponding solutions V1, V2 for equation (5.2):

V1(t) = Φ0∗(w(t))(δr, 0), V2(t) = Φ0∗(w(t))(0, δz).

We claim that F (r, z) := α2[Ψj ,Φ0∗(δr, 0)] ≡ 0 for any j. Indeed, since

const ≡ α2[vj(t), V1(t)] = eiνjtF,

then the claim follows by the same arguments as above if we use the relation
(5.18) instead of (5.19). Thus Ψj is skew-orthogonal to each vector Φ0∗(δr, 0).
Using the solution V2(t) rather than V1(t) we get that Ψj also is skew-orthogonal
to each vector Φ0∗(0, δz). Hence, this is a skew-orthogonal solution. ¤
Corollary. A system of Floquet solutions (5.4) which meets the assumptions
a)–d) from section 5.2 as well as the assumptions 2), 3) from Definitions 5.2,
5.3 is skew-orthogonal to T 2n and is complete non-resonant, provided the as-
sumption 1b) holds. The latter happens e.g., if there exists a point r∗ ∈ R such
that Ψj(r, z) → ψj as r tends to r∗, for each j. Here R signifies the closure of
R in RN where R is a subset.

Practically the point r∗ corresponds to the zero-solution of the equation (5.1)
(or another trivial solution).

This result simplifies verification of completeness for a system of Floquet
solutions since it is much easier to check the non-resonance relations (5.18),
(5.19) than the completeness 1a)-1c).

The transformation Φ1 integrates the linearised equation (5.2): it sends the
curves yj = eiνj(r0)tψj to solutions vj(t) of (5.2). It is convenient to have this
transformations symplectic and real. For this end the sections {Ψj} have to be
properly reordered and normalised by multiplying by some analytic functions;
simultaneously the basis {ψj} also have to be transformed by a linear symplec-
tomorphism which changes finitely many its components only. In this way the
following result can be proven:
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Proposition 5.1. Given any complete system of Floquet solutions (5.4) we
can normalise the sections {Ψj} and the complex basis {ψj} is such a way that
the new basis still meets (5.7), for |j| ≥ j1 the functions {ψj} are orthonormal
and

Jψj = iνJ
j ψj |j| ≥ j1.

The new system of Floquet solutions still is complete. Besides,
a) for any (r, z) ∈ W c

1 = Rc
1 × U(δ) the map Φ1(r, z) defines a symplectic

isomorphism of Y c and the skew-orthogonal space T⊥Φ(r,z)T 2n,c, which analyti-
cally depends on (r, z) ∈ W c

1 ;
b) the nonautonomous linear map Φ1(r, z+ tω(r)) sends solutions y(t) of the

autonomous Hamiltonian equation

ẏ = JB(r)y , y ∈ Y c, (5.20)

to solutions of the linearised equation (5.2), skew-orthogonal to the manifold
T 2n. The operator B(r) defines a selfadjoint morphism of the scale {Y c

s } of
order dA, analytic in r ∈ Rc

1, and

ord∇rB(r) ≤ ∆̃− dJ . (5.21)

The operator JB(r) is diagonal in the basis {ψj} and its eigenvalues are the
Floquet exponents of the solutions (5.4): JB(r)ψj = iνj(r)ψj for each j.

We note that the basis {ψj} may depend on a connected component of the
set R1.

Proof. To prove the theorem we replace the sets R1 and Rc
1 by any connected

components R0
1 ⊂ R1 and R0c

1 ⊂ Rc
1, where R0

1 = R0c
1 ∩ R1, and denote

T = Φ0(R0
1 × T), T c = Φ0(R0c

1 × {|Im z| < δ}). We consider sections Ψj with
big and small indexes j separately:

1) j is big. Now the functions βj(r), r ∈ R0
1, are real nonzero and odd

in j. For |j| > j2 the function sgn j · βj is positive by (5.14). If for some
j1 ≤ |j| ≤ j2 this function is negative, we interchange the Floquet solutions vj

and v−j . After this transposition every function βj(r)νJ
j is positive (we recall

that the map j 7→ νJ
j is odd in j and is positive for positive j) and we replace

each section Ψj by
(
νJ

j βj(r)
)−1/2Ψj . Then (see (5.7), (5.10)) for big j we have

achieved:

α2[ψj , ψ−j ] ≡ α2[Ψj(w), Ψ−j(w)], w ∈ R0c
1 × {|Im z| < δ}. (5.22)

In the space span{ψj | j ∈ Zj1} ⊂ Y c we consider a linear operator B(r),
r ∈ R0c, such that B(r)ψj =

(
νj(r)/νJ

j

)
ψj for every j. That is,

JB(r)ψj = iνj(r)ψj , ∀ j ∈ Zj1 .
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Obviously, the operator B(r) is symmetric.
2) j is small. Since the set of Floquet exponents is invariant under the

involutions ν 7→ ν, ν 7→ −ν and since the exponents do not coincide and do
not vanish in R0

1 (see Remark 3), then real (for real r) exponents νj(r) do not
vanish as well as pure imaginary exponents, and complex ones never take real
or pure imaginary values. If a function νj is real, then we normalise ψ±j and
Ψ±j as in the first case and extend domain of definition of the operator B(r)
accordingly. The rest of the exponents νj are either pure imaginary or complex.
We consider the more involved complex case only.

If an exponent νk with small k is complex, then the set K = {k,−k, k̂, −̂k}
consists of four different numbers. We take the space C 4 = span C{ψ±k, ψ±k̂} ⊂
Y c and choose there new basis ψ̃±k, ψ̃±k̂ such that

ψ̃−k̂ = ψ̃k, ψ̃k̂ = ψ̃−k, (5.23)

0 = α2[ψ̃±k, ψ̃±k̃], 1 = α2[ψ̃k, ψ̃−k] = α2[ψ̃−k̂, ψ̃k̂] . (5.24)

We add this space to the domain of definition of the operator B(r) and extend
there B(r) in the following way:

JB(r)ψ̃±k = iν±k(r)ψ̃±k , JB(r)ψ̃±k̂ = iν±k̂(r)ψ̃±k̂ .

The extended operartor is symmetric since, first, 〈Bψ̃l, ψj〉 = 〈Bψj , ψ̃l〉 = 0 for
any l ∈ K and any vector ψj as above, and, second,

〈Bψ̃l1 , ψ̃l2〉 = −ω2(JBψ̃l1 , ψ̃l2) = −iνl1ω2(ψ̃l1 , ψ̃l2) ∀ l1, l2 ∈ K;

so 〈Bψ̃l1 , ψ̃l2〉 ≡ 〈Bψ̃l2 , ψ̃l1〉 due to (5.24).
For any u ∈ T c and any k ∈ K, due to (5.10) we have:

α2[Ψj(u), Ψl(u)] = 0 ∀ l 6= −j.

Since the function b̃(r) =
∏j2

l=n+1 βl(r) does not vanish in the domain Rc
0 (see

earlier in this section), then βj 6= 0 in Rc
0 and |βj | ≥ C−1 > 0 in Rc

1 for every
j ∈ K. Using (5.4′) we get that for real r the functions βk and βk̂ are complex
conjugated:

β̄k = iα2[Ψk, Ψ−k] = iα2[Ψ−k̂,Ψk̂] = βk̂.

Next we redefine the vectors Ψk and Ψ−k̂:

Ψk :=
1

iβk(r)
Ψk, Ψ−k̂ :=

1
iβ−k̂(r)

Ψ−k̂,

keeping Ψ−k and Ψk̂ unchanged. The redefined vectors still meet (5.4′). Be-
sides,

α2[Ψk, Ψ−k] = 1 = α2[Ψ−k̂,Ψk̂]. (5.25)
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The transformation of vectors Ψj , described at step 2), change the map Φ1

on a finite-dimensional subspace only. The transformations described at step 1)
change Φ1 to D ◦Φ1, where D is the diagonal operator with diagonal elements,
equal

√
νJ

j βj for big j. Using (5.12) we get that the new map still satisfies
(5.11). It sends one symplectic basis to another (see (5.22)-(5.25)), so it is
symplectic. This map is real since it commutes with the complex conjugation;
it sends solutions of (5.20) to solutions of (5.2).

Since for |k| < j1 and |j| ≥ j1 we have B(r)ψ̃k = −iνk(r)J̄ ψ̃k and

B(r)ψj = −iνj(r)J̄ψj = (νj(r)/νJ
j )ψj

(see (5.8)), where the functions νl(r) are analytic and |νl/νJ
l | ≤ C|l|dA by the

item 2c) of Definition 5.2, then B(r) defines a morphism of the scale of order
dA, analytic in r. This morphism is selfadjoint since the linear map B(r) is
symmetric, see section 1.2.

The estimate (5.21) follows from (5.13), so the Proposition is proven. ¤

The leading Lyapunov exponent of linear equation (5.2) in Zd is a number a
equal to supremum over all real numbers a′ such that

lim
t→∞

e−a′t‖v(t)‖d = ∞ for some solution v(t) ⊂ Zd of (5.2).

A solution u0(t) of (5.1) is called linearly stable if the leading Lyapunov expo-
nent of the corresponding linearised equation (5.2) vanishes.

A direct consequence of Proposition 5.1 is the following

Corollary. If the linearised equation (5.2) has a complete system of Floquet
solutions, then the leading Lyapunov exponent of the equation corresponding to
a solution u0 = u0(t; r, z) with r ∈ R1 equals νI(r) = max{Im νj(r) | n < |j| <
j1}.40

Proof. By the proposition any variation u′(t) of a solution u0(t) can be written
as Φ0∗(u0)(r′, z′) + Φ1(u0)y′ and in terms of the prime-variables the equation
(5.2) reads as

ṙ′ = 0, ż′ = ω∗(r)r′, ẏ′ = JB(r)y′. (5.26)

Decomposing y′(0) in the basis {ψj} we find that e−at‖u′(t)‖s → 0 as t grows,
if a > νI(r). If a < νI(r) and ψj is an eigenvector of JB(r) with the eigenvalue
νj such that Im νj = a, then y′(t) = e−iνjtψ−j is the y′-component of a solution
of (5.26). A norm of this solution grow with t faster than eat. ¤

In the next section 5.4 we quote a result from [K4] which states that a finite-
dimensional system (2.1) which satisfies i)-iv) and has n integrals of motion

40We recall that the functions νj(r) with |j| ≥ j1 are real valued by the assumption b).
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has a complete system of Floquet solutions — this is a version of the classi-
cal Floquet theorem (see e.g. [Har]) for multidimensional time. For infinite-
dimensional systems the Floquet theorem is unknown. Still, for Lax-integrable
equations Floquet solutions can be constructed at least in two different ways.
The first one was explained in Proposition 3.1, where we ε-opened any closed
gap of the L-operator to obtain an (n+1)-gap solution and next differentiated
it in ε at ε = 0 to get a solution of the linearised equation. The second way is to
construct Floquet solutions as quadratic forms of eigen-functions corresponding
to closed gaps. We discuss it and use it in section 6.

5.4. Lower-dimensional invariant tori of finite-dimensional systems
and Floquet’s theorem. Let O be a domain in the Euclidean space R2N ,
given the usual symplectic structure. Let H1, . . . ,Hn, 1 ≤ n < N , be a system
of commuting hamiltonians, defined and analytic in O. Let Tn ⊂ O be a torus,
analytically embedded in O, which is invariant for all n Hamiltonian vector
fields VHj . The vector fields are assumed to be linearly independent at any
point of the torus.

Under mild nondegeneracy assumptions on the system of hamiltonians (see
[Nek]), the torus Tn can be proven to belong to an n-dimensional family of
invariant n-tori Tn

r :

Tn ⊂ T 2n =
⋃

r∈R

Tn
r , 0 ∈ R b Rn; Tn = Tn

0 ,

where T 2n is an analytic 2n-dimensional submanifold of O. Moreover, the
symplectic form, restricted to T 2n, is nondegenerate and T 2n admits analytic
coordinates (r, z), z ∈ Tn, such that for every j = 1, . . . , n the vector field VHj ,
restricted to T 2n, takes the form

∑
l ω

l
j(r)∂/∂zl (the functions ωl

j(r) all are
analytic).

Instead of presenting here the nondegeneracy assumptions, we just assume
existence of a family of invariant n-tori as above. Then for any r there exist
linear combinations K1, . . . ,Kn of the original hamiltonians Hj such that for
every j the vector field VKj restricted to the torus Tn

r equals ∂/∂zj . Accord-
ingly, at any point (r, z) ∈ Tn

r every vector field VKj defines N − n Floquet
multipliers eiλj

l (r), l = 1, . . . , N −n, corresponding to directions, transversal to
T 2n.41 For simplicity we assume that T 2n is a linearly stable invariant set of
every vector field VKj (so also of every VHj ). Then all the functions λj

l (r) are
real.

The following result is a version of the Floquet theorem “for multidimen-
sional time”. For a proof see [K4].

41The multipliers are defined as eigenvalues of the linearized time-2π flow-map of the
vector field VKj

, restricted to a skew-orthogonal component to the space T(r,z)T 2n. They

are z-independent, see [K4].
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Proposition 5.2. Under the given above assumptions, every vector field VHj
,

linearised about its solutions in T 2n, has a complete system of N − n skew-
orthogonal Floquet solutions with real exponents νj(r).

We note that in the finite-dimensional situation which we discuss now, the
item 2) of Definition 5.2 becomes trivial.
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6. Linearised Lax-integrable equations

6.1. Abstract setting. If (5.1) is a Lax-integrable equation, then its L,A-
pair can be used to construct solutions of the linearised equation (5.2) as qua-
dratic expressions of eigen-functions of the L-operator and its adjoint. Below
we present the construction, mostly following I. Krichever [Kr1].

Let u(t) be a smooth solution of a Lax-integrable equation (5.1)=(2.9). For
any smooth vector w ∈ Z∞ we denote:

L′t(w) = L′u(t)(w) =
∂

∂ε
Lu(t)+εw

∣∣∣
ε=0

(by assumption (2.10) the operators L′t(v) are well defined morphisms of order
d′ of the scale {Zs}), and similar define operators A′t(v). Let v(t) be a smooth
solution for the linearised equation (5.2). Then the curve u(t) + εv(t) satisfies
the equation (5.1)=(2.9) up to a smooth curve O(ε2). Differentiating this
relation in ε at ε = 0, we get a Lax-representation for the linearised equation
(5.2):

d

dt
L′t(v(t)) = [A′t(v(t)),Lt] + [At,L′t(v(t))],

where At = Au(t) and Lt = Lu(t). Let us consider smooth eigenvectors of the
operator L0 = Lu0 and of its conjugate operator L∗0, corresponding to the same
eigenvalue λ:

L0χ0 = λχ0, L∗0ξ0 = λξ0.

We assume that the following initial-value problems,

χ̇(t) = Atχ(t), χ(0) = χ0, ξ̇(t) = −A∗t ξ(t), ξ(0) = ξ0, (6.1)

have unique smooth solutions χ(t) and ξ(t). Then for any t we have Ltχ(t) =
λχ(t) and L∗t ξ(t) = λξ(t) (see Lemma 2.3 for the proof of the first relation;
proof of the second is identical).

We claim that
d

dt
〈L′t(v(t))χ, ξ〉 = 0. (6.2)

Indeed, abbreviating L′t(v(t)) to L′ and A′t(v(t)) to A′, we write the left-hand
side of (6.2) as

〈L′χ, ξ̇〉+ 〈L̇′χ, ξ〉+ 〈L′χ̇, ξ〉
= 〈L′χ,−A∗ξ〉+ 〈([A′,L] + [A,L′])χ, ξ〉+ 〈L′Aχ, ξ〉
= 〈[A′,L]χ, ξ〉 = 〈A′Lχ, ξ〉 − 〈A′χ,L∗ξ〉 = (λ− λ)〈A′χ, ξ〉 = 0.

Since L′t(w) linearly depends on w ∈ Zs′ as an operator from Zs′ to Zs′−d

(see (2.10)), then

〈L′t(w)χ, ξ〉Z = 〈w, qt(χ, ξ)〉Z ∀w, (6.3)
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where qt(χ, ξ) = qu(t)(χ, ξ) is an Z−s′-valued quadratic form of χ, ξ ∈ Zs′ ,
which is C1-smooth in t. Hence, we can rewrite (6.2) as

d

dt
〈v(t), qt(χ, ξ)〉 ≡ 0. (6.4)

For a moment let us denote qt(χ, ξ) = w. Then

〈v,AtJw〉 = −〈JAtv, w〉 = −〈v̇, w〉 = 〈v, ẇ〉, (6.5)

where the last equality follows from (6.4). At this point we assume that the
flow-maps St

τ∗∗(u(τ)) of the linearised equation (5.2) preserves the space Z∞.
Then the set {v(t)} formed by values at time t of all smooth solutions of equa-
tion (5.2) equals Z∞, so ẇ = A(t)Jw since (6.5) holds for any t and for all so-
lutions v(·). Therefore Jẇ = JA(t)Jw, i.e. the curve Jw(t) = J

(
qt(χ(t), ξ(t))

)
satisfies the equation (5.2).

Thus, linearised Lax-integrable equations have solutions which can be ob-
tained as bilinear forms of eigen-functions of the L-operator and its adjoint:

Theorem 6.1. If flow-maps of the linearised equation (5.2) preserve the space
Z∞ and the curves χ(t), ξ(t) are smooth solutions of equations (6.1), then the
function J

(
qt(χ(t), ξ(t))

)
with qt defined in (6.3) solves the linearised equation

(5.2).

Remarkably, for “classical” Lax-integrable PDEs the solutions of a linearised
equation, given by the theorem, are Floquet solutions which jointly form a
complete non-degenerate family. Below we check this property for the KdV
and SG equations.

6.2. Linearised KdV equation. Now we consider the KdV equation and
take for the invariant manifold T 2n a bounded part of any finite-gap manifold
T 2n

V of the form

T 2n =
⋃

r∈R

Tn
V (r), R = {r ∈ Rn

+ | 0 < rj < K ∀j} (6.6)

with some fixed K > 0. We have already checked that this invariant manifold
satisfies assumptions i)–iv) (see section 5.1).

For any n-gap solution u0(t, · ) ∈ Tn
V (r) the equation linearised about u0

takes the form
v̇ =

1
4

vxxx +
3
2

∂

∂x
(u0(t, x)v). (6.7)

Since u0(t, x) is a smooth function, then this equation is well-defined in Sobolev
spaces Hd

0 with d ≥ 1, see Example 1.6 or [Paz]. Thus the assumption v) on
the invariant manifold also is satisfied.
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The equation (6.7) has trivial solutions ∂Φ0
∂zj

and ∂Φ0
∂rj

, j = 1, . . . , n (see
(3.17)). It also has non-trivial Floquet solutions of the form (5.4). We begin
with illuminative and elementary construction of these solutions in the small-
amplitude case |r| ≤ δ ¿ 1, assuming for simplicity that V = (1, . . . , n). We
fix any m ≥ n + 1 and ε-open the mth gap to get an (n + 1)-gap solution
uε ∈ T 2n+2

(1,...,n,m), smooth in ε. By Proposition 3.1, the function ṽm(t, zm) =
∂
∂εuε |ε=0 solves (6.7), where zm stands for the (n + 1)-th phase of the solution
uε. Now we use local (near the origin) Darboux coordinates (y1, . . . , y2n+2)
on the manifold T ≤2n+2, constructed in Theorem 3.2 (one has to choose there
n := n + 1). Using the calculations from Example 5.3 (section 5.3) we get
that an appropriate complex linear combination of trivial solutions as above
and the solutions ṽm(t, 0), ṽm(t, π), written in the y-coordinates, has the form
exp(itWm(r))(0, . . . , i, 1), where Wm(r) is the last component of the (n + 1)-
vector W (n+1)(r, 0). Since the map U∗ sends solutions of the linearised equa-
tion, written in the y-coordinates, to solutions of (6.7), then for any m ≥ n+1
we get a Floquet solution vm(t) = U(y0(t))∗(0, . . . , i, 1):

vm(t, ·; r) = eitWm(r)U∗(y0(t))(0, . . . , i, 1).

To study these solutions for large r we have to write the (n+1)-gap solution uε

using the Its-Matveev formula and examine the function uε at the degenerate
limit ε → 0. Corresponding calculations can be carried out but they are rather
technical (see [Kr1]). It is easier to construct Floquet solutions using Theorem
6.1. We are doing this later in this section.

We recall that the L-operator of the KdV equation is the Sturm–Liouville
operator L = −∂2/∂x2 − u0(t, x) and consider any its complex eigenfunction
χ(x;λ) with an eigenvalue λ, satisfying the Floquet–Bloch boundary conditions:

Lχ(x; λ) = λχ(x; λ), χ(x + 2π; λ) = eiρχ(x;λ), ρ = ρ(λ).

This is a periodic (antiperiodic) eigenfunction if ρ = 0 mod 2π (ρ = π mod 2π).
Taking the function χ(x, λ) for an initial condition χ0, we solve the first equa-
tion in (6.1) under the same Floquet–Bloch boundary condition χ(x+2π; λ) =
eiρχ(x; λ) and denote the solution χ(t, x;λ).

Let Γ = Γ(r) = {P = (λ, µ)} be the Riemann surface, defined in section
3.2. One of the most important and elegant properties of the KdV equation
(and of the whole class of Lax-integrable equations) is that χ as a function
of P is meromorphic in Γ \ ∞ and can be normalised to have at infinity the
singularity exp i

√
λx (so χ is a double-valued function of the spectral parameter

λ ∈ C). An eigen-function χ which depends on the spectral parameter P ∈ Γ in
this specific way is called a Baker-Akhieser function (see [Ba] and [BB, DMN,
ZM]). The Baker-Akhieser function admits a representation in terms of the
same theta-function θ and the same vectors V , W , z as in section 3.2. The
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representation is given by the following formula, also due to Its-Matveev, see
in [DMN, D, BB]:

χ(t, x; r, z; P ) = eΩ1(P )x+Ω3(P )t θ(A(P ) + i(V x + W t + z))θ(iz)
θ(A(P ) + iz)θ(i(V x + W t + z))

,

P = (λ, µ) ∈ Γ.

Here A(P ) is the Abel transformation, the same as in section 3.2, and Ω1,
Ω3 are Abel integrals of the differentials dΩ1, dΩ3. The integrals are defined
modulo periods of the differentials. For P = (λ, µ) with real λ we normalise
the integrals in the following way:

Ω1,3(λ, µ) =
∫

[E1,λ]

dΩ1,3 for (λ, µ) ∈ Γ+, λ ∈ R,

where [E1, λ] stands for the path in Γ+ through upper edges of the cuts. We
denote by σ the holomorphic involution of Γ which transposes the sheets:

σ(λ, µ) = (λ,−µ).

Denoting for any P = (λ, µ) with real λ by γP the path from σ(P ) to P through
E1, equal to γP = σ(−[E1, λ]) ∪ [E1, λ], we get that

Ω1,3(P ) =
1
2

∫

γP

dΩ1,3 ,

since σ∗dΩj = −dΩj due to (3.11).
In a similar way we can normilise the integrals Ω1,3(λ, µ) when λ is a complex

number which is prohibited to rotate around any branching point of Γ. In
particular, when λ is such that Re λ ∈ K and

K b (E1, E2) ∪ (E3, E4) ∪ · · · ∪ (E2n+1,∞] (6.8)

(we recall that [E1, E2], . . . , [E2n+1,∞] are the cuts on Γ). Namely, we define
Ω1,3 by the same formulas as above, where [E1, λ] stands for the continuous
path [E1, Reλ] ∪ [Re λ, λ] and [E1,Re λ] is a segment in Γ+ as above, while
[Reλ, λ] is a (uniquelly defined) path in Γ such that its projection π([Re λ, λ])
is the segment [Re λ, λ] in the λ-plane. The functions Ω1,3 are well defined
and analytic if Re λ ∈ K. Moreover, the same formulas apply when Γ has
complex branching points {Ej} with small imaginary parts. In this case Ω1,3

as functions of E = (E1, . . . , E2n+1) analytically extend to a small complex
neighbourhood of a real vector E. A radius of this neighbourhood depends on
the compact set K.

Now we take a point P = (λ, µ), close to infinity, and denote by µP the
path from σ(P ) to P equal to a lift to Γ of the circle in Cλ centred at infinity,
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which passes through λ and is cut there (see Fig. 6.1). The loop γP − µP

is contractible in Γ \ ∞ since it envelops all the cuts, so
∫

γP−µP
dΩj = 0 and

Ωj(P ) = 1
2

∫
µP

dΩj . Using this equality and (3.10) with c = 0 we get the
following asymptotics:

Ω1(P ) = k + O(k−2), Ω3(P ) = k3 + O(k−1), (6.9)

where k = i
√

λ (the functions Ω1,3, originally defined for Reλ À 1, analytically
in k extend to a neighbourhood of the infinity).

When the branching points Ej are complex, sufficiently close to the real line,
the asymptotics (6.9) hold for the same trivial reasons. Since the vector E,
formed by the single periodic/antiperiodic eigenvalues, analytically depends on
the vector r, then (6.9) holds for r from a suitable complex neighbourhood of
Rn

+ in Cn42 and for k from a neighbourhood of infinity in the complex plane.

Fig. 6.1

Remark. Strictly speaking, in the Its-Matveev formula for χ we should use the
Abel transformation A(P ) with the same initial point P0 = E1 as in the integral
for Ωj , not P0 = ∞ as in section 3.2. To replace in the formula for A(D)j the
integrating from ∞ by integrating from E1, we have to add the correction
Ij = n

∫ E1

∞ dwj . Since σ∗dwj = −dwj (it follows e.g., from (3.9)), then Ij =
1
2n

∫
γ

dwj , where γ = [∞, E1]∪ (−σ[∞, E1]). Since the cycle γ envelops all the
cuts on the surface Γ (see Fig. 6.1), then it is contractible. Hence, Ij = 0 and
we can use P0 = E1 as an initial point for the Abel transformation. ¤

Let us denote

f(U ; r, z; P ) =
θ(A(P ) + iU + iz)θ(iz)
θ(A(P ) + iz)θ(iU + iz)

and rewrite χ as

χ(t, x; r, z; P ) = eΩ1(P )x+Ω3(P )tf(V x + W t; r, z; P ). (6.10)

42We analytically extend the map r 7→ E = (E1, . . . , E2n+1)(r) to this neighbourhood.
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By the Riemann theorem (see [D, BB]) the first term of the denominator in the
formula for f as a function of P has exactly n zeroes which form poles of the
function P 7→ f and lie in the ovals a1, . . . , an (see in Appendix 3.ii discussion
of the equation (A3.2)). Since |θ(iξ)| ≥ C(r) > 0 for every real vector ξ (see
(3.13)) and A(∞) = 0, then the function f(U ; r, z; P ), P = (λ, z), is analytic
and bounded for r from an appropriate complex neighbourhood of any compact
subset of the set R, defined in (6.6), and for (λ, z, U) from the complex domain

{ |Im λ|, |Im z|, |ImU | < δ, Re λ ∈ K(r) , (6.11)

where δ > 0 is sufficiently small and the compact set K satisfies (6.8).
We recall that the closed gaps [λ2j−1 = λ2j ] are labelled by indices j ∈

NV = N \ {V1, . . . , Vn}. They belong to a suitable set K as in (6.8) which can
be chosen uniform in r from a sufficiently small complex neighbourhood of any
real r = r0. For any P = P±j , where j ∈ NV and P±j = (±√

R(λ2j), λ2j) ∈ Γ,
the function χ(t, x;P±j) must be a periodic/antiperiodic eigenfunction; hence,
it is 4π-periodic in x. Since f is 2π-periodic, then the exponential function
in (6.10) has to be 4π-periodic in x and we should have Ω1(P±j) ∈ i

2Z. This
relation holds identically in r. When r tends to zero, Ω1(Pj) tends to ij/2, see
(A4.3). Therefore,

Ω1(Pj) =
i

2
j, j ∈ NV . (6.12)

Conversely, for any P which meets (6.12) the function (6.10) is 4π-periodic.
Since the operator A for the KdV equation is anti selfadjoint, then the

second equation in (6.1) coincides with the first and ξ(t) = χ(t). Now the
quadratic form q as in Theorem 6.1 equals χ2. Finally, since J = ∂/∂x, then
the solutions of the linearised equation (5.2)=(6.7), constructed in Theorem
6.1, are the curves vj(t) ∈ Z of the form

vj(t, x; r, z) =
(

(2π)−1/2

2Ω1(Pj)

)
∂

∂x

(
e2(Ω1(Pj)x+Ω3(Pj)t)f2(V x + W t; r, z; Pj)

)
.

(6.13)
Here j ∈ ZV , Pj = Pj(r) and the first factor in the right-hand side is a
convenient normalisation.

Thus we have obtained a system of Floquet solutions of the form (5.4),43

where the sections Ψj of the bundle T cHd
0 |T 2n have the form

Ψj(r, z)(x) =
∂

∂x

(
e2Ω1(Pj)x

2
√

2π Ω1(Pj)
f2(V x; r, z;Pj)

)
, j ∈ ZV , (6.14)

and the exponents νj are

νj(r) = −2iΩ3(Pj) = −2i

∫ Pj

E1

dΩ3. (6.15)

43the set of indices ZV which we use now is in obvious 1-1 correspondence with the set
Zn.
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Since the differential dΩ3 has the form (3.11) and its integrals along open
gaps vanish, then the exponents νj(r) are real for real r and are analytic in
r (they have no algebraic singularities). We claim that this system satisfies
assumptions a)-d) (see section 5.2) and is complete non-resonant. To simplify
notation we suppose that V = (1, . . . , n). Now the complex basis {ψj | j ∈ Z0}
is the exponential basis ψj = eijx/

√
2π (cf. the Example in Section 5.3).

6.2.1. The system of Floquet exponents is non-resonant. To prove the non-
resonance we may assume that the vector r is sufficiently small. For any
j ∈ ZV = Zn we denote by V (n+1) the (n + 1)-vector (V , j) and view the
torus Tn

V (r) as a degenerate (n + 1)-gap torus Tn+1
V (n+1)(r, 0) (see Theorem

3.1′). Comparing (6.15) with the formula (A4.5) from Appendix 4 we get
that νj(r) = W

(n+1)
n+1 (r, 0). Since the frequency vector ω for finite-gap solutions

which fill the torus Tn
V (r) is ω = W , then the non-resonance relation (5.18)

which has to be checked takes the form

n∑

l=1

W
(n+1)
l (r, 0)sl + W

(n+1)
n+1 (r, 0) 6≡ 0. (6.16)

We can suppose that s 6= 0; say, s1 6= 0. By Lemma 3.4, for r = (ε, 0, . . . , 0)
we have:

W
(n+1)
l = const+ δl,1

3
8V1

ε2 + O(ε4).

Therefore, the left-hand side of (6.16) equals to const+ s1
3

8V1
ε2 + O(ε4). It

does not vanish identically and (6.16) follows. The nondegeneracy relation
(5.19) holds true by similar arguments.

6.2.2. The system is complete. The assumptions a)-d) are checked below.
So by the Corollary to Lemma 5.4 we only have to check the assumptions 1b)
and 2) from Definition 5.2. Because the relation (A5.3) from Appendix 5, the
function f( · ; r, z;P ) converges to unit as r → 0. Therefore Ψj(x) converges to
the complex exponent (2π)−1/2eijx = ψj(x), so 1b) follows and it remains to
check the item 2).

Given any γ > 0 we fix a subset R1 b R such that mes(R \ R1) < γ (see
(5.15)). For r ∈ R1 we shall verify the properties 2a)–2c).

First we show that the map Φ1 is close to the embedding ι up to a smoothing
map. As Ψ−j = Ψj , we have to examine the vectors Ψj with j ∈ Nn only. Since
λ(Pj) = 1

4j2 + O(j−1) by (3.4), then k(Pj) = i
2j + O(j−2), where k = i

√
λ.

Using (6.8) and (6.15) we get that

Ω3(Pj) = − i
8 j3 + O(j−1)

and
νj(r) = − 1

4j3 + O(j−1), (6.17)
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uniformly in r from some complex neighbourhood R1 + δ of the set R1.
Since any holomorphic differential dωj has the form (3.9) (also if the branch-

ing points are complex), then

|A(Pj)| ≤ C

∫ ∞

j2/4

λn−1 dλ

λn+1/2
≤ C1|j|−1 uniformly in r ∈ R1 + δ.

Therefore for all U , z as in (6.11) and for r from R1 + δ the function f is close
to one, if P = Pj and j is big:

|f(U ; r, z;Pj)− 1| ≤ C|j|−1. (6.18)

Using (6.12), (6.18) and the Cauchy estimate we find that the functions Ψj(r, z)
defined in (6.14) are close to complex exponents:

Ψj(r, z)(x) =
1√
2π

eijx(1 + ζj(r, z)(x)) , (6.19)

where

|ζj(r, z)(x)| ≤ Cj−1 for r ∈ R1 + δ ⊂ Cn, | Im z| ≤ δ, | Im x| ≤ δ ,

with some j-independent δ and C = C(δ).
To check the property 2a) from Definition 5.2 with ∆ = 1 we shall show that

the linear map ∑
aje

ijx 7→
∑

ajζj(x) (6.20)

is 1-smoothing, i.e., for any r ≥ 0 it sends a space Hr
0 (S1) to the space

Hr+1
0 (S1). To do it we observe that in the Hilbert bases {(√2π jr)−1eijx},

{(√2π jr+1)−1eijx} of the two spaces above the map has the matrix M with
the entries

Mlj =
lr+1

jr

∫
ei(j−l)xζj(x) dx

(cf. (A1) in section 1). Since for | Im x| < δ the function ζj is analytic and
bounded by Cj−1, then |Mlj | ≤ Cδ(l/j)r+1e−δ|j−l| (see e.g. in Appendix 2 to
Part II). Therefore the l1-norm of any row and any column of the matrix M is
bounded by a constant C ′. Hence, a norm of the map (6.20) as a map from Hr

0

to Hr+1
0 is bounded by the same constant C ′ due to the Schur criterion and

2a) follows.
The property 2b) follows from (6.19). Indeed, since α2[Ψj ,Ψ−j ] equals

i

νJ
j

+
1
2π

(α2[eijx, e−ijxζ−j ] + α2[eijxζj , e
ijx] + α2[eijxζj , e

−ijxζ−j ]) ,
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then βj − i/νJ
j equals

− 1
2π

∫
[(D−1eijx)e−ijxζ−j − eijxζjD

−1e−ijx + (D−1eijxζj)e−ijxζ−j ] dx,

where D = ∂/∂x. This equality, estimate (6.19) and the Cauchy estimate
jointly imply (5.12) with (say) κ = 3.

