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PREFACE

The book was written to present a proof of the following KAM theorem:
most of space-periodic finite-gap solutions of a Lax-integrable Hamiltonian par-
tial differential equation (PDE) persist under a small Hamiltonian perturbation
of the equation as time-quasiperiodic solutions of the perturbed equation. In or-
der to prove the theorem we develop a theory of Hamiltonian PDEs (section 1)
and give short presentations of abstract Lax-integrable equations (section 2)
as well as of classical Lax-integrable PDEs (sections 3-4). Next in sections 5-7
we develop normal forms for Lax-integrable PDEs in the vicinity of manifolds,
formed by the finite-gap solutions. Finally we prove the main theorem applying
an abstract KAM-theorem (sections 1 and 3 of Part II) to equations, written in
the normal form. Our presentation is rather complete; the only non-trivial re-
sult which is given without a proof is the celebrated Its-Matveev theta-formula
for finite-gap solutions of a Lax-integrable PDE. The mentioned above normal
form results and the abstract KAM theorem are important effective tools to
study nonlinear PDEs, apart from the persistence of finite-gap solutions (e.g.,
see [K] and [BoK2, KP] for some other KAM-results).

We have restricted ourselves to the so-called “finite volume case”. That
is, we are concerned with equations for functions (or vector-functions) u(t, x),
where the space-variable = belongs to a bounded domain and the equations are
supplemented by appropriate boundary conditions. The reason is that in the
infinite-volume case time-quasiperiodic solutions are very exceptional and dis-
appear under general perturbations of the equation, see [Sig]. Accordingly, all
preliminary results on Hamiltonian PDEs and infinite-dimensional Hamiltonian
systems are designed to treat PDEs in finite volume.

The book is devoted to global aspects of the “KAM for PDEs” theory and it
does not include the two local theories, namely perturbations of linear equations
and small oscillations in nonlinear equations. References for these two topics
can be found in section II.1.5 and in [K7].

The book is aimed at a reader with “standard” mathematical background.
Still, some knowledge of basic symplectic geometry, nonlinear PDEs, Sobolev
spaces and interpolation would simplify reading. As possible references for
these four subjects we may suggest [Al], [Lion] and [RS] (for the last two). No
knowledge of KAM-techniques is assumed. To help a reader to understand a
rather technical proof of the abstract KAM-theorem, we wrote an Addendum
where the same techniques and ideas are used in much easier finite-dimensional
situation to prove the classical theorem of A.N.Kolmogorov (which originated
the whole of KAM-theory).

This book finalises my research on the topic “KAM for PDEs”, started with
the papers [K1, K2|. It was written piece by piece in my home institutes and
during visits to FIM (ETH, Ziirich), IHES (Bures sur Yvette), IAS (Princeton)
and University of Arizona (Tucson). I sincerely thank these institutions for
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their hospitality, excellent working conditions and for typing some parts of the
manuscript.

While working on the book (and on the whole KAM-topic), I have profited
a lot from discussions and collaboration with many colleagues. I am much
obliged to all of them. I am especially thankful to Jiirgen Moser for many
discussions we had during my two-years staying at FIM and for his support
of my KAM-research. It was Professor Moser who encouraged me to complete
my research in the form, finally presented in this book.



NOTATIONS

Sets. Everywhere in the book “domain” means “non-empty open set”. Over-
line signifies the closure of a set.

If Y is a Banach space, y € Y and § > 0, then by Os(y,Y) we denote the
open d-neighbourhood of y; if y = 0, then we abbreviate Os(0,Y) to Os(Y). If
F' is a subset of a metric space, then F + § is the §-neighbourhood of F', that
is FF4+0 = {m |dist (m, F) <6} (so Os(y,Y) ={y} +6). By T" we denote the
n-torus T" = R"/(27Z™) and abbreviate T! = S* = S. By U(d) we denote its
complex d-neighbourhood,

U)={qeC"/(2xZ") | |Img| < §} D T".
For a Hilbert scale {Y;} and its complexification {Y} we denote

Vs =R" xT" x Y, Yi=C" x (C"/2rZ"™) x Y.

Sets of indexes. By Z>¢ and Zg we denote the sets of non-negative and non-zero
integers. For any n > 1 and any integer n-vector V = (V1,...,V,), V; > 0, we
set

Ny = {m e N |m £V, Vj},
ZV:{TREZQ’WL#:&‘/]’ Vj}:NVu—Nv.

If V is the vector V™ = (1,...,n), then we abbreviate Ny~ to N,, and Zy~ to
Lo, -

Infinity. Everywhere in the book an inequality s > a is understood as s > a
if a = —oo0. Similar, s < b is understood as s < b if b = oco. Accordingly, a
segment [a, b] is understood as (a, b if a = —o0, etc.

Sequences. In KAM-proofs we use positive sequences {e,, }, {6} and {e(m)}.
They are defined in section I1.3.2.

H

Measures. mes,, stands for the m-dimensional Lebesgue measure and mes,’ —

for the m-dimensional Hausdorfl measure.

Linear maps. All linear operators between Banach spaces are assumed to be
bounded. For a linear operator L between Hilbert spaces we denote by L*
the conjugated operator; if the spaces are complex, then L* is conjugated with
respect to complex bilinear scalar products, see in section 1.1. By L we denote
the operator —L ™1 (provided that it is well defined). If L is a linear map from
a Hilbert scale {X,} to a scale {Y}, then ||L||,, stands for its operator norm
as a map X, — Yp.
3



Lipschitz maps. Let M, N be two metric spaces and f, f1, fo be maps M — N.
We write:

dist (f1, f2) = sup disty(f1(m), f2(m)),
meM

. distn (f(m1), f(m2))
Llp f N mfl;zléling diStM (ml, TI’LQ) .

If the metric space N is an Abelian group and disty (nq,ns) = dist 5 (0, n; —ng)
for any ni,ny € N,' we write || f||A = dist (0, f) (0 signifies the map which
sends all of M to the zero in N) and

£l = max(Lip f, || F]|13F) -

Our final notations are technical and are used in KAM-proofs only: If O is
a domain in a metric space B and f is a map from O x M to N, we write

Oo,M M,Lip |
[fIl™ = sup [ £(b,)In"";
beO

if N =C", we abbreviate || f| 8&M to | f|OM.

Differentiable maps. For a smooth map f : X — Y we denote by f.(z)
linearised maps T, X — Ty Y and by f*(z) — adjoint maps (f*(:z;))* :
(Tf(x)Y)* — (TmX)*. We call a smooth map f: X D O — Y a diffeomor-
phism if it is a diffeomorphism of the domain O on the range f(O).

Vector fields. If V (¢, x) is a non-autonomous vector field, then S stands for its
flow-map which sends z(t) to z(7) (z(-) is a solution for the equation & = V(x));
if the vector field V is autonomous, then we write S = S™~*. By S7,, we
denote flow-maps of the linearised equation, so S7,, = S}, if the flow-maps S}

are smooth. By Vg we denote the Hamiltonian vector field with a hamiltonian
H.

IExamples: N is a Banach space, or a torus, or the former times the latter
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1. SOME ANALYSIS IN HILBERT SPACES AND SCALES

1.1 Differentiable and analytic maps.

Throughout the book differentiability of maps between Hilbert (or Banach)
spaces is understood in the sense of Fréchet. Since the category of C"-smooth
Fréchet maps with r > 2 is rather cumbersome and since only analytic object
arise in our main constructions, we mostly restrict ourselves to the two extreme
cases: with few exceptions the maps will be either C''-smooth or analytic.
Below we fix corresponding notations and briefly recall some properties of C'!-
smooth and analytic maps.

Let X,Y be Hilbert spaces and O be a domain in X. A continuous map
f: O — Y is called continuously differentiable, or C'-smooth (in the sense of
Fréchet) if there exists a bounded linear map f.(x) : X — Y which continuously
depends on x € O, such that f(z + z1) — f(x) = fu(x)z1 + o(||x1]|x) provided
that x,z + 21 € O. We call f.(x) a derivative of f or its tangent map. By
f*(x) we denote the adjoint map f*(x) = (f.(z))*: Y — X.

For C*-smooth maps with k > 2 see [Cal, La).

If f: X >0 — Risa Cl-smooth map, then f.(z) € X*. Identifying X*
with X by the Riesz theorem, we denote an element of X corresponding to
f«(z) as Vf(x) and call it a gradient of f at x. Thus we obtain a gradient
map Vf:O — X. If this map is C'-smooth (that is, if f is C%-smooth), then
the tangent map V f(x). : X — X is a symmetric (hence, a selfadjoint) linear
operator,

Indeed, the Lh.s. equals %Zﬁf(x + an + B€) |a=p=0 and the r.h.s. equals

8‘3%]”(90 + an+ () |a=p=0, so they coincide.

For a real Hilbert space X we denote by X€¢ its complexification, X¢ =
X ®g C. That is, X¢ = X @ X and multiplication by i = \/—1 is given by
the formula i(x1,z2) = (—z2,21). We extend the inner product (-,-)x of the
space X to a complex-bilinear paring X¢ x X¢ — C, so ||ul|?> = (u, @) x for any
u € X° We denote this paring as (-,-)x or (-, ) xe.

Similar, if Z is a complex Hilbert space, then (-,-) = (-, )z denotes a paring
which is a complex-bilinear symmetric quadratic form such that [|3]|* = (3,3).
Accordingly, if Z1, Z5 are complex Hilbert spaces and L : Z; — Z5 is a linear
operator, then L* is a linear operator Z — Z1, conjugated to L with respect
to the corresponding complex-bilinear parings (-,-); and (-, -)s.

Examples. If X is an Ly-space or a Sobolev space of real-valued functions,
then X¢ is a corresponding space of complex functions. If X is an abstract
separable Hilbert space and {¢;} is its Hilbert basis, then X = {d> z,¢, |
z;’s are real and > |x;|? < oo}, while X¢ = {> z;¢; | 2;’s are complex and
Mlzi? < oo} O

Let X¢ Y° be complex Hilbert spaces and O¢ be a domain in X¢. A map
f:0°— Y¢is called (Fréchet-)analytic if it is C'-smooth in the sense of real

5



analysis (when we treat X ¢, Y ¢ as real spaces) and the tangent maps f.(x) are
complex-linear. Locally near any point in O°¢ such a map can be represented
as a normally convergent series of homogeneous maps (see [VF, PT]).

For real Hilbert spaces X,Y and a domain O C X, amap F : O — Y is
analytic if it can be extended to a complex-analytic map F': O¢ — Y ¢, where
O° is a complex neighbourhood of O in X°. (The extension F' : O° — Y is
uniquely defined if the domain O¢ is connected and O is non-empty.)

Amap F: X DO — Y is called d-analytic (6 is a positive real number) if it
extends to a bounded analytic map (O+d) — Y¢ (O+9 is the §-neighbourhood
of O in X°).

We note that compositions of analytic maps are analytic, as well as their
linear combinations. Besides, any analytic map is C*-smooth for every k.

There is an important criterion of analyticity: a map f: X¢ D O° — Y€ is
analytic if and only if it is locally bounded? and weakly analytic, i.e., for any
y € Y° and any affine complex line A C X° the complex function A N O¢ —
C, A — (F(A),y)y is analytic in the sense of one complex variable. Even more,
it is sufficient to check analyticity of these functions for a countable system
Yy = y1,Y2,... of vectors in Y such that the linear envelope of this system is
dense in Y (see [PT]).

If O° X and Y° are as above and Y;° is a closed subspace of Y, then a
map f : O° — Y is analytic if and only if it is analytic as a map O¢ — Y¢
and f(O°¢) C Y{°. This trivial consequence of the definition is useful to check
analyticity of some maps, given by nonlinear differential operators.

The Cauchy estimate states that if a map F' : X¢ D O° — Y° admits a
bounded analytic extension to O¢ + 9, then for any v € O° one has:

|Fu(u)llxy <671 sup  [[F(u)]y
u' €O+

(The estimate readily follows from its one-dimensional version applied to the
holomorphic functions Os(C) 3 A — (F(u+Ax),y)y, where ||z||x = |ly|ly = 1).
In particular, this estimate applies to d-analytic maps between subsets of real
Hilbert spaces.

If F: X¢D O°— Y€ is an analytic map and for some point x € O°¢ the
tangent map F(x) is an isomorphism, then by the inverse function theorem in
a sufficiently small neighbourhood of x the map F' can be analytically inverted.
The same is true for real analytic maps. See [VF, PT].

For Banach spaces everything is much the same with one extra difficulty:
there is no canonical way to give a norm to the complexification X¢ of a real
Banach space X . This difficulty should not worry us since all Banach spaces
used in this book are natural and one can immediately guess the right norms.
For example, if X is the space of bounded linear operators Y; — Y5 where

2that is, any point € O° has a neighbourhood, where f is bounded. In particular, any
continuous map is locally bounded.
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Y1, Yo are Hilbert spaces, then X¢ is the complex space of linear over reals
operators Y; — Y5 with the natural norms, etc.

1.2. Scales of Hilbert spaces and interpolation.

Let Xy be a Hilbert space with a scalar product (-,-) and a Hilbert basis
{or | k € Z} where Z is a countable set which is an even subset of some Z"
(so —Z = Z). Let us take a positive sequence {0; | 7 € Z} such that 9¥; = 9_;
and ¥ — oo as |k| — oo. For any real number s we define X as a H1lbert
space with the Hilbert basis {x9,° | k € Z}. By || - ||s and (-, -)s = (-,-)x, we
denote the norm and the scalar product in X :

(wu)? = ull2 =) P03 i w="> uxoy

(so (-,-)o = (+,-)). The totality {Xs} is called a Hilbert scale, the basis {¢y} is
called a basis of the scale.

We do not distinguish Hilbert scales, formed by the same spaces with equiv-
alent norms. Therefore both the basis of a scale and the sequence {1;} are not
uniquely defined.

A Hilbert scale may be continuous or discrete: the parameter s may be real
or integer. Below we state all results for real scales with s € R, but they admit
trivial reformulations for the discrete case.

A Hilbert scale possesses the following obvious properties:

1) X is compactly embedded to X, if s > r and is there dense;

2) the spaces X and X _; are conjugated with respect to the scalar product
(-, -): for any u € X5 N Xy we have

Jull, = sup{{u, ') | o' € Xy 0\ Xo, [Jef]| - = 1;

3) for —co < a <b<ooand 0 <6 <1 the space X, c = (1 — 0)a + b,
interpolates the spaces X, and Xj: in notations of [LM], X. = [X,, Xp]p. In
particular, for any u € X holds the interpolation inequality:

lulle < flulla™ lull3-

The inequality immediately follows from the Hoélder one. Indeed, if u =
> ur¢r, then

HUHE _ Z|Uk:|2019i9b|uk|2(1_0)79i(1_9)a <
1-6

]
< ( 3 |ukr2ﬁzb) (Z rum?ﬁia) — 2 [ 20-9.

For more on the interpolation theory see [LM, RS].
By the property 2), the scalar product (-,-) extends to a bilinear pairing
Xs x X_s — R. Abusing language, we call this pairing X-scalar product. We
7



say that we “multiply in Xy vectors us € Xg and u_s € X_;”, etc. For the
complexified scale { XS} we denote by (-,-) a complex-bilinear paring.

For any space X (real or complex) we identify its adjoint (X)* with the
space X _g.

We denote by X_ ., X the linear spaces X_,, = UX;, Xoo = NX and
give them no norms. The space X is dense in each X, since it contains all
finite linear combinations of the basis vector ¢i. Vectors from the space X
are called smooth.

If {¥;} and {¥}.} are two positive sequences as above such that all the ratios
V1 /¥, are uniformly bounded from below and from above, then for any s the
two corresponding spaces X coincide (and their norms are equivalent). In
particular, if k£ € Z™ \ 0 and 0 < ¥y = C|k|™ + o(|k|™) with some m > 0, then
the sequence ¥, = |k|™ defines the same scale {X,}. Moreover, if 95, = |k| and
{f( s} 18 the corresponding scale, then Xms = X, for all s. We state this result
as

Proposition 1.1. If two Hilbert scales { X} and {X;} correspond to the same
original Hilbert space X = Xy = Xo, to the same basis {ér} and to sequences
{Op | k € Z (or k€ Zo)} and {U;} such that 0 < 9, = c|k|™ + o(|k|™) and
U = |k| + 1, then for any s the identity map defines an isomorphism of the
spaces Xs and Xms.

Scales { X} of Sobolev spaces which arise naturally in PDEs (see [RS, LM]
and Examples 1.1, 1.2 below) correspond to the case when X is a space of
square-summable functions and {¥x} has a power growth in |k|. After linear
stretching the index s, these scales equal some scales with ¥y = |k|.

Example 1.1 (scale of Sobolev spaces). Let us take for Xy the Lo-space
of 2w-periodic functions given the trigonometric basis {¢y | k € Z}, where

1 1 1
= —; = —coskx, p_=——=sinkx for k=1,2,... (1.1
Yo Von Pk Nz P—k NG (1.1)
(the minus-sign is introduced for further purposes). We choose ¥y = 1 and
Vr = |k| for non-zero k. Then the space X equals to the Sobolev space of
27-periodic functions H* = H*(S!, R), S = R/27xZ. In particular, for s € N
the space X has the form

oFu

XS:{U(I’)EXO'We

Xo for k <s},

where 0%/0z"* stands for a derivative in the sense of distributions. Indeed,

H* with s € N is a Hilbert space with the scalar product (u,v)s = [(uv +

u(®)v(®) )dz. For the functions ¢, defined above we have: (vp,@))s = (1 +

|k|?*)0k,. So the functions {(1 4 |k|?*)'/2¢.} form a Hilbert basis of the

Sobolev space H*. Hence, H® = X, since 1 < (1 + |k|?*)1/2 /93 < 2 for all k.
8



The space X is formed by smooth periodic functions; so for the Sobolev
scale smooth vectors are just smooth functions.

Complexification X¢ of a space X, = H* is the space H*(S';C) of complex
Sobolev functions.

The operator —A = —9? /8902 sends each ) to k?¢y and defines an un-
bounded selfadjoint operator in Xy with the domain of definition X, = H?2.
For s > 0, the operator (—A)%/? as an unbounded operator in X, has the
domain of definition H®. So the Sobolev spaces H® can be defined as domains
of definitions of some degrees of the minus Laplacian. Concerning this way to
construct Hilbert scales see [LM].

By H{ = H3(S!, R) we denote a sub-scale of {H*}, formed by functions
with zero mean-value. For a basis of this scale we take {¢x | k € Zo}, where
the functions ¢y, are the same as above. [

Example 1.2. Let Xy be the Ls-space of complex valued functions on the
torus T™ = R"™/(277Z)™, treated as a real Hilbert space with the scalar product

(u(z),v(z)) = Re /Tw dz,

and given the basis {¢p = (27)""/2e?** | k € Z"}. We choose fy = 1 and
O = |k| for & # 0. Then X is the Sobolev space Xy = H*(T™;C) ~
H¥(T™R?). O

Given two scales {X}, {Ys} and a linear map L : X — Y_, we denote
by ||L|ls;.s, < 00 its norm as a map X, — Ys,. We say that the map L
defines a morphism of order d of the scales {X} and {Ys} for s € [so, 1], if
|L||s,s—a < oo for each s € [sp, s1] with some fixed —0co < s9 < 57 < +00.? If in
addition the inverse map L~! exists and defines a morphism of order —d of the
scales {Y,}, {Xs} for s € [so+d, s1+d], we say that L defines an isomorphism of
order d of the two scales for s € [sg, s1]. If {Ys} = {X;}, then an isomorphism
L is called an automorphism. We shall drop the specification “for s € [sg, $1]”
and shall write ord L = d, if the segment [sg, s1] is fixed for a moment, or can
be easily recovered, or is irrelevant.

A morphism of a Hilbert scale to itself of a negative order —A < 0 is called
a A-smoothing morphism.

In particular, a bounded linear operator L : X, — Y;,_4 can be regarded
as a morphism of order d for s € [sq, so].

We note that an order d of a linear morphism is not uniquely defined since
any d’ > d is an order of the morphism as well.

Example. Multiplication by a C"-smooth periodic function defines a zero-
order morphism of the Sobolev scale { H*(S*,R)} for —r < s < r. In general,

3if sg = —o0, then s > s since X_ o and Y_, are given no norms. Similar s < oo if
s1 = oo.

9



it does not define a zero-order morphism of this scale for sg < s < s;, where
so < —rors >r. U

If L: X, — Ys_4is a morphism of order d for s € [sg, s1], then the adjoint
maps L* : (Ys_g)" = Y_s14 — (Xs)* = X_; form a morphism of the scales
{Y,} and {X,} of the same order d for s € [—s1 + d, —so + d]. We call it the
adjoint morphism.

A morphism L of a Hilbert scale { X}, complex or real, is called symmetric
(anti symmetric) if (Lu,v) = (u, Lv) ((Lu,v) = —(u, Lv)) for all smooth vec-
tors u and v (we remind that in the complex case (-,-) stands for a complex
bilinear paring). That is, L = L* (L = —L*) on the space X.

In particular, a linear operator L : X, — Y;,_q is called symmetric (anti
symmetric) if L = L* (respectively L = —L*) on the space Xo.

If L is a symmetric morphism of { X} of order d for s € [sg,d — s¢], where
So > —oo, then L* also is a morphism of order d for s € [sg,d — so|. Since
L* = L on X, then by continuity L = L* as the scale’s morphisms. We call
such a morphism selfadjoint. Anti selfadjoint morphisms are defined similar.

Example. The operator —/A defines a selfadjoint morphism of order 2 of the
Sobolev scale {H®}. The operator 0/0x defines an anti selfadjoint morphism
of order one. The same operators define a selfadjoint and an anti selfadjoint
automorphisms of the scale {H§}. O

Linear maps from one Hilbert scale to another obey the Interpolation The-
orem:

Theorem 1.1 (see [Ad, LM, RS]). Let {X}, {Ys} be two real Hilbert scales
and L : Xoo — Y_o be a linear map such that || Lla, », = C1, || L]las.p, = Ca.
Then for any 6 € [0, 1] we have ||L||qp < Co, where a = ag = a1 +(1—0)az, b=
bg = 0by + (1 — 0)bs and Cy = CfC’Ql_e. This result with Cy replace by 4Cy
remain true for complex Hilbert scales.

In particular, if under the theorem’s assumptions a1 —b; = as —bs =: d, then
L extends to a morphism of order d of the scales { X}, {Y;} for s € [a1, aq].

Amplifications. 1) Let L = L,,, where u is a vector from a domain in some
complex Hilbert space. Let L,, analytically depends on u as an operator X,, —
Yy, as well as an operator X,, — Ys, and norms of these operators are bounded
uniformly in uw ({Xs} and {Ys} are complex Hilbert scales). Then for any
0<60<1, L, analytically depends on u as an operator X,, — Y3, and a norm
of this operator is bounded uniformly in u and 6.

2) An obvious Cl-version of this result holds if the operator depends on a
parameter from a domain in a real Hilbert space (e.g., from an interval of the
real line).

Proof. 1) For any 6 the operator we discuss is weakly analytic in u; due to the
theorem its norm is uniformly bounded. Hence, the operator is analytic by the
criterion of analyticity.

10



2) The result readily follows from the definition of C!-differentiability. [

Corollary. Let a bounded linear operator L : X, — X, be symmetric (or
anti symmetric) in a real or complex Hilbert scale {Xs}. Then L extends to
a selfadjoint (or anti selfadjoint) morphism of order a — b of the scale {Xs}
for s € [=b,a] (or € [a,—b] if —=b > a). Besides, if the scale is complez, if
the operator L = L, : X, — X} analytically depends on a parameter u from a
complex domain and is bounded uniformly in wu, then all operators L : Xy —
Xs_a+b with s as above are analytic in u and are uniformly bounded.

Proof. Since ||L|lap = ||L*||=p,—a = ||L||=p,—a, then the first assertion follows
from the Interpolation Theorem. The second one results from the Amplifica-
tion. [

Both the Amplification and the Corollary admit obvious reformulation for
linear operators which depend on a parameter u continuously.

Let —o00 < a <b < oo0and Oy C X, s € [a,b], be a system of domains
compatible in the following sense: Og, N Oy, = Oy, if 51 < s9. Let F: O, —
Y, _4 be an analytic (or C*-smooth) map such that its restriction to the domains
O, with a < s < b define analytic (or C*-smooth) maps F : O, — Y,_4 . Then
we say that F is an analytic (or C*¥-smooth) morphism of the scale {X,} of
order d for a < s < b.

Example 1.1, continuation. The spaces H® with s > 1/2 are Banach algebras:
|luv||s < Csllulls]|v|ls (see [Ad] or Appendix in [KP]). Therefore for any segment
[a,b], 1/2 < a < b < oo, the map u(z) — F(u(z)) where F' is a polynomial,
defines an analytic map H® — H® of order zero for s € [a, b]. If g(z) is any fixed
function, then the map u(x) — F(u(x)) + g(x) defines an analytic morphism
of the Sobolev scale of order zero for s € [a,b] if and only if g € H®. The
same is true for a map defined by an analytic function F'. More general, this
is true for the map u(z) — F(u(z),r) where F(u,x) is a C’-smooth function
of u and x, which is §-analytic in u with some z-independent 6 > 0. Indeed,
let for simplicity s be an integer number > 1. Elementary calculations show
that ||F(u,z)||s < C(K) if |lul|s < K and |Imul/s < §/2; i.e., the map is
bounded on bounded subsets of a complex neighbourhood of the space H”.
If u(z), v(z) are complex Sobolev functions such that [Imwu(z)| < §/2, then
for any function ¢;(x) from the trigonometric basis (1.1), the function A —
(F(u(x) + Av(x)), ¢;) is analytic in A from some neighbourhood of the origin
in C. So the map H® — H?, u(z) — F(u,x), is analytic by the criterion of
analyticity. [

Given a C*-smooth function H : X; D Oy — R, k > 1, we consider its
gradient map with respect to the scalar product (-, ):

VH :04 — X_q, (VH(u),v)=H,(u)v Yve Xg.
11



Let us assume that £ > 2 and that for every u € Oy the linearised gradient
map is a linear map of order dy < 2d, i.e., VH(u)x : Xq — Xg4_q,. Since
VH, is a symmetric linear operator, i.e., (VH (u).v1,v2) = (VH(u).va,v1)
for smooth vectors vy, v, then by the Corollary from Theorem 1.1, VH (u),
defines a bounded selfadjoint linear morphism of the scale {X;} of order dy
for s € [dg — d, d].

If the domain O,4 belongs to a system of compatible domains O (a < s < b)
and the gradient map VH defines a C*~1-smooth morphism of order dg in
this system of domains, we say that

ord VH = dH.

Example. If A is a selfadjoint morphism of a scale X of order d and h(u) =
+(Au, u), then h is a smooth functional on X, with s > d/2. Now Vh(u) = Au,
so ord Vh = d for s € (—o00,00). O

1.3. Differential forms.

For d > 0 and a domain O in a Hilbert space X, from a Hilbert scale {X,}
we identify tangent spaces 10 with Xy and treat differential k-forms on O as
continuous functions

Ox(Xgx-xXq) —R,

k

which are polylinear and skew-symmetric in the last k£ arguments (see more in
[Ca2, Lal]). We write 1-forms as a(r) dg, where a : O — X_; and

a(r) dele] & (a(x), &) for €€ Xy

Besides, we write 2-forms as A(z) dx A dg, where

A(r) de A del€, ) € (A@)E ) for &€ Xq,

and A(r) : Xq — X_g4 is a bounded anti selfadjoint operator.

Example. Let X be the Euclidean space R" = {(z1,...,z,)} and A(z) be a
linear operator in Xy = R™ with an anti symmetric matrix (A;;), then

A(z)dz Ndx = — Z A;j(x)dz; A\ dx;.
1<J
Indeed, Adx N\ dx[f, 77] = Zi;éj Awfﬂ’]z = — Zi;ﬁj Awfz?]] and
> Aij(x)das Adag[€m) =) A&y — > Ayni&g =Y Ag&my. O

1<j 1<j 1<j i#7
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Usually, the forms we consider in this book are analytic, where a k-form wy,
on O C Xy is analytic if the corresponding map from O to the linear space of
skew-symmetric polylinear functions

(Xgx-xXq) —R

/

&
is analytic.
To define the differential dwy of a Ct-smooth k-form wy we use the Cartan
formula:

k+1
i B

dwr@lr, - Genl = 3 (=17 5

1=1

~

wk(p)[fl,...,fi,...,fkﬂ]. (12)

Here the vectors §; € T:0 ~ X, are extended to constant vector fields on O.
So the r.h.s. of (1.2) is well-defined (and the commutator-terms in the r.h.s. of
the classical Cartan formula, see e.g. [Go, La], vanish).

This definition well agree with the finite-dimensional situation, as states the
following obvious lemma:

Lemma 1.1. Let wg be a k-form on a domain O C X4, L be a finite-dimen-
sional affine subspace of X4 and L = LN O. Then dwy |po= d(w |10).

Proof. Both forms are given by the same formula (1.2). O

Example 1.3. 1) The differential of a C'-function f on O C X4 (=a zero-
form) equals df = Vf(r)dr. 2) The differential of a 1-form a(x)dr, a : O —
X_a, equals d(a(z)dr) = (a(r)« — a(r)*)dr A dr. Indeed, the operator A(r) =
a(p)« —a(r)* : Xg — X_g4 is bounded anti selfadjoint and

d(a(x)dr) €, n] = (a(x)«&n) — (a®)«n, &) = (A@E,m). O

Let w;y be any C'-smooth closed k-form on a domain O C X4, C?-smoothly
depending on a parameter ¢ € [0,1]. Let V(t;r) be a non autonomous C'-
smooth Lipschitz vector field on O. We consider the equation

it) =V(t;r), r(t) €O,

and denote by Sy its flow-maps, i.e., Sf t(to) = t(t). These maps are well-
defined and C'- smooth, see [Cal]. We assume that a sub-domain Q C O is
such that S§Q C O for 0 <t <1 and abbreviate S§ to ¢'.

4The space of polylinear functions is given the natural Banach norm which corresponds
to a function its supremum over the polysphere {|t]lq = 1} X --- X {||lt]l¢ = 1}. Thus for
k =1 we get the (Hilbert) norm of the space X_4 and for k = 2 — a norm isomorphic to the
uniform norm in the space of bounded linear operators X4y — X _4. The complexification of
the space under discussion is a space of polylinear complex functions.
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Lemma 1.2 (Cartan’s identity). For 0 <t <1 we have

dt*

P =90

—I—dgot*(VJwt) ©* (%+d(V]w1ﬁ))

everywhere in Q.5

Proof. Since @' is a Cl-smooth map which C'-smoothly depends on t (see

[Cal]), then both parts of the relation we have to prove are well-defined k-
forms on Q.

We abbreviate || - ||l4 to || - || and X4 to X. For N > 1 we denote by X V)
the linear envelope in Xy of the basis vectors ¢; with |j| < N and denote
On = 0N XW) By continuity, to prove the identity it is sufficient to check
that for arbitrary r € On and &;,...,& € XW) we have

%w ), @) =

=T D), &)+ B, &), ()

where (t) = ¢'(x), &;(t) = ¢"(1)+&; and B, = V (¢, 1) jw;
For any M > N let us denote by s the natural projector X — X ) and
denote Vi = mpr o V. We treat Vs as a map from O to XMM) or as a vector

field on Oy;. For M > N let us consider the equation

iv=Vu(t,em), ta € Om,

denote by rs(t) its solution such that rps(0) = ¢ (we note that r € On C Oyy)
and denote by ¢, the corresponding flow-maps, so rar(t) = ¢%,(r). Since
le(t) — mar(x(t))]] — 0 as M — oo uniformly on the curve r(t) = '(r) with
0 <t <1 and since

Ear () — Tk ()| < [V (Exar) — V()] <
< Cller =l = C (llear — marx| + (1 — man)x]])

then by the Gronwall lemma we have:
lear(t) —x(t)|| =0(1) as M — oo for 0<t<1.
In particular, it proves that the maps ¢f, with 0 < ¢ < 1 and sufficiently big

M are well defined in the Vicinity of r in X(m),
Quite similar, || (¢} ()« — )«) &]| = o(D)]|€]| for 0 <t <1 and £ € XV,

5Here V |w stands for the form (£1,...,&k_1) — w[V,&1,...,&k_1]-
14



Now (*) follows by transition to limit as M goes to infinity since for
replaced by ¢, (and r(t) replaced by ra(t)), (*) becomes the classical Car-
tan identity for the flow gofw and the closed k-form w; |xn on the finite-
dimensional space X (M) (see e.g. in [GS]). O

In the sequel we shall also work with k-forms in sub-domains of the direct
products Zg,
Zag=XxYy, Zi>z=(x,y),

where X is a finite-dimensional Euclidean space and Y} is a space from a Hilbert
scale {Y;}.5 We write linear operators 2 in Zy in the block-form,

o — (Q(XX QlXY)
C\ Ayx Ayy )’
WheI‘teXYIYd—>X,91Y)(ZX—>YdaIld91XX IXHX,QlyytYdHYd
are bounded linear operators. The operator 2 is anti selfadjoint (with respect

to the scalar product in X x Yj) if Axy = —A} ¢ and Axx, Ayy are anti
selfadjoint operators. Accordingly we write the 2-form A dz A dz as

A(z)dz Ndz = Ux x(z,y)de Ndx + Axy (x,y) dy A do+
Ay x (z,y) dv A dy + Ayy (2, y) dy A dy.

We note that in our notations
Ay x (z,y) de ANdy[(dz1,0y1), (0z1,0y2)] = Ry x0x1,0y2)y = —(dz1, Axy dya).
For sub-domains of the manifolds );, where
Va=R"xT" xYy;={(p,q,y)}, T"=R"/2xZ", (1.3)

we use natural versions of the notations given above. We note that ), is
a metric Abelian group and disty, (b1, bh2) =disty,(h1 — h2,0) for any by, b
in )V,;. Besides, the Hilbert space Z¢ = R?" x Yy covers Y, by the natural
projection T,

T:Zg=R™xY; - R" x T" x Yy,

which is a local isometry.

The Poincare lemma states that “locally” each closed form is exact. The
proof is constructive and is well applicable to infinite-dimensional problems (see
[Ca2, La]). We shall need a version of the lemma for a closed 2-form defined in
a neighbourhood O C Y, of the set P x T™ x {0}, where P is a sub-domain of
R"™, such that fibres of the natural fibration O — R” x T™ are convex. Below
we state the result, denoting by w points from R™ x T":

6Obviously, the spaces {Zs} also form a Hilbert scale.
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Lemma 1.3. If wa(w,y) is a closed 2-form in O and wa(w,0) = 0, then wy =
dwy, where

r(.9)0.59) = [ () [(0.9). (Gu.t5p)] .

In particular, if

then w1 = a(w,y) dw, where a(w,y) = (fol Awy (w, ty) dt> Y.

This result follows from its finite-dimensional version (see [Al, AG, Wei])
and Lemma 1.1: For any (w,y) € O and &;,& € Ty Vo ~ R*™ x Yy = Zy
we denote by @ a sufficiently small neighbourhood of (w,y) in Yy and treat @
as a domain in Z;. Now we take for L the affine 3-space through (w,y) in the

directions (07 y)a 517 52 and get that dwl (w7 y) [517 52] = w2 (w7 y)[£17 52]

1.4. Symplectic structures and Hamiltonian equations.

In a domain Oy € X4 with d > 0 let us take a closed 2-form as = J(x) dx Adx
such that the anti selfadjoint operator J(¢) : X4 — X_4 C'-smoothly depends
on r € O4 and defines a linear isomorphism

J(x) : Xq — Xad,;, ds 20,

The form ay supplies Oy with a symplectic structure. This structure is called
analytic (or CF-smooth, k > 1), if the operator J analytically (C*-smoothly)
depends on ¢ € Xj.

To a C'-smooth function h on Oy the symplectic structure as above corre-
sponds the Hamiltonian vector field V3, defined by the usual (see [A]) relation:

@o[Vi, €] = —dh(¢) forall ¢ e TO,.
For any t € Oy we have (J(x)Vi(z),€) = —(Vh(r), ) for each £ € Xy. Thus,
V(@) = J()Vh(x), where J=(-J) ' (1.4)

The operators J(r) and J(x) are called operators of the symplectic and the
Poisson” structures respectively.
The operator J defines an anti selfadjoint automorphism of the scale of order
dJ7
J() : Xoya, — X5, —d—dj<s<d, (1.5)

“this name is justified by the Definition 1.3 below
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which C'-smoothly depends on ¢ € Og; the maps (1.5) analytically depend on
¢ if the symplectic structure is analytic (see the Corollary to Theorem 1.1).

Since the functional h is C'-smooth, then the gradient map Vh: Oy — X_g4
is continuous. Using (1.5) we get that the vector field V}, defines a continuous
map Oy — X_g4_4,. Usually we shall impose an additional restriction and
assume that the vector field V}, is smoother than that and ord V}, = di < 2d+d .

To stress that a domain Oy C X, is given a symplectic structure as above
we shall write it as a pair (Og4, a2). If the form as is defined on the whole space
X, for each s > sy with some fixed sy and is there continuous, we shall say
that ({ X}, az) is a symplectic Hilbert scale.

A basis {¢;(x) | j € Zy} of a tangent space T:Oq4 = X is called symplectic
if

a2[@;(x), ¢r(x)] = v (x)0;,—x (1.6)

for any j € N,, and each k € Z,,, with some positive real numbers v;(x),j € N,,.
For any C'-smooth function h on O4 x R a Hamiltonian equation with the
hamiltonian h(g,t) is the equation

i) = J(1)Vh(x, t) = Va(r,t). (1.7)

If ord V}, = 0 and the vector field Vj, is C''-smooth and Lipschitz in Og4, then
the initial-value problem for the equation (1.7) is well-posed: for any given
initial condition r(0) € Oy it has a unique solution defined while it stays in
Og4. This solution C'-smoothly depends on the initial condition. If the map
Vi : Og x R — Xy is d-analytic in ¢ € Oy (9 is t-independent), then the map
£(0) — r(¢) is analytic. For all these facts see [Cal, La]. The analyticity is
not discussed in these references but it directly follows from the arguments
which prove the differentiability since in the analytic case all the derivatives
are complex-linear.

A partial differential equation, supplemented by appropriate boundary con-
ditions, is called a Hamiltonian PDFE if under a suitable choice of a symplec-
tic Hilbert scale ({Xs},a2), a domain Oy C X4 and a hamiltonian h it can
be written in the form (1.7). In this case the vector field V}, is unbounded,
ordV, =d; > 0:

Vh : Od X R — Xd—dl- (18)

Usually the domain O, belongs to a system of compatible domains Og, s > dj,
and the map V}, defines an analytic morphism of order d; for s > dj.

For a vector field V}, as in (1.8) with d; > 0 different classes of solutions for
(1.7) can be considered. For this book we choose the following definition: a
continuous curve ¢ : [0,7] — Oy is a solution of (1.7) in a space X4 if it defines
a Cl-smooth map [0,T] — X4 4, and both parts of (1.7) coincide as curves
in X4_q,. A solution g(t) is called smooth if it defines a smooth curve in each
space Xj.
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If a solution g(t), t > 7, of (1.7) with ¢(7) = r, exists and is unique, we write
t(t) = Stx,, or x(t)=S"""r, ifthe equation is autonomous.

The operators St and S*~7 are called flow-maps of the equation. In fact, it
would be more correct to name these operators “local flow-maps” since their
domains of definition might depend on ¢t and 7. With some abuse of language
we drop the specification “local” but in each concrete case we check if the
flow-map is defined on a set we need.

If (1.7) is a Hamiltonian PDE, then this definition of its solution is close
to the definition of a classical solution of the corresponding PDE (if {X,} is
a scale of Sobolev functions and d is sufficiently big compare to d;, then the
solutions defined above are classical solutions of the PDE, see examples below).

For an equation (1.7) with d; > 0 there is no general existence theorem for
a solution of the corresponding initial-value problem which would guarantee
existence of the flow-maps. To prove the existence is an art we do not touch in

this book.

Example 1.4 (semilinear equation). Let (1.7) be a semilinear equation
i=V(), V=B+V",

where B is a linear operator, bounded or unbounded. It is assumed that the
operator B generates a continuous group of linear transformations of the space
Xd7

le"P [la,q < Cre@?!,

and the nonlinearity V° is Lipschitz uniformly on bounded subsets of Xj.

Proposition 1.2. If (1.7) is a semilinear equation as above (i.e., Vj, = B+V?Y,
where ordV® = 0), then for any C its flow-maps St : Oc(Xy) — Xy are well
defined for |t| < T, where T =T(C) > 0; if in addition the map V°: X4 — X4
is Ct-smooth (analytic), then the flow-maps are C*-smooth (analytic). If every
solution for (1.7) in X4 for every t satisfies an a priori estimate ||x(t)|lq <
f(t,z(0)) < oo, then all flow-maps S* : Xq — X4 are well-defined and as
smooth as above.

This result admits an obvious reformulation for the case when the vector
field V' is defined on a subdomain of X,. For all these results see [Paz, K].

Some important Hamiltonian PDEs are semilinear. For example, the non-
linear Schrodinger equation:

i(t,z) = i(Au+ f(lu2)u), @ eT™,

where f is a smooth real-valued function (see [K]). Still, the semi-linearity
assumption is very restrictive since it fails for many important Hamiltonian

PDEs (e.g., for the KdV). O
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Example 1.5 (nonlinear string). Space-periodic oscillations of a nonlinear
string which obeys a nonlinear Hooke law and does not move as a whole, are
described by the following (strongly) nonlinear string equation:

+ L5(2Y), uftw) = o+ 2m) /% (t,2)dz =0
Ut = Uge + — f| =— ), u(t,x)=u(t,z+ 2m), u(t,z)dxr =0,
" Y 0x’ \ oz 0

where f(v) is an analytic function of the form f(v) = const +av?+... (a # 0)
at zero. We can write this equation as a system of two first order equations:
U=, U= Upy + a%f(g—;‘). Denoting w = (u,v), we get for w the equation

W = Aw + F(w), (1.9)

where A(u,v) = (v,uz,) and F' is the nonlinear term. In the scale {Z; =
H§ x H§} the map A becomes a linear morphism of order 2 and F' becomes
an analytic (for s > 2) map of the same order. The equation (1.9) has the
Hamiltonian form (1.7) with J(u,v) = (v, —u) and h(u,v) = [ (3|v]?+ 1 |u|?+
The nonlinear string equation possesses some rather unpleasant properties:
due to P.Lax (see [Lax2, Kl]), the only C2-smooth solution of the equation
which exists for all ¢, is the zero-solution. In particular, the equation (1.9) has
no nontrivial time-quasiperiodic (see Appendix 1 below) solutions in Zg, s > 3.
For f = 0 all solutions of the corresponding linear equation are quasiperiodic or
almost periodic in time. Thus, arbitrarily small nonlinearity f kills all non-zero
time-quasiperiodic solutions of the linear equation. The reason for this lack of
persistence is that the equation (1.9) is strongly nonlinear: ord A=ord F'. [

Our main concern in this book are quasilinear Hamiltonian equations, i.e.,
equations (1.7) which have the form (1.9) with ord A >ord F' (A is the lin-
ear part of an equation); possibly ord F' > 0 i.e., the equation may be non-
semilinear (so the nonlinearity in Example 1.5 is too strong and in Example
1.4 it is non-necessarily weak). We call a hamiltonian h quasilinear if it defines
a quasilinear Hamiltonian equation.

Let Q C Oy be a sub-domain such that the flow-maps maps S% : Q — Oy are
well-defined and are C'-smooth for T} < 7,t < Th, where —oo < T} < Th < 00
(here and in similar situations below, ¢t > T3 if T} = —oo and t < Ty if T5 = 00).
Then differentiating a solution g(¢) of (1.7) in the initial condition we get that
the curve ((t) := S%, (x(7))¢ satisfies the linearised equation

C(t) = Vi ((8), £)C(2), (1) = C. (1.10)

The assumption that the map S¢ is C'-smooth in a sub-domain is very restric-

tive since to check the smoothness of flow-maps for many important equations

(even for the KdV!) is a nontrivial task. To get rid of it we give the following
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Definition 1.2. Let g(¢), t € R, be a solution for equation (1.7). If for each
¢ € X4 and each 0 the linearised equation

C(t) = Vi (x(2), 0)C(2) . C(0) = C,

has a unique solution ((t) € X4 defined for all ¢ and such that ||((t)[|a < C||C|la
uniformly in 6,¢ from a compact segment, then we write ((¢t) = S§,, (r)¢ and
say that flow {Sk, . (r)} of the linearised equation (1.10) is well defined in X,.