The property 2c) with dA + dJ = 3 and ∆̃ = 1 is an immediate consequence
of (6.17) and the Cauchy estimate.

6.2.3. The system satisfies the assumptions a)–d). The first assertion of a)
follows from the convergence

νj(r) = −2iΩ3(Pj) → − 1
4j3

(see (A4.4)) which implies that for small r all the functions νj are distinct.
Since νj(0) = −j3/4, then the second assertion follows from the item 2c) of
Definition 5.2 which is checked already with dA + dJ = 3 and ∆̃ = 1.

The assumption b) holds since exponents νj are real for real r and since the
exponents and the sections are analytic, see (6.14) and (6.15). The assumptions
c), d) are now empty since all the Floquet exponents are analytic functions.

Finally for the domain R as in (6.6) we proved the following result:

Theorem 6.2. For any γ > 0 and any n-vector V there exists a subset R1 b
R, mes(R \ R1) < γ, such that the system of Floquet solutions (6.14) with
j ∈ ZV is complete non-resonan on the n-gap manifold Φ0(R1 × Tn) ⊂ T 2n

V

(in any space Hd
0 , d ≥ 1).

Amplification. For any R̃ b Rn
+ the system of Floquet solutions (6.14) is

complete non-resonant on Φ0(R̃× Tn).

Indeed, R̃ is a compact part of the set R as above. To get a subset of R̃ where
the system of skew-orthogonal Floquet solutions is complete non-resonant and
non-degenerate we should cut out R̃ the vicinity of the singular set Rs, see
Remark 2 in section 5.3. The singular part of the analytic set R is clearly
empty; the Floquet exponents are analytic so the set of algebraic singularities
also is empty. The form Φ∗0ω2 is non-degenerate on R̃ (see the papers [FM, VN]
and [BKM] where this is proven in three different ways); so the set of degeneracy
of the symplectic form is empty. The functions βj(r) do not vanish on R —
this follows from [Kr1] (Theorem 1, section 1.2) or [BKM]. Hence, the set of
degeneracy of the system of functions (6.14) is empty as well. Thus, Rs = ∅.
So we can choose R1 = R̃ and the system (6.14) is complete non-degenerate.
It is non-resonant by Theorem 6.2.

We do not present a complete proof of the Amplification (i.e., we do not
prove that the pull-back form Φ∗0ω2 and the system (6.14) are non-degenerate)
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since Theorem 6.2 is sufficient to obtain our main result — the KAM-stability
most of finite gap tori.

We note that triviality of the singular set Rs is not a general property of
integrable PDEs: for the SG equation this set is not empty, as we show in
section 6.4.

6.3. Higher KdV-equations. The lth equation from the KdV-hierarchy
has an [L,A]-pair with the same L-operator L = −∂2/∂x2 − u and with some
A-operator of the form A = Al = const ∂2l+1/∂x2l+1 + . . . (see [DMN, MT,
ZM]). Solutions χl of equation (6.1) with A = Al are given by the Its-Matveev
formula (6.7), where the differential Ω3 should be replaced by an appropriate
differential Ω2l+1 and the frequency vector W — by some vector W l (see
section 3.4). We get Floquet solutions vl

j of the linearised lth equation,

vl
j(t, x; r, z) = eiνl

j(r)tΨj(r, z0 + W l(r)t)(x) , j ∈ ZV ,

where νl
j = 2Ω2l+1(Pj) and Ψj is given by (6.14). Using the normalisation

(3.32) we find that

νl
j = 2(i/2)2p+1j2l+1 + O(j2l−3), j ∈ NV (6.21)

(cf. the asymptotic (6.17) and its proof).
The system of Floquet solutions {vl

j} is complete nonresonant. Indeed, the
items of Definition 5.2 from 1) through 2b) describe properties of the sections
Ψj which are the same as for the KdV equation, so we have already checked
them. The property 2c) with −∆̃ = −∆̃l = 2l − 3 follows from (6.21). The
nonresonance property follows from (3.32) by the same arguments as in the
KdV-case.

The linearised lth equation satisfies the assumption v): its flow-maps St
τ∗∗

are well-defined linear isomorphisms of a space Zd, d ≥ 1. Indeed, by Lemma
5.1, outside the singular set Rs × Tn the vectors {Ψj(r, z)} form an equivalent
complex basis of the skew-orthogonal space T⊥c

u T 2n ⊂ Zd, where u = Φ0(r, z).
After we choose these bases in the spaces T⊥c

u0(τ)T 2n and T⊥c
u0(t)

T 2n, the map

St
τ∗∗ becomes diagonal with the unit diagonal elements {eiνl

j(r)(t−τ)}. So for
r ∈ Rs and any t, τ the maps St

τ∗∗ are linear isomorphisms, as stated.

6.4. Linearised Sine-Gordon equation.
Let us take any odd periodic finite-gap solution (u, v) of the SG equation

(4.1) which lies in a finite-gap torus Tn(r) ⊂ T 2n as in section 4.3 (the manifold
corresponds to the vector l as in (4.22)). In the (u, v)-variables the linearised
equation for u takes the form:

ũtt − ũxx + (cos u(t, x))ũ = 0 , (6.22)
121



and the v-component of a solution recovers as

ṽ = − ˙̃u;

in the (u,w)-variables the equation for u should be supplemented by the fol-
lowing equation for w:

w̃ = −A−1/2 ˙̃u.

Abusing language, we shall say that (ũ, ṽ) (or (ũ, w̃)) as above is a solution of
the linearised equation (6.22).

Since the function u is smooth, then the linearised equation in the (ũ, w̃)-
variables is well defined in any space Zo

s , s ≥ 0. Thus, the invariant manifold
T 2n meets the assumption v) from section 5.1 (as well as the assumption i)-iv),
see in section 4.3).

We shall construct Floquet solutions for the equation (6.22), using Theorem
6.1. Since the operator A is antiselfadjoint, then in (6.1) χ(t) ≡ ξ(t), so the
vector-function J(qt(χ, χ)) satisfies (6.22). Since J(u, v) = (−v, u), then to
calculate u-component of Jqt we have to find v-component of qt (now in the
notations of section 6.1 we substitute u := (u, v) and v := (ũ, ṽ)).

Denoting by Lε the operator L, corresponding to the potential (u, v) +
ε(u1, v1), we have:

dLε

dε
|ε=0=

i

4
(v1 + u′1x)

((
0 1
1 0

)
0

0 0

)
+ . . . ,

where the dots stand for an operator, proportional to u1. Therefore the l.h.s.
of (6.3) with ξ = χ equals i

2

∫
v1(x)χ1χ2(t, x) dx+ . . . , so that the v-component

of qt equals i
2χ1χ2. We have seen that the function

ũ(t, x, λ) =
1√
2π

(χ1χ2)(t, x;λ) (6.23)

is a 4π-periodic solution for (6.22) if χ1 and χ2 are the first two components
of the Baker-Akhiezer (vector-) function χ(t, x; P ) ∈ C4,

L(u(t,·),v(t,·)) χ(t, ·;P ) = λχ, P = (λ, µ) ∈ Γ = Γ(r),

which is 4π-periodic in x.
Similar to the KdV-case, the function χ is meromorphic in P ∈ Γ \ {0,∞}

and can be written as

χ = χ(t, x; r, D̃; P ) = e
i
2 (κ(P )x+ν(P )t)f(Ṽ x + W̃ t; r, D̃; P ),

where
κ(P ) =

1
2
(Ω1 + Ω2)(P ), ν(P ) =

1
2
(Ω1 − Ω2)(P )
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and Ω1,2 are integrals of the differentials dΩ1,2 along a path γ0P from 0 to P .44

The vector-function f(q; r, D̃; P ) ∈ C4 is analytic in q, D̃ ∈ Tn, r ∈ R and
P ∈ Γ(r) \ {0,∞}; it can be written explicitly in terms of the theta-function,
defined in section 4.2 (see [EF1, EF2, BB]). The function χ is 4π-periodic if

κ(P ) ∈ 1
2
Z (6.24)

(this is a well defined equation since a change of the path γ0P changes its l.h.s.
by an integer number). Evoking notations from section 4.1 we see that (6.24)
implies that π(P ) is a point from the 4π–periodic spectrum of the L-operator.
That is, π(P ) equals λ+

j or λ−j for some j (here π stands for the projection
Γ 3 (λ, µ) 7→ λ). Since the potential (u, v) is finite-gap, then

λ+
j = λ−j =: λj ∀ j ∈ Zn.

Using (4.10) we see that eigenvalues λj with |j| > j1 are exactly double.45

Since the λ-spectrum is invariant with respect to the complex conjugation (see
(4.62) and (4.12)), then

λk(r) ∈ R if |k| > j1. (6.25)

On the contrary, eigenvalues λj with |j| ≤ j1 can be complex, see [McK].
Below we are interested in eigenvalues λj with j ∈ Nn. Since they are

double, then the Baker-Akhiezer function χ is 4π–periodic at the both points
P±j ∈ π−1(λj) .46

Now for j ∈ Zn we determine the solution ũj of (6.22) as follows:

ũj =

{
ũ(t, x; P+

j ) if j ∈ Nn,

ũc−j if j ∈ −Nn.

Here the function ũ is defined as in (6.23) with λ ∈ C replaced by P ∈ Γ, and
the hat-map k 7→ k̂ was constructed in section 5.2. We note that the function
ũ is a solution since (6.22) is a real-coefficient equation.

Let us denote by Π the projector which sends a periodic (vector-) function
η(x) to its odd part 1

2 (η(x)− η(−x)), and denote

ξo
j = (ũo

j , w̃
o
j ), where ũo

j(t, x) = Πũj(t, x) , w̃o
j (t, x) = −A−1/2 d

dt
ũo

j .

44A change of the path γ0P changes the function f .
45We remind (see section 4.2) that this means that double is the corresponding eigenvalue

µ =
√

λ/4.
46We denote by P±j a point in π−1(λj) which belongs to the sheet Γ±.
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This odd periodic vector-function is a solution of (6.22). Indeed, since cos u(t, x)
is an even function of x, then Π(cos u)ũ = cos uΠũ. Hence, applying Π to the
equation (6.22) with ũ = ũj we find that ũo

j also satisfies the equation.

For any j ∈ Nn we have ũo
j(t, x) = eiν(Pj)tΠ

(
eiκ(Pj)xf1f2

)
, where f1f2 is

the function f1f2(Ṽ x + W̃ t; r, D̃, Pj). Accordingly, if j ∈ Nn, then

ξo
j =

1√
2π

eiν(Pj)tΠ
(

eiκ(Pj)xf1f2,

−A−1/2
[
eiκ(Pj)x(iν(Pj)f1f2 + W̃ · ∇qf1f2)

])
, (6.26)

and ξo
j = ξo

c−j
if j ∈ −Nn. Thus, we have constructed a system of Floquet

solutions for equation (6.22) of the form (5.4).
By construction, f1f2 is an analytic function of all its arguments; ν and κ are

analytic functions of P ∈ Γ. Since π(P+
j ) = λj , then by Lemma 4.1 π(Pj(r))

is an algebraic function of r. Due to Corollary from the lemma, this function
is analytic if |j| > j1. Thus, the solutions ξo

j are analytic in x, D̃ and algebraic
in r. They are analytic in r if |j| > j1.

The wave-number κ(Pj) and the exponent ν(Pj) can be interpreted in terms
of (2n + 2)-gap solutions with two infinitesimal extra gaps, at least for small-
gap solutions. Indeed, let (u, w)(t) = Φ0(r, D̃ + W̃ (r)t) ∈ T 2n be a finite-gap
solution of the SG equation such that |r − L| = ρ ¿ 1. Then by the last
assertion of Lemma 4.4 (with n = j and k = n), for 0 < ε ¿ ρ there exists a
finite-gap solution (uε, wε) ⊂ T 2n+2

(1,...,n,j) which converges to (u,w) when ε → 0.

The corresponding wave-vector Ṽ (n+1) and the frequency-vector W̃ (n+1) are
(n + 1)-vectors such that

Ṽ
(n+1)
n+1 −→ κ(Pj), W̃

(n+1)
n+1 −→ ν(Pj) as ε → 0. (6.27)

These limits follow from the same elementary arguments as in the KdV-case
(see Appendix 5).

Due to the first limit in (6.27) and the last assertion of Lemma 4.3,

κ(Pj) = j. (6.28)

This relation is proven for r close to L. Since Pj is an algebraic function of r,
then (6.28) holds identically in r. It specifies the formula (6.26).

Due to the second limit in (6.27) and the last formula in section 4.4,

ν(Pj) → j∗ ≡
√

1 + j2 as r → L. (6.29)

Asymptotic evaluation of the exponents ν(Pj) (cf. section 6.2.2) shows that

ν(Pj) = j∗ + O(j−1) as j →∞ (6.29′)
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(see [BiK1]).
Arguing as in the KdV-case (see Appendix 5 and (6.18)) we can see that the

function f1f2 in (6.26) is asymptotically close to one:

|f1f2 − 1| = o(1) as r → L and = O(j−1) as j →∞, (6.30)

where f1f2 = f1f2(z; r, D̃, P ) and the estimates hold uniformly in z from a
complex neighbourhood of the real torus.

The system of Floquet solutions which we have constructed meets the as-
sumptions a)-d) from section 5.2. Indeed, a) follows from (6.25) and (6.29)
while b)-d) result from previous discussions of smoothness of the function f1f2

and the exponent ν.
The system of Floquet solutions {ξo

j | j ∈ Nn} is complete nondegenerate:

Nonresonance. Using Lemma 4.4 we constructed in section 4.4 coordinates
R1, . . . ,Rn on the small-gap part R0 of the algebraic set R such that the point
L lies in the closure R0 and has coordinates R = 0. As in the KdV-case, we
have to check the relation (6.16) and a similar relation, equivalent to (5.19).

Let us take any j ≥ n + 1 and consider the resonant function in the l.h.s.
of (6.16), where W̃

(n+1)
n+1 (r, 0) = νj(r). We shall study this function using the

coordinates R and denote it η(R). Due to Lemma 4.4 with n := n + 1, η is an
analytic function of the arguments Ik = R2

k/2, k = 1, . . . , n (see discussion at
the end of section 4.3). So if η ≡ 0, then

η(0) = 0,
∂η

∂Il
(0) = 0 for l = 1, . . . , n.

Abbreviating
∑n

k=1 to
∑

and using (4.25), (4.26), we rewrite the first equality
as ∑

k∗sk + j∗ = 0 (6.31)

and rewrite the second as

−4
( ∑ 4

k∗
sk − sl

l∗
+

4
j∗

)
= 0, l = 1, . . . , n. (6.32)

In particular, sl/l∗ = C =const for all l ≤ n. Substituting this relation to
(6.31) and (6.32) we get that

C
∑

k∗2 + j∗ = 0

and

C(4n− 1) +
4
j∗

= 0.
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We can eliminate C from these equalities to find that j∗2(4n − 1) = 4
∑

k∗2.
That is,

(j2 + 1)(4n− 1) = 4
∑

(k2 + 1).

We have obtained a contradiction since an integer number j2 + 1 never can be
divided by four. This contradiction proves that η 6≡ 0.

Proof of the second relation is similar, see [BoK2].
We note that our arguments use essentially the assumption (4.22).

Completeness. The Floquet solutions (6.26) have the form (5.4), where for
j ≥ n + 1 the sections Ψj equals (2π)−1/2Π(eiκ(Pj)xf1f2, . . . ). Due to (6.28),
(6.29) and (6.30), for every j we heave the following convergence:

Ψj −→ 1√
2π

Π(eijx,−A−1/2ij∗eijx) =
1√
2π

(i sin jx, sin jx) as r → L.

Similar,

Ψ−j −→ 1√
2π

(−i sin jx, sin jx) as r → L.

Therefore Corollary from Lemma 5.4 applies and we only have to check the
assumption 2) from Definition 5.2. To do this we should not study complicated
solutions ξo

j with complex exponents ν since they correspond to small j, |j| ≤ j1,
and large r. On the contrary, we have only to consider |j| À 1 or r close to L.
In these two asymptotical cases Floquet solutions for linearised SG equation
behave as complex exponents (see (6.29)–(6.30)), so to check the completeness
we can argue as in section 6.2. See [BiK1, BoK2].
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7. Normal form

7.1. A normal form theorem. We continue to study the Hamiltonian equa-
tion (5.1) near an invariant manifold T 2n = Φ0(R × Tn) which possesses the
properties i)–v) as in section 5.1.

Proposition 5.1 puts the linearised equation (5.2) to a constant coefficient
normal form, provided that this equation possesses a complete system of Flo-
quet solutions. In this section we show that under this assumption the equation
(5.1) itself can be put to a convenient normal form in a neighbourhood of T 2n.
Namely, we show that the action-angle variables (p, q) on T 2n can be supple-
mented by a skew-orthogonal to T 2n vector-coordinate y in such a way that
in the new coordinate system the symplectic form is (dp ∧ dq) ⊕ αY

2 and the
hamiltonian is s

h(p) + 1
2 〈B(p)y, y〉+ h3(p, q, y), h3 = O(‖y‖3) .

Here B(p) is the self-adjoint operator from Proposition 5.1 and the term h3

defines a hamiltonian vector field of the same order as the nonlinear part J∇H
of the original equation (this is a crucial property of the normal form!).

We assume that the linearised equation (5.2) has a complete family of skew-
orthogonal Floquet solutions vj(t) as in (5.4), define the singular subset Rs,
Rs = Rc

s∩R as in section 5.3 (see there remark 2). As in section 5.3, we choose
any sub-domain R1, which lies in a compact part of the regular set R0 = R\Rs,
i.e. R1 b R0. A normal form as above will be constructed in the vicinity of
the manifold T 2n

1 = Φ0(R1 × Tn).
By Lemma 2.1 the equation (2.1) is integrable in Φ0(R0 × Tn). So we can

cover Φ0(R1×Tn) by a finite system of open sub-domains such that in each one
the equation admits analytic action-angle variables (p, q) as in (2.6). To simplify
notations we suppose that the action-angles exist globally in Φ0(R1×Tn). We
shall use these coordinates instead of (r, z). Accordingly, we write T 2n

1 as
T 2n

1 = Φ0(P × Tn), where P = {p} b Rn and Tn = {q}.
We denote W = P × Tn. The map Φ0 : W → T 2n ⊂ Z analytically extends

to a bounded analytic map W c → Zc, where W c is a complex neighbourhood
of W of the form W c = (P + δ) × {q ∈ Cn/2πZn | | Im q| < δ}. We treat W
and W c as submanifolds of the Hilbert manifolds Y and Yc,

Y = Yd = Rn × Tn × Yd, Yc = Yc
d = Cn × (Cn/Zn)× Y c

d ,

where
Yd = span{ϕj | j ∈ Zn} ⊂ Zd.

Since ω = ∇h (see Lemma 2.2), then we write the skew-orthogonal Floquet
solutions vj(t) as

vj(t; p, q) = eiνj(p)tΨj(p, q + t∇h(p)) , p ∈ P, q ∈ Tn, j ∈ Zn. (7.1)
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The linear in y map y 7→ Φ1(p, q + t∇h)y as in (5.9) reduces the linearised
equation (5.2) to the constant-coefficient linear equation

ẏ = JB(p)y, . . . , (7.2)

where the dots stand for components of the linearised equation in directions
tangent to W × {0} (see Proposition 5.1). We denote by Sδ = Sδ(Yd) the
manifold

Sδ = W ×Oδ(Y ), Y = Yd,

and denote by Sc
δ its complex neighbourhood Sc

δ = W c ×Oδ(Y c). We give Sδ

symplectic structure by means of the 2-form (dp∧dq)⊕αY
2 , where αY

2 = α2|Y .
Since α2 = J̄dz ∧ dz and the spaces {Ys} are J̄–invariant, then

αY
2 = J̄dy ∧ dy.

Our goal in this section is to prove the following Normal Form Theorem:

Theorem 7.1. Let the Hamiltonian equation (5.1) and its invariant subman-
ifold T 2n satisfy the assumptions i)–v); let a sub-domain T 2n

1 = Φ0(P × Tn)
be as above and (7.1) be a complete system of skew-orthogonal Floquet solu-
tions of the linearised equation (5.2). Then there exists δ1 > 0 and an analytic
symplectomorphism G : (Sδ1 , dp ∧ dq ⊕ αY

2 ) → (Z, α2) such that G(Sδ1) is a
neighbourhood of T 2n

1 and

H ◦G = h(p) + 1
2 〈B(p)y, y〉+ h3(p, q, y).

Here h3 = O(‖y‖3) is an analytic functional such that its gradient map is of
order d̃ = max{dH ,−∆−dJ , ∆̃−dJ}, i.e. ‖∇yh3(p, q, y)‖d−d̃ ≤ C‖y‖2d for any
(p, q, y) ∈ Sδ1 .

Proof of the theorem occupies the rest of this section.
To simplify the presentation we suppose below that all the frequencies νj(p)

are real and consequently the operator B(p) is diagonal in the ϕj-basis of the
space Y :

B(p)ϕj =
νj(p)
νJ

j

ϕj ∀ j ∈ Zn.

The general case differs from this special one only in more awkward notations
since we should treat differently (but in much the same way) the indices j,
corresponding to real, imaginary and complex frequencies νj .

We start with the affine in y map Φ,

Φ = Φ0 + Φ1 : Sc
δ → Zc, (p, q, y) 7→ Φ0(p, q) + Φ1(p, q)y.

It is real (sends Sδ to Z), bounded on bounded subsets of Sc
δ and is weakly

analytic by assumptions b) and d). So Φ is an analytic map by the criterion
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of analyticity. By Lemma 5.1 its linearisations at points from W c × {0} define
isomorphisms of R2n × Y and Z. Thus, by the inverse function theorem the
map Φ defines an analytic isomorphism of Sc

δ′ and a complex neighbourhood
of T 2n

1 in Z, provided that δ′ ≤ δ is sufficiently small.47

Next we study symplectic properties of the map Φ. Since restriction of Φ to
W × {0} equals Φ0 and restriction to any disc {w} × Oδ(Y ) equals Φ1(w) up
to a translation, then these restrictions are symplectic. In particular, for any
w ∈ W the map Φ∗(w, 0) is a linear symplectomorphism. Hence, the pull-back
form ω2(w, y),

ω2 := Φ∗α2,

equals (dp ∧ dq)⊕ αY
2 for w = 0 and these two forms coincide being restricted

to any disc {w} × Oδ(Y ). It means that the difference

ω∆ = ω2 − dp ∧ dq ⊕ αY
2

may be written as

ω∆ = jWW (w, y)dw ∧ dw + jWY (w, y)dy ∧ dw + jY W (w, y)dw ∧ dy,

where jY W (w, y) = j∗WY (w, y) and the linear operators jWW , jWY and jY W

vanish for y = 0 (see section 1.3 for the notations we use).
In the calculations we carry out below we adopt gradient-notations for lin-

earisations of the maps Φ and Φ1 in w. Namely, we write

Φ∗(w, y)(δw, 0) =
∑

∇wj Φ(w, y)δwj =: ∇wΦ · δw,

where ∇wΦ = (∇pΦ,∇qΦ) ∈ Z × · · · × Z (2n times). Similar we write
Φ1∗(δw, 0) = ∇wΦ1 · δw, where any component ∇wj Φ1 is a linear operator
Y → Z. In these notations we have:

ω2[δy, δw] = α2[Φ1δy, Φ0∗δw + (∇wΦ1 · δw)y]

= α2[Φ1δy, (∇wΦ1 · δw)y] = 〈J̄Φ1δy,∇wΦ1y〉 · δw

and
ω2[δw, δy] = 〈J̄(∇wΦ1 · δw)y, Φ1δy〉.

Hence,
jWY (w, y)δy = 〈JΦ1(w)δy,∇wΦ1(w)y〉,
jY W (w, y)δw = −j∗WY (w, y)δΦ1(w)∗J(∇wΦ1 · δw)y.

(7.3)

47To get this result one has to cover the set W c×{0} by balls Bw, w ∈ W c, such that the
inverse function theorem applies to Φ restricted to each ball; to find a finite system of these
balls which cover W × {0} and choose δ′ > 0 so small that Sc

δ′ is contained in the union of
these balls.
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Abbreviating (δw, δy) ∈ R2n×Y to δz, we write the form ω∆ as ω∆ = J∆dz∧dz,
where J∆ is the operator matrix:

J∆ = J∆(w, y) =
[

jWW jWY

−j∗WY 0

]
. (7.4)

The form ω∆ is exact, as well as the forms ω2 and dp∧dq⊕αY
2 , i.e. ω∆ = dω1.

Lemma 1.3 represents the 1-form ω1 as

ω1(w, y) =
( ∫ 1

0

〈
JΦ1(w)y,∇wΦ1(w)ty

〉
dt

)
dw

= 1
2 〈JΦ1(w)y,∇wΦ1(w)y〉dw = 1

2α2[Φ1(w)y,∇wΦ1(w)y]dw.

We sum up the obtained results in

Lemma 7.1. The form ω2 = Φ∗α2 equals to (dp ∧ dq)⊕ αY
2 + d(L(w, y)dw),

where the 2n-vector L is L = 1
2α2[Φ1(w)y,∇wΦ1(w)y].

So far we have examined how the map Φ transforms the symplectic form α2.
Now we calculate how it changes the hamiltonian H. To begin with we analyse
how the nonautonomous linear transformation Φ1 transforms the quadratic
part 〈Au, u〉 of the hamiltonian H.

For any w = (p, q) ∈ W we denote Φt = Φ1(p, q + t∇h). Since the nonau-
tonomous symplectic linear map Φt sends solutions y(t) of equation (7.2) to
solutions v(t) = Φty(t) of (5.2), then we have the following equalities:

v̇ Φ̇ty + Φtẏ
∥∥∥

∥∥∥
JAtv Φ̇ty + ΦtJB(p)y

∥∥∥
JAtΦty

Thus,
JAtΦty = Φ̇ty + ΦtJB(p)y. (7.5)

Taking a skew-product of (7.5) with −v, we get:

〈JAtΦty, Jv〉 〈Φ̇ty + ΦtJB(p)y, Jv〉
∥∥∥

∥∥∥
〈Φt∗AtΦty, y〉 〈Φ̇ty, JΦty〉+ 〈B(p)y, y〉,

(7.6)

where we use that 〈ΦtJBy, J̄Φty〉 = 〈JBy, J̄y〉 = 〈By, y〉 by symplecticity of
the map Φt.
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Since for t = 0 we have At = A+(∇H)∗(Φ0(w)) and Φ̇t = ∇qΦ1(w) ·∇h(p),
then relation (7.5) with t = 0 implies that

Φ1(w)JB(p) = J(A + (∇H)∗(Φ0(w)))Φ1(w)−∇qΦ1(w) · ∇h(p). (7.7)

Similar, (7.6) implies that
〈(

B(p)− Φ1(w)∗(A + (∇H)∗(Φ0(w)))Φ1(w)
)
y, y

〉

= 〈Φ1(w)∗J
(∇qΦ1(w) · ∇h(p)

)
y, y〉 = 〈A(w)y, y〉,

where A stands for the symmetrisation of the operator Φ∗1J̄(∇qΦ1 · ∇h), i.e.,

A(w) = 1
2

(
Φ1(w)∗J̄(∇qΦ1(w) · ∇h(p))− (∇qΦ1(w)∗ · ∇h(p))J̄Φ1(w)

)
.

Since this relation holds for any vector y ∈ Y , then

B(p)− Φ1(w)∗(A + (∇H)∗(Φ0(w)))Φ1(w) = A(w). (7.8)

Lemma 7.2. The operator A defines a (∆ + dJ )-smoothing symmetric map
A : Y c

d → Y c
d+dJ+∆, analytic in w ∈ W c.

Proof. The operator A is symmetric by its construction. It remains to check
its smoothness.

Since ∇qΦ1 = ∇q(Φ1 − ι), then by (5.11) and the Cauchy estimate the
operator ∇qΦ1 · ∇h analytically depends on w ∈ W c as a map Y c

d → Zd+∆.
By Lemma 5.2 the operator Φ1(w)∗J̄ : Zc

d+∆ → Y c
d+dJ+∆ also is analytic in

w. Hence, the first term of the operator A defines an analytic in w ∈ W c map
Y c

d → Y c
d+dJ+∆.

Using Lemma 5.2 once again we find that the operator J̄Φ1(w) : Y c
d → Zc

d+dJ

is analytic in w. Due to the second assertion of this lemma and the Cauchy
estimate, the map ∇qΦ∗1 · h : Zc

d+dJ
→ Y c

d+dJ+∆ is analytic in w as well.
Combining these two statements, we find that the second term of A also defines
an analytic in w ∈ W c map Y c

d → Y c
d+dJ+∆. This completes the proof. ¤

Equalities (7.7), (7.8) were obtained for real w. Since these relations are
analytic in w, they remain true for any w ∈ W c.

Now we write the transformed hamiltonian H ◦ Φ as

H ◦ Φ = 1
2 〈AΦ0, Φ0〉+ 〈AΦ0, Φ1y〉+ 1

2 〈AΦ1y, Φ1y〉+ H(Φ),

and separate its affine in y part:

H ◦ Φ =
(

1
2 〈AΦ0,Φ0〉+ H(Φ0)

)
+

(
〈AΦ0, Φ1y〉+ 〈∇H(Φ0),Φ1y〉

)

+
(

1
2 〈AΦ1y, Φ1y〉+ H(Φ0 + Φ1y)−H(Φ0)− 〈∇H(Φ0), Φ1y〉

)
.

131



The first term in the right-hand side equals h(p).
By Lemma 2 the form ω2 = Φ∗α2 equals (dp∧dq)⊕αY

2 , when y = 0. Hence,
for y = 0 the y-component of equation (5.1), written in the (p, q, y)-variables,
is J∇y(H◦Φ). It equals zero since the set {y = 0} is invariant for the equation.
Thus, the second term vanishes.

By (7.8), 〈AΦ1y, Φ1y〉 = 〈By, y〉 − 〈∇H∗Φ1y, Φ1y〉 − 〈Ay, y〉 . Therefore the
third term in the r.h.s. equals 1

2 〈B(p)y, y〉+ h2(p, q, y), where

h2 = − 1
2 〈(∇H)∗(Φ0)Φ1y, Φ1y〉−1

2 〈A(w)y, y〉
+ H(Φ0 + Φ1y)−H(Φ0)− 〈∇H(Φ0),Φ1y〉.

It is easy to see, using Lemmas 5.2 and 5.3, that h2 defines an analytic gradient
map ∇yh2 : R2n × Yd → Yd−d̃.

Thus, the affine in y map Φ transforms the hamiltonian H to

H ◦ Φ = h(p) + 1
2 〈B(p)y, y〉+ h2(p, q, y),

where h2 = O‖y‖2 and ord∇h2 = d̃.
Our next goal is to normalise the symplectic structure ω2 = Φ∗α2 in Sδ by

means of the Moser–Weinstein theorem (Lemma 1.4). The theorem states that
ϕ∗ω2 = (dp ∧ dq) ⊕ αY

2 , where ϕ is the time-one shift S1
0 along trajectories of

a nonautonomous equation:

ż = V t(z) , z = (w, y).

The vector field V t : Sδ → R2n × Yd is obtained as a solution of the equation

−(J0 + tJ∆)V t = a(z, y), (7.9)

where
J0(δp, δq, δy) = (−δq, δp, Jδy),

the operator J∆ is as in (7.4) and the map a is such that differential of the
1-form a(z)dz equals ω2 − (dp ∧ dq) ⊕ αY

2 . By Lemma 7.1, a(z) = (L(z), 0),
where the 2n-vector L(z) is specified in the lemma.

We claim that the map ϕ sends Sc
δ1

to Sc
δ (δ1 is sufficiently small compare

to δ) and transforms H ◦ Φ to a hamiltonian of similar form:

Lemma 7.3. The hamiltonian H ◦ Φ ◦ ϕ equals to

H ◦ Φ ◦ ϕ = h(p) + 1
2 〈B(p)y, y〉+ 1

2 〈B(p, q)y, y〉+ h3(p, q, y), (7.10)

where B(p) is the same as in (7.2) and B(p, q) is a linear operator of order
d̃, analytic in (p, q) (d̃ is the same as in Theorem 7.1)). The function h3 =
O(‖y‖3) has an analytic gradient map of order d̃, ‖∇yh3(p, q, y)‖d+d̃ ≤ C‖y‖2.
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The statement of the lemma is quite obvious for a finite-dimensional phase
space Sδ, but not in the infinite-dimensional situation. Indeed, the transfor-
mation ϕ has the form ϕ = id +ϕ̃, where ϕ̃ is a ∆-smoothing map such that
ϕ̃ = O(‖y‖)2. Thus the transformed hamiltonian gets the term

〈B(p)y, ϕ̃〉 (7.11)

which is O(‖y‖3) with a gradient map of order dA−∆. The number dA−∆ could
be relatively big and the term (7.11) could spoil the forthcoming constructions.
Fortunately, (7.11) vanishes up to a smoother term. This is essentially what
the lemma states.