Sometimes we shall use an obvious version of this definition for the case
when the solution r(¢) (and the linearised equation) are defined only on a finite
segment of the real line.

We note that under the assumptions of this definition the maps Sj,, and
S? . are inverses of each other.

The property described in Definition 1.2 characterises the flow only in the
“Infinitesimal vicinity” of a solution of (1.7). It suits well our goal to study
special families of solutions rather than the whole flow of the equation. If the
flow-maps St are Cl-smooth, then St,(r) = St,,(x), but the map in the r.h.s.
of this relation can be well defined while the map in the L.h.s. is not.

Example 1.6 (equations of the Korteweg - de Vries type). Let us take
for {Xs} the scale of Sobolev spaces H§ as in Example 1.1. We define a
Poisson structure by means of the operator J = a%, sody=1and —J = J!
is the operator (9/0x)~! of integrating with zero mean-value. We get the
symplectic Hilbert scale ({HS}, —(0/0x) tdu A du). We stick to the discrete
scale {s € Z}: it is sufficient since the orders of all involved operators are
integer. The trigonometric basis {¢; | j € Zo} introduced in Example 1.1 (see
(1.1)) is symplectic since for 7 > 1 and any k we have:

1/2

aslp;, pr) = (Jr 2 cos jo, o (2)) = 57 H—n" Y2 sin jx, o (x)) = §71 .

For a hamiltonian h we take h(u) = ()27T(—%1L'(ai)2 + f(u)) dz with some
analytic function f(u). Then Vh(u) = 1u” + f'(u) ® and Vj,(u) = Ju” +

8% f/(u). Thus the Hamiltonian equation takes the form

9
alt, z) = iu g ) (1.11)

(for f(u) = Lu® we get the KAV equation, the factor 1/4 is introduced to make
the formulas which integrate the KdV more elegant). Since Sobolev spaces

H?® with s > 1 are Banach algebras, then for s > 1 the maps Hj — R,
uw(z) — [ f(u)de and H§ — H*, u(z) — f'(u(z)) are analytic (see Example

R
8since dh(u)v = —3u/(@)v'(z) + £/ (u(z))v(z) dz = (Fu” (z) + f/(u(z)), v(z)) L, -
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1.1). Now the map H§ > u + Vi, (u) € HS™? is analytic for s > 1. That is, the
vector field V}, defines an analytic morphism of order 3 for s > 1.

Being supplemented by an initial condition u(0, x) = ug(x) € H§ with s > 3,
equation (1.11) has a unique solution in H§. This solution exists for |t| <
T(|luolls) (T is a continuous positive function) and the flow-maps S*, [t| < T,
are C'l-smooth. This is a non-trivial result, see e.g. [Kat1].

On the contrary, if u(t,z), 0 < t < T, is a smooth solution of (1.11), then
the linearised equation

V= l1/” - 2(f”(u)v), v(0,2) = vy € H, (1.12)
4 Ox
has a unique solution in Hj with any s > 0 by trivial reasons:
To prove uniqueness we have to check that a solution v(¢, ) with v(0,x) =
0 vanishes identically. We denote 0% = (9/0z)F, k € Z, treating 9% as an
isomorphism of the scale {3}, and multiply the equation by 9~ %v in HY, i.e.
in Ly(S1,dz). We get:

1d
2dt

lo()]122 = —%/va_lvdx—/f”(u)va_?’vdx.

The first term in the r.h.s. vanishes. Integrating by parts several times, one
finds that the second term equals

[ (G = @)@ 202 de+ 5 [0 ()00 da.

Since f”(u) is a smooth function, then this implies the inequality

5 o2 < Cllols + Callol2, < ool
so v = 0 by Gronwall.

To prove existence we start with an a priori estimate for a smooth solution
v(t,x). Multiplying (1.12) by v(t,-) in H§ we get that d/dt||v]|? < C(u)|jv||?.
Hence,

lv(t, )]s < e lvglls for 0<t<T, (1.13)

where C; = C(T')/2. Now we can use Galerkin method and this estimate to
construct a solution v(t,z) of the equation in H§, provided that vy € Hg°.
In this way we get linear flow-maps S§,,, defined on H§°, and such that
1S8sslls.s < €1t By continuity we extend these maps to the whole H3. When
t — 0, the operators S{,, remain uniformly bounded because (1.13) and con-
verge to identity on the dense subset HS® C H§. Therefore, S§,, —id in the
strong operator topology of the operators in H (see e.g., [Kat2]) and the curves
v(t, ) = S§,.vo are continuous in Hf for any vy € H§. Since they satisfy the
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equation, then they are C''-smooth in H*~3 (these arguments are obvious for
a smooth vector vy, while a vector vy € Hj has to be approximated by smooth
ones).

For any vy € Hj we constructed a unique solution of the linearised equation
(1.12) in H§. Thus, the flow maps St,, (u(7)) of the linearised equation are
well defined “gratis”. [

We shall often work with equations in a sub-domain O4 of the manifold
Ya (d > 0) as in (1.3), given a symplectic structure by means of a 2-form
(dp A dq) ® (Y(y)dy A dy), where dp A dq is the classical symplectic form on
R” x T™ and Y(y)dy A dy is a closed 2-form in a domain in Y;. This sym-
plectic structure corresponds to a Cl-smooth function H(p,q,y) the following

Hamiltonian system:
p=-V¢H, ¢=V,H, y=7TV,H.
Solutions for these equations are defined in the same way as solutions for (1.7).

1.5. Symplectic transformations.

Let {X,},{Y.} be two Hilbert scales and d,d > 0. Let O C X, and
Q) C Y; be two domains given continuous symplectic structures by 2-forms
as = J(x)dr A dr and By = Y(y)dy A dy as in section 1.4. A C'-smooth map
® : Q — O is called a symplectic map (or a symplectic transformation, or a
symplectomorphism ) if ®*ag = 2. That is, if for any y € Q with ®(y) =r € O
we have

(J@) P (W)€, Pu(y)m) xo = (TW)E M),

for all {,n € Y, or B B
P (y) o J(r) o Pu(y) = Y(y). (1.14)

A symplectic map ® is an immersion since by (1.14) its tangent maps are
embeddings.

If a symplectic map ® is such that the tangent maps ®,(y) define isomor-
phisms of the spaces Y; and Xy, then @ is called a symplectomorphism. Obvi-
ously, a C'-diffeomorphism ® : Q — O is a symplectomorphism if and only if
each tangent map ®,(y),y € @, sends a symplectic basis of the space T,,Q to a
symplectic basis of the space Ty(,)O and v;(y) = v;(®(y)) for all j and y (see
(1.6)).

We shall need an obvious version of the definitions above for the case when
O° and Q° are complex domains in complex spaces X and YCZC and the operators

J(¢) and Y (y) are anti selfadjoint with respect to complex-bilinear scalar prod-
ucts (-, -) xe and (-, -)ye. Namely, a C'-smooth map ®; : (Q°, ap) — (O°, 32) is
symplectic if (J(r)®1+(y)E, Pr(y)n) xs = (T(¥)E, M)y

Analytic symplectic forms ay = J(z)drAdr and B2 = Y (y)dyAdy on domains
O C X4 and ) C Y, analytically extend to some complex neighbourhoods
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0O° C X§ and Q¢ C Yj. There they define complex symplectic structures as
above. Any analytic symplectomorphism ® : (Q,a3) — (O, 2) analytically
extends to a sufficiently small complex neighbourhoods of (), where it defines
a complex symplectomorphism. Below we often use this symplectic analytic
extension in the case when the forms as and (5 are constant coefficient.

From now on for the sake of simplicity we restrict ourselves to the case we
need below:

d=d>0, ordJ(x)=ordY(y) =—d; VYz,v.

Proposition 1.3. Let us assume that J(x) = J and Y(y) = Y are constant
1somorphisms of the corresponding scales of order —dy. Then:

1) If @ : (Q° B2) — (O az) is an analytic symplectomorphism such that
1P (W) |l || (Ps(y) " Haa < C for every y € Q°, then for every y € Q° and
every 0 € [—d — dy,d] we have ||®.(y)|lo.0, |(P«(y) oo < C1. The maps
®, : Yy — Xy and their inverse analytically depend on y € Q°.

2) If @ : (Q,B2) — (0,az) is a Ct-symplectomorphism, then a Cl-version
of this result holds true.

Proof. 1) By (1.14) we have ®* = —To®_ 0 J. So ||®*(¥)|ldtd,.drd, < C’ for
every y. Hence, ||®.(y)||—d—d,,—d—d, < C’ and the estimate for ||®.||g ¢ follows
by interpolation. The estimates for ®; ! follow from the identity (®*)~! =

—J o ®, o ¥ which implies that &, = ((@*)_1) = (=Jo®,0Y) is a
zero-order morphism for s € [-d — d,d].

The maps @, and (®,)~! are analytic in y by Amplification 1 to Theorem
1.1.

2) If the map ® is a C'*-symplectomorphism, then the assertion follows from
the same estimates as above and Amplification 2 to Theorem 1.1. [

Literally the same arguments prove the following result:

Proposition 1.3'. Let the symplectic spaces (X3, a2) and (Y, 52) be as above
and ¥(w) : X§ — Y] be a linear symplectomorphism, analytic in w from some
complex domain and bounded uniformly in w. Then for any 0 € [—d—dy,d] the
map V(w) defines a symplectomorphism X5 — Yy, analytic in w and bounded
uniformly in w and 6. An obvious C'-version of this result also holds true.

Now let us consider the case when ({Xs}, as) = ({Ys}, B2) and @ is a sym-
plectomorphism @ : (Q°, ag) — (X, a2):

Proposition 1.4. 1) Let an analytic symplectomorphism ® satisfies the as-
sumptions of item 1) of Proposition 1.3 with Q¢ = O° and has the form
¢ =id+E, where the map Z is A-smoothing (A > 0) and |2« (z)||g,d4a < C
for all x € Q°. Then for every s € [-d — A — dy,d+ A] the linearised map
E«(x) is analytic in © as a map Xs — Xsin.
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2)If®: Q — Q is a Ct-symplectomorphism, then a C*-version of this result
holds.

Proof. 1) Due to Proposition 1.3, the maps ®.(z), z € Q°, define zero order
automorphisms of the scale { X} for s € [-d—A—d;, d+A], which are analytic
in .

Substituting in (1.14) ® =id +Z we get that =*(z)J + (id + =*(2)) JZ.(x) =
0. Hence, Z*(x) = ®*(2)J=,(z)J. By assumptions, ||JZ.()J ||lard, drartd, <
C'. Since adjoint maps ®*(x) define zero order automorphisms for s € [—d —
A,d+A+dy], then the maps Z*(z) : Yy+4, — Yatatd, are analytic in z € Q5
so the maps Z.(z) : Y_y_a_q, — Ya—a4, also are. Using the assumptions
once again as well as the analyticity criterion we get that =, (z) also define
an analytic in  map Yy — Y. Interpolating these two results and using
Amplification 1 we get the statement.

2) This assertion follows from Amplification 2. O

This proposition admits an obvious reformulation for parameter-depending
symplectomorphisms, similar to Proposition 1.3’. We do not state this result
but use it later on.

As in the finite-dimensional case, symplectic maps transform Hamiltonian
equations to Hamiltonian. Let ® : Q — O be a C''-smooth symplectomorphism
such that

D, (y) : Yy — X, is a linear map, continuous in y € @, for any |s| < d.
(1.15)
If J(x) = J and Y(y) = T are constant isomorphisms of zero order, then the
assumption (1.15) is satisfied due to Proposition 1.3, item 2).

Theorem 1.2. Let domains O C X4 and Q C Yy, d > 0, be given symplectic
structures by 2-forms o, (o as above with ord J =ord YT = —d ;. Let the vector
field Vi, = JVh of equation (1.7) defines a Ct-smooth map Vi, : OxR — X4 4,
of order d; < 2d and let ® : Q — O be a symplectic map satisfying (1.15), such
that the vector field Vi, in O is tangent to ®(Q) in the following sense:

Vi(@(y)) = ©.(v)€  for any y € Q with an appropriate € = E(y) € Ya_q,-
(1.16)
Then the map ® transforms solutions of the Hamiltonian equation

y="(y)V,H(y,t), H=ho® Y =(-1T)"", (1.17)

to solutions of (1.7).

We note right away that the assumption (1.16) becomes empty if ® is a
symplectomorphism (to be more specific, now (1.16) follows from (1.15) since
d—dy > —d).
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Proof. Let y(t) be a solution of (1.17). By (1.15) the curve r(t) = ®(y(t)) is
C'-smooth in Yi_4,and is continuous in Y. It remains to check that it satisfies
(1.7). Since t = ®,(y)y and V,H = ®*(y)V,h, then

£=0.(y)Y(y)®*(y)Veh = =P, ()T () 2" (1) J (x) Va(x)-
By (1.16), Va(r) = @.(y)¢. So the r.hus is —@.(y)Y(y)®* (y)J (r)P.(y)E. By

(1.14) it equals )
—0.(y) T T @) = Pu(y) = Va(r)-
Thus, r(t) satisfies the equation (1.7). O

Corollary. Let O C (X4, a2) and a Hamiltonian vector field Vi, be as in the
theorem and ® : O — Xgq be a Cl-smooth map, satisfying (1.15) (with Y, =
Xs), such that ®*as = Kag for some K # 0. Then the map ® transforms
solutions of the equation

=K 'J(x)VH(z,t)

to solutions of (1.7).

In particular, if K = 1, then ® preserves the set of solutions of equation
(1.7). If K > 0 and the hamiltonian H is autonomous, then ® preserves the
set of solutions up to time-scaling.

Proof. The result follows from the theorem with {Y;} = {X,} and 32 = Kay
(soY=KJand T =K~ 1J). O

To apply Theorem 1.2 we have to be able to construct sufficient amount
of symplectic transformations. An important way to construct symplectomor-
phisms of domains in (O C Xg,a9) is to get them as flow-maps S7 of an
additional nonautonomous Hamiltonian equation

r=J@)Vf(t,x) =Vs(t,r), r€0, (1.18)

where the hamiltonian f is such that the vector field V is Lipschitz:

Theorem 1.3. Let f be a Ct-smooth function on R x O, O C X4, such that
the map Vi : R x O — X, is Lipschitz in (t,x) and C*-smooth in r. Let Oy
be a sub-domain of O. Then the flow-maps ST : (O1,a2) — (O, a2) are sym-
plectomorphisms, provided that they map Oy to O. Moreover, ||S{.(z)|ad <
exp(|T — t[Cy), where Cy = sup, , [|V«(t,)||a,q- If the vector field Vy is ana-
lytic, then the flow-maps are analytic as well.

Proof. The flow-maps are C''-smooth in the smooth case and are analytic in

the analytic case, see in section 1.4. The estimates on the linearised flow-maps

hold since the curves T — S7, (z)¢ satisfy the linearised equation (cf. (1.10)).
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It remains to check that the linearised maps S}, are symplectic. This follows
from given below Theorem 1.3/, where a more general result is proven (cf.
Definition 1.2 and its discussion). O

Let us assume that the form as is constant coefficient: ay = (Jdx, dx), where
J is an isomorphism of the scale of order —d ;. Proposition 1.3 applies to flow-
maps S] since they are Cl-smooth (or analytic) as well as their inverses, the
flow-maps S%). So for any y the maps S}, (y) define zero-order morphisms of
the scale for s € [-d — dj,d]. Let us also assume that the vector field Vy is
A-smoothing:
[Vis(t,O)llaara <C" Vre O,V

with some A > 0. Since

ST = v+ [ V0,50 @) o,

t

then i
Lo =id+ [ V5650 @) St (o) do.
t

Since the maps Vy, are A-smoothing and the maps S], satisfy the estimate
of Theorem 1.3, then the flow-maps S] are symplectomorphisms, close to the
identity up to A-smoothing maps:

157, (x) = id[|s, 42 < C'|7 — t]e7 1, (1.19)

where s = d. Applying Proposition 1.4 we find that this estimate holds for any
seld—A—dy,d+ A
We have proved the following result:

Proposition 1.5. Let us assume that the assumptions of Theorem 1.3 hold
with Cy < 00, that |V (t,1)||g,a+a < C' for all x € O with some A > 0 and
that the form oy is constant coefficient, namely ay = Jdx A dx where J defines
an isomorphism of the scale of order —dy. Then the flow-maps S7 : O — O
satisfy estimates (1.19) for all s € [d — A —dy,d+ A], provided that they map
O1 to O. In the analytic case the flow-maps are analytic; this result (and the
estimate (1.19)) hold both for real and complex domains O.

Now we consider Hamiltonian equations, corresponding to vector fields which
define nonlinear morphisms of the scale of a positive order:

Theorem 1.3". Let us assume that the Hamiltonian vector field Vy defines a
C'-smooth map R x O — Xd—d,, where O C X4 and dy < 2d+d;. Let a point
o € O be such that the solution r(t) = Sy (vo) of (1.18) exists for to <t < T
and for these t’s flow-maps Sfo**(zco) for the linearised equation are well defined
i Xgq. Then these maps are symplectic.

26



Proof. We have to check that the maps S7 ., = ST .. (zx(t0)), to < 7 < T, are
such that

a2 (T(7)) [Swxls ST nl] = 2(x(t0))[€, 7]

for any &, € X4. Since the map Sffg =id, then in order to prove the theorem
we have to check that the function

(1) == ax(x(1))[ST, &, ST, 1]

is a 7-independent constant.

As the curve S} . & =: £(t) satisfies the linearised equation £ = Vi(t,x(t))«&
and similar with S} ,.n = n(t), then I(t) = aa(x(t))[{(t),n(t)]. Therefore we
should check that (d/dt){J(x(t))&(t),n(t)) = 0, or

(Jy, &) + (J@©&n) + (J@©)E&0) =0,

where j{/f stands for a derivative of the operator-valued map J(x) in the di-
rection Vy. The three terms in the Lh.s. are well defined. Indeed, 7 is a
continuous curve in the space Xg4_4, and J(r)¢ — in the space X4i4,; since
d1 < 2d + dyj, then the third term is a well defined continuous function of t,
etc. Since Vi (t,1)§ = J(1)(Vf)§ + JEV S, then

(J&,m) = (JV(t,0)€ ) = (JI(Vf)&,n) + (JIEV f.n)

Transforming similarly the third term we find that we have to check the fol-
lowing relation:

(v, &) = ((V)u&om) + (TIgV frm) +(TE T(V f)an) + (JE, TV f) = 0.

The forth term equals (£, (Vf).n) and cancels the second since they equal
d?f(€,m) and —d? f(&,n) correspondingly. Since Vf = —JVy, then it remains
to prove that

<J‘//f§,77> — (JJéJVf,?]) + <JJ,/7JVf,§> = 0. (1.20)

Differentiating the equality JJ = —id in the direction ¢ we find that Jéj +
JJg =0, or JJ{J = Ji. Similar JJ;J = J;. Now (1.20) follows since using
the Cartan formula (1.2) in the relation das[V, €, n] = 0 we get that (J{,&,n) —
(JeVim) + (S V,€) = 0 for any V,{,n € X4 O

Corollary. If (1.18) is a semilinear equation as in Proposition 1.2 and a
nonlinear part VO of the vector field Vi = B + VO defines a C'-smooth map
R x O — Xy, then the flow-maps Sfo are C-smooth symplectomorphisms.

Proof. The flow-maps Sfo are C'-smooth by Proposition 1.2. So Sfo** = S,fo*
are bounded linear maps and the theorem applies. [

Let O be a domain in a symplectic space (X4, s = J(r) dr A dr).
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Definition 1.3. Let C'-smooth functions H; and Hs on O define continuous
gradient maps of orders d; and dy < 2d such that

di +do +dy <2d. (1.21)

Then the Poisson bracket {H;, Ho} of Hy, H is the continuous on O function
{Hy1, Ho}(x) = (J(x)VH1(x), VH2(x)).

The scalar product (JVH;, VHs)(z) is well-defined and is continuous in ¢
due to (1.5). The Poisson bracket is skew-symmetric,

{H1,H>} = —{H>, H,},

since the operator J defines an anti selfadjoint morphism which satisfies (1.5).
In particular, {H,H} =0 (if ord VH < d—d /2 for the Poisson bracket to be
well defined).

Let functions H,, H> and the operator J be v-analytic on a domain O C Xy
and ord VH; < —d ;. Let @ be a sub-domain of O such that distx, (Q, X4\0) >
0. We consider the Hamiltonian equation in O with the hamiltonian H;:

E=J@)VH(x) = Vi(p), (1.22)

and denote by S7 its flow-maps.

Theorem 1.4. Let us assume that the vector field Vi analytically extends to
a complex neighbourhood O + v C X3, where its norm ||Vi||lq is bounded by
some constant K. Then the maps ST : QQ — O, 0 < 7 < §/K, are well-defined
analytic symplectomorphisms and

Hy(S7(x)) = Ha(x) + 7{H:, Ho} + O(7K)?
forr € Q. In particular,
(d/dt)Ha(S"(x)) li=o= {H1, Ha}(x).

Proof. The flow-maps S™ are well-defined for sufficiently small 7 since the vec-
tor field V; is Lipschitz by the Cauchy estimate. If r € @, then ||S7(x) —rlja <
7K and S7(¢) stays in O for 0 < 7 < §/K. So the first assertion follows from
Theorem 1.3.

Since V1(S7(x) = Vi(r) + O(rK?) due to the Cauchy estimate, then S7(r) =
r+7Vi(x) + O(TK)? in X4. Hence, Ho(S7(r)) — Ha(x) equals to

(VH,(x), S™(x) — 1) + O(||S™(x) —xl|3) = 7(VHs, JVH;) + O(TK)?

and the theorem is proven. [J

If ord VH, = dy > —d, then the vector field V; = JV H; is unbounded and
to state a version of the theorem we have to assume that the domain O = Oy
belongs to a system of compatible domains {Os C X | dy < s < d}, where
do =d-— d1 — dJI

28



Theorem 1.4'. Let us assume that C'-smooth functions H, and Hy on the
domain O C X4 as above define continuous gradient maps VHy : Oy — Xg_q,
and VHy : Oy — X,_g, for s € [dy,d]. Let ordVy = dy +dj > 0, the numbers
dy,ds satisfy (1.21) and dy > d2/2. Then for any solution r(t) of (1.22) we
have (d/dt)Hs(x(t)) = {H1, Ha}(x(t))-

Proof. Since dy — dy > —do where dy =ord VH,, then Hy is a C'-smooth
function on Oy,. Since the curve r(t) is Cl-smooth in Og4, by the definition of
a solution, then

S Hy(a(1) = (VH(2).8) = (VH> (), JOVH (1) = (Hy, Ho)(e). O

An immediate consequence is that if d > dy + %d 7 and VH; defines a C'-
smooth morphism of order d; > 0 for dy < s < d, then H; is an integral of
motion for equation (1.22). That is, H;(x(t)) is a time-independent quantity
for any solution (). If d < d is such that the functional H; is continuous in
Oy as well as the flow-maps S*, then by continuity H(S*(u)) is t-independent
for any u € Oy .