We prove the lemma in next section 7.2 and now show how to complete the
theorem’s proof, given this result. To prove the theorem it remains to check
that the operator B in (7.10) vanishes. Since ϕ is analytic and O(‖y‖2)-close
to the identity, then ϕ∗(w, 0)|{0}×Y = id . Denoting w(t) = (p, q + t∇h(p)) we
get that the transformation

y(t) 7→ (Φ ◦ ϕ)∗(w(t), 0)y(t) = (Φ∗(w(t), 0))y(t)

sends solutions of the equation (7.2) to solutions of (5.2).
From other hand, Φ ◦ ϕ is a canonical transformation which transforms

solutions of the equation with hamiltonian (7.10) to solutions of (5.1). In
particular, it sends the curves w(t) to solutions u0(t) of (5.1). Hence, the
linearisation

(
Φ ◦ ϕ

)
∗(w(t)) converts solutions of the linearised equation

ẏ = J
(
B(p) + B(w(t)

)
y, . . . (7.12)

to solutions of (5.2) and ϕ∗(w(t)) converts solutions of (7.12) to solutions of
(7.2) (cf. item b) of Proposition 5.1). Since a y-component of the map ϕ∗(w(t))
is the identity, then we must have JB(p)y ≡ J(B(p)+B(w(t)))y. This implies
that B ≡ 0 and the theorem is proven. ¤

7.2. Proof of Lemma 7.3. In this section we denote by {Zs} a Hilbert scale
formed by the spaces Zs = R2n × Ys and abbreviate Zd to Z. So ThY ' Z for
every h in Y = Yd.

To study the vector field V t which defines the transformation ϕ we expand
the operator −(J0 + tJ∆)−1 in the Neumann series:

−(J0 + tJ∆)−1 = (id− tJ0J∆)−1J0 =
∞∑

m=0

(tJ0J∆)mJ0.

The series converges for small δ since by (7.3), (7.4) the linear map

J0J∆(w, y) : Zd → Zd+∆
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is analytic in (w, y) ∈ Sc
δ and is proportional to y, so its operator-norm is

bounded by Cδ. Denoting

ã(w, y) = J0a(w, y) =
(
ω2[Φ1y, (−∇q,∇p)Φ1y], 0

)
∈ Z,

we solve equation (7.9) for V t and find that

V t(w, y) = −(J0 + tJ∆)−1a(w, y) =
1
2

∞∑
m=0

(tJ0J∆)mã(w, y). (7.13)

Therefore V t = O(‖y‖2) is a ∆-smoothing analytic vector field. In particular,
the flow-maps St

0 of the equation ż = V t with 0 ≤ t ≤ 1 send a domain Sc
δ1

with sufficiently small δ1 to Sc
δ .

Isolating in the r.h.s. of (7.13) the term with m = 0 we find that the vector
field V t satisfies the self-similarity identity:

V t(w, y) = 1
2 ã(w, y) + 1

2 (tJ0J∆)
∞∑

m=0

(tJ0J∆)mã = 1
2 ã(w, y) + tJ0J∆V t(w, y).

(7.14)
We begin an analysis of the transformed hamiltonian with its the most com-

plicated term
1
2 〈B(p)y, y〉 ◦ ϕ. (7.15)

We abbreviate the function 1
2 〈B(p)y, y〉 ◦ St

0 to ξt, so ξ1 equals (7.15) and
ξ0 = 〈B(p)y, y〉/2. We have:

1
2 〈B(p)y, y〉 ◦ ϕ− 1

2 〈B(p)y, y〉 = ξ1 − ξ0 =
∫ 1

0

d

dt
ξt dt .

Denoting by V t
p , V t

q , V t
y components of the vector field V t, we get:

∫ 1

0

d

dt
ξt dt =

∫ 1

0

(
1
2

〈
(∇pB(p) · V t

p )y, y
〉

︸ ︷︷ ︸
qt

+
〈
B(p)y, V t

y (w, y)
〉

︸ ︷︷ ︸
Qt

)
◦ Stdt. (7.16)

By (5.21) the function qt is analytic with a gradient map of order ∆̃−dJ . Now
we pass to the term Qt. Since the vector ã(w, y) has zero y-component, then
we get from (7.14) that

Qt = t〈B(p)y, ΠyJ0J∆V t(w, y)〉 = −t〈JB(p)y, ΠyJ∆V t(w, y)〉,
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where Πy stands for the natural projector Z → Y . Due to (7.4), ΠyJ∆V t =
−j∗WY V t

w, where we abbreviate (V t
p , V t

q ) to V t
w. So we get the following formula:

Qt = t
(
jWY (w, y)JB(p)y

) · V t
w(w, y), (7.17)

where · stands for the scalar product in R2n. Using (7.3) and (7.7) we write
the second factor in the right-hand side of (7.17) as

R2n 3 jWY (w, y)JB(p)y = 〈JΦ1JBy,∇wΦ1y〉
= −〈AΦ1y,∇wΦ1y〉 − 〈(∇H)∗(Φ0)Φ1y,∇wΦ1y〉
− 〈J(∇qΦ1 · ∇h)y,∇wΦ1y〉, (7.18)

where Φ1 = Φ1(w) and Φ0 = Φ0(w). Using (7.8) we rewrite the first term in
the r.h.s. of (7.18) as

− 1
2∇w〈AΦ1(w)y, Φ1(w)y〉

= 1
2∇w

[− 〈B(p)y, y〉+ 〈(∇H)∗(Φ0)Φ1(w)y, Φ1(w)y〉+ 〈A(w)y, y〉].

Using (5.20) as well as Lemmas 5.2 and 7.5 we find that this is a quadratic in y

form, corresponding to a linear operator of order max (∆̃−dJ , dH ,−∆−dJ ) =
d̃. By Lemma 5.2 the second term in the r.h.s. of (7.18) corresponds to a
linear in y operator of order dH and the third term – to an operator of order
−dJ − 2∆. Thus, jY W (w, y)JB(p)y is a quadratic in y form which we write
as 1

2 〈B1(w)y, y〉, where ord B1 = d̃ and the linear operator B1 is analytic in
w ∈ Sδ (more precisely, B1 is not a linear operator but 2n of them).

Now let us consider the third factor in (7.17), V t
w = (V t

w1
, . . . , V t

w2n
). For

l = 1, . . . , 2n we denote by Πl the projector Z → R which sends (w, y) to wl

(so ΠlV
t = V t

wl
). Below we write estimates for the vector ã and the operator

ΠlJ0J∆ which follow directly from the formulas for ã and the operator jY W ,
taking into account the smoothness of the operators Φ1 and ∇Φ1, specified in
Lemma 5.2:

‖ã(w, y)‖m ≤ Cm‖y‖‖y‖−d−∆−dJ
for any m ,

‖ΠlJ0J∆(w, y)‖Z−d−∆−dJ
,R ≤ C‖y‖ for any l ,

‖ΠlJ0J∆(w, y)‖Zd,R ≤ C‖y‖−d−∆−dJ for any l .

(7.19)

For any l let us consider the function (w, y) 7→ ΠltJ0J∆(w, y)ã(w, y). Since
the operator-valued map y → J∆(w, y) is linear in y, then linearisation of this
function, applied to a vector (0, η), equals

(
ΠltJ0J∆(w, y)

)(
ã∗(w, y)(0, η)

)
+ ΠltJ0J∆(w, η)ã(w, y).
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Using (7.19) we bound this number by

Ct‖y‖‖ã∗(w, y)(0, η)‖−d−∆−dJ
+ Ct‖η‖−d−∆−dJ

‖a‖ ≤ C1t‖y‖2‖η‖−d−∆−dJ
.

Hence, ‖∇y(ΠltJ0J∆a)‖d+∆+dJ
≤ C‖y‖2. Similar estimates hold for higher-

order in t terms in (7.13). Since ‖∇yΠlã‖d+∆+dJ
≤ C‖y‖ due to the last

estimate in (7.18), then for (w, y) ∈ Sc
δ we get:

‖∇yV t
wl
‖d+∆+dJ

≤ 1
2‖∇yΠla +∇y(ΠltJ0J∆a) + . . . ‖d+∆+dJ

≤ C(‖y‖+ t‖y‖2 + . . . ) ≤ C1‖y‖
(we used (7.19) once again). Thus, the functions V t

wj
, j = 1, . . . , 2n, are analytic

and bounded by C‖y‖2; their gradient maps are (∆ + dJ)-smoothing and are
bounded by C‖y‖.

We have seen that any function Qt, 0 ≤ t ≤ 1, is analytic in the domain Sδ,
where it is bounded by C‖y‖4 and ‖∇yQt‖d−d̃ ≤ C‖y‖3. Because the formula
(7.16), the function 1

2 〈By, y〉 ◦ ϕ − 1
2 〈By, y〉 has a gradient map of order d̃,

which satisfies similar estimates.
By the formula (7.13) the map V t is analytic ∆-smoothing and is bounded

by C‖y‖2. Therefore, the map ϕ− id is ∆-smoothing: ‖ϕ− id‖d+∆ ≤ C1‖y‖2
and

‖ϕ∗(w, y)− id‖s,s+∆ ≤ C2‖y‖ ∀ s ∈ [−d−∆− dJ , d + ∆] (7.20)

(the estimate for ϕ− id is obvious and (7.20) follows from (1.19)).
Finally, for any z = (w, y) ∈ Sδ1 we write the transformed hamiltonian as

H ◦ Φ ◦ ϕ(z) =
(
h(p) + 1

2 〈By, y〉) + 1
2 〈By, y〉 ◦ ϕ(z)

− 1
2 〈By, y〉+ h ◦ ϕ(z)− h(z) + h2 ◦ ϕ(z)

and denote

h̃2 =
(

1
2 〈By, y〉 ◦ ϕ− 1

2 〈By, y〉) + h ◦ ϕ− h + h2 ◦ ϕ.

Since ϕ = O‖y‖ and ϕ− id= O‖y‖2, then h̃2 = O‖y‖2. The gradient of the
first term was shown to be of order d̃. Since

∇(h ◦ ϕ) = ϕ∗(∇h ◦ ϕ) = (ϕ∗ − id)∇h ◦ ϕ +∇h ◦ ϕ

and ∇h ∈ R2n×{0}, then due to (7.20) ∇(h◦ϕ)(z) ∈ Zd+∆+dJ
. So the gradient

map of the second term has the order −∆− dJ . The gradient map of the last
term has the same order as ∇h2, i.e. d̃ (we use (7.20) once again). We have
seen that

h̃2 = O‖y‖2, ord∇h̃2 = d̃.

Now we denote quadratic part of h̃2 as 1
2 〈B(p, q)y, y〉 and set h3 = h̃2 −

1
2 〈By, y〉, so

H ◦ Φ ◦ ϕ = h(p) + 1
2 〈By, y〉+ 1

2 〈By, y〉+ h3(p, q, y).

The operator B has the order d̃, as well as ∇yh3, and the lemma is proven. ¤
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7.3. Examples. 1)Korteweg-de Vries equation. The KdV equation in a So-
bolev space Zd = Hd

0 (S1) with d ≥ 1, given a symplectic structure by the form
α2 = 〈(−∂/∂x)−1du, du〉L2 takes the form (2.1) (see Example 2.1). Its restric-
tion to a bounded part T 2n of any finite-gap manifold T 2n

V (see (6.6)) satisfies
the restrictions i)–v) and the corresponding system of Floquet solutions (6.13)
is complete non-resonant with

∆ = ∆̃ = 1, dJ = 1, dH = 0, dA = 2.

Therefore Theorem 7.1 provides KdV with a normal form with d̃ = 0. To state
the result, we find the singular subset Rs ⊂ R (see (5.15))48 and choose any
domain R1 b R \ Rs. We cover R1 up to its zero-measure subset by non-
overlapping sub-domains R11, R12, . . . such that the KdV-equation restricted
to any manifold Φ0(R1j × Tn) = T 2n

j admits action-angle variables (p, q) with
p ∈ Pj b Rn as in (2.6).

For any s we denote by Ys ⊂ Hs
0(S1) the closed subspace spanned by the

functions {cos jx,− sin jx | j ∈ NV }. Applying Theorem 7.1 we get:

Theorem 7.2. For any d ≥ 3 there exists δ > 0 and an analytic symplecto-
morphism

G : (Pj × Tn ×Oδ(Yd), dp ∧ dq ⊕ αY
2 ) → (Hd

0 , α2)

which contains T 2n
j in its range and is such that G−1 transforms KdV to the

Hamiltonian system

ṗ = −∇qH, q̇ = ∇pH, ẏ =
∂

∂x
∇yH (7.21)

with a hamiltonian H of the form H = h(p) + 1
2 〈B(p)y, y〉 + h3(p, q, y). Here

h(p) is the KdV-hamiltonian, restricted to T 2n
j , B(p) is the linear operator in

Yd with eigenvectors cos mx, − sin mx and eigenvalues νm(p) (m ∈ NV ) and
h3 = O(‖y‖3d) is a function with a zero-order analytic gradient map.

2) Higher KdV equations. Let us take any lth equation from the KdV-
hierarchy. Since the same (as in the KdV-case) sections Ψj of the skew-
orthogonal bundle to a finite-gap manifold T 2n

V give rise to Floquet solutions
of the equation, then the same map Φ1 reduces the linearised lth equation to
the equation ẏ = JBl(p)y in the space Y . Here J = ∂/∂x and Bl(p) is a linear
operator with the eigenvectors cos jx and − sin jx, corresponding to the eigen-
values νl

j(p) as in (6.21) Therefore, the same map G with s ≥ 2p+1 reduces the
lth KdV equation in the vicinity of T 2n

j (the same as above part of T 2n
V ) to the

equation (7.21) with H = Hl(p, q, y) = hl(p) + 1
2 〈Bl(p)y, y〉+ hl

3(p, q, y). Here

48In the KdV-case the set Rs is empty. We neglect this nice specificity of KdV.
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hl is the hamiltonian of the lth equation, restricted to T 2n
j (so ∇hl = W (l),

cf. (3.19)) and the operator Bl(p) has the eigenvalues νl
j . Now ∆ = dJ = 1 as

in the KdV-case, dA = 2l, dH = 2l− 2 and ∆̃ = 3− 2l by (6.21). So d̃ = 2l− 2
and h3 = O(‖y‖3d) has an analytic gradient map of order 2l − 2.

3) Sine-Gordon equation. For the SG equation under the odd periodic (OP)
boundary conditions in the variables (u,w) ∈ Zo

s (s ≥ 0),

u̇ = −
√

Aw, ẇ =
√

A (u + A−1(sinu− u)),

let us consider any its finite-gap manifold T 2n = Φ0(R×Tn) as in section 4.3.
We checked that this manifold satisfies assumptions i)-v), and in section 6.4
we constructed a complete nondegenerate system of Floquet solutions for the
linearised equation. Accordingly, for any compact subset R1 of a regular part
R0 of the algebraic set R we can find a countable system of non-overlapping
smooth domains R1j which cover R1 up to a zero-measure subset, such that:
For any j, in the vicinity of the manifold Φ0(R1j ×Tn) in Zo

s the SG equation
admits the normal form, described in the Theorem 7.1. In difference with the
KdV-case, for some domains R1j corresponding linear Hamiltonian operators
JB have non-imaginary eigenvalues.

To have this normal form result, it is not really essential to consider the
SG equation under the OP boundary conditions. Indeed, for any g ≥ 1 and
any integer g-vector Υ the theta-formula (4.17) subject (4.18) defines a 2g-
dimensional finite-gap manifold, formed by g-dimensional invariant tori of the
SG equation under periodic boundary conditions (corresponding arguments are
more strightforward compare to the OP case). Arguing as in section 6.4, for
the linearised SG equation we construct a system of Floquet solutions of the
form (6.26). Now we have “twice as many” of them since the solutions are
parameterised by an index (l, κ), where l ∈ ZΥ ∪ 0 and κ ∈ {+,−}. The set of
exponents ν(Pl±) is asymptotically double. Namely,

ν(Pl±)− l∗ −→ 0

both when l → ∞ and when the open gaps [E2j−1, E2j ] shrink. This set of
Floquet solutions can be checked to be complete nondegenerate, but because of
the asymptotycal degeneracy corresponding arguments become more technical
compare to the elementary number-theory ones, used in the odd periodic case
in section 6.4.

Accordingly, the SG equation under periodic boundary conditions also can
be put to the normal form in the vicinity of any its finite-gap manifold.
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Part II

1. A KAM theorem for perturbed nonlinear equation

1.1 The Main Theorem and related results.
Let ({Zs}, α2), α2 = J dz ∧ dz be a scale of symplectic Hilbert spaces as

in section 1.2 (so the operator J̄ defines an isomorphism of the scale of order
−dJ ≤ 0) and let H be a quasilinear hamiltonian of the form

H = 1
2 〈Az, z〉+ H(z),

where A is a selfadjoint isomorphism of the scale of order dA > −dJ . We fix
any d ≥ dA/2 and assume that the function H is analytic in the space Zd (or in
a neighbourhood in Zd of the manifold T 2n

0 , see below) and defines an analytic
gradient map of order dH , ∇H : Zd → Zd−dH

. We have dH < dA due to the
quasilinearity of the hamiltonian H. The corresponding Hamiltonian equation
takes the form:

u̇ = J∇H(u) = J(Au +∇H(u)), (1.1)

where J = (−J)−1 defines an isomorphism of the scale of order dJ ≥ 0.
As in sections I.2.1 and I.5.1 we assume that the equation (1.1) has an

invariant manifold T 2n
0 = Φ0(R0 × Tn) filled with quasiperiodic solutions

u0(t; r, z) = Φ0(r, z + tω(r)) which satisfies the assumptions i) – v). The mani-
fold R0 is the regular part of an n-dimensional real analytic set R (which in its
turn is a real part of a complex analytic set Rc). By R̃ we denote any chart on
R0 analytically diffeomorphic to a bounded connected subdomain of Rn. We
identify R̃ with this domain and supply it with the n-dimensional Lebesgue
measure mesn.

As in section I.5, we also consider linearisation of the equation (1.1) about
a solution u0 as above:

v̇ = J
(
Av + (∇H)∗(u0(t)) v

)
, (1.2)

and assume that (1.2) has Floquet solutions vj(t),

vj(t; r, z) = eiνj(r)tΨj(r, z + tω(r)), j ∈ Zn, (1.3)

where ν−j ≡ −νj .
Our concern in this section is a hamiltonian perturbation of the equation

(1.1):
u̇ = J(Au +∇H(u) + ε∇H1(u)), (1.4)

and behaviour of solution for (1.4) near the manifold T 2n
0 . We assume that H1

is an analytic functional such that its gradient map ∇H1 is analytic of order
dH in a neighbourhood of the manifold T 2n

0 in Zd.
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By d̃ we denote the real number from Theorem I.7.1:

d̃ = max {dH , −∆− dJ , −∆̃− dJ},

where dH , dJ are as above, −∆ is the order of the linear operator Φ1 − ι (see
(I.5.11)) and ∆̃ is the exponent of growth in j of “variable parts” of the the
Floquet exponents νj(r) (see (I.5.13)).

Let us fix any ρ̃ such that 0 < ρ̃ < 1/3. Now we state a KAM theorem
which is the main result of this book:

Theorem 1.1 (the Main Theorem). Let the invariant manifold T 2n
0 satisfy

the assumptions i) – v) and the system of Floquet solutions (1.3) is complete
nonresonant. Besides,

1) (spectral asymptotic): d1 := dA + dJ ≥ 1 and

νj(r) = K1j
d1 + K1

1jd1
1 + K2

1jd2
1 + · · ·+ ν̃j(r),

where K1 > 0, d1 > d1
1 > . . . (the dots stand for a finite sum), the functions ν̃j

analytically extend to Rc, where they are bounded by Cjκ with some κ < d1−1;
2) (quasilinearity): d̃ < d1 − 1.
Then most of the invariant tori Tn(r) of equation (1.1) persist in (1.4) when

ε → 0 in the following sense: for any chart R̃ ⊂ R0 as above, a Borel subset
R̃ε b R̃ and a Lipschitz embedding Σε : R̃ε×Tn −→ Zd, analytic in the second
variable, can be found such that:

a) mesn(R̃ \ R̃ε) −→ 0 as ε −→ 0,
b) the map (Σε − Φ0) : R̃ε × Tn −→ Zd is bounded by Cερ̃, as well as its

Lipschitz constant, and is analytic in q ∈ Tn;
c) each torus Tn

ε (r) := Σε({r} × Tn), r ∈ R̃ε, is invariant for the equation
(1.4) and is filled with its time-quasiperiodic solutions hε(t) of the form hε(t) =
hε(t; r, z) = Σε(r, z + tωε(r)), where |ωε − ω|+ Lip (ωε − ω) ≤ Cερ̃.

Let mesHn be the n-dimensional Hausdorff measure on R (see [Fal] and the
Appendix below) and let µn be any finite measure, absolutely continuous with
respect to mesHn . Then the regular set R0 ⊂ R is a set of full µn-measure
since the singular set R \ R0 has a positive codimension. As µn is absolutely
continuous with respect to the Lebesgue measure1 and since the charts R̃ as
above jointly cover R0, then by the Main Theorem most of the tori Tn(r),
r ∈ R, persist in the perturbed equation in the sense that the persisted ones
correspond to r from a subset Rε such that µn(R \ Rε) → 0 as ε → 0. In
applications below we are using the Main Theorem in this global reformulation.

We note that the theorem’s assertions are empty unless ε > 0 is sufficiently
small since the set R̃ε may be empty for non-small ε.

1since mesHn is, see [Fal, Fed].
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Amplification. The statements b), c) of Theorem 1.1 remain true with ρ̃
replaced by any ρ′ < 1. Besides, |ωε − ω| ≤ Cε.

We denote

T̃ 2n = Φ0(W̃ ), W̃ = R̃× Tn and T̃ 2n
ε = Σε(W̃ε), W̃ε = R̃ε × Tn.

The set T̃ 2n
ε is a remnant of the invariant manifold T̃ 2n in the perturbed

equation (1.4).2

Since T̃ 2n is a 2n-dimensional manifold embedded to Zd, then its 2n-dimen-
sional Hausdorff measure mesH2nT̃ 2n is finite and positive: this follows from the
estimate (A2) applied to the map Φ0 : W̃ −→

∼
T̃ 2n and to its inverse. The

remnant set T̃ 2n
ε is very irregular (it is totally disconnected). Still it carries

most of a measure of the set T̃ 2n:

Proposition 1.1. Under the assumptions of Theorem 1.1,

mesH2nT̃ 2n
ε ≥ mesH2nT̃ 2n − o(1) as ε → 0.

Proof. By the assertion a) of the theorem and by the estimate (A7) (see the
Appendix) we get that

mesH2n(W̃ \ W̃ε) = o(1). (1.5)

The map Φ0 : W̃ε −→∼ Φ0(W̃ε) ⊂ T̃ 2n is Lipschitz and has a Lipschitz inverse,

so the map Σε ◦ Φ−1
0 : Φ0(W̃ε) −→∼ T̃ 2n

ε has the form id + L, where Lip L ≤
Cερ̃ (we use the assertion b)). Now estimate (A5) implies that mesH2nT̃ 2n

ε ≥
mesH2nΦ0(W̃ε) − O(ερ̃). Since mesH2n(Φ0(W \ W̃ε)) = o(1) by (1.5) and (A2),
then the assertion follows. ¤

Under the assumptions of Theorem 1.1, a solution u0(t; r, z) of (1.1) is lin-
early stable if all Floquet exponents νj(r) are real (see the Corollary to Proposi-
tion I.5.1). Let us assume that this is the case for all r ∈ R̃. Then the solutions
hε(t; r, z) of the perturbed equation (1.4) with r ∈ R̃ε also are linearly stable,
provided that this equation linearised about hε satisfies some a priori estimate.
We recall that by the assumption v) the flow maps St

τ∗∗(hε(τ)) of the linearised
equation are well defined in the space Zd. We say that the linearised equation
is uniformly well defined (in Zd) if

‖St
τ∗∗(hε(τ))‖d,d ≤ C1e

C2(t−τ) for all t, τ. (1.6)

The solutions hε(τ) = hε(τ ; r, z) lie in the torus Tn
ε (r) and the map z 7→ hε(0) is

a diffeomorphism of the standard n-torus and Tn
ε (r). Therefore the assumption

(1.6) is fulfilled if for every phase z ∈ Tn the unit-time flow-map S1
0∗∗(hε(0; r, z))

is a bounded linear operator in Zd, continuously depending on z.
2By no means we claim that the invariant tori T n(r) with r ∈ eR \ eRε really disappear

when we switch in the perturbation εJ∇H1 – it is just unknown what happens to them, even
when the phase-space Z is finite-dimensional. See [Mo1] and section III “Beyond the tori”
in [Laz].
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Theorem 1.2. If under the assumptions of Theorem 1.1 all Floquet exponents
νj(r) are real for r ∈ R̃, then a solution hε(t) is linearly stable, provided that
equation (1.4) linearised about this solution is uniformly well defined.

(Examples we consider below in section 2 show that the assumption of the
uniform well-definedness is quite non-restrictive).

We prove the two theorems and the amplification, reducing them to similar
statements concerning perturbations of parameter-depending linear systems.
We present the reduction in next section and prove the theorems on parameter-
depending equations in section 2.

1.2 Reduction to a parameter-depending case.
We perform the reduction in four steps.
Step 1 (localisation). Let us denote by Rf the set of singularities of the

frequency map ω, Rf = {r ∈ R̃ | detω∗(r) = 0}, and denote R̃s = (Rs∩R̃)∪Rf ,
where Rs is the singular set, constructed in section 5.3 (see there Remark 2).
By the assumption iv), Rf is a proper analytic subset of R̃. So R̃s also is
one, and for any given positive γ0 we can find a finite system of M connected
subdomains R̃l ⊂ R̃ \ R̃s such that dist (rj , rj′) ≥ C(γ0) > 0 if rj ∈ R̃j and
rj′ ∈ R̃j′ with j 6= j. Besides,

a) mes (R̃ \ ∪R̃l) < γ0,
b) the hamiltonian system restricted to Φ0(R̃l×Tn) admits analytic action-

angle variables (p, q), where p ∈ Pl b Rn and q ∈ Tn. The map (p, q) 7→ (r, z)
has the form r = r(p), z = q + z0(p). This map, its inverse and the hamiltonian
h = hl(p) all are δ-analytic with some positive δ = δ(γ0). By Lemma I.2.2,
∇h(p) ≡ ω(r(p));

c) for every l the gradient map p 7→ ∇h(p) ≡ ω(r(p)) defines a diffeomor-
phism Pl −→∼ Ωl b Rn which is δ-analytic as well as its inverse;

d) since each domain R̃l is connected, then the eigen-vectors ψj of the op-
erator JB(r) are r-independent when r ∈ R̃l.

Step 2 (a normal form theorem). At this step of the proof and at the next
Step 3 we consider any fixed domain R̃l as above and drop the index l.

Applying Theorem I.7.1 we find an analytic symplectomorphism G such that
G−1 transforms equation (1.1) in the vicinity of Φ0(R̃×Tn) to the form given in
the theorem. The same symplectomorphism converts the perturbed equation
(1.4) to the Hamiltonian system

ṗ = −∇qHε, q̇ = ∇pHε, ẏ = J∇yHε. (1.7)

Here p ∈ P , q ∈ Tn, y ∈ Oδ(Yd) and

Hε = h(p) + 1
2 〈B(p)y, y〉+ h3(p, q, y) + εH1(p, q, y)
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with h3 = O(‖y‖3d) and ord∇yh3 = d̃. The operator B(p), the functions
h, h3, H1 and their gradients all are δ-analytic in the corresponding domains.

Step 3 (introducing a parameter). Let us consider the following neighbour-
hoods of the torus Tn

0 = {0} × Tn × {0} in Y = Yd and Yc = Yc
d:

Qδ = Oδ(Rn)×Tn ×Oδ(Yd) ⊂ Yd = Rn × Tn × Yd,

Qc
δ = Oδ(Cn)×{|Im q| < δ} × Oδ(Y c

d ) ⊂ Yc
d = Cn × (Cn/2πZn)× Y c

d .
(1.8)

In the equation (1.7) we perform a shift of the action p:

(p, q, y) = (p̃ + a, q̃, ỹ) =: Shifta(p̃, q̃, ỹ),

where a ∈ P is a parameter of the shift. After this transformation the hamil-
tonian Hε becomes an analytic function Hε(p̃, q̃, ỹ; a) of the tilde-variables
from the domain Qc

δ. It has the following form:

Hε = h(a) +∇h(a) · p̃ + 1
2 〈B(a)ỹ, ỹ〉+ εH1(p̃ + a, q̃, ỹ) + h̃3(p̃, q̃, ỹ; a),

where

h̃3 = O(‖ỹ‖3d + |p̃|2 + |p̃|‖ỹ‖2d), ‖∇yh̃3‖d−d̃ = O(‖ỹ‖2d + |p̃|‖ỹ‖d)

(so ord∇h̃3 = d̃).
The functions h, H1, h̃3 and the Floquet exponents νj are analytic bounded

functions of the parameter a ∈ P +δ. Because the property c) from Step 1, the
map P 3 a 7→ ω = ∇h(a) ∈ Ω defines an analytic Lipschitz diffeomorphism of
P and a bounded domain Ω ⊂ R. We drop the tildes and change the parameter
a to ω. Now the hamiltonian Hε reeds as

Hε(p, q, y; ω) = h(a) + ω · p + 1
2 〈B(ω)y, y〉+ εH1(p, q, y; ω) + h3(p, q, y; ω).

The operator JB is diagonal in the complex symplectic basis {ψj}, constructed
in Proposition I.5.1:

JBψj = iνj(r)ψj ∀ j ∈ Zn.

Since the hamiltonian Hε is δ-analytic, then by the Cauchy estimate it is
Lipschitz in a ∈ P as well as in ω ∈ Ω. This is all we need from its dependence
in the parameters.

In the vicinity of the torus Tn
0 = {0} × Tn × {0} in Qδ the hamiltonian Hε

is a perturbation of the q-independent hamiltonian H0,

H0 = ω · p + 1
2 〈B(ω)y, y〉

(we neglect the irrelevant constant h(a)). Indeed, ε is small and the term h3

has on Tn
0 a high-order zero.
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The hamiltonian equations with the hamiltonianHε(p, q, y; ω) take the form:
ṗ = −∇q(εH1+h3), q̇ = ω +∇p(εH1 + h3),

ẏ = J(B(ω)y + ε∇yH1 +∇yh3).
(1.9)

We abbreviate (p, q, y) to h and rewrite (1.9) as

ḣ = VHε
(h).

In the context of equations (1.9), we call the functions νj(ω) (i.e., the eigen-
values of the operator JB, devided by i), frequencies of the linear equation.

Hamiltonian vector fields with hamiltonians of the form Hε are studied in
[K]. Now we break the proof of Theorem 1.1 to present the main theorem from
[K] in a form generalised to suit our purposes. After this we make the last step
to complete the proof.

1.3. A KAM-theorem for parameter-depending equations.
To state the theorem we need, we relax restrictions on the hamiltonian Hε

as in the assumptions 0)-3) below:
0) The operator JB(ω) is diagonal in the complex basis {ψj | j ∈ Zn} as in

Proposition 5.1. Namely,

JB(ω)ψj = iνj(ω)ψj ∀ j.

1) The complex functions νj(ω), j ∈ Zn, are Lipschitz, are real for |j| ≥ j1
with some j1 ≥ n + 1 and are odd in j, νj ≡ −ν−j . For j ≥ n + 1 and for some
fixed ω0 ∈ Ω the following asymptotics hold:

|νj(ω0)−K1j
d1 −K1

1jd1
1 −K2

1jd2
1− . . . | ≤ Kjd̃,

Lip νj ≤ Kjd̃,



 (1.10)

where K1 > 0, d1 ≥ 1, 0 ≤ d̃ < d1 − 1 and the dots stand for a finite sum with
some exponents d1 > d1

1 > d2
1 > . . . .

2) The functions h3 and H1 are analytic in (p, q, y) ∈ Qc
δ and everywhere in

Qc
δ satisfy the estimates:

|H1|+ ‖∇yH1‖d−d̃+dJ
≤ 1 ∀ω,

|h3| ≤ K(|p|2 + ‖y‖3d) ∀ω,

‖∇yh3‖d−d̃+dJ
≤ K(|p|‖y‖d + ‖y‖2d) ∀ω,

the same estimates hold for Lipschitz constants
in ω ∈ Ω of these functions and their gradients.





(1.11)

3) Ω is a bounded Borel set in Rn of positive Lebesgue measure, such that
diamΩ ≤ K2 and |ω| ≤ K for every ω ∈ Ω.

Let us choose any ρ ∈ (0, 1
3 ) and denote by Σ0 the map (q, ω) 7→ (0, q, 0) ∈

Qδ. For the equations (1.9) the following theorem holds which states that the
torus Tn

0 persists as an invariant torus of (1.9) for most ω, if ε is sufficiently
small:
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Theorem 1.3. Suppose that the assumption 1)-3) hold. Then there exist in-
tegers j2 ≥ n and M1, depending only on n, d1, d̃, K, K1,K2 and K1

1 ,K2
1 . . . ,

with the following property: If

|s · ω + ln+1νn+1(ω) + · · ·+ lj2νj2(ω)| ≥ K3 > 0 (1.12)

for all ω ∈ Ω, all integer n-vectors s and all j2-vectors l such that

|s| ≤ M1, 1 ≤ |l| ≤ 2,

then for arbitrary γ > 0 and for sufficiently small ε ≤ ε̄(γ) (ε̄ > 0), a Borel
subset Ωε ⊂ Ω and a Lipschitz embedding Σε : Tn × Ωε −→ Qδ, analytic in
q ∈ Tn, can be found with the following properties:

a) mes (Ω \ Ωε) ≤ γ;
b) ‖Σε − Σ0‖T

n×Ωε,Lip
Yd

≤ Cερ;
c) each torus Σε(Tn × {ω}), ω ∈ Ωε, is invariant for the flow of equation

(1.9) and is filled with its quasiperiodic solutions h(t) of the form h(t; q, ω) =
Σε(q + ω′t, ω), where ω′ = ω′(ω) and |ω′ − ω|+ Lip (ω′ − ω) ≤ Cερ.

Concerning the notations used in the statement b), see the section Notations.

Amplification. Assertions b), c) hold with ρ replaced by one. The constant
C in c) is γ-independent.

Theorem 1.4. If in Theorem 1.3 all the frequencies νj are real, then any
solution h(t) is linearly stable provided that the equation (1.9) linearised about
this solution is uniformly well defined in the space R2n × Yd.

1.4. Completion of the Main Theorem’s proof.
Step 4 (proof of Theorems 1.1 and 1.2, given Theorems 1.3 and 1.4). Now

we apply Theorem 1.3 to equation (1.9) with Ω equal to a Borel subset Ωl of
the domain Ω̃l = {ω(r) | r ∈ R̃l}, l = 1, . . . ,M , which we construct below.

The assumptions 1)-3) hold with the constants from n through d1
1, d2

1, . . .
the same as in Theorem 1.1, while the constants K and K2 depend on γ0.
We take j2 = j2(γ0) and M1 = M1(γ0) as in Theorem 1.3 and consider all
resonances as in (1.12). Since the system of Floquet exponents {νj(r)} is non-
resonant, then each resonance does not vanish identically. As these functions
are analytic, we can find K3 = K3(γ0) and for every l can find a subset Ωl ⊂ Ω̃l

such that mes (Ω̃l \ Ωl) ≤ γ0/M and (1.12) holds for all ω ∈ Ωl.
For every l we apply Theorem 1.3 with γ = ξ(γ0) (the function ξ > 0 will

be chosen later) to find the subset Ωlε ⊂ Ωl, mes (Ωl \ Ωlε) < γ, and the map
Σlε : Tn × Ωlε −→ Qδ.

Now we are in position to define the set R̃ε ⊂ R̃ and the map Σε : R̃ε×Tn −→
Qδ, claimed in Theorem 1.1. We set:

R̃ε =
M⋃

l=1

{r ∈ Rl | ω(r) ∈ Ωlε}, Σε(r, z) = G ◦ Shiftp ◦ Σlε(q(z), ω(r)) ,
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where q = q(r, z), p = p(r, z) and the map (r, z) 7→ (p, q) is the action-angle
transformation from Step 1.

The set R̃ε and the map Σε satisfy all the claims of Theorem 1.1. Indeed,

mes (R \ R̃ε) = mes (R̃ \ ∪R̃) +
M∑

l=1

mes {r ∈ R̃l | ω(r) ∈ Ω̃l \ Ωl}

+
M∑

l=1

mes {r ∈ R̃l | ω(r) /∈ Ωlε}.

Denoting sup|det ∂ω/∂r|−1 by C(γ0) we see that mes (R \ R̃ε) is bounded
by γ0 + γ0 + C(γ0)Mξ(γ0). This is smaller than 3γ0, if we choose ξ(γ0) =
γ0/(C(γ0)M). This means that we can choose γ0 = γ0(ε) in such a way that
mes (R \ R̃) ≤ 3γ0 goes to zero with ε and the assertion a) of Theorem 1.1
holds.

The tori Σε({r}×Tn) are invariant for equation (1.4) and are filled with its
quasiperiodic solutions of the form hε(t), where ωε = ω′(p(r)).

The estimates for Σε − Φ0 and ωε(r)− ω(r) readily follows from the corre-
sponding estimates in Theorem 1.3.

It remains to majorise Lipschitz constants of the differences as above. Let
us take any two points (r1, z1) and (r2, z2) in R̃ε × Tn. If r1 and r2 belong to
the same set R̃l, then the estimates for increments3 of Σε − Φ0 and ωε − ω
follow from the corresponding estimates for the increments of Σ(0, q, 0) and
ω′ − ω. If r1 and r2 belong to different sets R̃l, then |r1 − r2| ≥ C(γ) > 0
and the increments of the differences divided by increments of the arguments is
bounded by C1ε

ρ/C(γ). Since we can choose the rate of decaying γ(ε) → 0 to
be as slow as we wish, then we can achieve C1ε

ρ/C(γ) ≤ C2ε
ρ̃, if we chose for

ρ in Theorem 1.3 any number from the interval (ρ̃, 1/3). Thus, the estimates
for the Lipschitz constants are proven.

The last arguments also show that the estimates |ω′−ω| ≤ Cε and Lip (ω′−
ω) ≤ Cε imply that |ωε − ω| ≤ Cε and Lip (ωε − ω) ≤ Cρ′ε

ρ′ for any ρ′ < 1.
It means that the Amplification to Theorem 1.3 implies the Amplification to
Theorem 1.1.

Finally, since linearisation of the symplectomorphism which sends solutions
h(t) of (1.11) to solutions hε(t) transforms solutions of the corresponding lin-
earised equations, then Theorem 1.2 follows from Theorem 1.4.

1.5. Around the Main Theorem.
The Main Theorem of this book was first stated in [K3] in a less general form,

where it was proven with some details missing.4 The Normal Form Theorem

3i.e., the estimate |(ωε − ω)(r1)− (ωε − ω)(r2) ≤ Cερ|r1 − r2|, etc.
4The main omitting was that a KAM-theorem for unbounded perturbations of a parame-

ter-depending linear system (Theorem 1.3 of this book) was given there without a proof.
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from section I.7.1 was proven in [K3] (see there Lemmas 6-8) in the context
of analytic functions (rather than algebraic ones). The “infrastructure” of the
Main Theorem, i.e. convenient ways to construct Floquet solutions and to check
their completeness through nondegeneracy and non-resonance, was developed
later, see [K7] and references in sections 5, 6.

The KAM-Theorem 1.3 for parameter-depending linear systems and for per-
turbations, given by bounded nonlinear operators was first proven in [K1, K2].
The same theorem for unbounded perturbations demands the additional non-
trivial step — Theorem 5.1. It was proven in [K8] (a preprint of this work
arrived in 1995). Finite-dimensional versions of Theorem 1.3 were first proven
in [El] and then in [P1].

Theorem 1.3 is an important by itself result since it applies to parameter-
depending Hamiltonian PDEs with small nonlinearities and with one-dimensi-
onal space variable. See [K], where many applications are given.

Theorem 1.3 is proven under the assumption that the unperturbed linear
system has

single spectrum {±iλj | j ∈ N}, (1.13)

where
λj = Cjd + o(jd), d ≥ 1, (1.14)

and
|λj − λj−1| ≥ C−1

1 jd−1 ∀ j. (1.15)

For systems with small bounded nonlinearities the single-spectrum assump-
tion (1.13) can be replaced by the assumption that the eigenvalues λj asymp-
totically have the same multiplicity m ≥ 2 and the corresponding spectral
spaces asymptotically are “much the same”.5 This version of Theorem 1.3 is
due to Chercia-You [ChY] who observed that the proof of the theorem, given in
[K,P2], generalises to the asymptotically multiple situation as above if to find
the operator fyy from the homological equation (3.21) (see section 3 below) one
treats its Hilbert matrix F as a block-matrix, formed by m×m–blocks; i.e., as
a Hilbert matrix over the ring of m×m complex matrices rather than a matrix
over complex numbers. (These arguments do not apply to systems with small
unbounded nonlinearities since for our proof of Theorem 5.1 it is important
that the unknown function x(q) in the equation (5.1) is a scalar-valued — not
a matrix-valued — one.)

The version of Theorem 1.3 due to Chercia-You applies to nonlinear wave
and nonlinear Schrödinger equations under periodic boundary conditions since

5For the most important case m = 2 this means the following: The eigenvalues form pairs

λ+
j , λ−j such that |λ+

j −λ−j | ≤ Cj−d̃ with a suitable d̃ > 0. The linear Hamiltonian operator,

restricted to corresponding invariant complex planes in the complexified phase-space, equals

iλjE + O(j−d̃).
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linear parts of these equations have asymptotically double spectra which satisfy
(1.14), (1.15).

The assumption (1.15) can be relaxed and replaced by some (rather im-
plicit) restrictions on clusters, formed by the sequence {λj}. This follows from
another KAM-scheme, applicable to the problems we discuss. The scheme is
due to Craig-Wayne [CW] and it was much developed by Bourgain [Bour2],
for its short description see Appendix 3 below. The main advantage of the
Craig-Wayne-Bourgain approach is that it applies to nonlinear perturbations
of the two-dimensional linear Schrödinger equations under periodic boundary
conditions: for these equations (1.14) holds with d = 1, assumption (1.15) is
violated, but control for the clusters is sufficient to prove that most of time-
quasiperiodic solutions of the linear equation with a potential of a general
form withstand small nonlinear perturbations [Bour2]. Disadvantages of this
approach are that, first, it does not apply to equations with unbounded per-
turbations and, second, it does not allow to control Lyapunov stability of the
persisted solution.

Except the global results concerning KAM-persistence most of finite-gap
solutions and the results on perturbations of parameter-depending linear equa-
tions we have just discussed, the “KAM for PDEs” theory includes the third
topic. Namely, theory of small oscillations in nonlinear Hamiltonian PDEs.
Let us consider, for example, a nonlinear Klein-Gordon equation with an odd
nonlinearity:

utt = uxx −mu +
∞∑

k=1

aku2k+1, m, a1 > 0, (1.16)

u(t, 0) ≡ u(t, π) ≡ 0.

Appropriate positive constants b1 and b2 can be found such that (1.16) can be
written as

utt = uxx − b1 sin b2u + O(|u|5) ,

i.e., as a high-order perturbation of the SG equation utt = uxx − b1 sin b2u .
Accordingly, most of small-amplitude finite-gap solutions of the SG equation
persist in equation (1.16) and a set of the persisted solutions is “asymptotically
dense near the zero solution”.6 This result follows from a version of the Main
Theorem, where the set R has the size ε to a positive degree (see [K], p. 53).
A corresponding theorem was proven in [BoK2]. Later it was observed that
it is technically easier to treat (1.16) as a perturbation of another integrable
system, namely its Birkhoff normal form; see [KP, P4].

6That is, for any vertexed at the origin open cone in the phase-space
◦
H 1[0, π]× L2[0, π]

(see item 4 of Example 2.3 in section I.2.1), the set of persisted solutions intersects the cone
by an infinite set which has the origin its accumulation point.
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Appendix 1. Lipschitz analysis and Hausdorff measure.
A map G which sends a metric space Q1 to a metric space Q2 is called

Lipschitz if its Lipschitz constant Lip G is finite, where

Lip G = sup
x6=y

dist2(G(x), G(y))
dist1(x, y)

.

(Through the book, Q1 and Q2 are subsets of Banach spaces or of the direct
product of an n-torus with a Banach space). In particular, if Xc, Y c are
complex Hilbert (or Banach) spaces and a map F : Xc ⊃ Q → Y c admits an
analytic extension to a neighbourhood Q + δ, where it is bounded by C, then

Lip (F : Q → Y c) ≤ Cδ−1

by the Cauchy estimate.
We recall (see [Fe, BV]) that a subset A ⊂ Q1 has a finite m-dimensional

Hausdorff measure mesHm(A) and the measure is less than C < ∞, if for each
δ > 0 we can cover A by a countable system F of subsets S ⊂ Q1 such that
diam S < δ for every S in F and

α(m)2−m
∑

S∈F

(diam S)m < C, (A1)

where α(m) > 0 is a positive constant, equal to the m-volume of the unit ball
O1(Rm) if m is an integer. Now mesHm(A) is defined in the natural way:

mesHm(A) = inf{C | mesHm(A) < C}

(as usual, mesHm(A) = ∞ if the set under the inf-sign is empty).
Since a Lipschitz map G as above sends a covering F = {S} of a subset

A ⊂ Q1 to the covering G(F ) = {G(S ∩ F )} of the set G(F ) ⊂ Q2 and
diam G(S) ≤ LipG · diam S, then

mesHmG(A) ≤ (Lip G)mmesHmA. (A2)

Now let A be a subset of a Banach space B and let G : A → B be a map of
the form

G = id + G1, Lip G1 ≤ µ < 1. (A3)

Then the map G−1 : G(A) → A is well defined and

LipG−1 ≤ (1− µ)−1. (A4)

Indeed, if G(xj) = yj for j = 1, 2, then (x1−x2)+ (G1(x1)−G(x2)) = y1− y2.
So

‖y1 − y2‖ ≥ ‖x1 − x2‖ − ‖G1x1 −G1x2‖ ≥ (1− µ)‖x1 − x2‖
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and (A4) follows.
Using (A2) with G = G and G = G−1 we estimate how a Lipschitz map of

the form (A3) changes Hausdorff measures of sets:

(1− µ)mmesHmA ≤ mesHmG(A) ≤ (1 + µ)mmesHmA. (A5)

If A is a subset of Rm, then its upper Lebesgue measure, mesm
∗A, is defined

in a way similar to (A1). Namely, mesm
∗A < C ′ if A can be covered by a

countable system of balls Bj = Orj
(bj ,Rm) such that

α(m)
∑

rm
j < C ′ (A6)

(the radii rj can be chosen smaller than any given ρ > 0) and mes∗mA is the
infimum over all C ′ with this property. Choosing F = {Bj ∩ A} we get that
mesHmA < C ′. Conversely, given any covering F = {S} of A, for each S we
denote rS = diam S and choose a point aS ∈ S. Then the system of balls
BS = OrS

(aS ,Rm) covers A and α(m)
∑

rm
S ≤ 2mC. Thus,

mesHmA ≤ mesm
∗A ≤ 2mmesHmA for any A ⊂ Rm. (A7)

If A is a Borel subset of Rm, then mesm
∗A = mesmA. Besides, mesmA =

mesHmA (see [Fe]). We shall not use this fact since the elementary estimates
(A7) are sufficient for our purposes.

If A is a Borel subset of Rm and G : A → Rm is a Lipschitz map of the
form (A3), then we can repeat the arguments used to derive (A5) to esti-
mate mesmG(A) via (1 + µ)mmesmA. Indeed, since A is a Borel set, then
mes∗mA = mesmA and for any C ′ > mesmA we can find a covering of A by
balls Orj (bj ,Rm), j = 1, 2, . . . , which satisfies (A6). Next we extend G to
a map G̃ : Rm → Rm with the same Lipschitz constant ≤ 1 + µ (this is the
Kirszbraun theorem, see [Fe, Fal]). The balls O(1+µ)rj

(G̃(bj),Rm) cover the set
G(A) and the sum of their volumes is less than (1+µ)C ′. Since C ′ may be cho-
sen arbitrarily close to mesmA, then mesmG(A) ≤ (1 + µ)mmesmA. Applying
the same arguments to the inverse map G−1 and using (A4) we get:

Lemma A1. If A ⊂ Rm is a Borel set and G = id + G1 : A → Rm is
a map such that LipG1 ≤ µ < 1, then (1 − µ)mmesmA ≤ mesmG(A) ≤
(1 + µ)mmesmA.
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2. Examples

2.1 Perturbed KdV equation.
Let us consider a perturbed KdV equation under zero mean-value periodic

boundary conditions:

u̇ =
1
4
uxxx +

3
2
uux + ε

∂

∂x
f ′u(u, x) =: Vε(u)(x),

u(t, x) ≡ u(t, x + 2π),
∫ 2π

0

u dx ≡ 0,

(2.1)

where f(u, x) is a Cd-smooth function7 (d ≥ 1), δ-analytic in u. Then the
nonlinear part of the vector field Vε defines an analytic morphism of order one:

Hd
0 −→ Hd−1

0 , u 7−→ 3
2uux + ε

∂

∂x
f ′u(u, x),

(see Example I.1.1). The equation is hamiltonian in the symplectic space
(Hd

0 , α2), α2 = (∂/∂x)−1 du ∧ du, with the hamiltonian

Hε =
∫ 2π

0

(
1
8
u′2 − 1

4
u3 − εf(u(x), x)

)
dx.

For ε = 0 this is the KdV equation and a bounded part T 2n of any finite-gap
manifold T 2n

V ,
T 2n =

⋃
{Tn(r) ⊂ T 2n

V | 0 < rj < K0},

satisfies the assumptions i)-v) (see in section I.3.2.). The linearised KdV equa-
tion has a system of Floquet solutions which is complete nonresonant (sec-
tion I.6.2). The assumption 1) of the Main Theorem now holds with d1 = 3,
d1
1 = · · · = 0 (see (I.6.17)) and 2) holds since dH = d̃ = 1 (see in section I.7.3).

We get:

Theorem 2.1. For any ρ < 1 and for sufficiently small ε > 0, there exists
a Borel subset Rn

ε of the cube Rn = {0 < rj < K0} and a Lipschitz map
Σε : Rn

ε × Tn −→ Hd
0 (S1), analytic in the second variable, such that:

a) mesn(Rn \Rn
ε ) −→ 0 as ε → 0,

b) the map Σε is ερ-close to the map Φ0, Φ0(r, z)(x) = G(Vx + z, r) (see
(I.3.16)), also in the Lipschitz norm,

c) each torus Tn
ε (r) = Σε ({r} × Tn), r ∈ Rn

ε , is invariant for equation
(2.1) and is filled with its linearly stable time-quasiperiodic solutions of the
form t → Σε(r, z + tωε(r)), where the n-vector ωε is Cε-close to W(r).

7Hd-smoothness is sufficient, see in [K]
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To get the result we used Theorem 1.1, its Amplification and Theorem 1.2.
The last theorem applies since the linearised KdV equation is uniformly well
defined due to arguments in Example I.1.6 (see (I.1.13)).

The theorem implies that the union of all linearly stable time-quasiperiodic
solutions becomes infinite-dimensional and dense in Hd

0 , asymptotically as ε →
0:

Corollary 2.1. The space Hd
0 contains a subset Qε filled with linearly stable

time-quasiperiodic solutions of (2.1) such that its Hausdorff dimension tends
to infinity when ε → 0 and for any fixed function v ∈ Hd

0 we have:

distHd
0
(v, Qε) −→

ε→0
0. (2.2)

In particular, the set
⋃

ε>0 Qε is dense in Hd
0 .

Proof. We define Qε as a union of all sets Σε(Rn
ε × Tn) = T̃ 2n

ε , corresponding
to all n-gap manifolds T 2n, n = 1, 2, . . . . By Proposition 1.1, the set T̃ 2n

ε has
positive 2n-dimensional Hausdorff measure when ε is small. Thus, dimHQε −→
∞.

To prove (2.2) we note that for any µ > 0 one can find n ≥ 1 and an n-gap
potential u(x) such that ‖u−v‖k ≤ µ (this is a famous result of V.A.Marchenko,
see [Ma], Theorem 3.4.3 and [GT], p.27). Accordingly, u equals to Φ0(r, z) with
some r ∈ R and z ∈ Tn. If ε is sufficiently small, then by the assertion a) of
the theorem, there exists r1 ∈ Rε such that |r − r1| ≤ µ. Using b), we get
that ‖u − Σε(r1, z)‖k ≤ Cµ + ερ and (2.2) follows since µ > 0 can be chosen
arbitrary small. ¤

Another immediate consequence of the theorem is the observation that the
Its - Matveev formula (I.3.15) with corrected frequency vector W, “almost
solves” the equation (2.1) for all t:

Corollary 2.2. For any r ∈ Rn
+ and any z ∈ Tn there exists an n-vector

Wε(r) and a solution uε(t, x) of (2.1) in Hd
0 such that

sup
t
‖uε(t, ·)− 2

∂2

∂x2
ln θ(i(V ·+Wεt + z); r))‖d −→

ε→0
0.

Proof. Let us take any sequence {rε ∈ Rε} which converges to r as ε → 0 and
take uε(t) = Σε(rε, z + tωε(r)). Then

‖uε(t)− Φ0(r, z+ωεt)‖k ≤ ‖uε(t)− Φ0(rε, z + ωεt)‖k

+ ‖Φ0(rε, z + ωεt)− Φ0(r, z + ωεt)‖k = o(1) as ε → 0.

This implies the result since Φ0(r, z + ωεt)(x) = 2 ∂2

∂x2 ln θ(i(Vx + Wεt + z); r),
where Wε = ωε. ¤
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An easy analysis of the first step in the proof of Theorem 1.3 (see [K6]) shows
that the new frequency vector Wε has the form Wε(r) = W (r) + εW1(r) +
O(ε2), where components W j

1 of the n-vector W1 are obtained by averaging
along the torus Tn(r) 8 of the function

G∗
( ∂

∂pj

)(
−

∫ 2π

0

f(u, x) dx
)
, j = 1, . . . , n.

Here G : (p, q, y) 7→ u(·) is the normal form transformation from Theorem I.7.2.
Therefore the assertion of Corollary 2.2 can be viewed as an averaging the-

orem: for most r and for all z the functions

2
∂2

∂x2
ln θ(i(Vx + Wεt + z); r), Wε = W (r) + εW1(r) + O(ε2),

approximate solutions of the perturbed KdV equation (2.1) for all t and x,
where the n-vector W1 is obtained by the averaging described above. Here
“for most r” means “for all r outside a set whose measure goes to zero with ε”.

Thus, the result proves a stronger version of the Whitham averaging princi-
ple for space-periodic solutions (classically the Whitham principle deals with
solutions which are bounded uniformly in space and locally in time, see in
[DN]).

2.2. Higher KdV equations.
Let us consider a perturbation of the l-th equation from the KdV-hierarchy:

u̇ =
∂

∂x
(∇uHl + ε∇uH1), (2.3)

where

Hl(u) = Kl

∫ 2π

0

(
u(l)2 + 〈higher-order terms with ≤ l − 1 derivatives〉

)
dx

and H1 =
∫ 2π

0
f(x, u, . . . , u(l−1)) dx. The function f is assumed to be Cd-

smooth in x, . . . u(l−1) and δ-analytic in u, . . . , u(l−1). Since

∇uH1 =
l−1∑

j=0

(−1)j ∂j

∂xj
f ′u(j)(x, . . . , u(l−1)),

then arguing as in Example I.1.1, we see that ∂
∂x∇uH1 is an analytic map of

order 2l − 1: it analytically maps Hd
0 to Hd−2l+1

0 if d ≥ l.

8with respect to the measure (2π)−ndq = (2π)−ndz.
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Let us take a bounded part T 2n of any n-gap manifold. It is invariant for
the l-th KdV-equation (equal to (2.3)ε=0) and it satisfies the assumptions i)-iv)
(see sections I.3.6 and I.6.3). The linearised equation has a complete system of
Floquet solutions (see section I.6.3). Due to (I.3.33) this system is nonresonant
(cf. section I.6.2.1).

Now Theorem 1.1 applies to equation (2.3) since the assumption 1) holds
with d1 = 2l +1, d1

1 = · · · = 0 (see (I.6.21)) and 2) holds with dH = d̃ = 2l +1.
We see that most of n-gap solutions of the l-th KdV equation persist in the

perturbed equation (2.3) with sufficiently small ε in the same sense as for the
KdV equation. For the persisted solutions obvious reformulations of Corollaries
2.2, 2.3 hold.

2.3 Time-quasiperiodic perturbations of Lax-integrable equations.

Slight modification of the Main Theorem’s proof implies that most of finite-
gap solutions of a Lax-integrable equation persist under a small perturbation
of the equation’s hamiltonian by a time-dependent functional, provided that
the functional is time-quasiperiodic and its frequency vector is “typical” in a
sense to be specified.

Below we restrict our presentation to the KdV equation, perturbed by a
time-quasiperiodic forcing:

u̇ =
1
4
uxxx +

3
2
uux + ε

∂

∂x
f(t% + ξ0, x) ,

u(t, x) ≡ u(t, x + 2π),
∫

u dx ≡ 0.
(2.4)

Here f(ξ, x) is an analytic function on the torus TM
ξ ×T1

x ∼ TM+1, % ∈ RM is a
frequency vector and ξ0 ∈ TM is a phase. The frequency vector is assumed to
be a parameter of the problem. It varies in a bounded domain R of a positive
measure:

% ∈ R b RM , mesMR > 0.

The equation (2.4) is Hamiltonian and its hamiltonian is

Hε(u, t) =
∫ (− 1

8u′2 + 1
4u3 + εf(t% + ξ0, x)u(x)

)
dx.

Let us take any bounded part T 2n of a finite-gap manifold T 2n
V as in section

2.1, i.e., T 2n = ∪{Tn(r) | r ∈ K}, where K = {0 ≤ rj ≤ K0}. Subdividing in a
need the cube K to smaller cubes and cutting out a narrow layer {r ∈ K | 0 <
rj < µ for some j}, 0 < µ ¿ 1, we may achieve that:9

9the subdividing and the cutting out both are unnecessary in the KdV case but they are
needed for more involved equations.
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i) the KdV equation, restricted to the manifold T 2n, admits there global
analytic action-angle coordinates (p, q), where p ∈ P b Rn and q ∈ Tn,

ii) the gradient-map p 7→ ∇h(p) defines a diffeomorphism∇h : P → P ′ ⊂ Rn

(here h is the KdV-hamiltonian, restricted to T 2n).
Applying Theorem I.7.2, we construct in the vicinity of the manifold T 2n

in a space Hd
0 (S1), d ≥ 3, analytic simplectic coordinates (p, q, y), where (p, q)

are as above and y ∈ Oδ(Yd). In these coordinates the hamiltonian Hε takes
the form

Hε = HKdV (p, q, y) + εh1(p, q, y, t% + ξ0),

where
HKdV = h(p) + 1

2 〈B(p)y, y〉+ h3(p, q, y)

and h1(p, q, y, ξ) is the functional u(·) → ∫
f(ξ, x)u(x) dx, written in the vari-

ables (p, q, y) and depending on the parameter ξ ∈ Tn. The equation (2.4)
takes the form

ṗ = −∇qHε, q̇ = ∇pHε, ẏ = J∇yHε. (2.5)

Now we extend the phase space P × Tn × Oδ(Yd) = {(p, q, y)} to the space
P ×Oδ(RM )×Tn ×TM ×Oδ(Yd) = {(p, I, q, ξ, y)}, given the symplectic form
dp ∧ dq + dI ∧ dξ + J̄dy ∧ dy, and replace the nonautonomous equations (2.5)
by the following autonomous system of higher dimension:

ṗ = −∇qH̃ε, İ = −∇ξH̃ε,

q̇ = ∇pH̃ε, ξ̇ = ∇IH̃ε,

ẏ = J∇yH̃ε.

(2.6)

Here H̃ε(p, I, q, ξ, y) = HKdV (p, q, y) + % · I + εh1(p, q, y, ξ) (we note that the
hamiltonian H̃ε is affine in the actions I). Certainly, the (p, q, y)-component of
any solution for (2.6) such that ξ(0) = ξ0 gives a solution for (2.5).

Next we perform the parameter-depending shift of the action p as at the
Step 3 from section 1.2:

p = p′ + a, q = q′, . . . , y = y′; a ∈ P.

Then

H̃ε = const + ω · p′ + % · I ′ + 1
2 〈B(a)y′, y′〉+ εh′1(p

′, . . . , y′; a) + h′3(p
′, . . . , y′; a),

where ω = ∇h(a) and h′3 = O(‖y′‖3 + |p′|2). Denoting ñ = n + M , P̃ =
P ×Oδ(RM ) and

(p′, I ′) = p̃ ∈ P̃ , (q′, ξ′) = q̃, y′ = ỹ, (ω, %) = ω̃,
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we write the hamiltonian as

H̃ε(p̃, q̃, ỹ; ω̃) = const + ω̃ · p̃ + 1
2 〈B(ω)ỹ, ỹ〉+ εh̃1 + h̃3

(we replaced the parameter a ∈ P by ω = ∇h(a) ∈ P ′ using that the gradient-
map is non-degenerate by the assumption ii) ). The function h̃3 is O(‖ỹ‖3d+|p̃|2)
and the functions h̃1, h̃3 both are I ′-independent.

Theorem 1.3 applies to the hamiltonian H̃ε(p̃, q̃, ỹ; ω̃), where the parameter
ω̃ belongs to the set P ′×R. Since the functions h̃1 and h̃3 are I ′-independent,
then for any m the functions H2m,H3m from a hamiltonian’s decomposition at
the m-th step of the KAM-procedure (see Step 1 in section 3.2 below) are I ′-
independent as well. Hence, the vectors hp̃, h1p̃, h0p̃ (see (3.16)) are such that
their last M components, corresponding to linear in I ′ terms, vanish. Therefore
the hamiltonians F at the Step 2 also are I ′-independent. Accordingly, the
canonical transformations Sm are identical in ξ′ and do not change linear in I ′

parts of the hamiltonians Hm: they remain equal to % · I ′ (see Step 1 of the
proof). Hence, the limiting map Λ∞ has the form Λ∞(ω, %) = (ωε(ω, %), %).

Let us fix any d ∈ N. Reformulating the theorem’s assertions in terms of the
original equation, we get the following result:

Theorem 2.2. For any ρ < 1, there exist a Borel subset Qε ⊂ K × R, a
Lipschitz map ωε : Qε → Rn, Cε-close to the map (r, %) 7→ W (r), and a
Lipschitz map Σε : Qε × Tn × TM → Hd

0 (S1), analytic in Tn × TM , such that:
a) mesn+M (K ×R \Qε) → 0 as ε → 0;
b) for any ξ ∈ Tm the map Qε × Tn → Hd

0 (S1), (r, %, z) 7→ Σε(r, %, z, ξ), is
ερ-close to the original ρ-independent map Φ0, also in the Lipschitz norm;

c) every curve ζε(t) = Σε(r, %, z + tωε(r, %), ξ0 + t%, ), where (r, %) ∈ Qε and
z ∈ Tn, is a solution of (2.4) with zero Lyapunov exponent.

The solutions ζε(t), constructed in the theorem, are quasiperiodic with n+M
frequencies. Their hulls are (n+M)-tori which lie in ερ-neighbourhoods of the
corresponding (“persisted”) n-gap tori Tn(r).

For most frequency vectors %, the set K% = {r ∈ K | (r, %) ∈ Qε) which
enumerates the persisted finite-gap tori Tn(r), approximates the whole set K
in measure. Indeed, denoting by µn and µM the normalised Lebesgue measures
on K and R respectively, we have (µn × µM )(Qε) = 1 − γ, where γ goes to 0
with ε. By the Fubini theorem,

∫

R
µn(K%) µM (d%) = 1− γ.

In particular, for any positive γ′, µM -measure of the set, formed by all frequen-
cies % ∈ R such that µn(K%) < 1− γ′, goes to zero with ε.
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2.4 Perturbed SG equation.
Now we consider a perturbed SG equation under the odd periodic boundary

conditions:

ü = uxx − sin u + εf ′u(u, x),

u(t, x) ≡ u(t, x + 2π) ≡ −u(t,−x). (2.7)

Similar to the SG equation, we write (2.7) as a system of two first order equa-
tions:

u̇ = −
√

Aw, ẇ =
√

A
(
u + A−1(sinu− u) + εf ′u(u, x)

)
. (2.8)

This system is Hamiltonian in the symplectic Hilbert spaces ({Z0
s}, β2), s ≥ 0,

where β2 = 〈J̄(du, dw), (du, dw)〉. The corresponding hamiltonian is Hε =
1
2‖(u, w)‖20 + εHε(u,w), where

Hε(u,w) =
∫ 2π

0

(Cos u(x)− εf(u, x))dx.

We remind that Cos u = − cos u+1− 1
2u2, that the space Z0

s ⊂ Hs+1(S;R2) is
given the Hs+1–scalar product and that J(u,w) = (−√Aw,

√
Au) (see sections

I.2.1 and I.4.3).
Concerning the function f we assume that:
(H1) f(u, x) is a smooth function, δ-analytic and even in u, even and 2π-

periodic in x.
If the equation is considered in a space Zo

s with small s ≥ 0, then these
assumptions may be relaxed. For example, if s = 0 or 1, then the following
assumption suffice:

(H2) f(u, x) is a Cs+1-smooth function, δ-analytic in x and vanishing for
u = 0, π identically in x.

Due to the same calculations as in section I.2.1, ∇Hε(u,w) = (A−1(sin u−
u− εf ′u(u, x), 0). Denoting g(u, x) = sin u− u− εf ′u(u, x), we write J∇Hε as

J∇Hε(u, w) = (0, A−1/2g(u, x)). (2.9)

Let us assume that (H1) holds. Then the map u(x) → g(u(x), x) gives rise to
a zero order analytic morphism of the Sobolev scale H l(S) for l ≥ 1 (see in
section I.1.2). Therefore for any s ≥ 0 the r.h.s. of (2.9) defines an analytic
map Zo

s −→ Hs+2(S;R2).
Due to (H1), the function g(u(x), x) is odd periodic. Hence, range of the map

(2.9) is contained in the space Zo
s+1 and J∇Hε defines an analytic morphism

of the scale {Zo
s} of order −1 for s ≥ 0.