Example 1.7 (NLS equation). A nonlinear Schrédinger equation
a(t, ) = i(—uze + P(Jul*)u), 2z €S, (NLS)

where P is a real polynomial, can be written in the Hamiltonian form (1.7) in
the symplectic scale of Sobolev spaces ({Z, = H*(5';C)},w2). We view these
spaces as real and provide them with real inner products. In particular, the
scalar product in Zj is (u,v) = Re f uv dx. Symplectic structure is defined by
the form wy = Jdu A du, where Ju(x) = iu(x). For the hamiltonian h one
should take h(u) = 1 [ (Juz|* + Q(|ul?)) dz, where Q’'(t) = P(t). The gradient
map Vh : Zg — Z4_o is an analytic morphism of the scale of order two and
its nonlinear part u — P(|u|?)u defines an analytic morphism of zero order if
d > 5. So (NLS) is a semilinear equation and its flow-maps S* are well defined
in Zg, d > %, locally in time.?

Now d; = 0, ordVh = 2 and the hamiltonian is continuous in Z;. So
h(S'u) = const for u € Z;.

For d € (%, 1) the flow-maps are continuous in Z; but the hamiltonian is
not. Still the assertion h(S*u) = const remains true if for u € Z; \ Z; we set
h(u) =oc0. O

Theorems 1.3 and 1.4 admit obvious reformulations for Hamiltonian equa-
tions in sub-domains of the symplectic manifold (Vy, 32), B2 = dpAdg+TdyAdy
(see (1.3) and the end of section 1.4). In this case

{Hl(pa Q7y)7 H2(p7 Q7y)} = val : VqI_I2 - qul : VpHQ
+ (YV,Hy, YV, H,). (1.23)

9that is, for any ug € Zg4 the flow-maps are defined and analytic in a neighbourhood of
ug for [t| < T(JJuollq), T > 0.
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Corresponding versions of the theorems are used below.

1.6. A Darboux lemma.

The classical Darboux lemma states that locally near a point any closed
non-degenerate 2-form in R?" can be written as dp Adg. This result has several
versions which put a closed non-degenerate 2-form on a manifold to different
normal forms in the vicinity of a closed set (for the classical lemma the set
is a point), see [AG]. Some of these results admit direct infinite-dimensional
reformulations which can be proven by the same arguments due to Moser —
Weinstein. In this section we present an analytic version of the Darboux lemma
which will be used later on.

Let Yy =R" xT™ x Yy and W be its subset of the form W = P x T" x {0},
where P is a bounded domain in R”. By O, Oq, ... we denote §-neighbourhoods
of W in )y with different § > 0 and suppose that in a neighbourhood O we
are given two closed analytic 2-forms wg and w;. We write these forms as
wj = J(y) dy A dy, where y = (p, q,y), and assume that:

i) Wy = W1 in TO lw,

ii) for all t € [0,1] and all y € O the map J'(y) = (1 —¢)J° +tJ* defines an
isomorphism J* : Z; — Zitd,, where Z; =R" x R" x Y; and d; > 0.

By ii), the map J* = (—=J") 7! : Zyy4, — Zgis well defined and analytically

depends on y. By Poincaré’s lemma (see Lemma 1.3 above), the form wq — wy
is a differential da of some analytic one-form a = a(n) dy such that a(p, q,y) =
O(|ly||3). We specify smoothness of the map a assuming that

iii) the map O1 — Zjt4,, v — a, is Lipschitz analytic in O;.

Lemma 1.4 (Moser — Weinstein). Under the assumptions i)-iii) there ez-
ists a neighbourhood Oy and an analytic diffeomorphism ¢ : Os — O such that
o lw=1id, v« |w=id and p*wi = wy. Moreover, ¢ equals to the time-one flow-
map S, corresponding to the non-autonomous equation ) = Jta(y) =: V(t,).

Proof. For 0 < t < 1 let us consider the 2-forms wy = (1 — t)wg + twy =
Jtdy A dy. These forms are closed as well as the forms wg,w; and are non-
degenerate in a neighbourhood O3 since w; = wy = wy on W by i). Now we
denote by ¢ the flow-maps S of equation ) = V(t,9); so ¢° = id, o1 = ¢
and (o' —id)(p,q,y) = O(|ly||?). The lemma will be proven if we check that
(") *wr = const. Because Cartan’s identity (Lemma 1.2), we have to verify

that

P
% +d(V|w;) = 0.

Since w; /0t = w1 —wy = da, then it remains to check that a+V Jw; = 0. But
Viwy =V ]JtdyAdy = (JHV)dy. So a+V]w, = (a+J*V ) dy = (a+JtJ'a) dy =
0 and the lemma is proven. [
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Appendix 1. Time-quasiperiodic solutions.

The main goal of this book is to study time-quasiperiodic solutions r(t) of
some Hamiltonian equations (1.7). Here we recall corresponding basic defini-
tions.

Definition. A C'-curve v : R — X in a Banach space or a manifold X is
called quasiperiodic (QP) with < n frequencies if there exists a C''-smooth
map I': T" — X, a vector w € R" and a point ¢y € T"™ such that

v(t) = T'(qo + wt) . (A.1)

The vector w is called the frequency vector and qq is called the phase. The
minimal n such that +(¢) admits a representation (A.1) is called the number
of independent frequencies; corresponding numbers w1, ...,w, are called the
basic frequencies.

Remark. We note that the vector w formed by the basic frequencies is defined
only up to an unimodular transformation L ° since the curve (¢) can be also
written as v(t) = I'1(Lgo + Lwt), where I',(q) = I'(L™1g). What is uniquely
defined, is the Z-module Zwi +Z ws + - - - + Z w,, C R. We shall usually ignore
this subtlety. [

Let v(t) be a QP curve (A.1) with a Cl-smooth map I' of maximal rank.!!
If components of the vector w are rationally independent (i.e., w-s # 0 for each
non-zero integer n-vector s), then the solenoid gy + tw is dense in T" (see [A1l,
Section 51]) and the closure y(R) of the curve v equals T'(T"™). So n equals to

the Hausdorff dimension dimy mm and equals to the number of frequencies
(if v admitted a representation (A.1) with a smaller n’, then dims y(R) would
be < n —1). If components of w are rationally dependent, then the solenoid
qo + tw lies in a sub-torus T™ C T "™ with m < n and the number of frequencies
is less than n. Finally: a curve (A.1) with a Cl-smooth map I' of maximal
rank has n frequencies if and only if components of the frequency vector w are
rationally independent.

The closure (R) is called the hull of 4. If components of w are rationally
independent, then the hull equals T'(T"™).

Example. Let f(t) be a periodic real-valued function with a period 27 /w and

a mean-value fo. Then its integral modulo 27, x(¢ fo 7)dr € St :=R/2m,
is a QP function with frequencies fy and w. Indeed z(t) = fot + F(t), where
fo — fo) d7 is an 27 /w-periodic function. So we can write z(t) as

z(t) = T'(fot,wt), I': T? — Sla I'(g1,92) = ¢1 + F(g2/w) mod 2. [

107, is a volume-preserving linear operator in R™ such that its matrix has integer entries.
It defines an automorphism of the torus T" = R"/27Z"™.

Hje., rank I'x(¢’) = n for some ¢/ € T™.
12;

i.e., mes't~(R) is finite and positive, see Appendix 1 in Part II.
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We call a solution ¢ of (1.7) a (time-) quasiperiodic solution, if the curve
r: R — Xy is QP, and call it analytic quasiperiodic if the corresponding map
I' is analytic of maximal rank. The hull I'(T"™) of an analytic QP solution
of the form (A.1) with n basic frequencies is an invariant analytic n-torus of
the equation. This torus is an analytic submanifold of X if the map I' is an
immersion.

Appendix 2. Hilbert matrices and the Schur criterion.

Let X and Y be two Hilbert spaces with the bases {¢; | j € J} and
{t | 1 € L} respectively (J and L are some countable sets). A bounded linear
operator A : X — Y defines an infinite matrix a = {aj; | j € J, [ € L}, where

A( Z a:jgoj) = Z ( Z aljxj>¢l.
jeJ leL jeJg

Clearly,
ay; = (Ap;, )y (A2)

The matrix a is called a Hilbert matrixz of the operator A.
Applying the operator A to vectors ¢; we readily get that

Yo a < Alky Vi
l

The following result which estimates the operator norm of A in terms of the
matrix a is known as the Schur criterion:

Theorem. Let us define the numbers K1 and Ko as Ky = sup; ) |a;| and
K2 = Supj Zl |alj\. Then ||A||§(,Y S KlKQ.

Proof. For any = = ) xjp;, we use the Schwartz inequality to get that
2
lAzI3 =D (D a;) < 30 D layl Y lay [ <
l J L J J
Ky a ) las) < K1 Koz
j l

Now the assertion follows. [

Let {X,} and {Ys} be two Hilbert scales with bases {¢; | j € Zo} and
{¢j | 7 € Zy}, corresponding to sequences {0} and {¥,} as in section 2.3.
For any s and r, {; °¢;} and {0;";} are Hilbert bases of the spaces X, and

Y,. According to (A2), for an operator A : Xg — Y, its Hilbert matrix is the
matrix {a;; | i,j € Zo}, where

aij = 0507 (Apj, ;). (A3)
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For the Hilbert scales as above let {X¢} and {Y} be corresponding com-
plexified scales. For bases of these scales we shall often choose the complex
bases {1; | j € Zo} and {9, | j € Zy}, where

V= Z5(e5—ip—y), vy =5 +ip—;) VjEN,

and similar with {¢;}. Since (1;,%) = (¢;,9_) = 6, for any j, k (we
remind that (-,-) is the complex-linear paring), then the Hilbert matrix for a
complex-linear operator A : XS — Y,° has the entries

aij =95 0] (Aj, ). (Ad)
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2. INTEGRABLE SUBSYSTEMS OF HAMILTONIAN
EQUATIONS AND LAX-INTEGRABLE EQUATIONS

We consider a Hilbert scale {Z,} as in section 1.2, defined by means of a
sequence {6y, | k € Z C Z} of algebraical growth: 0 < 6, = C|k|™ + o(|k|™) (if
originally the parameter-set 7 was an even subset of Z", we re-parameterise it
by points of Z or Z \ {0}). Stretching linearly the index s we achieve m = 1,
see Proposition 1.1. Accordingly, below we assume that

C'k<9,<Ck, keZcCZ.

We provide the scale with a symplectic structure by means of a constant coeffi-
cient 2-form oy = Jdz A dz, where J defines an anti selfadjoint automorphism
of the scale of a non-positive order —d; < 0. To a hamiltonian H,

H= %(Az,z) + H(z),

where A is a selfadjoint morphism of the scale of order d4, the symplectic
structure corresponds the Hamiltonian equation

o= JVH(u) = J(Au+ VH(u)) = Vi (u), J=(=J) " (2.1)

We assume that the hamiltonian H is analytic quasilinear, that is, the func-
tional H is analytic on a domain Oy C Z4, d > d4/2, and defines an analytic
gradient map of order dy < d 4,

VH: Od — Zd—dH-

By interpolation, for any u € Oy the map VH (u), defines a selfadjoint mor-
phism of the scale {Zs} of order dy for s € [-d + dg,d] (see the Corollary in
section 1.2).

Denoting by d; an order of the vector field V3, we have:

di=da+d;y<2d+djy.

We do not assume that the flow maps of the equation are defined on the
whole domain Oy (i.e., we do not assume that the equation can be solved for
any initial condition u(0) € Oy).

Quasilinear Hamiltonian PDEs with analytic coefficients have the form (2.1),
where O4 usually equals to the whole space Z; and the gradient map VH is
analytic of some order dy for all sufficiently smooth spaces Z;. The following
three examples and their perturbations will be the main through our work:

2.1. Three examples.
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Example 2.1 (KdV equation, cf. Example 1.4). Let us take for a scale
{Z, | s € Z} the scale {H5(S';R)} of 27r-periodic Sobolev functions with zero
mean value, defined in Example 1.1. We choose J = 0/dx, A = %82 /Ox?

and H(u) = 1 [u3dz, so H(u) = f( Lu/? 4+ %u3) dz. Then equation (2.1)

4 -8
becomes the Korteweg - de Vries equation (KdV):
10
= = —(ugz + 3u?). KdV
= o e+ 307) (Kav)

It is considered under the zero mean-value periodic boundary conditions:
27
u(t,x) = u(t,x + 2m), / u(t,x)dx =0,
0

which are satisfied automatically since we are looking for solutions in a space
H§. The gradient map Zg — Zg, u— VH = %uz, is analytic of zero order for
d > 1 (see in Example 1.6).

Now we have ord A =d4q =2andordJ =d; =1. O

Example 2.2 (higher KdV equations). The KdV equation is an equa-
tion from an infinite hierarchy of Hamiltonian PDEs, called the KdV-hierarchy
[DMN, McT, ZM]. The I-th equation from the hierarchy can be written as an
equation (2.1) in the same symplectic Hilbert scale ({H§}, (J du,du)). It has
a hamiltonian H; of the form

27
Hl(u) :Kl/ ((_1)lu(l)2+
0
+ (higher order terms with <1[—1 derivatives)) dz,

where K is a non-zero constant (H; is just the KdV-hamiltonian). In partic-
ular, the hamiltonian Hs has the form

1
Ho = < /(uix — 5ulug, — but) de

and the corresponding Hamiltonian equation is the fifth order partial differen-
tial equation:

1 10
1= —u® - 2 (52 11 10u3).
W= u 45’x(5uw+ Outizy + 10u”)

The gradient map of the non-quadratic part of hamiltonian Hs,
Lo o 3
u(z) — ~2 (5us + 10uug, + 10u?),

defines an analytic morphism of the Sobolev scale {H{} of order dy = 2 for
s > 2. The order d4 of the linear part equals 4 and d; =1. O
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Example 2.3 (Sine-Gordon equation). The Sine-Gordon (SG) equation
on the circle,

U = Ugy (t, ) — sinu(t, z), z € S =R/27Z, (SG)

is a semilinear equation with a bounded nonlinearity. Multiplying the equation
by 4(t,-) in La(S), we get the a priori estimate:

d, . .
(il + [ f3,) < Clil,

N | =

which implies for [t| < T with any T a bound for the norm r(t) = |u(t)|r, +
lu’.(t)| 1, in terms of r(0) and T. Accordingly, for any ug € H*(S) and u; €
Lo(S) the equation has a unique solution u(t, x),

ue€ CR,H)NCYR, L) NC*(R, H™ 1),

such that u(0,2) = up and @(0,z) = u;. Moreover, if up € H*(S) and u; €
H*=1(S), then v € C(R, H*) N CH(R, H*~1'). This is almost obvious, see [Paz].

The equation (SG) can be written in a Hamiltonian form in many different
ways.

1. The most straightforward way is to write (SG) as
U= —v, 0 = —Ugy + sinu(t, x). (2.2)

To see that these equations are Hamiltonian, we take the symplectic scale
({Zs = H*(S) x H%(S)}, ag = (jdf,d£>), where £ = (u,v) € Zg and J(u,v) =
(—v,u) (so J = J). For a hamiltonian H we choose H = (A, &)+ H (&), where
A(u,v) = (—ugy, v) and H(u,v) = — [ cosu(z)dz. Then VH (u,v) = (sinu,0)
and the Hamiltonian equation & = JVH = J(AE + VH(E)) coincides with
(2.2).

The Hamiltonian form (2.2) is traditional (cf. [McK, FT]) and is convenient
to study explicit (“finite-gap”) solutions of (SG), but not to carry out detailed
analysis of the equation since the linear operator A as above defines a self-
adjoint morphism of the scale {Z;} of order two, which is not an order-two
automorphism (the inverse map A~! defines a morphism of order 0, not -2).

2. To derive a hamiltonian form of the SG equation, convenient for its
analysis, we take the shifted Sobolev scale {Z; = H*T1(S) x H*+1(S)}, where
the space Z is given the H'-scalar product

<51,£2>=/S(£1x~£;w+§1-52) dr, €& = (uj(z),w;(x)),
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and any space Zs; — the product (£1,&)s = (A%¢,&). Here A® stands for
the sth degree of the differential operator A = —9?/9x? + 1. Obviously, the
operator A defines an order one self-adjoint automorphism of the scale.

The operator

J(u,w) = (—VAw, VAu)

defines an order one anti self-adjoint automorphism. For a symplectic 2-form
in the scale {Z,} we take the form By = (Jd¢, d¢).

By Cosu we denote the function Cosu = —cosu + 1 — %uz, and consider
the functional

H(u,w) = /S Cos u(z) dz.

It is analytic in any space Zs with s > 0 and its gradient (with respect to the
H'-scalar product (-, -)) is!3

VH(u,w) = (A 1Cos’ u(z),0) = (A~ (sinu — u),0).

Since ord A=! = —1, then VH is a one-smoothing analytic map, VH : Z, —
ZS_|_1 if s > 0.
The functional H(£) = 2(&, &) + H(€) is a hamiltonian of the equation

£=JVH(E), (2.3)
which can be written as the system
i=—VAw, w=vVAu+A(Cos'u(x)). (2.4)
The u-component of a solution for (2.4) satisfies the equation
i = —A(u+ A (Cos' u(x))) = —Au — sinu + u = uy, — sinu,

i.e. the SG-equation.

In accordance with discussions in in the item 1, the flow-maps of the equa-
tion (2.3), St : Zy, — Z,, are well defined for any t if s > 0. These maps are
Cl-smooth. This is obvious for integer s and remain true for real s [Paz]. In
particular, flow-maps of the linearised equation are well defined in Z; and equal
linearisations of the flow-maps S*; so by Theorem 1.3’ they are symplectomor-
phisms.

We note that the (u,v)-variables as in equation (2.2) and (u,w)-variables as
in (2.4) are related by the linear isomorphism (u,v) — (u, A~Y?v) = (u,w).
This map is not symplectic with respect to the symplectic forms as and 5.

R
BIndeed, (VH(E),£1) = dH(£)(&1) = Cos’u(z)ui(z) dx = (A~ (Cos’u,0),£&1).
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3. (Even periodic boundary conditions). If u(¢,x) is any solution of (SG)
such that the initial conditions (ug(x),uq1(x)) = (u(0,x), @(0,x)) are even pe-
riodic functions, i.e.,

uo(z) = uo(z + 2m) = up(—x) (EP)

and similar with uy, then u™(t,x) = u(t, —x) is another 2m-periodic solution
for (SG) with the same initial conditions. Since a solution of the initial-value
problem for (SG) is unique, then v~ (¢, z) = u(t, ). That is, the space of even
periodic functions is invariant under the SG-flow and we can study the equation
under the boundary conditions (EP). These conditions clearly imply Neumann
boundary conditions on the half-period:

(a5 1) (0) = (ufg ut,) () = (0,0). (N)

The former can be viewed as a “smoother version” of the latter since for any
smooth even periodic function all its odd-order derivatives (not only the first
one) coincide at x =0 and = = 7.

Denoting for any real s by Z¢ a subspace of Z;, formed by even functions,
we observe that the equation (SG)+(EP) can be written in the Hamiltonian
form (2.3)=(2.4) in the symplectic scale ({Z£}, B2 = (Jd&, d€)).

As before, the flow-maps of the equation (2.3), (EP) define C'-smooth sym-
plectomorphisms of the symplectic spaces (Z¢, B2), s > 0.

We note that for s = 1 the space Zf is formed by the vector-functions from
H?[0, ] x H?[0, 1] which satisfy (N) (the functions are assumed to be extended
to the segment [0, 27] in the even way). That is, for solutions of the equation
(SG) in the Sobolev space H?, the boundary conditions (OP) and (N) are
equivalent.

4. (Odd periodic boundary conditions). Similarly, the SG-equation under
the odd periodic boundary conditions

u(t,z) = u(t,z + 2m) = —u(t, —x) (OP)

can be written in the Hamiltonian form (2.3)=(2.4) in the symplectic scale
({22}, Be = (JdE,dE)), where

7Z? ={&(x) € Zs | € satisfies (OP) }.

S

These boundary conditions imply the Dirichlet:

(uOvull)(O) = (uOvull)<7r) = (0,0). (D)

For s = 0 or 1, the space Z¢ is formed by even extensions to the segment
[0, 27] of vector-functions from H**1([0, x]; R?) which satisfy (D). So for solu-
tions of (2.4) in the Sobolev spaces H' and H? the boundary conditions (OP)
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and (D) are equivalent. In this case (i.e., for s = 0 and s = 1) it is convenient to
replace the odd periodic boundary conditions by Dirichlet (cf. section 11.2.4).

In particular, for s = 0 the phase-space is H!([0, 7]; R?), where the space H! is
formed by vector-functions from H! which vanish for z = 0 and = = 7 (while

in terms of the (u,v)-variables the phase-space is H'[0, 7] x L»[0,7]). O

2.2 Integrable subsystems.

We assume that equation (2.1) possesses an invariant submanifold 72" C
Og4 N Zs, such that restriction of the equation to 72" is integrable. For some
important examples the manifold 72" may have singularities and the restricted
symplectic form as |72» may degenerate at some points. Since our objects are
analytic, these degenerations can only happen on singular subsets of positive
codimension and do not affect the final KAM-results which neglect subsets of
small measure: at some point we shall cut out the singular subsets with their
small neighbourhoods. But our preliminary arguments are global. To carry
them out we have to develop global notations. We shall do it to an extent
which is sufficient to cover main examples of integrable Hamiltonian PDEs.

We assume that 72" = ®¢(R x T") where T™ = {3} is the standard n-torus
and R is a connected n-dimensional real analytic set which is the real part of
a connected complex analytic subset R° of a domain II° ¢ CV.'* By R¢ we
denote any proper analytic subset of R¢ which contains its singular part and
denote by R, the real part of RS, i.e., Rs = RSN R.