If s = 0 or 1 and (H2) holds, then we argue differently and view the perturbed
SG equation (2.7) as an equation under Dirichlet boundary conditions

u(t, 0) = u(t, π) = 0 (D)
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(cf. the end of section I.1.2). Accordingly, we treat (2.8) as a Hamiltonian
system in the symplectic space {Zs, β2} where for s = 1, 2 the space Zs is

Zs = {ξ ∈ Hs+1([0, π];R2] | ξ(0) = ξ(π) = 0},

and for any integer s the space Zs is formed by restrictions to [0, π] of vector-
functions from Zo

s .
Now (2.9) defines an analytic map Zs −→ Hs+2([0, π];R2). If (u,w) ∈ Zs

with s = 0 or 1, then the function g(u(x), x) belongs to Hs+1[0, π] and vanishes
at x = 0 and x = π (as well as u(x)). Hence, (0, g) ∈ Zs and the vector-function
A−1/2(0, g) = (0, A−1/2g) belongs to Zs+1. Therefore, range of the map (2.9)
is contained in Zs+1 and J∇Hε defines an analytic morphism of the scale {Zs}
of order one for 0 ≤ s ≤ 1.

For any n let us take the finite-gap manifold T 2n = Φ0(R×Tn) as in section
I.4.3. It is filled with odd periodic finite-gap solutions (I.4.17), where branching
points E1, . . . , E4n of the corresponding Riemann surfaces Γ satisfy relations
(I.4.13)–(I.4.15), (I.4.18) and (I.4.21). We remind that the restrictions (I.4.14),
(I.4.18) and (I.4.21) are imposed to guarantee that the solution (I.4.17) is real
odd periodic, and that the assumption (I.4.15) is non-restrictive since there C is
arbitrary number. In the same time, the assumption (I.4.13) is superficial, see
the Remark in section I.4.2 and discussion which follows Theorem 2.4 below.

The finite-gap manifold T 2n satisfies the assumptions i)-v) and the linearised
SG equation has a complete nonresonant system of Floquet solutions, con-
structed in section I.6.4. Since ν(Pj) = j∗+O(j−1) = j+O(j−1) (see (I.6.29′)),
then the Main Theorem and its Application apply with d1 = 1, d1

1 = · · · = 0
and d̃ = −1. Denoting by µn any finite measure on the n-dimensional real
algebraic set R which is absolutely continuous with respect to the Hausdorff
measure mesHn , we get:

Theorem 2.3. Let us fix any ρ′ < 1 and assume that the function f(u, x)
satisfies (H1), or (H2) if s = 0 or 1. Then there exists a Borel subset Rε ⊂ R
such that µn(R \ Rε) → 0 as ε → 0 and for any r ∈ Rε the finite-gap torus
Tn(r) = Φ0({r} × Tn) ⊂ Zo

s persists as an analytic invariant n-torus of the
equation (2.8) in Zo

s (or in Zs if s = 0 or 1). The persisted torus is filled with
time-quasiperiodic solutions of equation (2.8) and is o(ερ′)- close to Tn(r).

In difference with the KdV-case, some of the persisted time-quasiperiodic
solutions are not linearly stable (as well as the corresponding unperturbed
finite-gap solutions).

Similar results with the same proof hold for even periodic finite-gap solutions
and for finite-gap solutions with an odd number g of open gaps (see [BiK1]).

If (u,w) is an odd periodic solution (I.4.17) which violates (I.4.13), then it
belongs to some finite-gap manifold as in the Remark in section I.4.2. So if
this solution lies in the same connected component of this manifold as the zero
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solution, then the Main Theorem applies to prove that most of odd periodic
finite-gap solutions (I.4.17), close to (u,w), persist in the perturbed equation
(2.8).

Remark. If the SG equation was considered under periodic boundary conditions
(rather than under odd periodic), then its g-gap x-periodic solutions (I.4.17)
would form 2g-dimensional manifolds T 2g with singularities and in the vicinity
of T 2n the SG equation can be put to the normal form as in the Theorem I.7.3
(in the section I.7.3 we briefly indicated corresponding arguments, taking for
granted that the system of Floquet solutions is nonresonant). The perturbed
equation (2.7) has the form (1.4) and meets assumptions of the Main Theorem
with one exception: the exponents νj(r) are now asymptotically double and
go in pairs νj±, where both exponents νj+ and νj− for j → ∞ have the same
asymptotic expansion as in item 1) of the theorem. Accordingly, to prove
persistence most of x-periodic finite-gap solutions of the SG equation one needs
a version of the Main Theorem which applies to equations with asymptotically
double Floquet exponents. To get it one needs a corresponding version of
Theorem 1.3 for perturbations of linear equations with asymptotically double
frequencies νj . Recently this result was proven by Chercia and You [ChY] (see
in section 1.5). Using it one can repeat our arguments to get KAM-persistence
most of x-periodic finite-gap solutions.

2.5 KAM-persistence of lower-dimensional invariant tori of nonlinear
finite-dimensional systems.

Let R2N be an Euclidean space, given the usual symplectic structure, let
T 2N =

⋃
r∈R Tn

r be an analytic submanifold of R2N , diffeomorphic to R× Tn,
R b Rn, and H1, . . . , Hn be commuting hamiltonians, as in Proposition I.5.2
(so they are defined and analytic in the vicinity of T 2n and each torus Tn

r is
invariant for every hamiltonian vector field VHj ).

Let us take any hamiltonian – say, H1. Then the vector field VH1 |T 2n

has the form
∑

ωl(r)∂/∂zl and by Proposition I.5.2 linearised equations have
Floquet solutions with analytic frequencies νj(r).

Applying Theorem 1.1 we get that:

Theorem 2.4. Let us assume that the following analytic functions do not
vanish identically:

l · ν(r) + s · ω(r), l ∈ ZN−n, 1 ≤ |l| ≤ 2; s ∈ Zn. (2.10)

Let h be an analytic function, defined in the vicinity of T 2n. Then most of
the tori Tn

r persist as invariant n-tori of the perturbed Hamiltonian vector field
VH1+εh, 0 < ε ¿ 1, in the sense, specified in Theorem 1.1. The persisted tori
are filled with quasiperiodic solutions with zero Lyapunov exponents.

This reduction of the Main Theorem is a much easier result than the theorem
itself. Its claim remains essentially true under weaker assumptions: it suffice
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to check that only functions (2.10) with |l| = 1 do not vanish identically, see
[Bour1] (we note that under this weaker assumption the claim about Lyapunov
exponents is not true).
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3. Proof of Theorem 1.3 on parameter-depending equations

As in section I.7.1 we restrict ourselves to the case when all frequencies νj(ω)
are real, i.e.,

j1 = n + 1,

since the general case differs from this one in more cumbersome notations
only. We shall prove the theorem after some elementary transformations of the
problem which we perform in the next section. The proof is rather technical
and a reader who is not used to the KAM-techniques is advised to read first the
Addendum where the classical Kolmogorov theorem is proven using the same
ideas which we exploit below in a more involved situation.

3.1 Preliminary reductions.
The proof becomes more complicated when either the frequencies νj(ω) have

linear growth with j (i.e., in (1.10) d1 = 1), or the perturbations H1 and h3

define hamiltonian vector fields J∇H1 and J∇h3 of positive order d̃ > 0.
Since d̃ < d1 − 1, then these two complications cannot happen simultaneously.
Equations with d̃ ≤ 0 were considered in [K, P2] and results of these works
imply Theorem 1.3 for d1 = 1. Thus, it remains to prove the theorem for
d1 > 1. In this case it is convenient to replace the assumption 1) of the
theorem by the weaker assumption:

1′) The real functions νj(ω) are Lipschitz in ω and odd in j, positive for
positive j. For all j, k they satisfy the following inequalities:





K−1
1 jd1 −K0 ≤ νj(ω) ≤ K1j

d1 ∀ω,

|νj(ω)− νk(ω)| ≥ K−1
1 |jd1 − kd1 | ∀ω,

Lip νj ≤ K1 jd̃.

(3.1)

Before to prove the theorem we shall have made some trivial reductions.
Since j1 = n + 1, then the operator J is diagonal in the complex basis {ψj}.
Therefore the operator B(ω) is diagonal in the complex basis {ψj = (ϕ|j| −
i sgn j ϕ−|j|)/

√
2} | j ∈ Zn}, as well as in the real basis {ϕj}, which is a sym-

plectic basis for the form α2. Let us consider the linear operator M which for
every j sends the vector ϕj to (νJ

j )1/2ϕj . This operator defines an isomorphism
of the scale {Ys} of order dJ/2 since J defines an isomorphism of order dJ . As
α2 = J du ∧ du, then M∗α2 = (M∗JM) du ∧ du, where

M∗JMϕ±j = ±ϕ∓j , j ≥ n + 1.

That is, {ϕj} is a Darboux basis for the form M∗α2. The equations (1.9)
transformed by the map id×M are Hamiltonian with respect to a symplectic
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structure defined by the form dp∧ dq⊕M∗α2. The corresponding hamiltonian
is

Hε ◦M = ω · p + 1
2 〈B̃(ω)y, y〉+ εH1 ◦ L + h3 ◦ L,

where B̃(ω) = M∗B(ω)M . So

B̃(ω)ϕj = |νj(ω)|ϕj , B̃(ω)ψj = |νj(ω)|ψj ∀ j ∈ Zn. (3.2)

Clearly the new hamiltonian and the new symplectic form satisfy the as-
sumptions 1)-3) of Theorem 1.3 with dJ = 0. Thus, it remains to prove the
theorem with dJ = 0 and νJ

j =sgn j. The operator B(ω) is diagonal in the
bases {ϕj} and {ψj}. Corresponding eigenvalues are {|νj(ω)|}.

Finally we note that it suffice to prove the theorem for equation (1.9) with
h3 = 0. Indeed, if we stretch the variables:

p = ε2/3p̃, q = q̃, y = ε1/3ỹ,

then in the tilde-variables we get a Hamiltonian equation with the hamiltonian

H̃ε = ω · p̃ + 1
2 〈B(ω)ỹ, ỹ〉+ ε1/3H1 + ε−2/3h3.

Denoting H̃1(p̃, q̃, ỹ; ω) = (ε1/3H1+ε−2/3h3)(ε2/3p̃, q̃, ε1/3ỹ;ω) and using (1.11)
we see that both H̃1 and its gradient are ε1/3-small. Thus, a version of Theo-
rem 1.3 for perturbations with h3 = 0 implies the general theorem for ε replaced
by ε1/3 (i.e., it proves the general theorem for any ρ < 1

9 ). Similarly with the
Amplification.

Below in section 3.2 we prove the theorem and the Amplification for h3 = 0.
As we have explained, these results imply the assertions we claim in section 1.3
with a worse exponent ρ. To get the right exponent one should repeat the proof
given below for equations with a non-zero h3. All arguments and estimates
remain quite similar but become longer. See [K] where we did this job for
equations with d̃ ≤ 0.

3.2 Proof of the theorem.
Here we prove Theorem 1.3 for dJ = 0 and h3 = 0, i.e., for a hamiltonian

Hε of the form:

Hε = ω · p + 1
2 〈B(ω)y, y〉+ εH(p, q, y;ω)

(we re-denoted H1 as H). The corresponding equations are:




ṗ = −ε∇q H(h; ω),
q̇ = ω + ε∇p H(h; ω),
ẏ = J(B(ω)y + ε∇y H(h;ω)),

(3.3)
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where (p, q, y) ∈ Qδ, see (1.8). Below we abbreviate (p, q, y) to h.

We shall use systematically notations for Lipschitz maps, described in the
section Notations. In particular, if B1, B2 are complex Banach spaces, O1 is a
domain in B1 and f maps O1 × Ω to B2, we write

‖f‖O1,Ω
B2

= max
(
sup
b,ω

‖f(b, ω)‖, sup
b

Lip f(b, ·)),

where Lip f(b, ·) stands for a Lipschitz constant of the corresponding map from
Ω to B2. So our assumptions concerning the function H(h; ω) = H1 (see (1.11))
mean that

|H|Qc,Ω + ‖∇yH‖Qc,Ω

d−d̃
≤ 1 (3.4)

(we abbreviate ‖ · ‖···C to | · |··· and ‖ · ‖···Zc
s

to ‖ · ‖···s ).

We shall need some additional notations:

Notations. We introduce an increasing sequence {e(j)}, where e(0) = 0
and for m ≥ 1

e(m) = (1−2 + . . . + m−2)/K∗, K∗ = 2(1−2 + 2−2 + . . . )

(thus e(m) < 1/2 for all m) and introduce two decreasing sequences, {εm} and
{δm}:

εm = ε(1+ρ)m

, δm = δ0 (1− e(m)).

For δ > 0, by U(δ) we denote the complex δ-neighbourhood of the n-torus:

U(δ) = {q ∈ Cn/2πZn | |Im q| < δ},

and denote by Um,m = 0, 1, . . . , the complex domains Um = U(δm). We also
consider complex neighbourhoods Om of the torus Tn

0 = {0}×Tn×{0} in Yc
d,

where
Om = O

ε
2/3
m

(Cn)× Um ×O
ε
1/3
m

(Y c
d ) ⊂ Yc.

Besides, we define the intermediate numbers

δj
m =

6− j

6
δm +

j

6
δm+1 = δm − j/(6K∗(m + 1)2), 0 ≤ j ≤ 5 ,

and the intermediate domains

Oj
m = O(2−jεm)2/3(Cn)× U(δj

m)×O(2−jεm)1/3(Y c
d ), U j

m = U(δj
m).

If ε̄ ¿ 1 (i.e., ε̄ is sufficiently small), then

Om ⊃ O1
m ⊃ . . . ⊃ O5

m ⊃ Om+1 ⊃ . . . ⊃ Tn
0 .
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A few times in proofs of auxiliary results we use domains Oj
m with half-integer

indexes j.

By C, C1 etc. we denote different positive constants independent from ε
and m; by C(m), C1(m) etc. – different functions of m of the form C(m) =
C1m

C2 ; by Ce(m), Ce
1(m) etc. – functions of the form exp C(m), exp C1(m).

By C∗, C∗(m), Ce
∗(m) etc. we denote fixed constants and functions. The

constants C, C1, . . . and the functions C(m), Ce(m) may depend on γ.

We observe that for each Ce(m) and each σ < 0 the estimate Ce(m) < εσ
m

holds for all m provided that ε̄ ¿ 1. We profit from the assumption that ε < ε̄
with sufficiently small ε̄ > 0 and use inequalities like

Ce(m)ερ
m < 1

without extra remark.

The KAM-procedure. Theorem 1.3 will be proven by the KAM-procedu-
re. That is, for m = 0, 1, . . . we shall define a subset Ωm ⊂ Ω, an analytic
function Hm on the domain Om as above and a symplectic transformation
Sm : Om+1 −→ Om. For m = 0 we choose Ω0 = Ω and H0 = Hε. For
every m ≥ 0, Sm transforms Hm to Hm+1, i.e., Hm ◦ Sm = Hm+1. We shall
show that the system VHm on Om ∩ Yd is integrable modulo a term O(ερ

m).
So the transformation S0 ◦ . . . ◦ Sm−1 with a big m “almost integrates” the
initial equations (3.3). Finally, we shall see that the limiting transformation
S0 ◦ S1 ◦ . . . is well-defined and integrates the equations.

We start with inductive constructing the transformation Sm and the hamil-
tonian Hm+1 and finish with investigating the limiting transformation S0 ◦S1 ◦
. . . .

Hamiltonians Hm. On a domain Om we consider a hamiltonian Hm(h;ω)
of the form

Hm = H0m(p, y;ω) + εmHm(h;ω), (3.5)

where
H0m = p · Λm(ω) + 1

2 〈Bm(q; ω)y, y〉, (3.6)

and ω ∈ Ωm, where Ωm is a Borel subset of Ω such that

mes(Ω \Ωm) ≤ γe(m). (3.7)

The map ω 7−→ Λm is Lipschitz and

|Λm(ω)− ω|Ωm,Lip ≤ Cε1/3e(m). (3.8)

The operator Bm is selfadjoint and is diagonal in the basis ϕ±j :

Bmϕ±j = (ν(m)
j (ω) + β

(m)
j (q;ω)) ϕ±j ∀j ∈ Nn,
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(in particular, Bm commutes with B). Here ν
(m)
j are real functions, close to

the original frequencies νj :

|ν(m)
j − νj |Ωm,Lip ≤ jd̃Cερe(m). (3.9)

The functions β
(m)
j are real for real q and analytically in q extend to Um. They

are Lipschitz in ω ∈ Ωm and satisfy the estimates:∫
β

(m)
j dq = 0, |β(m)

j |Um,Ωm ≤ jd̃ Cερe(m).

In particular, |∇qβ
(m)
j |U1

m,Ωm ≤ jd̃C(m)ερ (the Cauchy estimate) and

‖∇qBm‖U1
m,Ωm

d,dc
≤ C(m)ερ, dc := d− d̃. (3.10)

For −j ∈ −Nn we set ν
(m)
−j = −ν

(m)
j , β

(m)
−j = −β

(m)
j . Then

JBmψj = i(ν(m)
j (ω) + β

(m)
j (q; ω))ψj ∀j ∈ Zn.

The functional Hm is assumed to be analytic in Om and to meet the following
estimates:

|Hm|Om,Ωm ≤ 2m (3.11)

‖∇yHm‖Om,Ωm

dc
≤ ε−1/3

m 2m, dc = d− d̃. (3.12)

Hamiltonian equations with the hamiltonian Hm have the form

ṗ = − 1
2 〈∇qBm(q; ω)y, y〉 − εm∇qHm, q̇ = Λm(ω) + εm∇pHm, (3.13)

ẏ = JBm(q; ω)y + εmJ∇yHm. (3.14)

Clearly the initial hamiltonian Hε has the form H0. (One should chose
Λ0(ω) = ω, Bm = A, H0 = H and Ωm = Ω. The assumptions (3.7)–(3.10)
with m = 0 become empty, while (3.11), (3.12) follow from (3.4).)

Transformations Sm. Our goal is to find for every m an analytic symplec-
tomorphism Sm : Om+1 −→ Om which transforms the hamiltonian Hm to a
hamiltonian Hm+1 = Hm ◦ Sm, where the latter has the form (3.5) with m re-
placed by m+1. The transformation Sm is constructed in four steps which are
essentially identical to those in [K]. The only difference comes during “averag-
ing” when we extract from the perturbation the whole diagonal of Hess εmHm

and add it to the integrable part H0m — not only the diagonal’s averaging in
q as in [K].10 Because of this, the operators Bm depend on q (their analogies in
[K] are q-independent). Accordingly, homological equations written in terms of
these operators become more involved. Their resolution is based on a theorem
on first-order linear differential equations with variable coefficients, proved in
section 5.

We remind that everywhere below ε < ε̄, where ε̄ is sufficiently small.

10We are forced to do so since if d̃ > 0 (and the perturbing vector field is unbounded),
then to kill the diagonal part of Hess εmHm the transformation Sm must be unbounded.
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Step 1: Averaging and splitting the perturbation.

Isolating affine in (p, q) and quadratic in y parts of the hamiltonian Hm, we
rewrite it as

Hm = hq(q; ω)+p·h1p(q; ω)+〈y, hy(q; ω)〉+〈hyy(q; ω)y, y〉+H3m(h;ω), (3.15)

where h = (p, q, y) and H3m = O(|p|2 + ‖y‖3d + |p| ‖y‖d). Next we change hq

(and so Hm) by an ω-dependent constant to achieve (2π)−n
∫

hqdq = 0 (this
change is irrelevant since it does not affect the Hamiltonian equations). We
denote by h0p averaging of the vector-function h1p:

h0p = (2π)−n

∫
h1pdq,

and set
hp = h1p − h0p, Λm+1 = Λm + εmh0p(ω). (3.16)

Now we rewrite Hm = H0m + εmHm as

Hm = H ′
0 m+1(p, y;ω) + εm(H2m + H3m) (h; ω),

where
H ′

0 m+1 = p · Λm+1 + 1
2 〈Bmy, y〉

and the function H2m equals to

H2m = hq + p · hp + 〈y, hy〉+ 〈hyyy, y〉.

Lemma 3.1. The terms of the decomposition (3.15) estimate as follows:

a)
|hq|Um,Ωm ≤ 2m,

|h1p|Um,Ωm ≤ 2mε−2/3
m ,

|hp|Um,Ωm ≤ 2m+1ε−2/3
m ,

‖hy‖Um,Ωm

dc
≤ 2mε−1/3

m ,

‖hyy‖Um,Ωm

d,dc
≤ 2mε−2/3

m .

Besides, the operator hyy is symmetric and is real for real q.
b) In the domain Om+1 ⊂ Om the term εmH3m is smaller than the ad-

missible disparity of the next step (cf. (3.11), (3.12)):

εm|H3m|Om+1,Ωm ≤ 2
3 2m+1εm+1,

εm‖∇yH3m‖Om+1,Ωm

dc
≤ 2

3 2m+1ε
2/3
m+1.

c) The functions H2m,H3m are analytic in h ∈ Om and are real for real
arguments.
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Proof. a) The estimate for hq results from (3.11) since hq(q; ω) = Hm(0, q, 0; ω).
To prove the estimate for h1p we observe that h1p(q;ω) = ∇pHm(0, q, 0; ω),

so the estimate follows by application the Cauchy estimate to the map p 7→
Hm(p, q, 0;ω) at p = 0. To bound the Lipschitz constant in ω we consider the
map p 7→ Hm(p, q, 0; ω1)−Hm(p, q, 0; ω2) and argue as above.

The estimate for hp obviously follows from the previous ones.
The estimate for hy results from (3.12) with y = 0.
The estimate for the operator hyy follows by applying Cauchy estimate to

the map ∇yHm : y 7→ ∇yHm(q, 0, y;ω) since hyy = 1
2

(∇yHm(0, q, 0; ω)
)
∗. This

operator is symmetric and real (for real q) as a Hessian of a real function.
b) Let h = (p, q, y) ∈ Om+1 and ν = ε

ρ/3
m . Then

(
(z/ν)2p, q, (z/ν)y

) ∈ Om

for z from the unit disc in the complex plain. Let us consider the function
z 7→ Hm

(
(z/ν)2p, q, (z/ν)y; ω

)
and its Taylor series at zero:

Hm

(
(
z

ν
)2p, q, (

z

ν
)y; ω

)
= h0 + h1z + h2z

2 + · · · .

By (3.11) and the Cauchy inequality, |hk| ≤ 2m for all k. Since H3m(h;ω) =
h3ν

3 + h4ν
4 + · · · , then we have:

εm|H3m(h; ω)| = εm|h3ν
3 + h4ν

4 + · · · | ≤ 2mε1+ρ
m

1− ν
≤ 2

3
2m+1εm+1 ,

if ε̄ is sufficiently small. In a similar way one estimates the Lipschitz constant
of H3m.

To estimate ∇yH3m we consider the map

z → ∇yHm

(
(
z

ν
)2p, q, (

z

ν
)y; ω

)
= h′0 + h′1z + · · · ∈ Y c

dc
.

By (3.12), ‖h′k‖dc ≤ ε
−1/3
m 2m for all k. So

εm‖∇yH3m(h; ω)‖dc =εm‖h′2ν2 + h′3ν
3 + · · · ‖dc

≤ ν2

1− ν
ε2/3

m 2m ≤ 2
3

ε
2/3
m+12

m+1 .

A similar estimate holds for the Lipschitz constant, so the assertion b) is proved.
c) The analyticity of the functions is evident. Their real-valuedness for real

arguments results from the real-valuedness of the hamiltonian Hm. ¤

By the second estimate in item a) of the lemma, |h0p|Ωm,Lip ≤ 2mε
−2/3
m .

Therefore,
|Λm − Λm+1|Ωm,Lip ≤ 2mε1/3

m .

So the vector Λm+1 satisfies (3.8) with m := m + 1.
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Step 2: Formal construction of the transformation Sm and derivation
of homological equations.

We construct the transformation Sm as the time-one shift along trajectories
of an auxiliary Hamiltonian vector field

ṗ = −εm∇qF, q̇ = εm∇pF, ẏ = εmJ∇yF, (3.17)

where the hamiltonian F has the same structure as H2m:

F = fq(q; ω) + p · fp(q;ω) + 〈y, fy(q; ω)〉+ 〈fyy(q;ω)y, y〉.

The flow {St} of Hamiltonian equations (3.17) is formed by canonical trans-
formations (see Theorem I.1.7), and we set Sm := St|t=1. Then formally

Hm(Sm(h; ω); ω) = Hm(h;ω) + εm{F,Hm}+ O (ε2
m),

where {·, ·} is the Poisson bracket (see Theorem I.1.4 and formula (I.1.23)).
Taking into account assertion b) of Lemma 3.1, we get that in Om+1 the com-
position Hm ◦ Sm can be written as

Hm ◦ Sm = H ′
0 m+1 + εm

(
H2m +∇pF · ∇qH

′
0 m+1 −∇qF · ∇pH

′
0 m+1+

+〈J∇yF,∇yH ′
0 m+1〉

)
+ O (εm+1).

We observe that

∇pH
′
0 m+1 = Λm+1, ∇qH

′
0 m+1 = 1

2 〈∇qBm y, y〉, ∇yH ′
0 m+1 = Bm y

and abbreviate

Λm+1 = ω′, ω′ · ∇q =
∂

∂ω′
, Bm = B.

Now we rewrite Hm ◦ Sm as

Hm ◦ Sm = H ′
0 m+1

+ εm

[
1
2 〈(fp · ∇qB)y, y〉 − ∂fq/∂ω′ − p · ∂fp/∂ω′

− 〈y, ∂fy/∂ω′〉 − 〈y, (∂fyy/∂ω′)y〉+ 〈By, Jfy〉+ 2〈By, Jfyyy〉

+ hq + p · hp + 〈y, hy〉+ 〈y, hyyy〉
]

+ O (εm+1). (3.18)

(The term in the square brackets equals H2m + {F, H0 m+1}).
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We wish to find the function F in such a way that contents of the square
brackets in the r.h.s. of (3.18) vanishes up to an admissible disparity we define
below. For this end fq, fp, fy and fyy should satisfy the homological equations:

∂fq/∂ω′ = hq(q; ω), ∂fp/∂ω′ = hp(q; ω), (3.19)

∂fy/∂ω′ −BJfy = hy, (3.20)

∂fyy/∂ω′ + fyyJB −BJfyy = hyy + 1
2 fp · ∇qB =: h1yy

(the disparity will be introduced later). We define the functions aj as

aj(q; ω) = 1
2 〈h1yyϕ+

j , ϕ+
j 〉+ 1

2 〈h1yyϕ−j , ϕ−j 〉, ∀j ∈ Nn,

and define the operator Am as

Am(q; ω) = diag {an+1, an+1, an+2, an+2, . . . }

(i.e., Amϕ±j = ajϕ
±
j for each j). Finally we set

h0yy(q; ω) = h1yy(q; ω)−Am(q; ω).

We note that both operators h0yy and h1yy depend on a solution fp of the
second equation in (3.19).

We observe that JB = BJ and rewrite the last homological equation for
fyy with h1yy replaced by h0yy (i.e., introducing a disparity):

∂fyy/∂ω′ + [fyy, JB] = h0yy. (3.21)

If fq, . . . , fyy solve the equations (3.19) – (3.21) then the contents of the
square brackets in (3.18) equals 〈Amy, y〉 and

{F,H ′
0 m+1} = −H2m + 〈Amy, y〉. (3.22)

Step 3: Solving the homological equations.

The following result is classical for the KAM-theory. For a proof see Lem-
mas A1, A2 in Appendix 2 below.
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Lemma 3.2. Let us define the set Ω1 as

Ω1 = {ω ∈ Ωm | |ω′ · s| ≤ C−1(m + 1)−2|s|−n for some s = s(ω) ∈ Zn\{0}}.

Then mesΩ1 ≤ γ(m + 1)−2/3K∗ 11 if C is chosen sufficiently large. For
ω ∈ Ωm\Ω1 equations (3.19) have analytic solutions, real for real arguments
and such that

|fq|U1
m,Ωm\Ω1 ≤ C(m), |fp|U1

m,Ωm\Ω1 ≤ ε−2/3
m C(m).

Using the estimate for the solution fp as well as Lemma 3.1 a) and (3.10),
we get that

‖h1yy‖U1
m,Ωm\Ω1

d,dc
≤ C(m) ε−2/3

m .

Hence,
|aj |U

1
m,Ωm\Ω1 ≤ jd̃C(m) ε−2/3

m ∀ j ≥ n + 1

and we arrive at the following

Corollary. The operator h0yy satisfies the estimate

‖h0yy‖U1
m,Ωm\Ω1

d,dc
≤ C1(m) ε−2/3

m .

Equations (3.20), (3.21) are more complicated than (3.19). We start with
more difficult equation (3.21).

Lemma 3.3. There exists a Borel subset Ω2 ⊂ Ωm such that mesΩ2 ≤ γ(m+
1)−2/(3K∗) and

|ω′ · s + ν
(m+1)
j − ν

(m+1)
k

∣∣∣∣ ≥
|jd1 − kd1 |

C∗∗(m) 〈s〉c1

for all ω ∈ Ω \ (Ω2 ∪ Ω1), all j, k ∈ Zn and all s ∈ Zn, with some constant
C∗∗(m) and some exponent c1 > 0. Here and below for j ∈ Z we write jd1 =
sgn j |j|d1 .

The proof follows [K] and will be given in section 3.3.

We recall that the operator JB = JBm(q; ω) is diagonal in the complex
basis {ψj | j ∈ Zn} and has the eigenvalues iν̃j , where

ν̃j(q; ω) = ν
(m)
j (ω) + β

(m)
j (q; ω).

11the constant K∗ is defined at the beginning of section 3.2.
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Let us denote by {fkj(q; ω) | k, j ∈ Zn} and {hkj(q;ω) | k, j ∈ Zn} Hilbert
matrices of the operators fyy and h0yy with respect to the complex basis {ψj}
of the space Y c. Then fkj = 〈fyyψj , ψ−k〉 (see Appendix I.2) and the operator
[fyy, JB] has a Hilbert matrix with the entries

〈(fyyJB − JBfyy)ψj ,ψ−k〉 = 〈(fyyJBψj , ψ−k〉+ 〈fyyψj , BJψ−k〉 =

iν̃j〈fyyψj , ψ−k〉+ iν̃−k〈fyyψj , ψ−k〉 = i(ν̃j − ν̃k)fkj .

Hence, in terms of the matrix elements fkj the equation (3.21) reeds as

∂

∂ω′
fkj(q; ω) + i(ν̃j − ν̃k)(q; ω)fkj = hkj(q; ω) (3.23)

for every k, j ∈ Zn. Due to the definition of the operator h0yy, its diagonal
part vanishes:

hkk(q; ω) ≡ 0 ∀k.

Besides, the matrix of the operator h0yy as a map Y c
d → Y c

dc
is

{|k|dchkj |j|−d | k, j ∈ Zn},
provided that the spaces Y c

d and Y c
dc

are given the complex Hilbert bases
{|j|−dψj} and {|j|−dcψj} respectively (see (A3) in section I.1). Using the
Corollary from Lemma 3.2, we get an estimate for the r.h.s. of (3.23):

|hkj |U
1
m,Ωm\Ω1 ≤ C(m) ε−2/3

m |j|d|k|−dc .

Let us observe that

ν̃j − ν̃k = (ν(m+1)
j − ν

(m+1)
k ) (ω) + (β(m+1)

j − β
(m+1)
k ) (q;ω)

is the sum of a constant which is ≥ max(|j|, |k|)d1−1/C (due to (3.1)) and a
q-dependent function of order

ε max(|j|, |k|)d̃.

Since d̃ can be positive, then (3.23) is a perturbation of a constant-coefficient
equation by a variable-coefficient term which can be arbitrary large. Still since
d̃ < d1 − 1, then the “very large” constant-coefficient part of (3.23) suppresses
the “large” variable coefficient one: Theorem 5.1 we prove below in section 5
implies12 that for ω ∈ Ωm \ (Ω1 ∪ Ω2) equation (3.23) has a unique analytic
solution fkj and

|fkj |U
2
m ≤ Ce(m)

|hkj |U1
m

|jd1 − kd1 | .

12applying the theorem one should choose n1 = c1, n2 = n, K1 = C(m)/|jd1−kd1 |, K2 =
Cm2 and ∆ = Cm−2.

171



The operator fyy : Y c
d −→ Y c

d has a Hilbert matrix F with the entries
Fkj = |k|dfkj |j|−d. Using the estimate for hkj , we get that

|Fkj(q)| ≤ C ′e(m)ε−2/3
m |k|d̃/ |jd1 − kd1 | , k 6= j,

for each q ∈ U2
m. Since Fkk ≡ 0 and d1 > d̃ + 1, then

∑

k

|Fkj | ≤ ε−2/3
m Ce

1(m)




−1∫

−∞
+

j∫

1

+

∞∫

j+1


 |x|d̃dx

|jd1 − xd1 | ≤

≤ ε−2/3
m Ce

2(m) |j|d̃+1−d1 log |j| ≤ Ce(m) ε−2/3
m .

Similar estimate holds for `1-norms of rows of the matrix F. Therefore a norm
of the operator fyy(q) : Yd −→ Yd with any q in U2

m is bounded by Ce(m)ε−2/3
m

by the Schur criterion.

So the norm of fyy(q), q ∈ U2
m, is estimated. To estimate the Lipschitz

constant, we consider an increment fyy
∆ of the operator fyy, fyy

∆ = fyy(q;ω1)−
fyy(q; ω2). It satisfies the equation

∂fyy
∆ / ∂ω′+[fyy

∆ , JB] = h0yy
∆ −∇qf

yy(q;ω2)·(ω1−ω2)−[f(q;ω2), JB∆] =: Hyy
∆ ,

where h0yy
∆ and B∆ stand for increments of h0yy and B. We see that for q ∈ U3

m,

‖Hyy
∆ (q; ω)‖d,dc ≤ Ce

1(m)ε−2/3
m |ω1 − ω2|.

So the given above arguments estimate Lipschitz constant in ω for fyy when
q ∈ U4

m. We can use intermediate domains like U
3/2
m to get a similar estimate

for q in U2
m:

Lemma 3.4. If ω ∈ Ωm \ (Ω1 ∪ Ω2), then equation (3.21) has an analytic
solution fyy which is a symmetric in Y c operator, real for real q and such that

‖fyy‖U2
m,Ωm\(Ω1∪Ω2)

d,d ≤ Ce(m) ε−2/3
m . (3.24)

Quite similar (but simpler) arguments show solvability of equation (3.20):

Lemma 3.5. There exists a Borel subset Ω3 ⊂ Ωm, mesΩ3 ≤ γ(m + 1)−2/
3K∗, such that for ω ∈ Ωm \ (Ω1 ∪ Ω3) the equation (3.20) has an analytic
solution fy(q; ω), real for real q, and such that

‖fy‖U2
m,Ωm \ (Ω1∪Ω3)

d ≤ Ce(m) ε−2/3
m .

Now we define the set Ωm+1 as

Ωm+1 = Ωm \ (Ω1 ∪ Ω2 ∪ Ω3). (3.25)

Due to the estimates for measures of the sets Ω1, Ω2, Ω3, obtained in Lem-
mas 3.2, 3.3 and 3.6 we have:

mes (Ω\Ωm+1) ≤ mes (Ω\Ωm) + γ(m + 1)−2/K∗ ≤ γ e(m + 1).

So the set Ωm+1 satisfies (3.7) with m := m + 1.
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Step 4: Study of the transformation Sm.

To carry out arguments of this step and of the next one, we shall use the
symplectic Hilbert scale ({Zs = R2n×Ys}, dp∧dq⊕α2) and its complexification.
The scalar product in Z0 is denoted 〈·, ·〉. The spaces Zd and Zc

d are covering
spaces for the manifolds Y = Yd and Yc = Yc

d with respect to the natural
projections, see section I.1.3. In addition to the usual norms ‖ · ‖s, we provide
spaces in the scales {Zs} and {Zc

s} with the weighted norms ‖ · ‖(+,s) and
‖ · ‖(−,s), where

‖(p, ξ, y)‖2(±,s) = |p|2 + ε
± 4

3
m |ξ|2 + ε

± 2
3

m ‖y‖2s.

By Z±s and Zc±
s we denote the spaces Zs and Zc

s , given the norms we have just
defined. Clearly, spaces Z+

s and Z−−s are dual with respect to the inner product
〈·, ·〉. Therefore, for any linear operator A : Za → Zb we have:

‖A‖(+,a),(+,b) = ‖A∗‖(−,−b)(−,−a). (3.26)

The weighted norms provide the manifolds Y and Yc with distances dist(±,d).
It follows from the definitions of the domains Oj

m that

dist(−,d)(Oj+1,Yc \Oj) ≥ C−1(m) ∀ j (3.27)

We recall that Sm = St|t=1, where {St} is the flow of the system (3.17)
which we now write as

ḣ = εmVF (h), h = h(t) = (p, q, y)(t), (3.28)

where VF (h) = VF (h; ω) = (−∇qF, ∇pF, J∇yF ). The estimates from Lem-
mas 3.2, 3.4, 3.5 (and the Cauchy estimate) show that the vector field VF is
analytic in the domain O2.5

m and

‖εmVF ‖O2.5
m ,Ωm+1

(−,d) ≤ Ce(m)ε1/3
m . (3.29)

A straightforward analysis of terms forming the linearised vector field VF∗,
based on the same lemmas, shows that

‖εVF (h)∗‖θ,θ ≤ Ce(m)ε1/3
m ∀ |θ| ≤ d (3.30)

and
‖εVF (h)∗‖(−,θ),(−,θ) ≤ Ce(m)ε1/3

m ∀ |θ| ≤ d, (3.31)

for every h ∈ O3
m. The same estimates hold for Lipschitz constants in ω ∈

Ωm+1.
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Lemma 3.6. The map Sm is an analytic symplectomorphism which maps
Oj

m to Oj−1
m for j = 3, 4, 5. This map is close to the identity, namely:

a) ‖Sm− id ‖O3
m,Ωm+1 ≤ Ce

1(m)ε1/3
m , where ‖ · ‖ stands for the norm ‖ · ‖d

or ‖ · ‖(−,d);

b) ‖Sm∗− id ‖O4
m,Ωm+1·,· ≤ Ce

2(m)ε1/3
m , where ‖ · ‖·,· stands for the operator

norm ‖ · ‖θ,θ or ‖ · ‖(−,θ),(−,θ), with any |θ| ≤ d.
c) All the estimates, stated above for the map Sm = St |t=1, remain true for

the maps St with 0 ≤ t ≤ 1.

Proof. Since St(h) − h =
∫ t

0
εmVF (Sτ (h)) dτ , then by (3.29) and (3.27) the

map Sm = S1 sends Oj
m to Oj−1

m and ‖Sm− id ‖ ≤ Ce(m)ε1/3
m . This map is

an analytic symplectomorphism due to Theorem I.1.3. To check its Lipschitz
constant in ω, we take any ω1, ω2 ∈ Ωm+1 and denote by hj(t) a solution for
(3.28) with hj(0) = h ∈ Oj

m and ω = ωj , j = 1, 2. We have to estimate the
difference η(t) = h1(t)− h2(t). The curve η satisfies the equation

η̇ = εmVF (h1; ω1)− εmVm(h2; ω2).

Due to (3.30) and (3.31) the map εmVF is Lipschitz in h-variable, so a norm of
the r.h.s. estimates by Ce(m)ε1/3

m (‖η‖+ |ω2 − ω1|). Accordingly,

d

dt
‖η‖ ≤ Ce(m)ε1/3

m (‖η‖+ |ω2 − ω1|), η(0) = 0.

Using the Granwall estimate we find that

‖Sm(h;ω1)− Sm(h;ω2)‖ = ‖η(1)‖ ≤ Ce(m)ε1/3
m |ω2 − ω1|.

So the assertion a) is proven.
To prove b), we note that for any ξ the curve t 7→ St(h)∗ξ is a solution of the

linearised equation ξ̇ = εmVF (h(t))∗ξ. Since Sm∗ = S1∗, then the estimates for
the operator (Sm∗ − id) follow from (3.30) and (3.31) (cf. Proposition I.1.4).

The same arguments as above apply to any map St, thus proving c). ¤

Step 5: The transformed hamiltonian.

Now we study the transformed hamiltonian Hm◦Sm = (H ′
0 m+1+εm(H2m +

H3m)) ◦ Sm. Since the functional H ′
0 m+1 is smooth on the space Yd and the

flow-maps St are C1-smooth in t, then

d

dt
H ′

0 m+1 ◦ St = εm {F, H ′
0 m+1} ◦ St = −εm(H2m − 〈Amy, y〉) ◦ St,

where the second equality follows from (3.22) and the first one – from Theorem
I.1.4. Now we can calculate the second derivative:

d2

dt2
H ′

0 m+1◦St = −εm
d

dt
(H2m−〈Amy, y〉)◦St = −ε2

m {F, H2m−〈Amy, y〉}◦St.
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Thus,

H ′
0 m+1 ◦ Sm = H ′

0 m+1 ◦ St|t=1 =

= H ′
0 m+1 +

d

dt
H ′

0 m+1 ◦ St|t=0 +

1∫

0

(1− t)
d2

dt2
H ′

0 m+1 ◦ Stdt =

= H ′
0 m+1 + εm〈Amy, y〉 − εmH2m

− ε2
m

1∫

0

(1− t) {F,H2m − 〈Amy, y〉} ◦ Stdt.

Calculating similar ∂
∂t (H2m + H3m) ◦ St we find that

εm(H2m + H3m) ◦ Sm = εm(H2m + H3m) + ε2
m

1∫

0

{F, H2m + H3m} ◦ Stdt.

Therefore, the transformed hamiltonian can be written as

Hm ◦ Sm =H0 m+1 + εmH3m

+ε2
m

1∫

0

(
(t− 1){F,H2m − 〈Amy, y〉} ◦ St

)
dt

+ ε2
m

1∫

0

{F, H2m + H3m} ◦ Stdt,

where we denoted
H0 m+1 = H ′

0 m+1 + 〈Amy, y〉.
The hamiltonian H0 m+1 has the form (3.6) with m := m + 1 and with

Bm+1 = Bm + 2εmAm.

Since diagonal elements aj of the operator Am are bounded by jd̃C(m) ε
−2/3
m

(see Lemma 3.2 and its discussion), then diagonal elements ν
(m+1)
j + β

(m+1)
j

of the operator Bm+1 satisfy the a priori estimates (see (3.9), etc.) with m
replaced by m + 1.

For j = 1, 2, 3, 4 we denote by ∆jH the j-th term in the r.h.s. of the formula
for Hm ◦ Sm. To prove that the hamiltonian Hm+1 := Hm ◦ Sm has the form
(3.5) we should check that

∆2H + ∆3H + ∆4H = εm+1Hm+1, (3.32)
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where Hm+1 is a function satisfying estimates (3.11), (3.12) in the domain
Om+1.

By lemma 3.1, the term ∆2H and its y-gradient are smaller than 2
3 times

the r.h.s.’s of (3.11) and (3.12) respectively. The estimates for ∆3H and ∆4H
will follow from the following statement:

Lemma 3.7. If H is an analytic function such that

|H|O1
m,Ωm+1 ≤ Ce(m) ε2

m, ‖∇y H‖O1
m,Ωm+1

dc
≤ Ce(m) ε5/3

m , (3.33)

then for any 0 ≤ t ≤ 1 we have:

|{F,H} ◦ St|O4
m,Ωm+1 ≤ Ce

1(m) ε4/3
m (3.34)

and
‖∇y({F, H} ◦ St)‖O5

m,Ωm+1
dc

≤ Ce
1(m) εm. (3.35)

Postponing the lemma’s proof we complete Step 5: Application of Lemma
3.7 to functions H = ε2

m(H2m − 〈Amy, y〉) and H = ε2
m(H2m + H3m), followed

by integration of the corresponding inequalities (3.34) from t = 0 to t = 1,
proves that in Om+1 the function ∆3H + ∆4H is bounded by 2C2

1 (m) ε
4/3
m ≤

1
32m+1εm+1, as well as its Lipschitz constant in ω ∈ Ωm+1. Similarly, due to
(3.35) the gradient ∇y(∆3H +∆4H) is bounded by 1

32m+1ε
2/3
m+1. Therefore the

hamiltonian Hm+1 := Hm ◦Sm has the required form (3.5) with m replaced by
m + 1.

Proof of the lemma. Due to the first inequality in (3.33) (and, as usual, the
Cauchy estimate), we have |∇pH|O2

m,Ωm+1 ≤ Ce
1(m)ε4/3

m and |∇qH|O2
m,Ωm+1 ≤

Ce
1(m)ε2

m. Using this estimate jointly with (3.33) and (3.29) we find that

|{F, H}|O3
m,Ωm+1 ≤ Ce

2(m)ε4/3
m . (3.36)

Since Sm analytically maps O4
m to O3

m by Lemma 3.6, then we get (3.34).
To prove (3.35) we first have to bound gradient of the Poisson bracket

{F, H}. The bracket is formed by three terms, where the most difficult one
is the term 〈J∇yF,∇yH〉. Its gradient is ∇H∗Π∗yJ∇F −∇F∗Π∗yJ∇H (Π∗y is
the operator which sends a vector y to (0, 0, y)). Using (3.29) and (3.33) we
get that for h ∈ O4

m the dc-norm of the gradient is bounded by Ce(m)εm, as
well as its Lipschitz constant in ω. Analysing similar two other terms we get
that

‖∇y{F, H}‖O4
m,Ωm+1

dc
≤ Ce(m)εm.

Due to (3.36),

|∇p{F, H}|O4
m,Ωm+1 ≤ Ce

2(m)ε2/3
m , |∇q{F, H}|O4

m,Ωm+1 ≤ Ce
2(m)ε4/3

m .
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Thus,
‖∇{F, H}‖O4

m,Ωm+1

(+,dc)
≤ Ce

2(m)ε4/3
m . (3.37)

So we have:

‖∇({F, H} ◦ St)‖O4
m,Ωm+1

(+,dc)
= ‖St∗(h)∇{F, H}‖O4

m,Ωm+1

(+,dc)
≤ Ce(m)ε4/3

m .

This inequality follows from (3.37) since by (3.26) and the assertions b) and c)
of Lemma 3.6 (with θ = −dc) the map St∗(h; ω) defines an operator in Z(+,dc),
analytic in h ∈ O4

m and Lipschitz in ω ∈ Ωm+1. Now (3.35) is proven since
‖∇y . . . ‖dc

≤ ε
−1/3
m ‖∇ . . . ‖(+,dc). ¤

Step 6: Transition to limit.

Here we show that the set (S0 ◦ S1 ◦ . . . ) (Tn
0 ) ⊂ Yd is a smooth torus,

invariant for the equations (3.3).

Let us denote Ωε = ∩Ωm. Then Ωε is a Borel subset of Ω and by (3.7)

mes(Ω\Ωε) ≤ γ/2.

For 0 ≤ r ≤ N we denote by Σr
N the map

Σr
N : ON × ΩN → Or, (h, ω) 7→ Sr ◦ . . . ◦ SN−1(h),

where Sj(h) = Sj(h; ω). As usual, Σr
r stands for the projection ΠY : Or×Ωr −→

Or. We claim that for all r,m ≥ 0

‖Σr
r+m −ΠY‖Or+m,Ωε

d ≤ ερ
r . (3.38)

Indeed, let us rewrite the identity Σr
r+m(h; ω) = Sr(Σr+1

r+m(h; ω); ω) in the form

Σr
r+m −ΠY = (Sr −ΠY) ◦ (Σr+1

r+m ×ΠΩ) + (Σr+1
r+m −ΠY),

where ΠΩ(h, ω) = ω. By Lemma 3.6, Lipschitz constant of the map (Sr−ΠY) :
Or+1 ×Ωr → Zd is less than ερ

r . So, denoting the l.h.s. of (3.38) by Dr
r+m, we

get that
Dr

r+m ≤ Ce(m)ε1/3
r

(
Dr+1

r+m + 2
)

+ Dr+1
r+m.

As Dr+m
r+m = 0, then (3.38) follows by induction.

Let us also observe that because Lemma 3.6, for any finite r ≤ N and any
h ∈ ON the tangent map Σr

N∗(h) is close to the identity:

‖Σr
N∗(h)− id‖θ,θ ≤ ερ

r ∀ |θ| ≤ d (3.39)
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(abusing notations we now view Σr
N as a map ON → Or, so Σr

N∗ is a map from
Z to Z).

Let us denote by O the set

O = {0} × U(δ/2)× {0} ⊂ Yc
d.

This is a complex neighbourhood of the torus Tn
0 = {0} × Tn × {0} in the

complex cylinder {0} × (Cn/2πZn) × {0}, which is contained in each domain
Om since δm > δ/2.

As a consequence of (3.38) we get that for every m ≥ 0 and for each ω ∈ Ωε

the maps Σm
m+N restricted to O converge (as N →∞) to an analytic map

Σm
∞(· ;ω) : O −→ Om ⊂ Yc

d ,

and Σm
p ◦ Σp

∞ = Σm
∞ for all p ≥ m.

For any ω ∈ Ωε fixed, the linearisations Σm
m+N∗(h) define analytic maps

from O to the space of linear operators Zc
d → Zc

d, where Zc
d = C2n × Y c

d . Due
to (3.39), for any |θ| ≤ d the norms ‖Σm

m+N∗(h)‖θ,θ are bounded uniformly in
N ≥ 1 and in h ∈ O. By analyticity, the limiting map Σm

∞∗ satisfies (3.39) as
well. That is,

‖Σm
∞(h)∗ − id‖θ,θ ≤ ερ

m ∀r, ∀ |θ| ≤ d. (3.40)

Due to the estimate which follows Lemma 3.1, the maps Λm converge to a
Lipschitz map Λ∞ : Ωε → Rn such that

|Λ∞ − ω|Ωε,Lip ≤ C ε1/3,

and
|Λ∞ − Λm| ≤ C(m)ε1/3

m . (3.41)

Now for any ω ∈ Ωε we consider the curve

h∞(t) = (0, q0 + tΛ∞(ε), 0) ⊂ Tn
0

and the curves hm(t) = Σm
∞(h∞(t)) ⊂ Om. We are going to show that h0(t) is

a solution of the equation (3.3). To do this, we first use (3.40) to get that

ḣm = Σm
∞∗(h∞)ḣ∞ = (0, Λ∞, 0) + O (ερ

m) ∈ Zd.

Next, abbreviating equations (3.13), (3.14) to

ḣ = VHm(h), h ∈ Om, (3.42)
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and using estimates (3.11), (3.12) and (3.41) we see that

VHm
(hm) = (0,Λm, 0) + O(ερ

m) = (0, Λ∞, 0) + O(ερ
m)

in the space Zd−d1 . Therefore,

ḣm − VHm(hm) = O(ερ
m)

in Zd−d1 . Since Σ0
m∗(hm)

(
VHm

(hm)
)

= VH0(h0) and Σ0
m∗(hm)ḣm = ḣ0, then,

applying to the last equality the operator Σ0
m∗(hm) and using (3.39) with θ =

d− d1, we get that
ḣ0 − VH0h0 = O (ερ

m)

in Zd−d1 . As m can be taken arbitrarily large, then the l.h.s. is zero and
h0(t) is a solution of the system (3.3) (which coincides with (3.12)–(3.14) when
m = 0).

Now assertions of Theorem 1.3 follows if we choose Σε(q, ω) = Σ0
∞(0, q, 0;ω)

and ω′ = Λ∞(ω).

3.3 Proof of Lemma 3.3 (estimation of the small divisors).

We denote Λjk(ω) = ν
(m+1)
j (ω)− ν

(m+1)
k (ω) and rewrite the assertion of the

lemma as

|ω′ · s + Λjk(ω)| ≥ κ :=
|jd1 − kd1 |

C∗∗(m)〈s〉c1
(3.43)

for all j, k ∈ Z\{0} and all ω in Ω̃\Ω2, where Ω̃ = Ω \ Ω1. Here the constants
C∗∗, c1 and the Borel subset Ω2 ⊂ Ω such that mes Ω2 ≤ γ(m + 1)−2/(3K∗),
are to be found.

If |s| ≤ M1 and j ≤ j2 then (3.8), (3.9) and the assumption (1.12) of
Theorem 1.3 jointly imply (3.43) (provided that ε̄ is sufficiently small), so
henceforth we may suppose that

|s| ≥ M1 or j ≥ j2, (3.44)

where M1 and j2 will be chosen later.

Let us denote for a moment D(j, k, s) = ω′ · s + Λjk(s). Then

D(j, k, s) = D(−k,−j, s) = −D(−j,−k,−s),

so to prove (3.43) it is sufficient to consider j and k such that

j ≥ 1, j ≥ |k|, j 6= k (3.45)
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(for j = k the estimate (3.43) is trivial). For further usage we note that j and
k as above satisfy the elementary inequality13:

|jd1 − kd1 | ≥ d1( 1
2 )d−1jd1−1. (3.46)

Now we observe that

|Λjk| ≥ C−1
0 |jd1 − kd1 |. (3.47)

Indeed, if j > j2, then the estimate (3.47) with C0 = 2K1 follows from (3.1)
and (3.9), (3.46), while for j ≤ j2 the estimate with C−1

0 = K3/2 results from
the assumption (1.12) with s = 0 and from (3.9).

By virtue of (3.47), the estimate (3.43) holds trivially if |s| ≤ C−1 | jd1 −
kd1 |, where C is any constant, bigger than 2C0|ω′|; say, C = 2C0(K + 1) (see
assumption 3) of the theorem). So we can assume below that

|s| ≥ C−1 | jd1 − kd1 |. (3.48)

In particular, s 6= 0.

Let us denote by L the set of all triples (k, j, s) as in (3.44), (3.45), (3.48).
For any (k, j, s) ∈ L we define Ω(k, j, s) ⊂ Ω̃ as a set of all ω ∈ Ω̃ violating
(3.43) for the chosen triple (k, j, s). Let us take for Ω2 the union

Ω2 =
⋃
{Ω(k, j, s) | (k, j, s) ∈ L}.

Clearly, (3.43) holds for ω outside Ω2. So it remains to estimate measure of
Ω2. Here the key is the following result:

Lemma 3.8. For any triple (k, j, s) ∈ L we have

mesΩ(k, j, s) ≤ Cκ,

provided that j2,M1 are sufficiently large in terms of the quantities, listed in
Theorem 1.3 (κ was defined in (3.43)).

Proof. By (3.8), the map

Ω̃ 3 ω 7−→ ω′ = Λm+1(ω) ∈ Rn+1

is Lipschitz-close to the identity. So it is a Lipschitz homeomorphism which
changes the diameters of sets and their Lebesgue measure no more than twice

13for j=1 the inequality is obvious. For j = 2 it holds since the l.h.s. is ≥ jd1−(j−1)d1 >
d1(j − 1)d1−1 ≥ d1(j/2)d1−1.
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(see Lemma A1 in Appendix 1). Therefore to estimate measure of the set
Ω(k, j, s) is equivalent to estimate measure of its image Ω′,

Ω′ = Λm+1(Ω(k, j, s)).

To do this we express νk, νj ,Λkj as function of ω′ and write the set Ω′ as

Ω′ = {ω′ ∈ Λm+1(Ω̃)
∣∣ |ω′ · s− Λkj(ω′)| ≤ κ}.

The set Ω′ is bounded since it is contained in the bounded set ω′(Ω). So by
the Fubini theorem to majorise a measure of this set it suffice to majorise one-
dimensional measure of the intersection of Ω′ with any line in Rn, parallel to
the vector S = s/|s|. That is, with any line Lη = {η + tS | t ∈ R}, η ∈ R2. The
intersection of Ω′ with Lη corresponds to t from the set

{t
∣∣ |Γ(t)| ≤ κ}, (3.49)

where Γ is the function

Γ(t) :=
(
ω′(t) · s + Λkj(ω′(t))

)
, ω′(t) = η + tS.

Let us observe that (∂/∂t)ω′ · s = |s| and that LipΛjk ≤ Cjd̃, where Lip Λjk

stands for a Lipschitz constant of the map ω′ → Λjk (we use (1.10) and (3.9)).
Then for any t1 ≥ t2 we have:

Γ(t1)− Γ(t2) ≥ |s|(t1 − t2)− (t1 − t2)LipΛkj

≥ (t1 − t2) (|s| − C jd̃) ≥ C−1(t1 − t2) (jd1 − kd1 − C1 jd̃)

≥ C−1
2 (t1 − t2) (jd1−1 − C3 jd̃) (3.50)

(we use (3.48) in the third inequality and (3.46) in the forth one). So if j > j2
and j2 is sufficiently large, then

Γ(t1)− Γ(t2) ≥ t1 − t2.

If j ≤ j2, then by (3.44) |s| ≥ M1. Using the second estimate in (3.50) we get
that

Γ(t1)− Γ(t2) ≥ (t1 − t2) (M1 − Cjd̃
2 ) ≥ t1 − t2,

if we choose M1 ≥ Cjd̃
2 + 1.

Thus, measure of the set (3.49) is less than 2κ. Since diam ω′(Ω) ≤ 2 diam Ω
≤ 2K2, then by Fubini mes Ω′ ≤ 2κcn−1K

n−1
2 , where cn−1 is a volume of the

1-ball in Rn−1. As mes Ω(k, j, s) ≤ 2mes Ω′, then the lemma is proven. ¤
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Now an estimate for measure of Ω2 is straightforward:

mesΩ2 ≤
∑

L
mesΩ(k, j, s) ≤ C

C∗∗(m)

∑
s

〈s〉−c1
∑

j,k
(j,k,s)∈L

(jd1 − kd1).

By (3.46) and (3.48), j ≤ C|s|d0 where d0 = 1/(d1 − 1). Since |k| ≤ j, then
cardinality of the set {(j, k, s) ∈ L | s is fixed} is less than 2C|s|2d0 . Using
(3.48) we see that the inner sum in the r.h.s. estimates as follows:

∑

j,k
(j,k,s)∈L

(jd1 − kd1) ≤ C
∑

j,k
(j,k,s)∈L

|s| ≤ C1〈s〉2d0+1.

Therefore,

mesΩ2 ≤ CC1

C∗∗(m)

∑
s

〈s〉2d0+1−c1 ≤ γ

3(m + 1)2K∗
,

if c1 > 2 d0 + n + 1 and C∗∗(m) is sufficiently large.
Lemma 3.3 is proven.

Appendix 2. Some inequalities for Fourier series.

Let Bc be a complex Banach space and f : U(δ) −→ Bc be a complex-
analytic map such that ‖f‖B ≤ 1. We can write f as Fourier series,

f(q) =
∑

s∈Zn

fs eis·q, fs =
∫

Tn

f(q) e−iq·sdq/(2π)n ∈ Bc.

Let us replace the integration over Tn by integration over the shifted torus
Tn − i(δ − ε) s

|s| ⊂ U(δ). Since after the shift we have |eiq·s| ≤ e−|s|(δ−ε), then
‖fs‖B ≤ e−|s| (δ−ε) for every positive ε. Thus, we have

‖fs‖B ≤ e−|s| δ ∀ s ∈ Zn. (A1)

Conversely, if for some d ≥ 0 we have ‖fs‖B ≤ 〈s〉d e−|s| δ for every s, then

‖f‖U(δ−%)
B ≤

∑

s∈Zn

〈s〉d e−% |s| ≤ C

∫

Rn

|x|d e−% |x|dx

= C ρ−n−d

∫

Rn

|y|d e−|y|dy = Cd%
−n−d. (A2)

As a consequence of estimates (A1), (A2) we get:
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Lemma A1. If f : Tn → Bc is a zero-meanvalue map, analytically extendable
to U(δ), and ω is a Diophantine n-vector, namely

|ω · s| ≥ |s|−d/C∗ ∀ s ∈ Zn \ 0 (A3)

with some positive d and C∗, then the equation

∂u

∂ω
(q) = f(q),

∂u

∂ω
:=

∑
ωj

∂u

∂qj
, (A4)

has a unique zero-meanvalue analytic solution u(q) and

‖u‖U(δ−ρ)
B ≤ C∗Cdρ

−n−d‖f‖U(δ)
B (A5)

for any 0 < ρ < δ. If f = f(q; a) is a Lipschitz function of an additional
parameter a ∈ A, then

‖u‖U(δ−ρ),A
B ≤ C∗Cdρ

−n−d‖f‖U(δ),A
B . (A6)

Lemma A1′. If a map f : Tn → Bc analytically extends to U(δ) and an
n-vector ω is incommensurable with a real constant E, namely

|ω · s + E| ≥ (|s|+ 1)−d/C∗ ∀ s ∈ Zn, (A7)

then the equation
∂u

∂ω
(q) + iEu = f(q) (A8)

has a unique analytic solution u(q). This solution satisfies (A5). If f = f(q; a)
is Lipschitz in a ∈ A, then u = u(q; a) satisfies (A6).

To prove (A5) we expand u(q) and f(q) to Fourier series denoting by us and
fs the corresponding Fourier coefficients. Then f0 = u0 = 0 and us = fs/(iω ·s)
if s 6= 0. Thus,

‖us‖B ≤ C∗|s|d‖fs‖B ≤ C∗|s|de−|s|δ‖f‖U(δ)
B

by (A1), and the estimate (A5) follows by (A2).

To get (A6) it is sufficient to apply (A5) to an increment u(q; a1)− u(q; a2)
of the solution u.

Proof of Lemma A1′ is quite similar.

Remark. If Bc is a complexification of a real Banach space B and the map f
is real, i.e., f(q) ∈ B for q ∈ Tn, then the solution u(q) of equation (A4) is
real since u(q̄) is an analytic map which also solves (A4); so it must be equal
to u(q). If u(q) solves (A8) with real f(q), then v = u(q̄) is the unique analytic
solution of the adjoint equation ∂v/∂ω − iE = f .

If d > n and Ω is a bounded subset of Rn, then the set ΩC∗ formed by all
ω ∈ Ω which violate the Diophantine assumption (A3) has a measure O(C−1

∗ ):
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Lemma A2. If d > n− 1, then mesnΩC∗ ≤ C(d, Ω)/C∗.

Proof. The set ΩC∗ is a union of subsets Ωs ⊂ Ω,

Ωs = {ω ∈ Ω | |ω · s| ≤ |s|−d/C∗}, s ∈ Zn \ 0.

Each set Ωs is an intersection of Ω with the set {|ω · s| ≤ |s|−d/C∗} which is a
strip of width |s|−d−1/C∗ in Rn. Thus, mesnΩs ≤ C(Ω)|s|−d−1/C∗ and

mesnΩC∗ ≤
∑

s 6=0

mesnΩs ≤ C(Ω)
C∗

∑

s 6=0

|s|−d−1 =
C(d, Ω)

C∗
. ¤

Similar result with the same proof holds for the relation (A7):

Lemma A3. If d > n and |E| ≥ C−1
∗ , then the subset of all ω ∈ Ω which

violate (A7) is a measurable set of measure ≤ C(d, Ω, E)/C∗.

If for any analytic function f(q) such that ‖f‖U(δ)
B ≤ 1, we cut its low-

frequency part off, namely for any R > 1 define fR as

fR(q) =
∑

|s|≥R

fs eis·q,

then by (A1) for any positive ρ < δ we have:

‖fR‖U(δ−%)
B ≤

∑

|s|≥R

e−|s| % ≤C

∞∫

R

e−t%tn−1dt =

=C

n∑
m=1

%−m (n− 1)!
(n−m)!

e−% RRn−m.
(A9)

Take any k > 0. Then by (A9),

‖fR‖U(δ−%)
B ≤ CR−kρ−n−k

n∑
m=1

(n− 1)!
(n−m)!

e−ρR(ρR)n−m+k

≤ Cn,k R−k%−n−k,
(A10)

since e−xxn−m+k ≤ Ck for every x ≥ 0 and any k ≥ 0, m ≤ n.
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Appendix 3. On the Craig–Wayne–Bourgain KAM-scheme.
There is an alternative KAM-approach to prove that for small ε and for

most parameters ω equation (3.3) has an invariant torus, close to the torus
Tn

0 = {0} × Tn × {0}. This approach is due to Craig–Wayne–Bourgain [CW,
Bour2].

In this appendix we describe the corresponding scheme in comparison with
the one, used in section 3 (and in the Addendum). Our description is very
vague. In particular, we do not specify which function norms for functions of
q ∈ Tn have to be used.

Domains and hamiltonians. We use a suitable family of domains Y ⊃ Q0 ⊃
Q1 ⊃ · · · ⊃ Tn

0 , ∩Qj = Tn
0 , and of hamiltonians Hm, defined on these domains.

Every hamiltonian Hm has the form

Hm = p · Λm(ω) + 1
2 〈Bm(q; ω)y, y〉+ εmHm(h; ω), (A11)

where ω ∈ Ωm and Ωm is a “large” Borel subset of Ω (e.g., it satisfies (3.7)).
The selfadjoint operator Bm is not assumed to commute with B, but it is close
to this operator:

‖Bm(q; ω)−B(ω)‖ ≤ Ce(m)ε. (A12)

The sequence 0 = e(0) < e(1) < · · · < 1/2 is defined as above in section 3.2; the
sequence {εm} decays to zero “sufficiently fast” (but εm+1 > ε2m) and ε0 = ε.
In particular

εm < Cc(m)cm ∀m ≥ 1

for any positive c. The corresponding Hamiltonian equations are:

ṗ = − 1
2 〈∇qBm(q; ω)y, y〉 − εm∇qHm, q̇ = Λm(ω) + εm∇pHm,

ẏ = JBm(q;ω)y + εmJ∇yHm.
(A13)

For m = 0 we have H0 = Hε, so (A13)m=0=(3.3).
We note that the torus Tn

0 is invariant for equation (A13) up to terms of
order εm. As in section 3, we wish to construct symplectic transformations Sm :
Qm+1 → Qm such that Hm ◦ Sm = Hm+1. Then the limiting transformation
S = S0 ◦S1 . . . (if it is well defined) provides us with an invariant torus S(Tn

0 )
of equation (3.3), filled with quasiperiodic solutions S(0, q + tΛ∞, 0).

To construct the transformation Sm given a hamiltonian Hm, we first isolate
an affine in p, quadratic in y part of Hm and write Hm in the form (3.15):

Hm = hq(q; ω) + p · h1p(q; ω) + 〈y, hy(q;ω)〉+ 〈hyy(q;ω)y, y〉+ H3m(h;ω).

Neglecting a h-independent part of Hm, where h = (p, q, y), we achieve 〈hq〉 = 0,
where 〈. . .〉 stands for the averaging (2π)−n

∫
. . . dq. As at Step 1 (see section

3.2 or the Addendum), we denote h0p = 〈h1p〉, hp = h1p − h0p. In crucial
difference with the proof of Theorem 1.3, we do not average the quadratic part
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hyy, but add the whole of it to the integrable part. Accordingly, we write Hm

as

Hm = p · (Λm + εmh0p
)

︸ ︷︷ ︸
Λm+1

+ 1
2

〈
(Bm + 2εmhyy)︸ ︷︷ ︸

B′m

y, y
〉

+ εm

(
hq + p · hp + 〈y, hy〉︸ ︷︷ ︸

H1m

)
+ εmH3m .