We assume that the map ®( is analytic and the form ay |72 does not
degenerate identically:

i) The map ®g : R x T™ — Z; is analytic for each [. That is, for some
d > 0 it extends to an analytic map II¢ x {|Imj| < §} — Zf.

ii) R€ contains a proper analytic subset RS, such that the analytic 2-form
djas is non-degenerate in (R\ (Rs URs1)) x T™, where Ry; = RS, N R.

We call RS, and its real part the sets of degeneracy of the form ®jos. For
brevity we re-denote Ry := R; U R and similar re-denote RS. We set Rf =
R\ RS and Ry = R\ Rs. Since Rs and RS comprise singularities of the analytic
sets R and R° as well as of the map ®q (i.e., they contain the points where the
linearisation is not well-defined or its rank drops), then the sets Ry and R{ are
smooth analytic manifolds and the map

Bg: Ry xT"™ — Z;, ®o(Ry x T") =: T3™,

is an analytic immersion.
Now we specify the integrability of equation (2.1), restricted to 72":

4That is, R® is formed by zeroes of an analytic map II¢ — CN~" such that at some
points of II¢ its linearisation has full rank. For elementary facts concerning analytic sets,
real and complex, see [Mil] and [GR], sections II, III.
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iii) The set 72" is a smooth analytic submanifold of each space Z;, invariant
for the equation (2.1), as well as the tori 7" (r) = ®o({r} xT"), r € Ry.
The restricted to T"(r) equation takes the form 3 = w(r), where w
extends to an analytic map w : II¢ — C".

Due to ii) and iii), the manifold 72" is filled with smooth time-quasiperiodic
solutions of the equation (2.1).
The frequency map r — w(r) is assumed to be non-degenerate:

iv) for almost all r € Ry,

the tangent map w.(r): T, Ry — R™ is an isomorphism. (2.5)

The nondegeneracy property (2.5) can be viewed as an amplitude-frequency
modulation: changing the amplitude vector r one can change the frequency
vector w in a prescribed direction.

By Theorem 1.2 the equation restricted to the symplectic manifold 72" is
Hamiltonian. Because conditions iii), iv), this equation is integrable:

Lemma 2.1. A Hamiltonian equation (2.1) which satisfies i) — iv) is Liouville
— Arnold integrable in T3

Proof. Since the map r — w(r) is analytic non-degenerate, then for almost all r
components of the vector w(r) are rationally independent and the flow 3 = w(r)
on T™(r) is ergodic (see [A1]). A torus T"(r) with the ergodic flow is Lagrangian
in 72". Indeed,'® since the flow-maps of equation (2.1) are symplectic, then
their restrictions to the torus preserve the form Qs = s |7n(;). Since the
flow on the torus is ergodic, then Qo = )" a;; dj; A dj; with some constant
coefficients a;;. A coefficient a;; equals averaging of (), along the two-torus
{313:=0 if [+#14,7}. So it vanishes because the form 25 is exact as well as
the form aw. By continuity, all the tori 7" (r) are Lagrangian.

For any r € Ry we choose coordinates ry,...,7, in the vicinity of the torus
T"(r) in 7&™ and consider the functions

fj:’ZE)Q" > Oy(r,3) —ry, j=1,...,n

As f;’s are constant on each torus 7" (r), then for any 3 € T"(r) and every
tangent vector £ € Il := T;7™(r) we have:

0= (df;(3),€) = —w2(V,(3), €)-

Thus, the vectors Vy,(3) lie in the skew-orthogonal complement to II, equal
IT because the torus 77 (r) is Lagrangian. Hence, the functions f;’s are in
involution: {f;, fu} = Vy,(fr) = 0 for all j, k. Similarly each f; commutes with

15we repeat arguments from [Herl]
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the hamiltonian of the equation and the lemma follows since the equation has
n commuting integrals of motion. [

By the last lemma and the Liouville — Arnold theorem, Ry can be covered
by a countable system of domains Ry, Ry = Ro1 U Ro2 U ..., such that the
equation (2.1) restricted to each manifold 77" = ®¢(Ro; x T™) admits action-
angle variables (p,q) with actions p € P; € R" and angles ¢ € T". le,
wo = dp A dq and the equation restricted to 7}2" takes the form

p=0, ¢=Vh(p), h="Hod,. (2.6)

Besides, the actions p depend only on 7.
Constructing the action-angles (p, q¢) we can choose the cycles Q1,...,Qn,

Qi ={(q, . qn) |@ €S and ¢; =0 for j#1I},

to be homotopic to any n cycles forming a basis of Hy(T™;Z). Our choice is
Qr~3:={pty x- xS x---x{pt}cT" (2.7)

(the circle stands on the [** place).

Lemma 2.2. Under the assumptions i)-iii) and the choice (2.7) the gradient
Vh(p(r)) equals w(r). If in addition holds (2.5), then ¢ =3+ ¢°(r).

Proof. Since 0h/0p; equals to the large-time limit of the number of intersec-
tions of any trajectory on T (r) with the cycle @, divided by the time, and w;
equals to the similar limit with @; replaced by the homotopic cycle 3;, then
the first assertion follows.

To prove the second we note that (d/dt)(¢—3) = Vh—w = 0, so ¢—3 = const
along each trajectory. By (2.5), the trajectories are dense in a torus 7" (r) with
typical r and the second assertion follows by continuity. [J

2.3 Lax-integrable equations.
Let us consider a Hamiltonian PDE, supplemented by appropriate boundary
conditions, and write it in the Hamiltonian form

= JVH(u) (2.8)
in some symplectic Hilbert scale ({Z,}, as = (Jdz,dz)). This equation is called

Laz-integrable (or an equation of Lax type)'® if there exist linear operators
L., A, which depend on u € Z,, and define linear morphisms of finite orders

16Tt would be more systematic to introduce a notion of a Lax-integrable boundary value
problem, but we do not wish to change the received terminology.
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of some additional real or complex Hilbert scale {3}, such that a curve u(t) is
a smooth solution of (2.8) if and only if

d
—tﬁu(t) = [Auw) Luw))- (2.9)

d
The operators £,, and A, are said to form an £-A pair (or a Laz—pair of the
equation (2.8).
We specify dependence of the £, A-operators on u and assume from now on
existence of integers s’,d’ such that for all s > s’ the maps

s — L(Bd,Sd_d/) , u— L, and ur~— A, (2.10)

are analytic, provided that d < s. (This is a non-restrictive assumption which
holds for all ‘classical’ Lax-integrable PDEs.) Due to this assumption, the Lh.s.
of (2.9) is well defined for any C'-smooth curve u(t) € Z if s > 5.

We abbreviate £; = L,,;) and A; = A,,(+), where u(t) is a smooth solution for
(3.4). A crucial property of the £, A-operators is that spectrum of the operator
L; is time-independent and its eigen-vectors are preserved by the flow, defined
by the operators Ajy:

Lemma 2.3. Let xo € 3 be a smooth eigenvector of Ly, i.e., Loxo = AXo-
Let us also assume that the initial-value problem

has a unique smooth solution x(t) € 300. Then

Lix(t) = Ax(t) (2.12)

for every t.

Proof. Let us denote the L.h.s. of (2.12) by &(t), the r.h.s. — by n(t) and
calculate their derivatives. We have:

d d
&= 2L = [A Ly + LAY = ALx = AL

and q g
—n=—Ax =My = An.
1= MW= Mx = An
Thus, both £(t) and n(t) solve the problem (2.11) with xo replaces by Axo and

coincide for all £ by the uniqueness assumption. []

In many important examples of Lax-integrable equations, {Zs} is the So-
bolev scale of L-periodic in = (vector-) functions and £, A are u-dependent
differential operators, acting on complex vector-functions. In this case it is
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natural to take for the scale {35} the Sobolev scale of L-periodic complex
vector-functions. So L-periodic (discrete smooth) spectrum of the operator
L, is an integral of motion for the equation (2.8) if the linear equation (2.11)
defines a flow in the space of smooth L-periodic vector-functions. The set of
integrals which we obtain in this way usually is incomplete. To get missing
integrals we note that an L-periodic in z solution w(¢,x) can be also treated
as an Lm-periodic solution for any m € N. Accordingly, we can consider the
same L, A-operators under mL-periodic boundary conditions and take for {3}
the Sobolev scale of mL-periodic vector-functions. Due to the lemma, the mL-
periodic spectrum of £ is an integral of motion if the equation (2.11) defines a
flow in the corresponding space 3.,. This set of integrals contains the initial one
since any L-periodic in = eigenfunction of £ is an m/L-periodic eigenfunction
as well.

Similar the L-antiperiodic smooth spectrum of the operator £; is an integral
of motion provided that the operators £; and A; define linear morphisms of
the corresponding scale and the equation (2.11) defines a flow in the space of
smooth L-antiperiodic functions.

In many cases the set of integrals of motion of a Lax-integrable equation,
formed by the L-periodic and L-antiperiodic spectra, is complete and can be
used to construct invariant manifolds 72" as above.

Both KdV and SG equations are of Lax type. Below we show how to use
the periodic and antiperiodic spectra of their L-operators to obtain for these
equations the manifolds 72".
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3. FINITE-GAP MANIFOLDS FOR THE
KDV EQUATION AND THETA-FORMULAS

In this section we study famous finite-gap solutions of the KdV equation
under zero-meanvalue periodic boundary conditions:

U =

27
%(um +3u?),  u(t,r) = u(t,xz + 2n), / udr = 0. (KdV)
0

e~ =

The finite-gap solutions fill invariant submanifolds 72" C H§(S') with inte-
grable dynamics on them, as in section 2.2. To study the manifolds 72" we use
the Its - Matveev formula which represents the finite-gap solutions in terms of
theta-functions. This formula does not apply well to small-amplitude solutions
and to study the manifolds near the origin we use normal forms techniques.
The two approaches jointly provide us with the information we need to study
embeddings of the manifolds 72" to function spaces and examine their persis-
tence under perturbations of the hamiltonian.

The approach to study finite-gap manifolds we develop in this section is
rather general. In the next section we apply it to the Sine-Gordon equation.

3.1. Finite-gap manifolds.
The L, A—operators for the KdV equation are:

0? ok

3
o2 " Mg

ro_ 3 0
Indeed, calculating the commutator [A, L]v one sees that most of the terms
cancel and there is nothing left except (iumm + %uuw)v Thus, [A, L] is an
operator of multiplication by the r.h.s. of KdV and the equation can be written
in the form (2.9). For the scale {3,} we take one of the following scales of
complex Sobolev functions: or the scale of 2m-periodic functions, or the scale
of 2m-antiperiodic functions, or the scale of 4m-periodic ones.

It is well-known [Ma, MT] that the spectrum of the Sturm - Liouville oper-
ator £, acting on twice differentiable functions of period 4w, is a sequence of

simple or double eigenvalues {\; | j > 0}, tending to infinity:
)\0<)\1§)\2</\3§/\4<"'/OO.

Corresponding eigenfunctions are smooth if the potential u(x) is. The spectrum
{\;} can be also described without doubling the period: it equals the union
of the periodic and antiperiodic spectra of the operator £, considered on the
segment [0,27]. Below we denote A = {\g, A1, ...} and refer to the sequence
A = A(u) as to the periodic/antiperiodic spectrum of the operator L,.
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Example 3.1. For u = 0 we have \oj, = k?/4, k > 0, and \oy_1 = [2/4,1 > 1.
Corresponding eigen-functions are (27)~'/2 cos kz/2 and (2r)~'/?sinlz/2. O

If u(t,z) is a smooth z-periodic function, then the linear equation
U= Ay, v(0,z)=wv(),

has a unique smooth z-periodic solution v(t,x) for any given smooth periodic
initial data vg(z) (this follows from an abstract theorem in [Paz|, section 5.2).
Hence, Lemma 2.3 with {3, = H®*(R/47Z)} implies that the sequence A is an
integral of motion:

A(u(t,-)) is time-independent if u(t, x) is a solution of the KdV. (3.1)

The segment A; = [Ag;_1,A2;], 7 = 1,2,..., is called the j'" spectral gap.
The gap A; is open if A\g; > Aoj_1 and is closed if Ag; = Agj_1. See Fig. 3.1.

Fiac. 3.1. A spectrum of a 2-gap solution, V = (1,3) (the gap Ay is
closed and the gaps Ap, Az are open)

Let us fix any integer n-vector V),
V=W,...,.Vn) N V) < <V,
and consider a set Tg”,
77" = {u(x) | the gap A;(u) is open iff j € {V1,..., V. }}.

This set equals to the union of isospectral subsets T"(r) = Ty;(r) with pre-
scribed lengths of the open gaps:

T3 = U Ty (r), where Ty (r) = {u(z) € T3" | |Ay,| =r; Vj}
TERi
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By (3.1) each set T7}(r) is invariant for the KdV-flow.

Remarkably, the whole spectrum A of an n-gap potential is defined by the n-
vector r and analytically depends on it [GT]. Each set 77} (r) is not empty and is
an analytic n-torus in any space H§ = H§(S'). The tori 71} (r) are analytically
glued together, so 733" is an analytic submanifold of each space H{ (even
more, each finite-gap potential u(x) € T);(r) is an analytic function!). — These
are well-known results from the inverse spectral theory of the Sturm-Liouville
operator L, see [Ma] and [Mo2, GT, MT].

So the inverse spectral theory provides us with KdV-invariant 2n-manifolds
foliated to invariant n-tori. In the next section 3.2 we shall construct analytic
maps P which represent these manifolds in the form ®,(RxT") as in section 2.

When any gap — say, Ay, — shrinks to a point, the n-gap potential u(x) €
Ty (r) degenerates to an (n — 1)-gap potential from 72%}:’“.7]}"_1). This degen-
eration occurs in an analytic way:

Theorem 3.1. The closure @ of ’TV2" in any space H§, s > 1, is a 2n-
dimensional analytic submanifold of H§, diffeomorphic to R®*"® = {z}. This
manifold contains all finite-gap manifolds T35, where V™ C V (m < n). It
passes through the origin and its tangent space there is spanned by the vectors
eljE e H5,l=1,...,n, where

e, = ——=sinVx =

NZs

1 0
e = —=cosVz =

v (3.2)

< v
02211 0z

1/2 jZOO( +
J

i—1 (uj cosjr —u

. <2
i sinjz) from T we have:

For any function u =m
zak-1 = uy, +O([ul?), 226 = uy, +O([ull), k=1,....n. (3.3)

The z-coordinates are such that

2 2 _ 2 .

The second assertion of the theorem justifies the notation
on _ 72n _ 4<2n

which we use from now on. We call both manifolds 7<2" and 72" the n-gap
manifolds.

For the theorem’s proof see [GT, MT] and [Kap, BKM]. For our purposes we
need only a local version of this result, related to the set ’Z}SQH = T2 NOs(HY).

Below we state it and give an elementary proof.
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Theorem 3.1'. The set 7:5§2n with sufficiently small positive § satisfies obvious
local versions of all assertions of Theorem 3.1.

Proof. To simplify notations we suppose that ¥V = (1,...,n) and abbreviate
Os(H§) to Os. Let us take any function u(z) € Os and write it using the
trigonometric basis (1.1):

oo
u(z) =72 (uf coskx — uy, sinkzx), |ulls =5 <Sé.
k=1
Let us consider the differential operator £ = £, = —9?/92? — u, acting on 4r-
periodic functions. It is an y-small perturbation of the operator £y = —9%/9z2.

Its eigenvalues Agj_1(u), Aoj(u) are Cy-close to the double eigenvalue j2/4
of the operator Ly since by Rellich’s theorem [Kat2] they analytically de-
pend on w. An invariant plane II; = II;(u) of the operator L,, correspond-
ing to the eigenvalues Ag;_1(u) and Ag;(u), is Cy?-close to the eigen-plane
H? of the operator Ly, spanned by the vectors ¢;o = (2m)~1/2 cos jz /2 and
¢_jo = —(2m)"1/2 sin jz /2 (see Example 3.1).17 Since the plane I1; analytically
depends on u, than it has a uniquely defined analytic in u basis {¢;(u), ¢—;(u)}
such that: 1) the basis is orthonormal with respect to the scalar product in
Ly(R/4A7Z), 2) for w = 0 it equals {¢j0, ¢—j0}, and 3) ¢;(u) is a unit vector in
II; which is the closest to the subspace formed by even functions.

This basis is well defined if § is not too big. Since the plane II;(u) is O(y?)-

close to the plane ITJ, then the vectors ¢.;(u) are O(y*)-close to ¢.jo.

Let us take u be equal to ev, where v(z) = 72 > e, (v coskx — vy, sinkx)

€ Hj and ¢ < 1. For j > 1 let M;(ev) be a matrix of the selfadjoint operator
—L.y |1, in the basis, constructed above. It analytically depends on €. Since
¢+ (ev) is e%-close to ¢ o, then %Mj(sv) |e=0 equals to the derivative in € at
¢ = 0 of a matrix of the quadratic form of the operator —L.,, restricted to the
plane I and calculated in the basis {¢+jo}. Therefore,

0 al af
%M] (51)) |5:O = (CLJI a]:]2'2 ) )
where
) 4 ) 1 27 ) 1 1
al = /O v(x)pjo(x)*de = ;/0 v(x) cos §j$ dr = Ev;f,
o 1 [ 1 1
aly, = / v(x)pjo(x)p—jo(z) de = ;/ v(x) sin? §jx dx = _§U;L’
0 0
4m 2m
; 1 1 1 1
al, = /0 v(x)p_jo(z)? dor = - /o v(x)sin §jx cos §j:1: dx = 51)]_

17to prove this assertion one can write the spectral projection to IT; as a contour integral
(see [Kat 2]), decompose it in series in v and observe that the term corresponding to =
vanishes.
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For a 2 x 2-matrix M its deviator MP equals to the traceless matrix M —
(3tr M)E, where E is the identity 2 x 2-matrix. Following [Kap] we consider
the map

MP :u(z) = (MP (u), MP (u),...), u€ Os.

Let $° be the space of all sequences L = (L1, Lo, ... ) of traceless symmetric
1/2
2 x 2-matrices with the finite norm (Z;’;l j25|Lj|2> , and let $7 be a sub-

space formed by sequences (Lq,...,Ly,0,...). Then ’]‘552" = (MD)_I(ﬁfL).
Straightforward calculations show that the map MP : O5 — §° is analytic if
s > 1.18 Due to our preceding arguments linearisation of this map at zero sends
a function v = 772 E;;(U;L cos jz—v; sin jz) to the sequence (MP,MP .. ),
where

1 /vl v
MPwY==|( " J
Po=5 (i ),

so it defines an isomorphism of the two spaces. Now by the implicit function
theorem (see [La]), the set ’]:552" = (MP)~1($2) is an analytic submanifold of
Os such that

i) the map MP composed with the natural projection $° — §? defines its
analytic isomorphism with a neighbourhood of the origin in $7,

ii) the tangent space Tg’]}SQn equals (MP(0),)"1$3.

By ii), the tangent space TO’ZZSSQ" is spanned by the vectors eli, ...er defined
in (3.2), as states Theorem 3.1".

For j =1,...,n let us write M (u) as
D L (2251 22j
MP = 2~ J _
J 2\ %25 —Z2-1
Then z = (z1,...,29,) is a coordinate system in 7, so by i) the functions

z; o MP form a coordinate system on 7:5§2n. For any function u € ’Z:SSQ" the
relations (3.3) clearly hold. So the tangent vector zo1—1 € TyT; " equals
lations (3.3) clearly hold. So the tangent vector 9/ To T " equal
e;L and 0/0z9 equals e; .
By construction of the matrix MJD, a size of the j-th open gap r; = |A,]
equals to the difference of its eigenvalues and equals z3; | + 23,. The theorem
is proven. [J

For further use we note that our calculations prove the following small-gap

spectral asymptotic for a small-amplitude potential u = 7—1/2 220:1 (u;r cos kx

8even if s = 0 — see [Kap].
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—uy; sinkx):

-2
7 1 —on\1/2
Aajo1 = = 5 ([ 1P+ Jug 7)) 77+ O(l[ull3),

. 2

it Con1)2 3.4
Moy =7+ (e P+ 1 )+ O(ul?). Y
No = O(ull?).

for any s > 1. Indeed, A\2;_1 and Ay, are eigenvalues of the matrix

2 u; U

ww =3 (1 1) o

so the first two relations in (3.4) follows since the eigenvalues analytically de-
pend on u. The classical perturbation theory, applied to the single eigenvalue
Ao, implies the last relation.

The way to study local (near the origin) structure of finite-gap manifolds we
have described, is rather general and applies to other Lax-integrable equations:
locally they are quite similar. On the contrary, global structure of finite-gap
manifolds can be rather different. Cf. section 4 and see [Kap, KKM] for global
coordinates M jD in the KdV-case.

Since restriction of the symplectic form agy to the tangent space TO’TVS% is

non-degenerate by (3.2), then it also is non-degenerate in the manifold T;Qn,
provided that 6 > 0 is sufficiently small. It is known since the first works
on space-periodic solutions of KdV [Lax1, N] that each torus 7" (r) (and the

whole manifold ’2?2”) are invariant for the vector fields of all equations from
the KAV hierarchy, see Example 2.2 and [DMN, MT, ZM]. So KdV restricted
to ’1?2” has n commuting integrals of motion Ho, ..., H,—1 (where H; is the
KdV-hamiltonian). Since H; = const [ uld )2+. .. dx (the dots stand for higher-
order terms) and u(z) = 7~ 1/2 Y (uf cos kx —u;, sinkz), where u;k = Zop_1+
O(|2]?), uy,, = zox + O(|2]?) and uiF = O(|2]2) if | # Vj, for all k, then near the
origin a hamiltonian H,, |Tég2n has the following form:

Hin(z) = Cp, ngzm(zgjfl + Z%j) +0(]z]%).

j=1

The system of quadratic forms ) me(zgj_l + zgj), m=20,...,n— 1, is non-
degenerate in the sense that determinant of the matrix {me |1<j<n,0<
m < mn — 1} is nonzero (due to Vandermonde). Therefore Vey’s version of

the Liouville — Arnold theorem near a singularity provides us with analytic
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Birkhoff coordinates, see [Vey, Ito]. Also see Appendix 1 in [BoK2], where
this result is obtained without Vey’s theorem and without the extra integrals
of motion, using instead given below in section 3.2 Lemma 3.3 (the lemma’s
proof, presented in Appendix 6 is independent of Theorem 3.2). We arrive at
a result which specifies Theorem 3.1’

Theorem 3.2. If § is sufficiently small and s > 1, then there exists 61 > 0
and an analytic map

U:0s (R — T2 C Hy, y—U(yy),

such that its 1tmage is contained in ’2?2". The transformation y — z =
2(U(+,y)) is a diffeomorphism of the form z = y + O(|ly|?) (so y(0) = 0).
Besides,

1) Urag = Y0 V7 dyai—a A dyar,

2) pull-back under this map of the hamiltonian of the KdV equation is an
analytic function h™ of the arguments y3 +vy3, ..., Y3, 1 + Yan,

3) for any l < n, the submanifold formed by potentials u(x) such that |Ay,| =
0 corresponds to the subspace {y | yoi—1 = y2r = 0},

4) the finite-gap tori T*"(r) in the y-coordinates take the form {y3, | +y3 =
Cy(r)}.