As in section 3.2, we assume that the domains Qm shrink to Tn
0 sufficiently

fast, so that |εH3m| ≤ 1
2εm+1 in Qm+1. Accordingly, εmH3m is an admissible

part of the term εm+1Hm+1 and it remains to kill the term εmH1m. To do this
we use a transformation Sm which is a time-one shift along trajectories of a
Hamiltonian vector field VεmF , where the hamiltonian F has the same structure
as H1m, i.e.,

F = fq(q;ω) + p · fp(q; ω) + 〈y, fy(q; ω)〉.
Abbreviating Λm+1 = ω′, ω′ · ∇q = ∂/∂ω′ and arguing as at Step 2, we get
that:

Hm ◦ Sm = Hm + εm{F,Hm}+ O(ε2m)

= p · Λm+1 + 1
2 〈B′

my, y〉+ εm

[
− ∂fq/∂ω′ − p · ∂fp/∂ω′

− 〈y, ∂fy/∂ω′〉 − 〈y, (∂fyy/∂ω′)y〉+ 〈B′
my, Jfy〉+ H1m

]

+
εm

2
〈(fp · ∇qB

′
m)y, y〉+ O (εm+1).

Therefore, if the functions fp, fq and fy satisfy the homological equations

∂fq/∂ω′ = hq(q; ω), ∂fp/∂ω′ = hp(q; ω), (A14)

∂fy/∂ω′ −B′
mJfy = hy + O (εm+1/εm) , (A15)

then the transformed hamiltonian Hm ◦ Sm takes the form (A11) with m =
m + 1, where Bm+1 = B′

m + εm(fp · ∇q)B′
m.

As at the Step 3, the equations (A14) are classical and and can be solved
easily if ω ∈ Ωm+1 with an appropriate set Ωm+1. In the same time the equation
(A15) is much more difficult than equation (3.21), obtained at Step 3, since
the operators B′

m(q; ω)J , q ∈ Tn, do not commute. All known ways to solve
“noncommutative” equations (A15) are perturbative. They use assumption
(A12) as well as additional properties of the perturbation (B′

m − B)J and
of the spectrum {±iλj} of the operator BJ . The first results on equations
of the type (A15), (A12) were obtained by Fröhlich–Spencer in their works
on the Andersen localisation (see [FS]). There they called an operator which
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resolves the equation Green function. Since then Green functions were studied
in a number of papers (the best results by the time when this appendix was
written are due to Bourgain [Bour2]), but “right” conditions which would imply
solvability of (A15), (A12) still are missing. So every time when an equation of
this kind arrive, one has to solve it anew. See [CW, Bour2, Krie] and references
in these papers.

After the equation (A15) is resolved, one constructs the transformation Sm

and obtains the new hamiltonian Hm+1 = Hm ◦ Sm. The limiting trans-
formation S = S0 ◦ S1 ◦ . . . provides the invariant torus S(Tn

0 ), filled with
quasiperiodic solutions of the equation (3.3).
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4. Linearised equations

In this section we consider linearisation of equations (3.3) about any solution
h0(t), constructed in Theorem 1.3, and prove Theorem 1.4. We abbreviate (1.3)
as

ḣ = VHε
(h(t)), h = (p, q, y),

and write the linearised equations as

η̇ = VHε
(h0(t))∗η. (4.1)

Analysis of equation (4.1) given below uses the symplectic transformations
Sl and their compositions Σr

N = Sr ◦ · · · ◦ SN−1, defined at Step 6 of the proof
of Theorem 1.3.

To study (4.1) we consider linearisation of any transformed equation (3.42)
about the transformed solution hm =

(
Σ0

m

)−1
h0 = Σm

∞h∞:

η̇m = VHm(hm(t))∗ηm. (4.1m)

This equation coincides with (4.1) if m = 0, and the linear transformation

Lm(t) := Σ0
m(hm(t))∗

sends solutions of (4.1m) to solutions of (4.1). By (3.39) limiting linear maps
L∞(t), t ∈ R, exist and define zero-order automorphisms of the scale {Zs =
R2n × Ys} for |s| ≤ d. Moreover, each map Lm(t) is symplectic since the maps
Sl are symplectomorphisms. The limiting maps L∞(t) are symplectic as well.

For any 0 ≤ m ≤ ∞ and any t the map Lm satisfies the estimates

‖Lm(t)‖θ,θ + ‖L−1
m (t)‖θ,θ ≤ 3, |θ| ≤ d. (4.2)

Since the linearised equation (4.1) is uniformly well-defined by assumptions of
Theorem 1.4, then due to (4.2) equations (4.1m) also are uniformly well-defined:
for any m, the flow-maps (Sτ+t

(m)τ )∗∗(hm(τ)) of (4.1m) are such that

‖(Sτ+t
(m)τ )∗∗(hm(τ))‖θ,θ ≤ CeC2t for any t and any |θ| ≤ d.

Because (4.2) with m = ∞, to estimate solutions η0(t) of (4.1m) with m = 0
is equivalent to estimate their transformations η∞(t) = (L∞(t))−1η0(t). We can
not directly go to limit in (4.1m) to write for η∞(t) a limiting equation (4.1∞).
Instead we shall obtain estimates for the limiting curve η∞ by examining p-,
q- and y-components of solutions ηm with large m.
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For any 0 ≤ r ≤ m ≤ ∞ we define linear transformations Lr
m as Lr

m(t) =
Σr

m(hm(t))∗. Clearly, Lr
m = (Lr)−1 ◦ Lm. Using once again (3.39) we find that

‖Lr
m − id‖θ,θ ≤ Cερ

r . (4.3)

Now we write (4.1m) as a system of equations for ηm = (ηp, ηq, ηy), omitting
dependence on m (and on the parameter ω which is now irrelevant):





η̇p = −εm∇q,p Hmηp − εm∇q,q Hmηq − εm∇q,y Hmηy,

η̇q = εm∇p,p Hmηp + εm∇p,q Hmηq + εm∇p,y Hmηy,

η̇y = JAm(qm(t))ηy + εmJ∇y,p Hmηp

+εmJ∇y,q Hmηq + εmJ∇y,y Hmηy.

(4.1′m)

Here ∇q,pHm is a linearisation in p of the gradient map ∇qHm, i.e., a linear
map Rn → Rn, etc.

We need a refinement of estimates (3.11), (3.12):

Lemma 4.1. The hamiltonian εmHm meets the following estimates:
∥∥∥∥

∂

∂pj
∇y

(
εmHm

)
(h)

∥∥∥∥
dc

≤ C (1 + e(m)), j = 1, . . . , n, h ∈ Om, (4.4)

(the numbers e(m) were defined in section 3.2, C is an m-independent con-
stant), and

∣∣∣∣
∂

∂pj

∂

∂pk

(
εmHm

)
(h)

∣∣∣∣ ≤ Ce(m), j, k = 1, . . . , n.

Proof: For m = 0 the estimate (4.4) follows from (3.4) and the Cauchy
estimate since the domain of analyticity Qc of the function H0 = H is ε-
independent. Now we suppose that the estimate is proven for m = m and show
that it holds for m = m+1. Since (∂/∂pj)∇yH2m = 0 (see Step 1 in section 3.2)
and Hm = H2m+H3m, then εmH3m also meets (4.4). By our constructions, the
next-step perturbation εm+1Hm+1 is εm+1Hm+1 = εmH3m +∆3H +∆4H, see
(3.32). By Lemma 3.7 gradients in y of the terms ∆3H and ∆4H are majorised
in domain O5

m by Ce
1(m)εm. So for any h ∈ Om+1 and any j = 1, . . . , n we

have:

‖ ∂

∂pj
∇y∆lH(h)‖dc ≤ Ce(m)ε1/3

m ≤ 1
2K∗(m + 1)2

, l = 3, 4

(the Cauchy estimate). Since the term εmH3m satisfies (4.4) for h ∈ Om, then
(4.4) with m = m + 1 follows.
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Proof of the second estimate is analogous. ¤
By (3.11), (3.12) and the last lemma, system (4.1′m) can be abbreviated as





η̇p = Op,η(ερ
m)η,

η̇q = Oq,p(Ce(m))ηp + Oq,q(ερ
m)ηq + Oq,y(1)ηy

η̇y = JAm(qm(t))ηy + Oy,p(1)ηp + Oy,q(ερ
m)ηq,

(4.5)

where Op,η(ερ
m) stands for a time-dependent linear operator Zd → Rn, η 7→ p,

of the norm O(ερ
m) and similar with Oq,p(Ce(m)), . . . , Oq,q(ερ

m). The linear
operators Oy,p(1), Oy,η(ερ

m) are bounded as operators valued in Ydc
.

For j = n + 1, n + 2, . . . let us denote by ξj0 ∈ Zd any unit vector of the
form

ξj0 = (0, 0, yj0), yj0 = yjψj + ȳjψ−j , ‖yj0‖d = 1 (4.6)

(the complex basis ψj of the space Y c
d was defined above) and denote

ξ
(m)
j0 := Lm

∞(0) ξj0 = ξj0 + O(ερ
m),

where the second equality follows from (4.3). Let ξ
(m)
j (t) be a solution of (4.1m)

such that ξ
(m)
j (0) = ξ

(m)
j0 . For m = 0, 1, . . . the map Lm sends ξ

(m)
j (t) to ξ

(0)
j (t).

A diagonal element ν
(m)
j +β

(m)
j of the operator Bm(q; ω) (defined in section

3.2) equals
νj(ω) + 2ε1a

(1)
j (q;ω) + · · ·+ 2εma

(m)
j (q; ω),

where 2εla
(l)
j (q;ω) is a diagonal element of the quadratic part of perturbation

εlHl at l-th step of the KAM-procedure. Since any function a
(l)
j (·; ω) is analytic

in U1
l and is bounded there by jd̃C(l)ε−2/3

l (see a discussion which follows
Lemma 3.2), then for any ω in Ωε we have the convergences:

β
(m)
j (q; ω) −→ β∞j (q; ω) and ν

(m)
j (ω) −→ ν∞j (ω) as m →∞,

where the functions q 7→ β∞j are analytic with zero mean-value. Letting m →
∞ in the estimates for functions β

(m)
j and ν

(m)
j , we get:

|β∞j |U(δ/2),Ωε + |ν∞j − νj |Ωε,Lip ≤ Cερ
0 jd̃.

Denoting by B∞ the limiting operator B∞(q; ω) = diag{ν∞j +β∞j | j ≥ n+1},
we consider the corresponding nonautonomous linear equation in the space Yd:

ẏ(t) = JB∞(q0 + ω′t; ω)y(t), ω′ = Λ∞(ω). (4.7)
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Let us consider a solution y(t) = yj(t) of (4.7) such that

yj(0) = yj0 as in (4.6). (4.8)

It has the form yj(t) = yj(t)ψj + y−j(t)ψ−j , where yj and y−j are complex-
conjugated functions and yj satisfies the equation

ẏj(t) = i(ν∞j + β∞j (q0 + ω′t))yj(t).

Since β∞j and ν∞j are real functions, then |yj(t)| = const. That is, ‖yj(t)‖d ≡ 1.

Now let us consider in Zd the curve η
(m)
j (t),

η
(m)
j (t) = (0,

∫ t

0

Oq,y(1)yj(τ)dτ, yj(τ)),

where the curve yj is as above and Oq,y(1) is the linear operator from the
second equation in (4.5)= (4.1′m). Clearly, its Zd-norm is bounded by Ct + 1.
Analysis of equations (4.5) shows that since yj satisfies (4.7), then ηm

j solves
the equation (4.5) with a disparity, formed by the term Op,η(ερ

m)η, Oq,q(ερ
m)ηq

and Oy,q(ερ
m)ηq with η = (ηp, ηq, ηy) = η

(m)
j (t). This disparity majorises by

C ′(t + 1)ερ
m. Since η

(m)
j (0) = (0, 0, yj(0)) = ξ

(m)
j0 and the linearised equation

(4.1m) is well defined, then we get the estimate for divergence of η
(m)
j (t) from

the exact solution ξ
(m)
j (t):

‖ξ(m)
j (t)− η

(m)
j (t)‖dc ≤ Cερ

meC1t (4.9)

with some C,C1.

The operator Lr
m sends ξ

(m)
j to ξ

(r)
j and satisfies (4.3). Therefore by (4.9)

η
(m)
j (t) converges (as m grows) to

ξ
(∞)
j (t) = (L∞)−1ξ

(0)
j (t)

uniformly for bounded t’s. Denoting by Πp, Πq, Πy the natural projectors which
send Zd to Rn

p ,Rn
q and Yd respectively, we get from this convergence that

Πpξ
(∞)
j ≡ 0, ‖Πyξ

(∞)
j (t)‖d ≡ 1. (4.10)

For τ1 ≤ τ2 let Sτ2
τ1∗∗ = Sτ2

τ1∗∗(h0(τ1)) be the flow-maps of equation (4.1) and
S̃τ2

τ1∗∗ be the conjugated maps:

S̃τ2
τ1∗∗ = L∞(τ2)

−1 ◦ Sτ2
τ1∗∗ ◦ L∞(τ1)
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(the linear operator S̃τ2
τ1∗∗ sends ξ∞j (τ1) to ξ∞j (τ2)). We write Zd as Rn

p×Rn
q×Yd

and accordingly write S̃τ2
τ1∗∗ in the block form:

S̃τ2
τ1∗∗ =




spp spq spy

sqp sqq sqy

syp syq syy


 .

As ξ
(0)
j = L∞(0)ξj , then S̃t

0∗∗(ξj) = ξ
(∞)
j (t) and we get from (4.10) that

spy = 0, ‖syy‖d,d ≡ 1. (4.11)

For each q ∈ Tn, the map Σω sends the curve q+ω′t ∈ Tn to a solution of the
initial equation (3.3). So Σω conjugates translation of Tn along ω′ with the flow
of (3.3) and its linearisation Σω∗ = L∞

∣∣
{0}×Rn

q×{0}
conjugates linearisation of

the translation with the corresponding operator S̃. This means that

spq = 0, sqq = id, syq = 0. (4.12)

Each map S̃τ2
τ1∗∗ is symplectic as a composition of symplectic maps. Hence,

α2[S̃τ2
τ1∗∗(δp1, 0, 0), S̃τ2

τ1∗∗(0, δq2, 0)] = 〈δp1, δq2〉Rn ∀ δp1, δq2 ∈ Rn.

Because (4.11) and (4.12) this implies that 〈sppδp1, δq2〉Rn ≡ 〈δp1, δq2〉Rn .
Hence,

spp = id. (4.13)

Since the flow-maps Sτ2
τ1∗∗ are uniformly well-defined, then

‖S̃τ2
τ1∗∗‖d,d ≤ C‖Sτ2

τ1∗∗‖d,d ≤ CeC1|τ1−τ2|. (4.14)

Now we can estimate the norm of the operator S̃T
0∗∗ with large T . To do

this let us write Zd as

Zd = Rn
p × E, E = Rn

q × Yd = {µ = (q, y)}.

Enlarging accordingly the blocs of S̃τ2
τ1∗∗, we write this operator as

S̃τ2
τ1∗∗ =

(
spp spµ

sµp sµµ

)
.

By (4.12), (4.13), (4.14) we have:

spµ = 0, spp = id, ‖sµµ‖ = 1, ‖sµp‖ ≤ CeC1|τ1−τ2|. (4.15)
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For any (p0, µ0) ∈ Zd and T ∈ N we can write S̃T
0∗∗(p0, µ0) as

S̃T
0∗∗(p0, µ0) = S̃T

T−1 ◦ · · · ◦ S̃1
0∗∗(p0, µ0).

Denoting (pj , µj) = S̃j
j−1∗∗ ◦ · · · ◦ S̃1

0∗∗(p0, µ0) and using (4.15) we see that

|pj | = |pj−1|, ‖µj‖d ≤ ‖µj−1‖d + C2|pj−1|,

where C2 = CeC1 . Therefore we get the following component-wise inequality:

( |pT |
‖µT ‖d

)
≤

(
id 0
C2 id

)T ( |p0|
‖µ0‖d

)
=

( |p0|
‖µ0‖+ (C2 + T )|p0|

)
.

We have seen that any solution η(t) of (4.1) meets the estimate

‖η(t)‖d ≤ 3‖η∞(t)‖d ≤ (C1 + tC2)‖η(0)‖d,

where η∞(t) = (L0
∞)−1(t)η(t). So Theorem 1.4 is proven.
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5. First-order linear differential equations on n-torus

It is well known (see Lemma A1′ in Appendix 2) that the first-order constant
coefficient differential equation

−i
∂x

∂ω
+ Ex = b(q), q ∈ Tn, (5.1)

where E is a non-zero real constant and ∂x/∂ω = ∇qx(q) · ω with a fixed real
n-vector ω, has a unique analytic solution x(q) if the function b(q) is analytic
and the vector ω is incommensurable with E. Namely,

|ω · s + E| ≥ (|s|+ 1
)−n1

/K1 for all s ∈ Zn, (5.2)

for some n1 ≥ 0 and K1 ≥ E−1. If b(q) is analytic in U(δ) (we recall that U(δ)
stands for the complex δ-neighbourhood of the real n-torus) and

|b|U(δ) ≡ sup
q∈U(δ)

|b(q)| ≤ 1,

then the solution x also is analytic in U(δ) and

|x|U(δ−∆) ≤ CK1∆−n−n1 for 0 < ∆ < δ. (5.3)

If we replace (5.1) by the equation with variable coefficients

−i
∂x

∂ω
+ Ex + Bh(q)x = b(q), (5.4)

where B is a real parameter and h is an analytic in U(δ) function such that

|h|U(δ) ≤ 1,

∫

Tn

h(q) dq = 0,

then we can find an analytic function H(q) such that ∂H/∂ω = h, provided
that the vector ω is Diophantine. Namely

|ω · s| ≥ |s|−n2/K2 for all s ∈ Zn \ 0, (5.5)

with some n2 > 0 and K2 ≥ 1. Moreover, |H|U(δ−∆) ≤ CK2∆−n−n2 (see
Lemma A1). The substitution x = e−iBHy reduces (5.4) to the equation with
constant coefficients

−i
∂y

∂ω
+ Ey = eiBHb =: β(q).
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According to the said above, this equation has a unique analytic solution y(q)
and |y|U(δ−2∆) ≤ C1K1∆−n−n1 exp(CK2B∆−n−n2). Thus (5.4) has a unique
analytic solution x(q) and

|x|U(δ−∆) ≤ CK1∆−n−n1 exp
(
C2K2B∆−n−n2

)
.

The last estimate becomes void if we have no upper bound for B. Our goal in
this section is to majorise the solution x by a B-independent constant, provided
that E À B. More specifically, provided that

E ≥ C1 > 0 and Eθ ≥ CB, (5.6)

where C,C1 > 0 and θ ∈ (0, 1) are fixed constants.
The “right” estimate for the solution x turns out to be independent of B

and E. This is stated by the following

Theorem 5.1. Under the assumptions (5.2), (5.5) and (5.6) the equation
(5.4) with |h|U(δ), |b|U(δ) ≤ 1 (0 < δ ≤ 1) has a unique analytical solution
x(q). For any 0 < ∆ < δ this solution satisfies the estimate

|x|U(δ−∆) ≤ CK1∆−n−n1 exp
(
C1K

1
1−θ

2 ∆−n−n2−d1
)
, (5.7)

where d1 = (n + n2 + 2) θ
1−θ .

In the theorem and in its proof C,C1, . . . are different positive constants,
independent of ω, ∆, δ, θ, E,K1 and K2.

The estimate (5.7) is crucial to prove Lemmas 3.4 and 3.5 (with exponents
n1, n2 and constants K1,K2 specified in section 3).

Proof of the theorem: Let us denote

C∗ = C∗0K
1/(n+n2+2)
2

with C∗0 ≥ 1 to be chosen later. We may assume that

B ≥ (C∗/∆)d1 . (5.8)

since otherwise we would write Bh as BK ′(K ′−1
h), where K ′ is a sufficiently

large constant, and replace B by BK ′, h by h/K ′.

To prove (5.7) under the assumption (5.8) we shall approximate the Diophan-
tine vector ω in (5.4) by vectors ω̃ = ω̃` with rationally dependent coefficients
(` = 2, 3, . . . ) and find an integral representation for an approximate solution
for equation (5.4) with ω replaced by ω̃. We show that the approximate solu-
tions satisfy (5.7). Next we send ` to infinity to get the estimate (5.7) for the
unique exact solution of (5.4).

All constants C, C1, . . . below are `-independent.
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Step 1. Approximations for the frequency vector. For an integer ` ≥ 2
we consider the vector `ω ∈ Rn and define N` ∈ Zn as an integer vector which
is the closest to `ω. Then

|ω − `−1N`| ≤
√

n

2`
. (5.9)

For any vector s ∈ Zn we denote 〈s〉 = |s|+ 1.

Lemma 5.1. There exist constants r ∈ (1 − `−1, 1 + `−1) and C̃ ≥ 2 such
that `E /∈ rZ and the vector ω̃, defined as

ω̃ = ω̃`,r :=
N`

˜̀ , ˜̀=
`

r
,

is incommensurable with E. Namely,

|s · ω̃ + E| ≥ 〈s〉−n−n1−1

C̃K1

∀ s ∈ Zn . (5.10)

It is clear from (5.9) that the vector ω̃, constructed in this lemma, is such
that

|ω̃| ≤ 2(|ω|+
√

n

2`
) and |ω − ω̃| ≤ 1

`

(√n

2
+ |ω|+

√
n

2`
) =

C

`
.

Proof: By (5.2) and (5.9) any vector ω̃ as above satisfies the estimate

|ω̃ · s + E| ≥ 〈s〉−n1/K1 − C |s|/` ≥ 1
2 〈s〉−n1/K1

if `−1 ≤ 〈s〉−n1−1/(2CK1) or, equivalently, if

|s| ≤
(

`

2CK1

)1/(n1+1)

=: N0.

So below we shall consider |s| > N0 only.

Take any s0 ∈ Zn which violates (5.10) for some choice of r ∈ S := (1 −
`−1, 1 + `−1). Then |s0 · ω̃| ≥ E/2, since K1 ≥ E−1 and C̃ ≥ 2. Therefore the
set

As0 =
{

r ∈ S
∣∣ |s0 · ω̃`,r + E| ≤ 〈s〉−n−n1−1

C̃K1

}

is a segment of length ≤ 4〈s〉−n−n1−1/C̃K1. So

mes
⋃

|s|≥N0

As ≤ C

C̃K1

N−n1−1
0 =

C

C̃K1

2CK1

`
,
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which is less than `−1 if C̃ is chosen sufficiently large.

Therefore, there exists a point r ∈ S which lies outside all the sets As with
|s| ≥ N0. The corresponding vector ω̃ = ω̃`,r satisfies all estimates (5.10). We
can choose r to be different from the numbers `E/j, j = ±1,±2, . . . and the
lemma is proven. ¤

Since |ω − ω̃| ≤ C/` and the vector ω is Diophantine (see (5.5)), then

|s · ω̃| ≥ (2K2 |s|n2)−1 if 0 < |s| ≤ (`/2CK2)1/(n2+1) =: L. (5.11)

Let us denote by hs Fourier coefficients of h(q). Then |hs| ≤ e−δ|s| by
estimate (A1) in Appendix 2. Besides, h0 = 0 since the meanvalue of h vanishes.
Now we define the resonant and the regular parts of h as

hres(q) =
∑
s6=0

s·eω=0

hs ei s·q, hreg(q) =
∑

s
s·eω 6=0

hs ei s·q,

so h = hres + hreg.

For j = 1, 2, 3 we denote

U j = U(δ − j∆/4).

Lemma 5.2. The functions hres, hreg are analytic in U1 and

|hres|U1 ≤ C∆−n−1 (`/K2)−1/(n2+1), |hreg|U
1 ≤ C∆−n.

Proof: The estimate for hreg is obvious (see (A1) and (A2) in Appendix 2).
In order to estimate hres we observe that if s · ω̃ = 0, then by (5.11) |s| ≥ L
and for q in U1 we have

|hres| ≤
∑

|s|≥L

e−|s|∆/4 ≤ C∆−n−1L−1

(see estimate (A10) with R = L and k = 1). Thus, the estimate for hres also
is proven. ¤
Lemma 5.3. There exists a f unction H̃, analytic in U1, such that ∂H̃/

∂ω̃ = hreg and |H̃|U1 ≤ CK2∆−n−n2 .

Proof: Let us define H̃ as a Fourier series with coefficients H̃s, where

H̃s =
{

0, if s · ω̃ = 0
hs/ (s · ω̃) otherwise.
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Since modulus of any non-zero denominator is bigger than 1/˜̀≥ 1/(2`), then
by (5.11), for any q in U1 we have:

|H̃(q)| ≤ 2
∑

|s|≤L

|s|n2K2 e−|s|∆/4 + 2`
∑

|s|>L

e−|s|∆/4.

Now the assertion follows. For: the first sum is obviously bounded by

2K2

∑

s∈Zn

|s|n2e−|s|∆/4 ≤ CK2

∫

Rn

|x|n2e−|x|∆/4 dx

= C ′K2∆−n−n2

∫

Rn

|y|n2e−|y|∆/4 dy = C1K2∆−n−n2 ,

and the second one is bounded by C2K2∆−n−n2−1 due to the estimate (A10)
with k = n2 + 1. ¤

Step 2. Approximating equations. Let us approximate the equation (5.4)
by replacing the vector ω by ω̃ = ω̃`,r and replacing h(q) by its regular part
hreg. This gives the equation

−i
∂x

∂ω̃
+ Ex + Bhregx = b(q). (5.12)

The substitution x = e−iB eHy with H̃ as in Lemma 5.3 reduces (5.12) to

−i
∂y

∂ω̃
+ Ey = eiB eHb =: β(q). (5.13)

By Lemma 5.1 this equation meets the condition (5.2) with n1 := n+n1 +1,
so for any analytic β it has a unique analytic solution y. The estimate (5.3) for
|y| is insufficient for our purposes and we shall get better one using an integral
representation for y. To this end, we consider the equation

−iµ
∂z

∂t
+ Ez = f(t), t ∈ S1 = R/2πZ. (5.14)

If E /∈ µZ, then the unique periodic solution of (5.14) can be written as

z(t) =
KE/µ

µ

2π∫

0

e−i(E/µ)τf(t− τ) dτ,

where Kr = i/(1 − e−i2π r). Indeed, for f = eikt we have z = eikt/(E +
kµ), which is the periodic solution of (5.14). An arbitrary periodic f can be
expanded in Fourier series, and the assertion follows.
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Next, we take any R ∈ Tn and consider the solenoid through R:

t 7−→ R + t ˜̀ω̃ ∈ Tn = Rn/2π Zn. (5.15)

Since ˜̀ω̃ = N` is an integer vector, then the solenoid is a 2π-periodic loop
in Tn. On the other hand, for a function on Tn and for its restriction to the
solenoid one has ∂/∂t = ˜̀ ∂/∂ω̃. Then equation (5.13) restricted to the loop
(5.15) takes the form (5.14) with

µ = ˜̀−1, f(t) = β(R + ˜̀̃ωt).

The assumption E /∈ µZ is satisfied since `E /∈ rZ by Lemma 5.2. Therefore

y(R) = KE ˜̀
˜̀

2π∫

0

e−iE ˜̀τβ(R− ˜̀̃ωτ) dτ.

Finally, we denote ν = ω̃/|ω̃|2, z = ˜̀τ (so E ˜̀τ = Eν · ω̃z) and obtain the
integral representation for the (unique) solution x of (5.12):

x(q) = KE ˜̀

2π ˜̀∫

0

e−iE
(
ν·Q+(B/E) ( eH(q)− eH(q−Q)

)
b(q −Q)

∣∣
Q=eωz

dz. (5.16)

Here we treat Q as a point in Rn and H, b as analytic 2π-periodic functions.

The constant E is an unbounded real parameter; so we have represented
x(q) as a rapidly oscillating integral Fourier. Its phase function is complex
whenever q is complex.

Step 3. Study of the oscillating integral (5.16). Denoting % = B/E and
Ψ(q, Q) = H̃(q)− H̃(q −Q) we observe that

i) % ≤ C−1/θB1−1/θ ≤ C−1/θ(∆/C∗)d1(1/θ−1) = C−1/θ(∆/C∗)n+n2+2

(see (5.6) and (5.8));
ii) Ψ(q, 0) ≡ 0;
iii) for q in U2 the function Ψ is analytic in Q and

|∇QΨ(q, ·)|U(∆/2) + |Ψ(q, ·)|U(∆/2) ≤ CK2∆−n−n2−1

(by Lemma 5.3 and the Cauchy estimate);
iv) the phase function of the Fourier integral (5.16) can be written as

−iE(ν ·Q + ρΨ).
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Let us consider the substitution

Q = R + f(R)ω̃ ≡ Φ(R),

where R ∈ Tn and f is a complex function. Then

ν ·Q + %Ψ(q,Q)
∣∣
Q=Φ(R)

= ν ·R + f(R) + %Ψ(q, R + f(R) ω̃).

In order to simplify the phase function we wish to vanish a sum of the last
two terms in the r.h.s. To achieve this aim the function f has to satisfy the
following equation:

f(R) + %Ψ(q,R + f(R) ω̃) = 0.

If C∗0 is sufficiently large, then by i) and iii) the function Ψ satisfy the following
estimates

|%Ψ|+ |%∇QΨ| ≤ (∆/C∗)n+n2+2CK2∆−n−n2−1 = CC−n−n2−2
∗0 ∆.

for q ∈ U2, R ∈ U(∆/2) and |f | ≤ ∆/C], where C] = (|ω|+1). Since the r.h.s.
of the last inequality is smaller than ∆/C] provided that C∗0 is sufficiently
large, then by the implicit function theorem the equation has a unique solution
f(R) = f(q, R) which is a complex-analytic function of the argument R ∈ U(∆/
2). This solution satisfies the estimate

|f |U(∆/2) ≤ ∆/C∗1,

where C∗1 goes to infinity with C∗0. On the other hand, due to ii), one has
f(0, q) ≡ 0.

With this choice of the function f the map R 7→ Φ(R) analytically extends
to U(∆/2) and is there close to the identity.

Now let us view (5.16) as an integral of a holomorphic function along the
segment S = [0, 2π ˜̀] · ω̃ in the complex plane C1 = C ω̃ ⊂ Cn, namely

x(q) = KE ˜̀

∫

S

e−iE(ν·R+%Ψ(q,R)) b(q −R)dR/|ω̃| .

In this integral we can replace the contour S = {R} by Φ(S) = {Q} ⊂ C1

since both the contours lie in the domain of analyticity and their end points
coincide. As f(R) + %Ψ(q, Φ(R)) ≡ 0, then

x(q) = KE ˜̀

∫

Φ(S)

e−iE(ν·Q+%Ψ(q,Q)) b(q −Q)
dQ

|ω̃|

= KE ˜̀

∫

S

e−iEν·R b(q −Q(R))(1 + |ω̃| f ′(R))
dR

|ω̃|

= KE ˜̀

∫

S

e−iEν·Rg(R)
dR

|ω̃| , (5.17)
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where we use the same notation f for the function f restricted to C1 and denote

g(R) = b(q −Q(R)) (1 + |ω̃| f ′(R)), R ∈ C1.

This function is analytic in U(∆/4) and is bounded there by some constant C1.

In order to estimate the r.h.s. of (5.17) we expand g in Fourier series,

g =
∑

gs eis·R, |gs| ≤ C1 e−|s|∆/4 , (5.18)

(see (A1)). Now we have

x(q) = KE ˜̀

∑
s

gs

2π ˜̀∫

0

e−i(E−eω·s)tdt = KE ˜̀

∑
s

igs

E − ω̃ · s
(
e−iE2π ˜̀− 1

)
,

since ω̃ · ˜̀ is an integer. Therefore x(q) =
∑

gs/ (E − ω̃ · s). By (5.10), (5.18)
and (A2) for q ∈ U2 the solution x estimates as follows:

|x(q)| ≤ CK1

E

∑
〈s〉n+n1+1e−|s|∆/4 ≤ C1K1∆−n−n1−1. (5.19)

We stress that this estimate is independent of `.

Step 4. Transition to limit. Changing the notation, we denote by x`(q) the
solution of (5.12) that we have constructed, and rewrite (5.12) as

−iω̃` · ∇x` + E x` + Bh(q)x` = b(q) + z`(q),

where z` = B hresx`. By (5.19) and Lemma 5.2, |z`|U2 ≤ M `−1/(n2+1) with
some M independent of `. Moreover, still by (5.19), the sequence {x`} contains
a subsequence such that both {x`} and {∇x`} converge uniformly in U3 ⊃
U(δ −∆). Namely x` −→ x and ∇x` −→ ∇x, where

|x(q)|U(δ−∆) ≤ C1K1∆−n−n1−1. (5.20)

As z` −→ 0 and ω̃` −→ ω, then x(q) is a solution of (5.4).

Since (5.20) implies (5.7), then Theorem 5.1 is proven. ¤
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Addendum. The theorem of A.N. Kolmogorov

A1. Introduction.
The celebrated theorem of Kolmogorov states that most (in the sense of mea-

sure) of quasiperiodic solutions of an integrable analytic Hamiltonian equation
persist under analytic perturbations of the hamiltonian, provided that Hessian
of the hamiltonian does not vanish identically. Kolmogorov stated this result
and sketched its proof in [Kol]. The proof was written later in full details
by Arnold and Moser, who used similar ideas to tackle other problems, thus
originating the KAM-theory (see e.g., [A2, Mo1]).

During more than 40 years of its history the theorem has been sharpened
and new important related results were proven. Many of them can be found in
the books [AKN, BHS, Her2, Laz, Mo1, Tr].

Despite the improvements and developments, the Kolmogorov result still
remains “the KAM-theorem”, both because its beauty and its huge interdisci-
plinary importance (this result is quoted and discussed in majority of scientific
works, devoted to chaotic and regular dynamics).

Below we present a proof of the theorem, based on the techniques and ideas,
developed to prove the abstract KAM-theorem of this book. Some of these
techniques are due to the author,1 some were developed by other mathemati-
cians.2 We follow closely the proof of Theorem II.1.3. Namely, we keep its
notations and some fragments of arguments below are identical to the corre-
sponding fragments of the proof of Theorem II.1.3.

A2. Theorems A and B.
Let P be a connected bounded domain in Rn. In the symplectic space

(P×Tn, dp∧dq) we consider an integrable hamiltonian system with the analytic
hamiltonian h(p):

ṗ = 0, q̇ = ∇ph(p), (1)

and its perturbation:

ṗ = −∇qHε(p, q), q̇ = ∇pHε(p, ε). (2)

Here 0 ≤ ε ≤ 1 and Hε = h(p) + εH1(p, q) with some analytic function H1.
The phase-space P × Tn is filled with Lagrangian tori Tn

p = {p} × Tn, which
are invariant for the integrable equation (1). The theorem of A.N.Kolmogorov
states that most of them persist as analytic invariant tori of the perturbed
equation (2), provided that ε is sufficiently small and

Hess h(p) 6≡ 0. (3)

More specifically, the following result holds for any ρ0 ∈ (0, 1/9):

1In particular, the idea to treat hamiltonians as a Lipschitz (rather than analytic) func-
tions of the frequency-vector.

2In particular, the idea to pass from Theorem A below to Theorem B is due to J.Moser.
It has been systematically used by J.Pöschel.

201



Theorem A. Let (3) holds. Then there exist a Borel subset Pε ⊂ P and a
Lipschitz embedding Σε : Pε × Tn → P × Tn, analytic in the second variable,
such that:

a) mesn(P \ Pε) → 0 as ε → 0;
b) the map Σε is Cερ0-close to the identity map, both in the uniform and in

the Lipschitz norm;
c) each torus Tn

p,ε = Σε(Tn
p ), p ∈ Pε, is invariant for equation (2) and is

filled with its time-quasiperiodic solutions hε(t) of the form hε(t) = hε(t; p, q) =
Σε(p, q+tωε(p)) (p ∈ Pε, q ∈ Tn), where ωε = ωε(p) and |ωε−∇h(p)| ≤ Cερ0 .

Since the function h is analytic, then due to (3) the set {p | Hess h(p) = 0}
is a closed zero–measure set. Hence, for any γ > 0 we can find a finite system
of open connected subsets Pj ⊂ P such that mes (P \∪Pj) < γ and ∇h defines
diffeomorphisms ∇h : Pj → Rn. Accordingly, it is sufficient to prove the
theorem with (3) replaced by the stronger assumption:

the map∇h : P̄ −→ Ω b Rn is a diffeomorphism. (4)

(To get Theorem A from this new result it suffice to apply it to the sets Pj and
next send γ to zero).

To prove the theorem we have to check that a “typical” torus Tn
a , a ∈ P ,

persists under the perturbation. After our goal is formulated in this way, it is
natural to scale the equation near the torus Tn

a :

p = a + ε2/3p̃, q = q̃. (5)

Since dp̃ ∧ dq̃ = ε−2/3dp ∧ dq, then in the tilde-variables the hamiltonian takes
the form3:

Hε(p̃, q̃; a) = ε−2/3(h(a + ε2/3p̃) + εH1(a + ε2/3p̃, q̃))

= ε−2/3h(a) +∇h(a) · p̃ + ε1/3(H1 + ε−1h2).

Here h2 = h(a + ε2/3p̃) − ε2/3∇h(a) · p̃, so ε−1h2 = ε1/3O(|p̃|2). Accordingly,
H1 + ε−1h2 is an analytic function such that

|H1 + ε−1h2| ≤ C for p̃ ∈ Oδ(Cn), a ∈ P +
δ

2
⊂ Cn , |Im q̃| < δ

2
, (6)

uniformly in 0 ≤ ε ≤ 1. Due to (4), we can replace the parameter a ∈ P of the
substitution (5) by the parameter ω,

ω = ∇h(a) ∈ Ω = ∇h(P ).

3This is one of basic properties of Hamiltonian equations (see [A1], cf. the Corollary to
Theorem I.1.12). It can be trivially checked by substituting (5) to equations (2).
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Let us denote
H(p̃, q̃; ω, ε) = H1 + ε−1h2 |a=(∇h)−1(ω) .

Neglecting the irrelevant constant ε−2/3h(a), we write the hamiltonian Hε as

Hε(p̃, q̃; ω, ε) = ω · p̃ + ε1/3H(p̃, q̃; ω, ε).

Due to estimates (6), the function H is Lipschitz in ω ∈ Ω, analytic in p̃, q̃ and

|H|Oδ(Cn)×U(δ/2),Ω ≤ C ,

uniformly in ε. Here for any δ′ > 0 we denote

U(δ′) = {q ∈ Cn/2πZn | | Im q| < δ′} .

Concerning the norm | · |Oδ(Cn)×U(δ/2),Ω, see the section Notations.

Now Theorem A follows from its sibling (which is another appearance of the
Kolmogorov’s theorem):

On the domain (Oδ × Tn, dp ∧ dq), where Oδ abbreviates Oδ(Rn), let us
consider the linear hamiltonian H0 = ω · p, depending on the parameter ω ∈
Ω b Rn, and its analytic perturbation Hε,

Hε = ω · p + εH(p, q;ω, ε).

Corresponding perturbed Hamiltonian equations are:

ṗ = −ε∇qH, q̇ = ω + ε∇pH. (7)

Choosing any ρ ∈ (0, 1/3) and denoting by Ψ0 the map Tn × Ω → Oδ × Tn

which sends a point (q, ω) to (0, q), we have:

Theorem B. Let H be an analytic function of the (p, q)-variables such that
|H|Oδ(Cn)×U(δ),Ω ≤ 1 with some δ > 0, uniformly in 0 ≤ ε ≤ 1. Then there
exist a Borel subset Ωε ⊂ Ω and a Lipschitz map Ψε : Tn × Ωε → Oδ × Tn,
analytic in the first variable, such that:

a) mesn(Ω \ Ωε) → 0 as ε → 0,
b) |Ψε −Ψ0|Tn×Ωε,Lip ≤ Cερ,
c) each torus Ψε(Tn × {ω}), ω ∈ Ωε, is invariant for the flow of equation

(7) and is filled with its quasiperiodic solutions Ψε(q0 + ω′t, ω), where q0 ∈ Tn,
ω′ = ω′(ω) and |ω′ − ω| ≤ Cερ.

To show how Theorem B with δ replaced by δ/2 and ε equal to Cε1/3 implies
Theorem A, we choose Pε = (∇h)−1Ωε and define the map Σε : Pε × Tn →
P × Tn as follows:

Σε(p, q) =
(
p + ε2/3ΠpΨε (q,∇h(p)) , ΠqΨε (q,∇h(p))

)
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(Πp and Πq stand for the natural projectors on Rn and Tn respectively). Since
the substitution (5) transforms a solution (p̃, q̃) of (7) to the solution of (2),
then the curves Σε(p, q+tωε(p)), where ωε(p) = ω′(∇h(p)), satisfy the equation
(2). Clearly the maps Σε and ωε meet the estimates in assertions b) and c) of
Theorem A, so the theorem follows.

The restriction ρ0 < 1/9, imposed in Theorem A, looks unnatural and indeed
it is superficial: the theorem remains true for any ρ0 < 1. To get this result,
first few steps of the KAM-procedure which proves the theorem, should be done
“by hand”, see in [K] Refinement 2, p.51.

A3. Sketch of the proof.
Proof of the Theorem B, presented below, uses a version of the KAM-

procedure. We start with its brief description.
Let us introduce the sequence of real numbers {εm} which “very fast” con-

verge to zero:
εm = ε(1+ρ)m

, m ≥ 0,

and a decreasing sequence of complex neighbourhoods Om of the torus {0}×Tn:

Om = O
ε
2/3
m

(Cn)× U(δm).

Here {δm} is the defined below in section A5 decreasing sequence δ = δ0 >
δ1 > δ2 · · · > δ/2. By Or

m we denote a real part of the complex domain Om.
The KAM-procedure we use is given by the following construction. For

m = 0, 1, . . . we find:
1) an analytic function Hm on the domain Om which is ε

1/3
m -close to an

appropriate linear function p · Λm (for m = 0, the function H0 equals Hε).
This function is treated as a hamiltonians of the corresponding Hamiltonian
system;

2) a Borel set Ωm ⊂ Ω such that Ωm ⊂ Ωm−1 and Ω0 = Ω;
3) a symplectic transformation Sm(·;ω) : Or

m+1 → Or
m, defined for ω in

Ωm+1, which analytically extends to Om+1 and transforms the function Hm to
Hm+1.

When the objects above are obtained, we note that the transformation S0 ◦
· · · ◦ Sm−1 with a large m “almost integrates” the equation (7). Indeed, since
Hm “almost equals” p·Λm, then the curves t 7→ (0, q+Λmt) “almost satisfy” an
equation with the hamiltonian Hm and the curves t 7→ (S0 ◦ · · · ◦ Sm−1)(0, q +
Λmt) “almost satisfy” the original one, provided that ω ∈ Ωm. The limiting
transformation S0 ◦S1 ◦ . . . is defined on the torus {0}×Tn if ω ∈ Ωε := ∩Ωm

and sends the limiting curves (0, q + Λ∞t) to exact solutions.

A4. Reformulation of the theorem’s assertion.
We note that Theorem B which we are going to prove is equivalent to the

following result: for any γ > 0, there exists a Borel subset Ωε
γ ⊂ Ω such that

mesn(Ω \ Ωε
γ) < γ and the assertions b), c), of the theorem hold as soon as
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ε < ε̄(γ), where ε̄(γ) > 0 is continuous in γ and goes to zero with γ. This
function may be assumed to be monotonic in γ.4 So the inverse function γ(ε),

γ(ε) = min{γ | ε̄(γ) = ε},

is positive for ε > 0, goes to zero with ε, and the set Ωε := Ωε
γ(ε) satisfies all

claims of Theorem B.

A5. Proof of Theorem B.
We introduce an increasing sequence {e(j)} as in section II.3.2. That is,

e(0) = 0 and

e(m) = (1−2 + · · ·+ m−2)/K∗, K∗ = 2(1−2 + 2−2 + . . . ), (8)

so e(m) < 1/2 for all m. Now we define a “radius of analyticity δm at the m-th
step” as

δm = δ0(1− e(m)).

We shall use the sequence {εm} and the domains Om, defined earlier. Besides,
we define the intermediate numbers δj

m:

δm = δ0
m > δ1

m > · · · > δ6
m = δm+1, δj

m =
6− j

6
δm +

j

6
δm+1,

and the intermediate domains Oj
m and U j

m:

Om = O0
m ⊃ O1

m ⊃ · · · ⊃ O6
m ⊃ Om+1, Oj

m = O(2−jεm)2/3 × U(δj
m),

Um = U0
m ⊃ U1

m ⊃ · · · ⊃ U6
m = Um+1, U j

m = U(δj
m)

(the inclusion O6
m ⊃ Om+1 holds provided that ε is sufficiently small).

Below (as well as in the proofs of Part II) C, C1 etc. stand for different pos-
itive constants, independent of m and ε; C(m), C1(m) etc. stand for different
functions of the form C(m) = C1m

C2 . The constants Cj may depend on γ.
All arguments will be done under the assumption that ε is sufficiently small,

i.e. ε < ε̄ for some positive ε̄(γ). Since the sequence εm decays with m faster
than any exponent, then choosing ε̄ sufficiently small we may achieve that

C(m)εν
m < 1 ∀m ≥ 0,

for any fixed C(m) and ν > 0. We shall use this estimate without further
remarks, decreasing in a need ε̄ finitely many times.

4since if ε̄ is not monotonic, then we can replace it by the bigger (i.e.,“better”) function
ε̃(γ) = max{ε̄(τ) | 0 ≤ τ ≤ γ}, modifying the sets Ωε

γ accordingly.
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Hamiltonians Hm. For any m ≥ 0 we consider an analytic hamiltonian
Hm(p, q; ω) on the domain Om, depending on the parameter ω ∈ Ωm ⊂ Ω.
For m = 0 this hamiltonian equals Hε. For any m ≥ 0 it has the form

Hm = H0m(p;ω) + εmHm(p, q;ω). (9)

The term H0m is a liner function

H0m = p · Λm(ω);

this is an “essential part” of the hamiltonian. The term εmHm is viewed as a
perturbation. The set Ωm is a Borel subset of Ω such that

mes (Ω \ Ωm) ≤ γe(m). (10)

The map ω 7→ Λm is Lipschitz and is close to the identity:

|Λm(ω)− ω|Ωm,Lip ≤ 2K∗ε1/3e(m) (11)

(| · |Ωm,Lip stands for the Lipschitz norm, see Notations, and K∗ is defined in
(8)). The function Hm is assumed to be analytic in Om and satisfy there the
following estimate:

|Hm|Om, Ωm ≤ 2m . (12)

Corresponding Hamiltonian equations take the form

ṗ = −εm∇qHm, q̇ = Λm + εm∇pHm. (13)

The original equations (7) are the equations (13)|m=0. The hamiltonian H0 =
H and the frequency vector Λ0 = ω clearly satisfy (12) and (11) with m = 0.

Now our goal is to construct the chain of symplectic transformations S0,
S1, . . . which successively transform the hamiltonian H0 = Hε to H1, H2 etc.,
as it was indicated above.

Step 1: Averaging. Isolating an affine in p part of the hamiltonian Hm,
we write it as

Hm = hq(q;ω) + p · h1p(q, ω) + H2m(p, q; ω),

where H2m = O(|p|2). Subtracting from Hm the irrelevant constant, equal to
its mean-value in q, we achieve that (2π)−n

∫
hqdq = 0. The q-component of

equation (13) for p = 0 is

q̇ = Λm + εmh1p(q; ω).
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Following the general ideology of averaging (see in [AKN]), we calculate the
averaged frequency Λm+1(ω),

Λm+1 = Λm + εmh0p, h0p = (2π)−n

∫
h1pdq ,

and modify accordingly the essential part H0m of the hamiltonian. Namely,
denoting hp = h1p − h0p we rewrite Hm as

Hm = p · Λm+1︸ ︷︷ ︸
H0m+1

+εm (hq + p · hp)︸ ︷︷ ︸
H1m

+εmH2m. (14)

Clearly,
H1m + H2m = Hm − p · h0p(ω).

Lemma 1. The terms of the decomposition (14) estimate as follows:

a) |hq|Um, Ωm ≤ 2m,

|h0p|Ωm,Lip ≤ 2 · 2mε−2/3
m ,

|hp|Um, Ωm ≤ 2m+1ε−2/3
m .

b) In the domain Om+1 ⊂ Om the term εmH2m is twice smaller than the
bound for a perturbation εm+1Hm+1 of the next step:

εm|H2m|Om+1, Ωm ≤ 2mεm+1.

c) The functions H1m, H2m are analytic in Om and are real for real argu-
ments.

Proof. a) The estimates for hq and its Lipschitz constant follow from (12) since
hq(q; ω) = Hm(0, q; ω).

Since h1p(q;ω) = ∇pHm(0, q; ω), then (12) and the Cauchy estimate imply
that

|h1p| ≤ 2mε−2/3
m .

Since h0p is an average of h1p, then its norm is bounded by 2mε
−2/3
m and the

norm of hp = h1p − h0p is bounded by 2 · 2mε
−2/3
m . So to prove a) it remains

to estimate the Lipschitz constants in ω. To bound a Lipschitz constant of h1p

we consider the vector-function (∇pHm(0, q; ω1) − ∇pHm(0, q;ω2))/|ω1 − ω2|
and argue as above. This bound implies the claimed estimates for Lipschitz
constants of h0p and hp.

b) Let (p, q) ∈ Om+1 and ν = ε
2ρ/3
m . Then for any z from the unit complex

disc we have ((z/ν)p, q) ∈ Om. On this disc let us consider the function z 7→
Hm((z/ν)ρ, q;ω) and its Taylor series at zero:

Hm

( z

ν
p, q; ω

)
= h0 + h1z + h2z

2 + . . . ,
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where hk = hk(q;ω). By the Cauchy inequality and (12), |hk| ≤ 2m for every
k. Therefore,

|εmH2m(p, q)| = εm|h2ν
2 + h3ν

3 + . . . | ≤ εmν22m|1 + ν + ν2 + . . . |
≤ ε1+4ρ/3

m

1
1− ν

2m ≤ εm+12m,

if ε̄ is sufficiently small. A similar estimate holds for the Lipschitz constant, so
the assertion is proven.

c) The analyticity is obvious; the functions are real for real arguments since
the hamiltonian Hm is. ¤

Due to item a) of the lemma and (11),

|Λm+1 − ω|Ωm,Lip ≤ 2K∗ε1/3e(m) + 2m+1ε1/3
m ≤ 2K∗ε1/3e(m + 1) (15)

since 2m+1ε
1/3
m ≤ 2ε1/3(m + 1)−2 for every m ≥ 0 if ε̄ is sufficiently small.

Hence, Λm+1 satisfies (11) with m := m + 1.

Step 2: Formal construction of the transformation Sm and deriva-
tion of homological equations. We construct the transformation Sm as
the time-one shift along trajectories of an auxiliary autonomous Hamiltonian
vector field

ṗ = −εm∇qF, q̇ = εm∇pF. (16)

The transformation Sm has to kill an “essential part” of the perturbation in
hamiltonian (14), where the “perturbation” is given by the terms of order εm.
Due to the item b) of Lemma 1, the term εmH2m is irrelevant, so the essential
one is εmH1m. The informal rule to kill a term is that the auxiliary hamiltonian
has to be similar to a term to be killed. Accordingly, we take the hamiltonian
F of the same form as H1m:

F = fq(q; ω) + p · fp(q;ω).

The flow of equation (16) is formed by canonical transformations St and

d

dt
Hm · St |t=0= εm{F,Hm}+ O(ε2

m),

where {F,Hm} = ∇pF · ∇qHm − ∇qF · ∇pHm (cf. Theorem I.1.7). Since
Hm = H0 m+1 +εmH1m +εmH2m and εmH2m = O(εm+1) in the domain Om+1

by Lemma 1, then for (p, q) ∈ Om+1 the transformed hamiltonian Hm ◦ Sm =
Hm ◦ St |t=1 equals

Hm(Sm(p, q;ω); ω) = H0m+1 + εm(H1m + {F,Hm}) + O(εm+1).
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Noting that ∇pH0m+1 = Λm+1, ∇qH0m+1 = 0 and abbreviating

Λm+1 = ω′, ω′ · ∇q =
∂

∂ω′
,

we have {F, H0 m+1} = − ∂
∂ω′F . Since formally

εm(H1m + {F,Hm}) = εm(H1m + {F, H0 m+1}) + O(ε2
m),

then

Hm ◦ Sm = H0 m+1 + εm

(
hq + p · fq − ∂fq

∂ω′
− p · ∂fp

∂ω′

)
+ O(εm+1).

Therefore we shall have

H1m + {F, H0 m+1} = 0 (17)

and the transformed hamiltonian H ◦ Sm will (formally) take the desired form
p · Λm+1 + O(εm+1) in the domain Om+1 (cf. (9) with m := m + 1), provided
that the functions fq and fp satisfy the following homological equations:

∂fq

∂ω′
= hq(q; ω),

∂fp

∂ω′
= hp(q; ω).

Step 3: Solving the homological equations. This step is described by
the following lemma:

Lemma 2. Let us define the set Ωm+1 as Ωm \ Ω′, where

Ω′ =
{
ω ∈ Ωm | |ω′ · s| ≤ C−1(m + 1)−2|s|−n

for some s = s(ω) ∈ Zn \ {0}},

and C = C(γ) is sufficiently large. Then
a) mesnΩ′ ≤ γ(m + 1)−2/K∗ (for the constant K∗ see (8));
b) for any ω ∈ Ωm+1 the homological equations have unique zero-meanvalue

analytic solutions fq and fp, real for real arguments, and such that

|fq|U1
m,Ωm+1 ≤ C(m), |fp|U1

m,Ωm+1 ≤ C(m)ε−2/3
m .

Proof. As ω′ = Λm+1 satisfies (15), then the map Ωm 3 ω 7→ ω′ is Lipschitz-
close to the identity. So it changes the n-dimensional Lebesgue measure no more
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than twice (see Lemma A1 in Appendix II.1). Therefore, mesnΩ′ ≤ 2mesnΩ̃,
where

Ω̃ =
{
ω ∈ Ω + 1 | |ω′ · s| ≤ C−1(m + 1)−2|s|−n for some s 6= 0

}

(here Ω + 1 is the 1-neighbourhood of Ω in Rn. This set clearly contains range
of the map ω → ω′).

By Lemma A2 from Appendix II.2, mesnΩ̃ ≤ C(Ω)(m + 1)−2/C. So a)
follows, if we choose C sufficiently large.

The assertion b) results from Lemma A1 in the same Appendix with C∗ =
C(m+1)2 and ρ = δm−δ1

m = δ0
6K∗(m+1)2 since analytic norms of the functions

hp and hq are bounded in Lemma 1. ¤

Step 4: Study of the transformation Sm. The transformation Sm is a
time-one shift along trajectories of the Hamiltonian equations (16), which we
now write as

d

dt
(p, q) = εm

(
−∇qF (p, q; ω), fp(q, ω)

)
=: εmV (p, q; ω). (18)

We abbreviate (p, q) = h, so these equations abbreviate to

ḣ = εmV (h; ω).

We shall study equations (18) in domains Oj
m, j ≥ 2, supplied with new

distance dist−. The distance corresponds to the weighted norm | · |− in the
space Cn × Cn = C2n, where

|(p, ξ)|− = |p|2 + ε−4/3
m |ξ|2.

The space C2n, given this norm, denotes C2n
− . It follows from Lemma 2 and

the Cauchy estimate that

|εmV |O2
m,Ωm+1

− ≤ C(m)ε1/3
m . (19)

Identifying tangent spaces ThO2
m with Cn ×Cn, we write the linearised vector

field εmV∗ as the block-matrix εm

(
−∂fp

∂q −∂2F
∂q2

0 ∂fp

∂q

)
. A straightforward anal-

ysis of the blocks (again based on Lemma 2 and the Cauchy estimate) shows
that

‖εmV∗(h)‖O2
m,Ωm+1 ≤ C(m)ε1/3

m , (20)

where ‖ · ‖ stands for the operator norm C2n → C2n or C2n
− → C2n

− .
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Lemma 3. The map Sm is an analytic symplectomorphism which maps Oj
m

to Oj−1
m for j = 3, 4, 5. It is close to the identity, namely:

a) |Sm − id|O3
m,Ωm+1

− ≤ C1(m)ε1/3
m ;

b) ‖Sm∗− id‖O4
m,Ωm+1 ≤ C2(m)ε1/3

m , where ‖·‖ stands for the operator norm
C2n → C2n or C2n

− → C2n
− .

c) All the results, stated above for the map Sm = S1, remain true for any
map Sθ, 0 ≤ θ ≤ 1.

Proof. Since
dist−(Oj+1

m , Om \Oj
m) ≥ C−1(m) ∀j ≥ 1,

then in virtue of estimate (19) the map Sm is an analytic symplectomorphism
which maps each domain Oj

m, j ≥ 3, to Oj−1
m .

As

Sm(h;ω)− h = εm

∫ 1

0

V (St(h; ω); ω)dt,

then (19) implies the estimate for Sm−id, claimed in a). To bound the Lipschitz
constant in ω, we denote η(t) = St(h;ω1)− St(h; ω2) and note that this curve
satisfies the equation

η̇ = εmV (h1;ω1)− εmV (h2; ω2).

Due to (20), Lipschitz constant of the map εmV in h, calculated both in the
weighted and non-weighted norms, is bounded by C(m)ε1/3

m . Accordingly,

d

dt
|η|− ≤ C(m)ε1/3

m (|η|− + |ω2 − ω1|), η(0) = 0 .

So |η(1)|− ≤ C1(m)ε1/3
m |ω2 − ω1| by the Granwall lemma and the assertion a)

is proven completely.
To prove b) we note that for any ξ the curves t 7→ St(h)∗ξ satisfy the

linearised equation ξ̇ = εmV∗(h(t)ξ, so the estimates for the map Sm∗ − id
follow from (19) and (20).

The same arguments as above apply to any map Sθ, 0 ≤ θ ≤ 1, thus proving
c). ¤

Step 5: The transformed hamiltonian. At this step we study the
transformed hamiltonian

Hm ◦ Sm = H0 m+1 ◦ Sm + εm(H1m + H2m) ◦ Sm. (21)

Since

f(1) = f(0) + ft(0) +
∫ 1

0

(1− t)ftt(t)dt
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for any C2-smooth function f(t), then

H0 m+1 ◦ Sm = H0 m+1 ◦ S1 =H0 m+1 +
d

dt
H0 m+1 ◦ St |t=0

+
∫ 1

0

(1− t)
d2

dt2
H0 m+1 ◦ Stdt.

Using (17) we get:

d

dt
H0 m+1 ◦ St = εm{F, H0 m+1} ◦ St = −εmH1m ◦ St

and
d2

dt2
H0 m+1 ◦ St = −εm

d

dt
H1m ◦ St = −ε2

m{F, H1m} ◦ St.

Therefore,

H0 m+1 ◦ Sm = H0 m+1 − εmH1m − ε2
m

∫ 1

0

(1− t){F, H1m} ◦ Stdt.

Similar, since d
dt (H1m + H2m) ◦ St = εm{F, H1m + H2m} ◦ St, then

εm(H1m + H2m) ◦ Sm = εm(H1m + H2m) + ε2
m

∫ 1

0

{F, H1m + H2m} ◦ Stdt.

Substituting the obtained relation to (21) we find that

Hm ◦ Sm =H0 m+1 − εmH1m + εm(H1m + H2m)

−ε2
m

∫ 1

0

(1− t){F, H1m} ◦ Stdt + ε2
m

∫ 1

0

{F, H1m + H2m} ◦ Stdt.

That is, Hm ◦ Sm = H0 m+1 + εm+1Hm+1, where

εm+1Hm+1 = εmH2m+ε2
m

∫ 1

0

(
(t− 1){F, H1m}

+ {F, Hm − p · h0 p}) ◦ Stdt . (22)

We checked at the end of Step 1 that the frequency map Λm+1 satisfies (11).
Now we claim that also the domain Ωm+1 and the hamiltonian Hm+1 := Hm ◦
Sm satisfy corresponding estimates estimates (10) and (12) (with m replaced
by m + 1). Indeed, since Ωm+1 = Ωm \ Ω′, then using Lemma 2 we get:

mes (Ω \ Ωm+1) ≤ mes (Ω \ Ωm) + mes Ω′ ≤
γe(m) + γ(m + 1)−2/K∗ = γe(m + 1),
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so Ωm+1 satisfies (10).
It remains to check that the term εm+1Hm+1, defined by (22), satisfies (12)

with m := m + 1. The term εmH2m was treated in Lemma 1. To estimate the
integral–terms we note that by (12), Lemmas 1, 2 and the Cauchy estimate,
everywhere in O2

m we have:

‖∇pK‖O2
m, Ωm+1 ≤ C(m)ε−2/3

m , ‖∇qK‖O2
m, Ωm+1 ≤ C(m),

where K = F , or K = H1m or K = Hm − p · h0 p. Therefore all the Poisson
brackets which enter (22), for all t are bounded by C(m)ε−2/3

m everywhere in
O2

m, as well as their Lipschitz constants. Due to Lemma 3, the transformations
St with 0 ≤ t ≤ 1 map O3

m to O2
m and they are Lipschitz-close to the identity.

Hence, the integral in the r.h.s. of (22) and its Lipschitz constant in ω ∈ Ωm+1

are bounded by C(m)ε4/3
m .

Step 6: Transition to limit. Here we show that the set (S0◦S1◦. . . )({0}×
Tn) ⊂ Rn×Tn is an analytic torus, invariant for equation (7). By h we denote
points (p, q) ∈ Rn × Tn; by Πh and Πω we denote the projectors (h; ω) 7→ h
and (h; ω) 7→ ω, respectively. Besides, we set

Ωε = ∩Ωm

and
O = {0} × U(δ/2) ⊂ Cn × (Cn/2πZn) .

Then Ωε is a Borel subset of Ω and mes (Ω\Ωε) ≤ γ/2 due to (10). The set O is
a neighbourhood of the torus {0}×Tn in the complex cylinder {0}×(Cn/2πZn),
which is contained in every domain Om since δm > δ/2.

For 0 ≤ r ≤ N we consider the maps

Σr
N : ON × ΩN → Or, (h;ω) 7→ Sr ◦ · · · ◦ SN−1(h),

where Sj(h) = Sj(h; ω) (by definition, Σr
r is the projection Πh). We note that

the domain of definition of every map Σr
N contains the set O × Ωε.

We claim that
|Σr

r+M −Πh|Or+M , Ωε ≤ ερ
r , (23)

uniformly in M ≥ 0. The estimate follows by indication in M . Indeed, for
M = 0 it is obvious. If M ≥ 1, then

Σr
r+M −Πh = (Sr −Πh) ◦ (Σr+1

r+M ×Πω) + (Σr+1
r+M −Πh).

Let us denote the l.h.s. of (23) as Dr
r+M . Using the last identity, Lemma 3 and

the base of induction we find that

Dr
r+M ≤ C(r)ε1/3

r (Dr+1
r+M + 2) + Dr+1

r+M ≤ 3C(r)ε1/3
r + ερ

r+1 ≤ ερ
r ,
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so (23) follows.
Similar to (23),

‖ ∂

∂h
Σr

N (h;ω)− id‖ ≤ ερ
r (24)

for any r ≤ N and any h ∈ ON , ω ∈ ΩN . To prove the estimate it suffice to
write ∂

∂hΣr
N using the chain rule and apply Lemma 3.

Due to (23) for every m ≥ 0 and for each ω ∈ Ωε, the maps Σm
m+N (·; ω),

restricted to O, uniformly converge as N →∞ to an analytic map

Σm
∞(·; ω) : O → Om,

and Σm
p ◦ Σp

∞ = Σm
∞ for all p ≥ m. By analyticity, the derivatives ∂

∂hΣm
m+N

converge to a derivative of the limiting map. Using (24) we get that the latter
satisfies the estimate

‖ ∂

∂h
Σm
∞(h;ω)− id‖ ≤ ερ

m ∀(h, ω) ∈ O × Ωε. (25)

Now we discuss the frequency vectors Λm. Due to the recurrent definition
of Λm+1 in terms of Λm and item a) of Lemma 1, |Λm+1 − Λm|Ωm+1, Lip ≤
2m+1ε

1/3
m . So the maps Λm : Ωm → Rn, restricted to Ωε, converge to a limiting

Lipschitz transformation Λ∞ : Ωε → Rn such that |Λ∞ − id|Ωε, Lip ≤ Cε1/3

and
|Λ∞ − Λm| ≤ 2m+2ε1/3

m .

Let us fix any ω ∈ Ωε and q0 ∈ Tn. We consider the curve

h∞(t) = (0, q0 + tΛ∞(ω), 0) ⊂ {0} × Tn

and its images under the maps Σm
∞, i.e. the curves hm(t) = Σm

∞h∞(t) ⊂ Om.
We shall show that h0(t) is a solution for (7). To do this we first use (25) to
get that

ḣm = Σm
∞∗(h∞)ḣ∞ = (0, Λ∞) + O(ερ

m) ⊂ R2n.

Let us denote by Vm a Hamiltonian vector field with the hamiltonian Hm. By
(12), Vm(hm) = (0, Λm) + O(ερ

m). Since Λm = Λ∞ + O(ερ
m), then Vm(hm) =

(0, Λ∞) + O(ερ
m) and we get that

ḣm = Vm(hm) + O(ερ
m). (26)

The linear map Σ0
m∗(hm) sends ḣm to ḣ0, sends Vm(hm) to V0(h0) and its norm

is bounded by two due to (24). Applying this map to (26) we get that

ḣ0 = V0(h0) + O(ερ
m)

for every m. Hence, ḣ0 = V0(h0). That is, the curve Σ0
∞(0, q0 + tΛ∞(ω)) is a

solution of equation (7) for any q0 ∈ Tn, if ω ∈ Ωε.

This proves Theorem B if we choose Σε(q, ω) = Σ0
∞(0, q;ω) and ω′ = Λ∞(ω).
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[KP] Kuksin S.B., Pöschel J., Invariant Cantor manifolds of quasi-periodic oscillations
for a nonlinear Schrödinger equation, Annals of Mathematics 143 (1996), 149-179.

[Kr1] Krichever I.M., Perturbation theory in periodic problems for two-dimensional inte-
grable systems, Sov. Sci. Rev. C. Math. Phys. 9 (1991), 1-101.

[Kr2] Krichever I.M., Spectral theory of two dimensional periodic operators and its appli-
cations, Uspekhi Mat. Nauk 44:2 (1989), 121-184; English transl. in Russ. Math.
Surv. 44:2 (1989).

[Krie] Kriecherbauer T., Estimates on Green’s functions of quasi-periodic matrix opera-
tors and a new version of the Coupling Lemma in the Fröhlich–Spencer techniques,
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[P1] Pöschel J., On elliptic lower dimensional tori in Hamiltonian systems, Math. Z.
202 (1989), 559-608.
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