The last assertion holds since by the Vey theorem the hamiltonians Hy, ...,
H,—1 all are functions of y2, , +y3 and since they are constant on each finite-
gap torus.

The coordinate y provide us with analytic action-angle variables (I, q) on
the manifold TV2”, where

1
I = —
T2y,
These coordinates are symplectic since U*ay = dI N dp by the first assertion

of Theorem 3.2. The KdV-hamiltonian is an analytic function hA™(I) of the
actions I and the KdV-equation restricted to TVS% takes the form

(ygj—l + y%j)? qj = Arg (Y251 + iY2j)- (3.5)

I=0, ¢=Vh(I).
Abusing notations, we denote the map U, written in the (I, g)-variables, also
as U. Then the finite-gap solutions which fill the n-gap manifold 72" can be
written as
u(t,z) =U(x;1,q+tVR™(I)). (3.6)
For further usage we note that since a point U(y) has z-coordinate z =
y+O|y|? and since by (3.2) a point in TVSZ" with a coordinate z is the function
T1/2 S (221-1 cos Viw — 291 sin Vi) + O|z|?, then

Ul(x;1,q) = g 1/2 Z V2V, (cos q; cos Viz — sin g sin Vi) + O()

=g~ 1/2 Z V2V I cos(q; + Viz) + O(1).
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By the last assertion of Theorem 3.2 the actions I; are functions of the radii
ry > 0,...,r, > 0. These functions analytically extend to the origin:

Lemma 3.1. Fach action I; is an analytic at zero function of ri,...,r2 of

r2
the form I; = ﬁ(l + O(|r]?)).
Proof. We recall that 7“32 = zgj_l +z§j and denote by w4 ; the complex numbers
Wi = zoj 1 +iz05 = 7€ w_; =w;, j=1,...,n.
J 2j—1 1 122 J ) J gsJ RERR)

Since I; is an analytic at zero function of z, then it can be written as a con-

vergent series [; = Zsez";” asw?®, where Z>o = NU{0} and w® = w”," ... win".
>0 =
Or
n
Ij = Z ai H rzp+5—pei¢p(3p_s—p).
sGZQZTB p=1
Since each I; does not depend on the angles ¢ but only on the radii rq,...,7r,,

then as # 0 only if s, = s, for each p, i.e. s = ((,[) for some n-vector | € Z%,,.

Then I; = Zlezgo b2 bl = aj ;- By the third assertion of Theorem 3.2, I;

. 2
vanishes with r;. It means that b] = 0 if I; = 0; so I; equals ﬁ times an
analytic function of r7,...,72. Since y = z + O(|z]?), then I7 — r2/(2V;) =

O(|z|?) and the analytic function as above is (1 + O(|r|?)). O

3.2. The Its — Matveev theta-formulas.

To check that the n-gap manifolds Tvgzn of the KdV equation possess the
properties i)-iv) from section 2.2, we have to present an analytic map ®g as in
section 2.2 and to study its properties. We shall write the map ®y in terms
of theta-functions, following the works [D, BB]. An alternative presentation
of the small-amplitude part ’7552” of the n-gap manifold TVS% in the desired
form, is given by Theorem 3.2, and formula (3.6) can be used to construct the
map Pg(r,3) for |r| < 1. The reader can skip this section and just take for
granted that each n-gap torus 77; is filled with solutions, given by the formula
(3.17) below, where the function G(3;7) and the vector W(r) are analytic in
3eT" reRY.

Our notations “almost” agree with [BB] and mostly agree with [D]. All
results on Riemann surfaces, given without a reference, can be found in [S].

Let us take any n-gap potential u(x) € T;(r) and denote by E1(r) < Ea(r) <

+ < Fapy1 end points of the open gaps plus Ag (so 3 = A\ and Ay, =
[Eo, Es,..., Ay, = [Eapn, Fany1]), see Fig. 3.1, 3.2. The Riemann surface
' =T'(r) of genus n,

2n—+1
D= {P=n|p=RNr):= ] O-Em)}

j=1
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has branching points at Ey, ..., Es,41 and co.

After the curve I' is cut along ovals which lie above the segments [Ey, Es], ...,
[Eon_1, Eonl, [Eont1,00], it falls into two sheets T'y. and T'_, chosen in such a
way that p is positive on the upper edge of the cut [Eo,11, Foo] in T'y. We
denote by 7 the projection

m: ' - CU{o0}, n(P)=A,
and by 7 the anti holomorphic involution of I,
I =T, (\p)— -0
(its linearisations define half-linear complex maps). The cuts as above are
invariant for 7, as well as the sheets I';, I'_.
Let aq,...,a, be the ovals in I' lying above the open gaps Ay, ,..., Ay

(ie., a; = 7T_1ij). We supplement them by n b-circles by,...,b, as in Fig.
3.2.

Fic. 3.2. Circleson I'

The b-circles lie in I' ;. and we choose them in such a way that for each j the
circle 7(bj) equals b; as a set.'® Since 7 inverts orientations of the circles, then

T(bj):—bj, ]:1,,’/1 (37)

Because R(\) is negative on the gaps (E2;, E2j+1), the p-components of the
points from a-ovals are pure imaginary and the ovals are fixed for 7:

T((Zj) = Gy, ] = 1, sy N (37/)

For this end the loops m(b;) should be invariant for the complex conjugation A — .
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Moreover, there are no fixed points of 7 outside these ovals. The a- and b-circles
are chosen in such a way that they have the canonical intersection matrix:

az-oaj:biobj:(), aiobj:(Sij.

Next we take a basis dws,...,dw, of holomorphic differentials on I', nor-
malised by the conditions

(dwj, ak) ::j{ dw; = 20 .
ak

These differentials exist and are uniquely defined by the normalisation. Since
(dwj,ar) = (T¥dwj, Tag) = (T"dwj,ar), then (—7*dw;,ar) = —(dwj,ar) =
2mid 5. Each differential —7*dw; is holomorphic and meets the normalisation.
So it equals dw:

—7*dw; = dwj. (3.8)

Since the differentials (A /i) d), I =0,...,n — 1, are holomorphic in I and
the space of holomorphic differentials is n-dimensional (see [S, ZM]), then each
dw; can be written as

_ polynomial of A degree <mn —1
1

dw; dA. (3.9)

By (3.8) the polynomial in the numerator has real coefficients.
The Riemann matrix B = B(r) = (Bjj) of the curve I' is defined as the
matrix of b-periods of the differentials dw;:

Bjk = (dwj,bk>.
Using (3.7) and (3.8) we get:
B_jk = (@, be) = —(T"dw;, by) = (T7dw;, Tbg) = (dw,, b,) = Bj.

Therefore, under our choice of the a,b-cycles, the matrix B is real. Its sym-
metric part is negatively defined due to general properties of the Riemann
matrices.

Now we define the theta-function € of the curve I' = I'(r):

0=0(zr) = Z exp <%(B(r)s,s) + (2, s)), z e C",
SEL™

(the sum converges due to the properties of the Riemann matrix B). Clearly
the function is 27-periodic in imaginary directions:

0(z + 2mie) = 0(z2),
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where ey, is the k-th basis vector of C™.

The differentials dw; analytically depend on the parameter r € R’} as well
as the matrix B(r), formed by their b-periods.?° Therefore the function 6(z;r)
is analytic in r € R}.

Since the matrix B is real, then 6 is real and even:

In particular, this function is real both in real and pure imaginary directions:
0(z), 0(iz) e R if z € R".

Next on the surface I'(r) we consider Abelian differentials of the second kind
dQ)1, d€l3 with vanishing a-periods and with the only poles at infinity of the
form

Ay = dk + (c+ O(k™2) dk™, k = ivVA — o0,

3.10
dQs = dk* + O(1) dk™ 1, (3.10)

where ¢ is an unknown constant. The normalisation (3.10) defines the differ-
entials uniquely, see [S, ZM, BBE].

The following lemma, proven in Appendix 4, comprises some useful proper-
ties of these differentials :

Lemma 3.2. The differentials d€2y and dSd3 can be written in the form

A"+ antl
40, = ATAFL 3. +
L

A T (3.11)
0

N | =

where the dots stand for real polynomials of degree n — 1. Fach open interval
(Eaj,Eaj—1), j =1,...,n, contains exactly one zero of dQ21(\) and a zero of
dQs(N).

Let us define complex n-vectors iV (r) and iW (r) as the vectors of b-periods
of these differentials:

iV = (dQq,b;), iW; = (d3,b;).

The vector V is called the wave-number vector and W — the frequency vector.

Since the circle b; can be deformed to [Ey, Eq;] U [E2;, E1] (the first segment
stands for a path through the upper edge of the cut and the second — through
the lower edge), since by (3.11) d€2; 2 changes its sign when we cross a cut and

20in Appendix 4 we prove similar statement for the differentials d21, dQ23 (defined below)
and for their b-periods.

o4



since integrals of d€2; o along open gaps vanish due to the normalisation (cf.
Appendix 4), then

[E1,E25] [E1,E2y]

As the dots in (3.11) stand for real polynomials, then

N = d, dSs — A,

—fi

T*dﬁlz

N | =

That is, the differentials d€2; o are real (with respect to the anti holomorphic
involution 7). Accordingly,

iV; = (dQ1,b;) = (17 dQq,b;) = — (7 dQy, 7b;) = —(dQ1,b;) = —iV;
(we use (3.7)). Thus the vector V is real. Similar with W:
V, W e R".
One of the top achievements of the finite-gap theory is the Its—Matveev
formula, which represents any n-gap potential u(z) € T™(r) in the form
82
u(x) = u(x;r,3) = QW Inf(iVx +i3;7) + 2c¢. (3.12)
x

Here the constant c is the same as in (3.10) and the phase 73 is
i3=—A(D) - K,

where K is the vector of Riemann constants (see [D, BB] or Appendix 3 be-
low) and A(D) is the Abel transformation of a positive divisor D = D(u),
D =D;,...D,, Dj € aj. Le., A(D) is a complex n-vector such that its jth
component A(D); equals

AD), =3 / ",

r=1"Y

where {dw,} are the holomorphic differentials on I' as above. The divisor D is
a divisor of Dirichlet eigenvalues, i.e. D; = (), i1;), where \; is an eigenvalue
of the operator £, subject to Dirichlet boundary conditions ¢(0) = ¢(27) =0
(each gap A; contains exactly one point from the Dirichlet spectrum, see [Ma,
MT]).?! In particular, every point D; analytically depends on the potential u.

21 This divisor can be also described a divisor of poles of the Baker — Akhiezer eigenfunction
¢(z; P) of the operator L, Ly, = m(P)p, normalised at infinity as ¢ ~ eV . See [D, BB]
or section 6.2 below, where this function is denoted as x (the notation ¢ agrees with [D,BB]).
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The phase vector 3 turns out to be real (see Appendix 3.i)), so (iVz + i3)
is a real valued function of z. The theta-function is nonzero at any imaginary
point i§ € iR™ (see in [BB] Lemma 3.7 on p.68 and its proof). Since this
function is periodic, then

0(i&)| > C(r) >0 VEe€R™ (3.13)

Hence, the r.h.s. of (3.12) is analytic in 3 € T".
Due to the periodicity, we can treat 3 as a point in the torus T"™. Thus we
get an analytic map:
T"(r) = T", u()— 3.

This map has the analytic inverse given by the formula (3.12).22 The coordinate
3 on T7(r) are called the theta-angles.

The r.h.s. of (3.12) defines a quasiperiodic function with the frequencies
Vi,...,V, (see Appendix 1). Since u(x) is 2m-periodic, then the wave-number
vector is integer:

Vezr (3.14)

The condition (3.14) is clearly sufficient for the periodicity. Its necessity is
“obvious” but still has to be proven. We prove it in Appendix 3.iii).
Since the mean-value of the r.h.s. in (3.12) equals 2¢, then we must have

c=0. (3.15)
In Appendix 4 we show that
Vi = —i{dQy,b;) =V, as T3" >u—0.
Comparing this relation with (3.14) we get that
V=V

Everywhere below we write V instead of V. In particular, we denote n-gap
manifolds as T\;Q" and 73"
Time-evolution u(t, x) of the n-gap potential u(z) € T (r) as in (3.12) along

the KdV flow is given by the following formula, also due to Its — Matveev:
82
u(t,z;r,3) = QWIHH(Z'(VQJ+W7§+3);T) (3.16)
x

(we use that ¢ =0 by (3.15)).

228trictly speaking we have to check that for each 3 € T™ the vector i3 can be represented
in the form i3 = —A(D) — K. We prove this in Appendix 3 (see (A3.3)).
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Let us denote by ®(r,3)(x) the function of z, defined by the r.h.s. of (3.16)
with ¢ = 0. The map (r,3) — Po(r,3)(:) represents the n-gap torus in the form

T"(r) = ®o(r,T™) C HY.
In terms of the function ®¢(r,3)(-) the n-gap solution (3.16) can be written as
u(t,x;r,3) = Po(r,3 + W(r)t)(x). (3.17)
This shows that in the (r,3)-variables the KdV-flow on 72" takes the form
3=W(r).

Le., the theta-angles 3 integrate the KdV-equation on any torus 77 (r).
Let R be a sub-cube of the octant R"} of the form

R={reR} |0<r; <K}
with some K > 0, and
T2 = ®g(Rx T") C T"

for any fixed wave-number vector V. The set 72" C H¢, d > 1, is an invariant
manifold of the KdV equation. It meets the assumptions i) —iii) from section 2.2
since: The map ® is an analytic embedding and 72" is an analytic submanifold
of H¢. The form ® ay is analytic and is non-degenerate for small r by (3.2),
so the set of its degeneracy is a proper analytic subset of the cube R (in fact,
it is empty — see in section 6 the Amplification to Theorem 6.2 and its proof).

The non-degeneracy assumption iv) also holds for KdV, as states the follow-
ing Nondegeneracy Lemma, proven in Appendix 6:

Lemma 3.3. The determinant det{OW;/0ry} is nonzero almost everywhere.

3.3. Small-gap solutions.

In this section we fix any finite-gap manifold T&Z” and prove that the cor-
responding frequency vector W depends on the small radii-vector r in the
following way:

1 3 .
4Vj 8—Vj7“j+..., J=1,...,n. (%)
This asymptotic is important for forthcoming constructions since it implies the
non-resonance relations we have to check to apply to the KdV our abstract
theorems. To prove (x) we have to consider a moduli manifold &, formed by
all surfaces I'(r) such that 0 < r; < ¢ for each j, and to study its closure &.
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It turns out that & is an analytic manifold and the frequency map & — W
analytically extends to &. It remains to expand W to series of u, where y is
a coordinate in the vicinity of the point » = 0 in &, and to check that this
expansion coincide with (x).

There are classical ways to construct the analytic coordinate p (i.e., to“nor-
malise "), see [Fay] and [BB], section 5. These coordinates can be used to
prove (x) (see [BoK1]). Since (%) implies that det OW /Or # 0, then in this way
one also gets an alternative proof of Lemma 3.3.

Unfortunately, the classical ways to normalise & and to decompose specific
functions on I' = T'(u) (like components of the frequency vector W) to series
in p are very technical, this book hardly is a proper place to present them.
Below we choose another (a‘“non-classical”) way to normalise &, using the y-
coordinates provided by the Vey theorem (Theorem 3.2). To calculate the first
two terms of a decomposition of W' to series of y, needed to check (x), we exam
closer small-amplitude 2-gap solutions. This way to expand W to series of r is
general and straightforwardly applies to other Lax-integrable equations.

In Appendices 2,3 we present elementary calculations which specify small-
gap behaviour of the frequencies W:

. 1 n
W; = —i(dQs3,b;) — _Zng as T\% S5u— 0. (3.18)

To study small-gap solutions from 7};2" further, we shall use the Birkhoff

coordinates y = (y1,...,Y2n). Since in the action-angle variables (I, q) (see
(3.5)) the KdV-hamiltonian is an analytic function h™(I), then by (3.16) and
Lemmas 2.2, 3.3 we have that

Vh" =W (3.19)

and
q—3=1q"(r) (3.20)

Rj = \/y%j—l + y%j =/ 2Vjl;.

Then the symplectic form U*as equals % > dR? A dg; and

Let us denote

W s an analytic function of R3,..., R2

because of (3.19) and item 2) of Theorem 3.2. By Lemma 3.1,
R;=r;(L+0(r?), j=1,...n (3.21)

Below to study small-gap solutions we use the R-variables rather than r.
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Let us take any n-gap solution u(t,-) € T™(r) such that |r| < 1. Using (3.6)
and (3.19) we write it as u = U(x; R,tW (R)+q). Since this solution can be also
written in the form (3.16), then U(z; R, tW (R)+q) = U(0; R, tW (R)+xV +q).
Therefore, denoting

G(¢,R) =U(0;R,q)

we write the solution u as
u(t,z;R,q) = GIW(R)t+Vzx+q,R). (3.22)

The function G is analytic in ¢ € T" and in R, |R| < 1. Using the small-gap
limit for the map U, given after Theorem 3.2, we find that

G(q,R) = % ZRj cosq; + O(|R|?). (3.23)

Since the map U is analytic in the y-variables, then the function G is analytic
in the y-variables as well as in the complex variables w4, j = 1,...,n, where
Wi = Y21 + Y25 = Rjeiqﬂ' and w_; = w;. Hence,

=) Cuw'= ) C, HRSP“—pe%(SP s=») (3.24)

SGZQ" 8622"

» win,

h S
where w® = w7 ... wy

Example 3.2 (one-gap potentials). For n =1 and for V = V; = k the one-
gap manifold 7,2 is a union of time-periodic solutions w(t,z) for the (KdV)
of the form w = G(kxz + Wt + ¢;R). Here G(Y;R) is an analytic function,
2m-periodic in Y, and W is analytic in R?. Since [wdx =0, then [ GdY = 0.
Using (3.18) and (3.23) we write the functions G and W as follows:

1
GY,R)=R——=cosY +R?g(Y) +R3g3(Y) + ...,
NG

1
W:—Zk3+R2W2+....

Substituting w to the KdV equation we get that WG’ = 1k3G" + 2k(G?),
where prime stands for 9/9Y. Or

EG" — AW G + 3kG? = const .

First-order in R terms in the L.h.s. cancel. Equating to zero terms of the second
and the third order we the get the two equations:
3k
kgl 4 k3o —|— = cos?Y = const,

k3g + k3g3 — 4W2 cos Y + 6kgs cosY = const.
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Since [ godY =0, then from the first equation we find that go = ﬁ cos2Y.
So the second one takes the form:
3 3
—k*(g4 + g3) = (% —4Ws) cosY + o €08 3Y.
For this equation to be solvable we must have Wy = 3/(8km).
Thus, one-gap solutions from a torus T} (R), R < 1, have the form

w(t,r;R,q) = Rwi(Y) + R*wa(Y) + ..., (3.25)
where )
wy] = ﬁcosY, Wy = mCOSQY
and Y = kx + Wt + g with
k3 3R? 4
W(R) = -7 + Y= +O(R%). O (3.26)

For any n-vector U and any m < n we denote by U™ the (n — 1)-vector
obtained by dropping the m-th component, i.e. U™ = (Uy,..., U, - Un).

For m < n let us consider the (n — 1)-gap submanifold T\?Z_Q of 752”,
obtained by closing the mth open gap. Since W = VA™ and h" |, —o= h"!
by Theorem 3.2, then

W™(R) |r,,—o= W(R™), (3.27)

where the (n — 1)-vector in the r.h.s. is a frequency vector corresponding to
the manifold Téﬁh_z.

Proposition 3.1. 1) For any m < n and for a sufficiently small vector R € R"
such that R,, =0 and R; > 0 for | # m, the function

Up—1(t, x; R™. q) =G(Vz+Wt+q¢;R)

is an (n—1)-gap solution from T(};l (R™) with the frequency vector W' . This
solution is independent of qp,.

2) Let R¢ be the vector (Ri,...,c,...,Ry) (¢ stands on the m*" place).
Then for any q, € S* the function v = (8/9e)G(Vz + Wt +q,R?) |.—o solves
the KdV equation, linearised about w,_1:

o 1v 30

47 20

Proof. The first part of the first statement follows from item 3) of Theorem

3.2 and from (3.27). By the formula (3.24) the function G |g,, =0 IS Gm-
independent; therefore u,,_1 is ¢,,-independent as well.

The second statement is obvious: since the solution G(Vz + Wt + ¢, R?)
smoothly depends on ¢, then its e-derivative at zero satisfies (3.28). O

(Un—1v). (3.28)

The example to this result given below is straightforward and technical. It
is important since it implies the asymptotic () which is the main goal of this
section.
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Example 3.3 (two-gap potentials). Let us choose any m # k and consider
a two-gap solution u € T?(Ry, Rm) C ’]fri, where 0 <R, < Ry < 1

u(t,x; Ry R, q) = G(Vx + Wt + ¢; Ry, Rin) (3.29)

where V = (k,m), W = (W, W,,,) and ¢ = (g, ¢n) (we abuse notations and
write (Wy, W,,,) and (qx, ¢) instead of (W71, Ws) and (g1, g2); besides possibly
k > m). The function w(t, z; Ry) = u(t, z; Rg,0) is the one-gap potential from
Example 3.2 with R = Ry, (see (3.25)). By the Proposition 3.1, the function
v =ug (t,2;Ry,0) solves the linearised equation (3.28) with u, 1 = w. Due
to (3.27), Wi (Rk, 0) equals to the frequency W (Ry), so Wy, satisfies asymptotic
(3.26) with R = Rg. This function is analytic in Ry and in gk, ¢, -

Below we abbreviate R to R.

Since the frequency vector W(Rg, R,,) is an analytic function of R? and
R2Z,, then W/, (R,0) = 0. So differentiating (3.29) we get that uj |r, —o=
G, (V+Wt+¢qR,0). Analysing (3.24) we see that non-zero contributions
to G |Rr,,=0 come from terms with s,, = 1,5, =0 and s, = 0,5, = 1.
Hence, denoting

Z=mx+Wpt+qn, Y =kx+ Wit+ q,
we can write v in the form
v=C1(1+ f(Y,R))eZ + Cy(1 + g(Y,R))e 4,
where f(Y,0) = ¢g(Y,0) =0 and |C4] + |C2| # 0 (the latter holds since by The-
orem 3.2 linearisation at zero of the map y — U(-;y) € H{ is non-degenerate).
Constructing an appropriate linear combination of solutions v with shifted

phase ¢,, (or taking v instead of v if C; = 0) we get a solution for (3.28)
of the form

v=e¢?H(Y,R), H=1+Rh(Y)+R?h(Y)+....

This function satisfies the equation (3.28) with u,,_1 = w. Substituting there

v = €'Y H and multiplying the equation by e~*4 we get that
2,0 18 3 _.,0 .
—iZ iz —iZ iz
= H == — H). .
¢ (E% 4 0z3 Je 2¢Oz (we'™ H) (3:30)

Due to (3.18), the function W,,(R,0) has the form W,,(R,0) = —m3/4 +
waR? + O(R*) with some unknown w,. Hence,

0 1,
e Z(E—Z%)GZ:ZWQRZ—{—O(??A).
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Noting that 92 = W, H{ (V) = —%SH{/(Y) + O(R3) (since Wy, = —k3/4 +

O(R?) and H{, = O(R)) and that 2 & — l{:le(/p)(Y) for any p, we get:

oxP
., 0 103, . 15) 103
—Z (Y - Y \ iz — 2 >~ -~
(5~ 1) H =R H+<6t 48:1:3)
3 .00 0 92 ., 0 ,
_ 1 _ 1 _H' _ ¥ _H'
4 (83;6 0x2 +(9a:2e oz >+O(R)
k 0 0
. 2 v . 4
= wyR°H 48YM<8Y>H+O(R )

where M(0/0Y) = M is the following differential operator: M(f(Y)) =
K2f" + 3imkf' + (k* — 3m?) f . Hence, the Lh.s. of (3.30) is

. 0 10 k 0 k O
—iz(C 9 ez REC Ny 20wy — =M
<G~ Ta0)e R gy M+ R (i = g Mha) +
Using (3.25) we find that the r.h.s. of (3.30) equals

3 .,0 ., 3. 3 9
2712 L (welZ H) = 2imwH + 2 k—— (wH) =
5¢ 8$(we ) 5 imw +2k8Y(w )
= §R('mw +kiw )+
T2 ey
3 0
§R2((imw2 + imwihy + kza—Y(wlhl + wg)) 4+ ...

Now we equate the first- and the second-order in R terms in (3.30) to get two
equations:

1 1
——Mhy = §zm(i) wy + §k:wl = 3 (tmsinY + kcosY),

4 2\ 9y 2 2/T
k L9\ '3 3
_ZMh2 = 2(6_Y> bm(wg + wlhl) - CUQ} + §k(w1h1 + wg).

From the first equation we find that h; = —(i/y/mm)sinY. For the r.h.s. of
the second one to be well-defined, the mean-value of the function in the square
brackets must vanish:

3 3 :
0= <§m(w2 + wihy) —w2> = <§m( oty %smYcosY) — w2

where the angle brackets stand for averaging in Y. So ws = 0 and the solution
v we are discussing has the form

cos2Y 7 >
= —Ww2,

i(ma+Wont+qm) (1- sin (kx + Wit + qx) + O(R?)),

V=¢e
mny/ T

where W,,, = —m3/4+O(R*). Since Wj(R) satisfies (3.26), then the frequency
vector W = W(Ry,R,,) = (Wg,W,,) obeys the following asymptotics as
Rr,=R —0and R,, =0:

k3 3R? ~m?

_ e 4 — 4
Wi ===+ 53— T ORY), Wy T tORY. O (3.31)
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Lemma 3.4. For any finite-gap manifold Té% the corresponding frequency
vector W(R) has the following asymptotic as R = (R1,...,Ry,) — 0:
3

1 .
W;(R) = _Zng + SW—Vj@ +O(IRY, j=1,...,n.

This result remains true with R-variables replaced by r-variables.

Proof. The zero-order term of this asymptotic follows from (3.18). For small
R each W; is an analytic function of the arguments 4, = R?, | = 1,...,0.
Applying (3.27) iteratively we get that W;(0,...,R,,...,0) is the frequency
of the one-gap solution from Example 3.2, so (3.26) implies that OW;/du;(0) =
3/(87V;). Using (3.27) once again we find that the function W;(0,...,R;,0,... ]
Ri,...,0) with [ # j is a first component of the frequency vector of a two-gap
solution. Applying (3.31) with m = j and & = [ to W} |g,—0 we get that
OW, /O (0) = 0 and the asymptotic follows.

The last assertion results from (3.21). O

3.4. Higher equations from the KdV hierarchy.

Let us take any n-gap manifold 73". The manifold itself and each torus
T"(r) C 73" are invariant for all Hamiltonian equations with the hamiltonians
Ho, Hi,... from the KdV-hierarchy (see Example 2.2). The flow of any [-
th KdV equation on 73" is very similar to the KdV-flow: it is given by the
theta-formula (3.16) where the frequency-vector W should be replaced by an n-

vector W) with z'Wj(l) equal to the bj-period of an Abelian differential df22;1,
normalised by the conditions that its a-periods vanish and near infinity it has
the form:

dv=2=1 4 regular part, v = (3.32)

1
ivVA
(see [DMN, ZM], cf.(3.10) where [ = 1).

All results of sections 3.1-3.3 till Proposition 3.1 have obvious reformulations
for the higher KdV-equations, valid for the same arguments as in the KdV-
case. Our proof of Lemma 3.4 is rather concrete. Instead of trying to repeat
its calculations for a general [-th equation from the KdV-hierarchy, it is easier
to expand the vector W) to series of r using the mentioned in section 3.3
classical coordinates on the moduli manifold &. We state the corresponding

result without a proof: The vector W) is analytic in r?,...,r2 and
l l l
W) =W + wiPr? +o(rlh) (3.33)
for any 7 = 1,...,n, with some non-zero constants Wﬁ).

Any manifold 7" treated as an invariant manifold of an [th KdV equation
satisfies assumptions i)-iv) for the same reason as for [ = 1 (i.e., as in the
KdV-case).
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Appendix 3. On the Its — Matveev formulas.
Here we prove that the vector 3(D), defined by the relation

i3(D) = —A(D)~K, D=D;...D,, Dj€aj,

is real, that for each 3 € T™ the formula (3.12) defines a finite-gap solution and
prove that the vector V in (3.12) has to be integer for a function u(x) to be
2m-periodic.

i) The vector K equals to the minus one-half of the Abel transformation
of the canonical class C of I', where C is an equivalence class of the divisor
of zeroes and poles of any Abel differential dQ2 (see [D, section 2.7]). Let us
choose for df2 the differential

dQY= (A= E3)...(A— Eo,)p L dl.

It has a double zero in each E5; and a double pole at infinity. Therefore,

n Ear
KjZ—Z/ dwj.

As D, € a,, then

i3,(D) = i (/EQT dw; — /DT dw;) = i/E dw; Vj (A3.1)

r=1 o0 o0 r=17Dr

Since dw; = —7* dw; (see (3.8)) and each a, is a fixed oval for the anti holo-
morphic involution 7 (see (3.7")), then

Es, - Eay Es..
ij(D):Z/D du)j:—Z/D T*du}j:—Z/D de:—ijj(D).

Thus the vector 3 is real as stated.
ii) Now let us take any point 3! from the real n-torus T™, and consider the
following equation for a divisor D = D;...D,, in I":

AD) =it —K =:n', (A3.2)

(the equality holds in the Jacobian of I', i.e., modulo periods of the theta-
function). By the Riemann theorem (see [D, BB]) this equation has a unique
solution D if the function on I' which sends P to §(A(P)—n'—K) = 0(A(P) —
i3') does not vanish identically. At infinity the function equals (i3!) which
is not zero (see (3.13)), so (A3.2) has a unique solution D = D;...D,,. The
divisor D satisfies (A3.1) with 3 replaced by 3.
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Now we show that the points D;, forming D, are 7-invariant. Conjugating
relation (A3.1) with 3 = 3! and making use of (3.8) we get that

E27‘

n EZT' n E27‘ n
-1 1 - * 2 : .
@3]. = —@5]1. = E /D dwj = — E /D T dwj = /D dwj \V/j
r=1 r r=1 r r=1Y7Tr

Thus, the divisor 7D also solves (A3.2), so it must equal D.

To show that the points D; are 7-invariant, we take a point n° = i3 — K
with any i3° of the form i3° = A(D°) + K, where the divisor D is as in item i)
(i.e., D? € a;) and denote by 3*, 0 <t < 1, any curve in T™ which connects 3°
with 31. For t € [0, 1] the equation (A3.2) with 3! replaced by 3’ has a unique
solution D?. This solution continuously depends on 3* and is T-invariant. Since
for t = 0 we have 7D} = D%, j = 1,...,n, since |D*| = n and since the 7-
invariant circles a; do not intersect, then during the deformation each a; still
contains exactly one point of D*. So 7D} = D for all t and j. We have proved
that

for each 3! € T™ there exists a unique divisor D,

) ' (A3.3)
D=D,...D,, D; € aj, which satisfies (A3.2).

iii) Now we show that the vector V corresponding to any (periodic) n-gap
potential u(x) € T"(r) is integer. Since V is analytic in » € R (see Appendix
4), then it suffice to prove that it is integer for small r or, equivalently, for
small R.

Let us consider an n-gap potential (3.22) with ¢ = 0, with zero phase ¢ and
small R. As the function G is analytic in ¢ and R, then using (3.23) we write
it as

1 n
G(q,R) = NG Z R cosq; + Z gs(R) cos s - ¢ + (sine-series),
j=1

sez™

where the Fourier coefficients g; = O(|R|?) are analytic in R. We fix any j,
extract from the second sum all terms corresponding to s such that s-V(r) =
Vj(r) and write the n-gap potential as

1
NZ3
+ Z fs(r)cos(s- V(R))zx + (sine-series),

u(@;R) = — —=(R; + O(RJ?)) cos V;(R)x

where the sum is taken over all s such that s -V # V; for almost all R. Since
u is 2m-periodic in x, then all Fourier coefficients corresponding to cos Az with
a non-integer A must vanish. As R; + O(|R|?) is nonzero for small R, then V;
must be integer for almost all small R, therefore — for all R and r. [J
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Appendix 4. On the vectors V and W.

Here we study differentials d€2y, dQ23 on a surface I'(r) and vectors V(r),
W (r), corresponding to an m-gap potential u(x) with open gaps Ay, ..., Ay
where |Ay | = ;.

m

The differential %% is holomorphic outside infinity, where it has the form

dk + f(k=1)dk~' with k& = iv/A and with some analytic at zero function f.
Since d€2; has at infinity the same asymptotics (see (3.10)), then the former
differential differs from the latter by a holomorphic differential. Hence,

@ 2

9, = A\ (A4.1)

N | =

(cf. the arguments used to prove (3.9)). Since df2; has zero a-periods, then the

coefficients f,,_1,..., fo satisfy the following system of linear equations:
ATTIAN AT A
E :fm*j<£—7al> = —<£—,al>, l=1,....m.
=1 2 K 2 p

This system has real coefficients and its solution is unique since the differential
d$2; is uniquely defined. Hence, f,,_1,..., fo are real numbers, analytic in
r € R The differential dS2; analytically depends on r € R’

For j =1,...,m we have:

B Pu(N)

Eaj 1 —1 V R()‘)

In the interval (Eg;_1,FEs;) the denominator —iy/R(\) is a non-vanishing
real function of a constant sign. Hence, the polynomial P,,(\) has a root
in (E2j_1, F2;). Thus, all m roots of P, are localised and the differential d€2;
has the form, stated in Lemma 3.2

Quite similar, the differential dQ23 has the form (3.11) and analytically de-
pends on r.

Now we examine limiting behaviour of the differentials d2; and df23 when
r = (Tl, Ce ,Tm) — 0. Denoting Q]()\) = ()\ - acj)/\/()\ - EQJ)()\ - E2j+1),
where x; = x;(r) is a root of the polynomial P, (see (A4.1)) in the interval
(Eaj—1, Eaj), we write dQ; as

O:(Ql,aj):2 dA.

?

Elementary calculations show that for any [ integral of the function |Q;())]
over the interval Ay, 4 |r|'/? converges to zero when r — 0; in the same time
(Q; converges to one uniformly outside this interval.
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Since E1 — 0 and Eaj, Eaji1 — V3/4 (see (3.4)), then we get small gap
limits of the wave numbers:

Es; V34
@'Vj(r)=2/ d91—>z'/0 ATV2dN =iV, as r— 0.

Ey
That is,
Vi(r) =V; as r—0. (A4.2)
Since Ay, — p?/4 as r — 0 for any p, then also
)\gp . p2/4 .
/ o, — 3/ A= (A4.3)
B 2 Jo 2

Now let us take a vector r € R’ and fix any j < m. We denote by ri
the (m — 1)-vector (ry,...,7,...,ry) and denote ro = (r1,...,6,...,7) (€
stands instead of ;). Repeating the arguments above we get that for a suitable

sequence €); — 0 the differential ngm) with r = r.,, converges to a limit

~

. Qi(N) ... Q;(N) ... Qm(N) dX
2V — E; ’

where @Q;(\) as above depends on a limiting point z;. The limiting vector
(x1,..., @j,...,Tm) a priori depends on the sequence {ej;}. Any limiting

(Ad.4)

differential (A4.4) is a holomorphic differential on the Riemann surface F(r3 )
of genius m — 1. It inherits from df2; the normalisations:

By i R R
oz/ —  01...0;...Qmd), 1l=1,....7,...,m.
By 2VA—E O J

Hence, this differential equals ngm_l)(rj). Since the limit does not depend
on the sequence {e)s}, then the convergence to ngm_l) holds as 7; = ¢ — 0.
Passing to the limit in the formula for z'Vj(m)(r), we get that

) Ezj(r) )
VM (r) = -2 /E d\™ (r) —

Egj=Faj41(r) (m—1), 3
—22'/ dy" " (r?) as r; — 0.
E;

Applying the same arguments to the differential d{23 we get that

>\2p ) p2/4 3
/ dQ3—>—§ ﬁdkz—i(g) as r—0
E: 2 Jo 2
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for any p. In particular, we have recovered small-gap limits of the frequencies:
1
W; — —ZV]?’ as r—0. (A4.5)

Similar asymptotic holds when we shrink only one open gap:

Eaj=E;11(r?)

W () — —2i /E AoV as vy — 0, (A4.6)
1
Besides, since the forms df);, d€2s and the eigenvalues Fj,..., Fa,,+1 are

analytic in r, then the vectors V, W are analytic in v € R']".

Appendix 5. A small-gap limit for the theta-function.

Here we discuss some elementary properties of the theta-functions, corre-
sponding to potentials u(z) from T™(r), where |r| < 1. These potentials are
small: |lu||s < Cq|r| for each s (see [Ma] or see the proof of Theorem 3.1" in
section 3.1).

Let us consider any holomorphic differential dw; as in section 3.2, written in
the form (3.9). Since each a,-period of the differential with any p # j vanishes,
then the numerator in its polynomial presentation (3.9) has a root yg in each
open gap Ay, except the gap Ay,. So we can write dw; as

b — O Qia(N) .. QN .. Qjm(N)
! ’ VA= E1) (A= E2j) (A — Eajt1)

where Q;, = (A —y2)/v/(A — E2p)(A — Ezpy1). Using again vanishing of the
ap-periods of dw; with p # j we find that the point yg is close to the middle of
the pth gap: yJ = 5(Eap + Eapy1) + O(|7|?).23 Hence,

Y

Qip(N) =1+0(r]?) if dist (A, A,) >C > 0. (A5.1)
Since E; = O(|r|?), Faj_1 = V2/4 —7;/2 4+ O(|r|?) and Ey; = Vj.2/4 +
r;/2+ O(|r?) (see (3.4)), then we can use (A5.1) to write the normalisation

(dwj, a;) = 2mi as

[ C;(1+O0(|r|?)) dA
E3;j \/(A — E1)(A — Eaj)(E2j41 — A)
_ G+ 0(r*)

Vi/2 /m

23Proof: On the (m — 1)-cube K = {-1 <z, <1|1<p<m,p# j} we consider the
vector field F(z) = (F1,...,55,..., Fin), where Fj,(z) equals the ap-period of the form as
above with y; = y]]g(x) = (E2p + E2pt1)/2 4 Crizp. Straightforward estimate show that
Fp >0if zp =1 and Fp < 0 if xp = —1, provided that r is sufficiently small and C' was
chosen sufficiently big. Now degree arguments (see [Nir|) show that F' vanishes at some point

x € K. Corresponding points yi)(m) (p <m, p # j) define the form dw;.
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As fo (z(1 —z))"Y2dz = 7, then C; = V; /2 + O(|r|?).
So far we have examined integrals of dw; over open gaps. Now we use (A5.1)
to estimate integrals over the intervals between them:

o Cy+ Or). p# 5.5+ 1
/ dw; = lnrp+0p—|—0(|r|), p =7,
Pap-s —Inry +Cp+O(r]), p=j+1.

Here the first asymptotic follows from (3.4) and (A5.1), while the last two
result from calculations, similar to those used to estimate the integral over

Ay, .** Thus,
Ezp O(1), j #p,
ij = 2/ dwj = ( ) 7& X
E4 QIHTP+O(1), ] =D,

2
and for any integer vector s we have e2(Bs:5) = Oy (r) Hrj-j, where Cy, C;1 =
O(1) as r — 0. We arrive at the following small-gap asymptotic for the
theta-function:

(iz) = 1+ZC’ T; —|—\/_e : +O(Ir)?)

—1 +2ZC e COSZJ +O(r[?),
(A5.2)

where {C;} are some new constants and O(|r|?) stands for a function on T™
such that each its C*-norm is O(|r|?).
Because (A5.2), for small r the n-gap potential (3.16) |;—¢ equals

O?Inf(iVx +iz,7) ik 5 cos(Vix; +35)
’ o2 B S~

By (3.4), its Vj-th gap (i.e., the j-th open gap) has the size 4C;V?r; 4+ O(|r[?).
Hence, 4C;V? = 1+ O(|r|) and we arrive at a small-gap limit for the theta-
function:

+O(|r?).

Jj=1

. 1 —2 2
O(iz;r) =1+ NG ZVJ rjcos z; + O(|r]7). (A5.3)

For the same reason as in Appendix 4, the differentials dw; analytically
depend on r € R’ (i.e., the multi-valued functions (dw;/d\)(X;r) are analytic
in r € R? and in A outside the singularities). Hence, the Riemann matriz and
the theta-function both are analytic in r € R'}.

24different signs for the integrals along the upper edges of the cuts [E2p—1, E2,] and
[E2p+1, Eopi2] in I't are due to the fact that the function = (A — Eap)(A — Eapy1) is neg-
ative on the former and positive on the latter: for small r, it behaves there like A — (Eap +

E2p+1)/2~
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Appendix 6. A Nondegeneracy Lemma.

In this appendix we prove a stronger statement which implies Lemma 3.3.

Let Fy < --+ < Eg,11 be any real numbers and I' = I'(F)) be a Riemann
surface of the equation p? = R(A) := [[(A — E;j). We define differentials
dS)y,dS23, vectors V, W and the theta-function 6 as in Section 3.2. Now the
vector V may be non-integer and the formula (3.12) defines a function u(x)
which is a quasiperiodic n-gap potential, see [D,DMN,BB] (properties of u(x)
are irrelevant for results of this Appendix).

Theorem. The analytic map
E = (El <FBy<- - < E2n+1) — (V, W,C) € R2n+! (A61)

is nondegenerate everywhere (c stands for the same constant as in (3.10) and
(5.12)).

The theorem implies the assertion of Lemma 3.3 in a stronger form. Indeed,
since W (r) is a restriction of the map (A6.1) to the n-manifold which is a
pre-image of the n-dimensional affine space {V =const, ¢ = 0}, then the map
r+— W(r) is nondegenerate everywhere in R} .

The proof we present below is based on a scheme, proposed by I.Krichever
in [Krl1], which was completed in full details in [BiK2].

Proof of the theorem. We shall need the following properties of zeroes of the
differentials d€2; and df)3:

Proposition. 1) All zeroes of the differential dSy lie outside branching points
of I'; 2) at least 2n zeroes of dQ2s lie outside the branching points; 3) zeroes of
the differential d€)y lie outside zeroes of df2s.

Proof. The first two assertions follow from Lemma 3.2. Moreover, due to the
lemma, df2; has 2n roots of the form Pji = (\j, £u,), 7 =1,...,n, where each
interval A? = (Esj, Ebj11) contains exactly one point A;.

To prove the last assertion let us suppose that some zero P; of d€);(P)
coincides with one of d{23(P). Then there exists a real constant &, such that
the differential .

dO(P) = (€40 + ) (P)

has double zeroes at the points P;" = (\;, ;) and P, = (A, —pi), A; € AY.
Since a-periods of this differential obviously vanish, then each interval AY,
i=1,...,n, contains its zero (cf. Lemma 3.2 and its proof in Appendix 4). As

IO ) =i real polynomial of degree n + 1
I

),

then d(:l()\) has exactly n + 1 finite zeroes and all of them are localised. There-

fore, df2()) has no other zeroes (except the double zero ;) in AY. But in such

a case [0 dQ2(A) # 0, in contradiction with the normalisation §, d?=0. O
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If the map (A6.1) degenerates at a point E = (Ey,..., Fo,41), then we can
construct an analytic deformation I'(7) = I'(E(7)) of the initial curve I" (i.e.
E(0) = E), such that for the vectors V (7), W (1), ¢(7) we have

V(r) =V +0(1?), W(r) =W +0(1?), (1) =c+ O(t?), (A6.2)

and the vector of branching points E(7) has a non-zero 7-derivative at 7 = 0.
Below we prove that such a deformation I'(7) can not exist: the relations (A6.2)
imply that E/(0) = 0.

We define Abel integrals Q;(P,7), j = 1,3 as follows. Let yp be any path
in ['(7) from 0P to P, where o is the involution

o (/\uu) = ()‘7 _:u)'

We set
1

0, (P.r) = ¢ / d0,(P,7), j = 1,3.
gl
Each integral §2; is multivalued (it is defined up to half-periods of the differential
df2;) and
Qi(En(r),7)20Vj=1,3, Vr=1,...,2n+ 1. (A6.3)

Let E, be any finite branching point of I'(7) and vy be a path from E, to P.
We can take yp = —oyp U~o. As the differentials df2; are odd with respect to
o (this readily follows from (3.11)), then we have:

1
Q(P,1) = 5(/ —/ )dQ; = / dS2;, 7o is a path from E, to P. (A6.4)
Yo 970 Yo

In particular, differential of €2, equals df2;.
Let P = (A, ) be any point in I' outside the branching points. Then we
can identify P with its projection A. For 7 small enough the point A lies

outside the branching points of I'(7). So for j = 1,3 we can define the function
67' Qj ()‘7 T)'

Lemma 1. The functions

7=0"

P =\ p)— 0:Q;(P):=0:Q;(\,7)|r=0, j=1,3, (A6.5)

may be extended to meromorphic functions on the curve I'. These functions
are regqular outside the finite branching points E1, ..., Eany1, where they have
first order poles with

Resp—p,, 0;Q;(P) =2’ (m)d,En(0), j=1,3, m=1,...,2n+1,

and xt {(m), m =1,...,2n+ 1, are non-zero constants. The functions (A6.5)
are regular at infinity and vanish there. Moreover, for j = 1 the function (A6.5)
is O(|u|®) as u = A\"Y/2 tends to zero.
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Proof. Due to the relations (A6.2), b-periods of the differentials d€2;(P, 1), j =
1,3, are constant up to O(72). Since their a-periods vanish, then different
branches of the Abel integrals Q;(P,7) differ by const + O(7?), hence the
functions (A6.5) are well-defined and analytic outside the branching points.

In the vicinity of any finite branching point E,, of I', not A but (A—E,,,)*/? is
an analytic coordinate. Using (3.11) we expand there the differentials d€2;, dS23
as follows:

A (A7) = Y (A= En)"? ) (Em,7)d), j=1,3. (A6.6)
k=-—1

Due to the first statement of the Proposition the coefficients z! | (E,,,0), m =
1,...,2n + 1, are non-zero.

From (A6.4) with E, = E,, and (A6.6) we obtain that near F,, the function
0-€); can be written as

( Dr]_y (B, 0)(A — E) 2+
k=1

+ad (B, 0)(A — Em)Uf*?)/QaTEm).

The r.h.s. of the last formula defines near F,, a meromorphic function with a
first order pole at E,,.

For P = (A, u) with X large enough we shall define ; using (A6.4), where
~vp is the lift to I'(7) of the circle in Cy of the radius |A|, cut at the point A.
As near infinity we have

dQs = 3iu"du+dQY, uw= "2,

where the differential dQ(u,7) is regular for sufficiently small u (see (3.10),

then
. 0
Qs(P,7) = —iu +—/ dQs(u, ).
2 vP

Hence the function 9,Q3(P) = 3 pr 0,d9(u,0) is analytic near infinity and
vanishes at infinity.
For j =1 we have by (3.10):

Q1 (P,7) =du~t +icu+ O([ul?),

so 9,21 = O(|ul?) by (A6.2) and the lemma is proven. [

As all the numbers ! | (m) are nonzero, we have a consequence of the lemma:
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Corollary. To prove the theorem it is sufficient to check that

8,0 (P) = 0. (A6.7)

To prove (A6.7), we construct a function Q3 equal to the “r-derivative of
Q3 with €, fixed”. To do it we fix a point P € I' such that

dQ,(P,0) # 0, (A6.9)
and consider the following equation for a point P(7) € T'(7):
04 (P(r),7) = 04 (P,0). (46.9)

Due to (A6.9) and the implicit function theorem, equation (A6.9) may be
uniquely solved for small 7.
We define the function 23 as

: d

Q3(P) := EQg(P(T),T)‘T:(). (A6.10)
Due to the theorem’s assumptions, replacement of the branch of the integral
Q1, used in (A6.9), will change the curve P(7) by O(7?), and replacement of
the branch of {3 in (A6.10) will change Q3(P(7), ) by const + O(7?) and will
not change the r.h.s. in (A6.10). So the function Q3 is single-valued.

Lemma 2. The function Q3 extends to a meromorphic function on T .

Proof. We claim that

Qs (P, 0)

0a(P) = 9,02(P) = 0:(P) g5

(A6.11)

outside the branching pints of I' and zeroes of df2;. Indeed, identifying a
point P(7) = (A(7), (7)) € I'(7) such that P(0) is not a branching point of I'
with its projection A\ (we can do this if 7 is sufficiently small), we write d€2;
as 0xQ1d\ and get from (A6.9) that 0.A(0) = —0;Q1(A,0)/0x21(A,0). Now
(A6.11) follows.

The formula (A6.11) proves the lemma since by Lemma 1 its r.h.s. extends
to a meromorphic function. [J

By assertion 1) of the Proposition, (A6.9) holds at the points Ej;, j =
1,...,2n + 1. By (A6.3) the solution P(7) of (A6.9) with P = E; is P(1) =
E;(1) and Q3(E;(7),7) =0. So we have

Q3(Ej,0)=0 Vji=1,...,2n+1, (A6.12)
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and the function Q3 has 2n + 1 zeroes in the finite branching points of I'.
By (A6.11), (A6.12) and Lemma 1, the only possible finite poles of Q3 lie in
the 2n zeroes of d€2;. To study 23 near infinity let us observe that there

9:-Q5 = O([u]), 8-Q1 = O([ul?),

by Lemma 1, and dQs/dQ; = O(|u|~2) by (3.10). So Q3(c0) = 0. Altogether
the function {23 has at least 2n + 2 zeroes and no more then 2n poles. Hence
Q3 =0 (see [S], p.175) and

0, Q5 dY = 0, d2s. (A6.13)

All the poles of 0,82 lie in the finite branching points. So by statement
2) of the Proposition the r.h.s. of (A6.13) has at least 2n zeroes outside the
branching points. The differential dQ23(\) has one more zero \,;1 € C. To
complete the proof we should distinguish two cases:

a) An+1 lies outside the branching points. Then the r.h.s. in (A6.13) has
2n + 2 zeroes in I' \ {E1, ..., Eapy1}. The zeroes of d€2; lie outside them by
statement 3) of the proposition. Thus the function 0,23 vanish at these points.
So 0,:(23 has 2n + 2 finite zeroes, the zero at infinity and no more than 2n + 1
poles. Hence it vanish identically, 0.€; = 0 by (A6.13) and the theorem is
proven.

b) Ant1 = Ej, for some 1 < j, < 2n + 1. Then the r.h.s. is regular in
E;.. As dQy(E;,) # 0, then the function 0,23 also is regular in E;, . So it has
no more than 2n poles. This function vanish at first 2n zeroes of df); and at
infinity. Thus 9,023 =0, 0.Q; = 0 by (A6.13) and the proof is completed. [J

The scheme to prove nondegeneracy of the map (A6.1) presented above is
rather general: If for a given integrable equation and its finite-gap solutions
we take the statements of the Proposition for granted, we can proceed just as
above to construct the functions 0,€2¢, 0,23 and Qg which are meromorphic on
the spectral curve of the solution. If the vector of additional parameters c¢(7)
is chosen in such a way that the function 3 vanishes at the infinite points of
the spectral curve provided that (A6.2) holds, then the vector (V, W ¢) gives
the parametrisation we look for. (Observe that in the given proof the function
Q5 vanish at infinity due to the last statement of Lemma 1 and, finally, due to
the “clever” choice of the parameter c).

Our proof of the Proposition applies to equations with selfadjoint L-opera-
tors (for these equations vectors E of the branching points are real). For
some integrable equations with non-selfadjoint L£-operators an analogy of the
Proposition can be obtained if the corresponding potential u(z) is small (this
happens e.g., to the SG equation, see in section 4.3). In this case the argu-
ments above prove the following local version of the Theorem: “the map (A6.1)
is nondegenerate at points E such that the corresponding gaps |E2j4+1 — Fa;|
are sufficiently small”. This weaker version of the result still implies the Non-
degeneracy Lemma.
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4.SINE-GORDON EQUATION

In this section we consider the SG equation under periodic and even periodic
boundary conditions (see Example 2.3 in section 2.1). The results are parallel

to the KdV case and our presentation is much shorter. Missing details can be
found in [McK], [BB] and in [BiK], [BoK2].

4.1. The L, A - pair.

We recall that the SG equation can be written in a Hamiltonian form both
in the variables (u,v = @) and in the variables (u,w = (—02/02% +1)'/24), see
in section 2.1. In the variables (u,v) the SG equation takes the form

U= —v, U= —Ugy +sinu. (4.1)
The equation (4.1) is Lax-integrable and can be written in the Lax form

L=[A L],

where £ = L, ,) and A = A(, ) stand for the following differential operators:
J 0\ 0 A B
E“(o 0)%+<B 0)’
_(—-E 0\ 0 0 JB
A_( 0 E)%‘Q(BJ 0 )

0
-1

i (0 1 H_l(es® 0
A—4(’U+Um)(1 0)7 B_4< 0 e—éu)a

see [McK, FT]. The operators £ and A act on vector-functions, valued in C*,
under 27-periodic/antiperiodic or 4m-periodic boundary conditions. For the
scale {35} we take one of the corresponding scales of Sobolev vector-functions.

For any smooth 27-periodic functions u(t,x) and v(¢,xz) and any smooth
complex vector-function &y(x) which is 2m-periodic/antiperiodic or 47-periodic,
the corresponding boundary-value problem for the equation

(4.2)

Here E is the identity 2 x 2-matrix, J = ( (1)> and A, B stand for the

operators

£=AL £(0,2) =&(a)

has a unique smooth solution [Paz|. So by the general results described in

section 2.3, the set of eigenvalues of the operator L£; = Ly ,.),0(,.)) under a

boundary conditions as above is t-independent if (u,v) is a solution for (4.1).
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The 4-dimensional eigenvalue problem L£f = uf can be reduced to a 2-

dimensional one since denoting f = <f ~ ), f+ € C?, we have:

I+

I p v AR v Bf = uf BS=nuf

So that 5
—J o f-+ (At BT = pf- =0, (4.3)

if u # 0.
Now let M (z), 0 <z < 27, be a monodromy matriz for the linear equation
(4.3), i.e.,

o _
oM+ JA+ B>y YM — pJM =0, M(0)=E. (4.4)
x
Since this is a traceless linear equation, then det M (x) = 1 for every z. So a
complex number m is an eigenvalue of M (2m) if
0=det(mE — M((2m)) =m®> —2Am+1, A= itrM(2n).

The function A = A(p;u,v) is a discriminant of the spectral problem we
discuss.

A complex number p # 0, oo is a periodic (antiperiodic) eigenvalue of L if
the equation (4.3) has a non-trivial 27-periodic (antiperiodic) solution. That
is, if m =1 (m = —1) is an eigenvalue of the matrix M (27), or, equivalently,
if A =1 (respectively A = —1). Finally, u # 0, oo is a periodic/antiperiodic
eigenvalue if
A2 (p;u,v) = 1. (4.5)

Since f_-components of the corresponding (vector) eigenfunctions f = ({C)
+

satisfy (4.3), then the eigenfunctions are smooth.

This implicit description of the spectrum will provide us with the inverse
spectral information which in the KdV-case (section 3.1) we extracted from the
classical theory of the Sturm — Liouville operator. The “discriminant approach”
is general and applies to other integrable equations (including the KdV, see
MT)).

The potentials (u,v) we consider in this section are assumed to be bounded:

[uller + [Jvlleo < C,
where C}y is a real constant. Besides, for technical reasons we denote

A= 1642
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and use below the spectral parameter \ as well as p.
Elementary analysis of equation (4.4) (see [McK]) shows that the set of
periodic/antiperiodic eigenvalues of L, . is invariant under the symmetry

= = (4.61)

if the potential (u,v) is real — then under the complex conjugation

M= [, (462)
and if the potential is even or odd — then under the inversion

A % | (4.63)

The first symmetry explains advantages of the p-coordinate compare to A:
using the former we factorise the symmetry (4.67).

To investigate the periodic/antiperiodic eigenvalues of the L-operator, i.e.

roots of the equation (4.5), we first compute them for the zero potential u =
v = 0. In this case the equation (4.4) simplifies to

0 1

SoM = (- m)JM, M(0) = E.

So M(z) = exp((pp — 1/16p)xJ) and M (2r) = £FE if (pu — 1/16p) is a half-
integer number. That is, if u = +u2 for some k, where

k+k*
=" kez, (4.7)

and

kK*=vVE2+1.

All these roots are real and double since for any 49 as in (4.7) both eigenvalues
of the matrix M (27) equal +1 or —1. Corresponding eigenfunctions form bases
of the spaces of periodic and antiperiodic functions. In the A-presentation the
eigenvalues are I, k € Z , where

I = (4pp)* = (k + k7)™

We note that
lk 'l_k =1 (48)
and
457 +1+0(7?%), j— oo,

Li=<¢1 (4.9)
B AR A A

4
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— The eivenvalues [; accumulate to infinity and to zero.
Now we discuss periodic/antiperiodic spectrum of the operator £, when the
potential £ = (u,v) is small in the space

X =CU(8) < C%8Y), lEllx = lluller + lvllco,

or in its complexification X€¢. Applying the classical perturbation theory (see
in [Kat2]?°) we get that for & in Os, (X€) (6, > 0 is sufficiently small) the
operator L¢ has eigenvalues ,u;-—L (€), j € Z, which are algebraic functions?® of £
such that uf(f) — p as & — 0.

The eigenvalues uj[ extend to algebraic functions on the ball O¢, (X¢). To
show this we note that since L¢ is a bounded zero-order perturbation of the
operator Ly, then due to the asymptotical perturbation theory [Kat2], there
exists a number j;(Cy) such that for |j| > j; the eigenvalues ,u]j-E and )\Ji are
double-valued algebraic functions of £ € O¢,(X¢), different from other eigen-
values:

Ay AN i max ([, k) > 51 and [[€]lxe < Cy. (4.10)

The eigenvalues u]i and )\jF are asymptotically close to H? and [;, respectively.
In particular,

A =1L+0(G%)=47+140(7%), j— o,

+ .4 1 ) .4 . (411)
A; =L +0GT) =000, g o,

(we use (4.9)).

Due to (4.10), for £ € O¢,(X¢) the eigenvalues /L;t with [j| < j; form a
system of 2j; + 1 solutions for the equation (4.5), isolated from the rest of
solutions. Since the discriminant A(u;&) is an analytic function, then these
eigenvalues form a (2j; + 1)-valued algebraic function.

Finally we note that due to (4.63) the branches A;—L form pairs such that for
any real & either both )\;r () and A; () are real, or these eigenvalues form a

conjugation-invariant pair. It turns out ([McK], p.207) that the second alter-
native happens:

+ ___ .
A=AV (4.12)

(maybe A;“ = A, is a double real eigenvalue). We enumerate branches )\;.L and

A; In each pair in such a way that Im )\;r > 0 and ImA; < 0 for each j, if

e X.
We have proved the following result:

25The theory has to be applied to the spectral problem for £, rewritten in the form (4.3).
26See the short appendix to section 4 where we discuss algebraic function of infinite-
dimensional arguments.
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Lemma 4.1. The double eigenvalues A =1;, j € Z, of the periodic/antiperio-
dic spectral problem Lof = puf, written in the \-coordinate X = 1612, extend to
algebraic functions )\;—L (€), £ € Oc,(X€), which are periodic/antiperiodic eigen-
values of L¢. These functions satisfy relations (4.10) as well as the asymptotics
(4.11) and )\;.t is a double-value algebraic function if |j| > j1. For real potentials

the eigenvalues satisfy (4.12) and Im)\j >0, ImA; <0.

Since an algebraic function is analytic outside its branching points, then we
have the following corollary from the lemma:

Corollary. If the potential analytically depends on a finite-dimensional pa-
rameter r and for some j we have )\j (r) = A, (r) and )\;'(r) £ NE(r) if 1 # k,
then )\;r is an analytic function of r.

4.2. Theta-formulas.

In complete analogy with the KdV-case, a smooth 2m-periodic vector-func-
tion (u(z),v(z)) is called an g-gap potential if the corresponding equation (4.5)
has exactly 2¢g non-double solutions. (In particular, zero is a zero-gap poten-
tial). Finite-gap periodic potentials form several distinct families with rather
different properties [DNat]. We are concerned with those potentials which can
be deformed to zero. In view of Lemma 4.1 this means that we shall dis-

cuss families of finite-gap potentials (u,v) such that for some g and some set
YT={Y,....,T3} CZ, YT <--- <Yy, we have:

+_ — . .
{)\j_)\j if jeZr,

+ — . -

AJ#FAN I jeT.

These potentials can be written in terms of theta-functions, similar to the Its
— Matveev formula (3.12). We discuss corresponding formulas below in this
section.

All potentials which we consider are assumed to have sufficiently small com-
plex parts. Moreover, to simplify presentation we decrease the family of poten-
tials assuming that

+ +
AR

for 7=1,...,9—1.

The decreased family is assumed to contain all sufficiently small potentials
from the original one (this assumption agrees with the last restriction since
)\Ji(O) = lj). For potentials from this family, spiral segments vy, which join
)\}j with )\ij, j =1,...,g, do not intersect each other.?” For the theory of
finite-gap solutions of the SG equation which we present below, these segments

2"For real potentials we have |)\;r| = |A; | by (4.12), so each vy, is a segment of a circle.
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play the same role as the open gaps Ay, play in the KdV-theory (cf. section
3.2).
Let (u,v) be a g-gap potential as above and

Egj_l :)\¥j, Egj :)\;j, j: 1,...,g,

be single eigenvalues of the operator L, ,) (abusing language we call a M-
eigenvalue single if the corresponding p-eigenvalue, 1 = v/ /4, is single). By
our assumptions, Im Fo;_1 > 0, Im Fo; < 0 and

|E2j—1l; |Baj| < |E2ji1l,|E2jte| for j=1,...,9—1, (4.13)

and
Eoj_1 =FEy;, Foj1 #Eoj Vj (4.14)

if the potential is real. We denote E = {E}, ..., E,} and view E both as a set
and as the complex g-vector (Ei, ..., Ey).

We restrict ourselves to a bounded part of the family as above and assume
that

|E;| < C Vj (4.15)

in addition to (4.13). Since we consider potentials with small imaginary parts,
then the corresponding vectors E € C29 lie in a small neighbourhood of the
real subspace, defined by (4.14).

Since the periodic/antiperiodic discrete spectrum of the operator L is in-
variant under the SG-flow, then the set of g-gap potentials with a fixed single
spectrum {E4, ..., Ey,} is flow-invariant as well.

Let ' = {(\,2)} be a Riemann surface of genus g > 0, defined by the
equation

29
Z=)[[x-E)).
j=1
We make the cut 7o = [0, +00) and make cuts along the segments yv,,...,7r,,
defined above. After I is cut, it falls into two sheets I'y. and I'_. We choose
a canonical basis of cycles (aj,b;) on I' (j =1,...,g), so that the cycle a; go

around the cut vy, (see Fig. 4.1) and the cycles have the canonical intersection
matrix:

aioaj:biObj:O, aiObj:(Sij.

As in section 3.2 we take a basis dw,...,dw, of holomorphic differentials
on I', normalised by the conditions

(dwj,am) = 2mi0jm, Jym=1,...,g.
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Fic. 4.1. The spectral curve with the canoni-
cal basis

We define the Riemann matrix B as Bj, = (dwj, bg) for j,k =1,..., g, and the
theta-function — as

We consider Abelian differentials d€2y, d€)s with zero a-periods and such that
d$2; has the only pole at the infinity while d€2; has the only pole at zero:

A0 (P)=d(VA+...), P=(\z)— oo,

1 (4.16)
dQs(P) :d(ﬁ—i_'“)’ P —0.

Denoting the b-periods of dQ); and dQ, as B! and B2, that is le-’z = (dQ1,2,b;) ,
we define the wave-number vector V and the frequency vector W as follows:
1

1
V= Z(B1 -B?), W= Z(B1 + B?).

Arguments, similar to those used in section 3.2, show that the vectors V and
W are real, provided that (4.14) holds (see [BiK, BoK3]). Let us denote by
iA = i(m,...,m) the vector of half-periods of the theta-function. Finite-gap
solutions of the SG-equation with the single spectrum (E1, ..., Ey,;) are given
by the following theta-formula:

0(i(Vx + Wt + D + A))
0(i(Ve+Wt+ D))

u(t,x; E, D) = 2ilog (4.17)

where D € T9 = RY9/27Z9 is a phase of the solution. On the contrary, for any
D € T9 and any vector E € CY which satisfies (4.14), both the numerator and
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the denominator under the log sign in (4.17) do not vanish and the formula
(4.17) defines a real solution for the SG equation, see [KK, BB].?® This solution
is 2m-periodic if and only if

V=V(E) ez, (4.18)

cf. Appendix 3. A set of all vectors E which satisfy (4.13)—(4.15) form a 2g-
dimensional domain. So a set of all vectors which meet (4.13)—(4.15), (4.18)
form a g-dimensional?® algebraical set. Hence, the set of g-gap potentials given
by the formulas (4.17), (4.18) form a 2g-dimensional invariant set for SG equa-
tion as in section 2.1.

Remark. Let £ be any connected open bounded subset of the real linear space
{E C C9 | E satisfies (4.15)}, which contains in its closure the vector Iy =
Iy, b,y -5 ly,,ly,) and is formed by vectors which meet (4.14). Let us as-
sume that a system of non-intersecting paths ~q,...,7, can be constructed
such that v, = 75, v; joins Ey; with E9;_1 (j =1,...,¢) and, first, the paths
continuously depend on E € £ and, second, each path «; degenerates to the
point Iy, when E — ly.

The set of finite-gap solutions (4.17) with E € £ can be used in our con-
structions instead of the set with vectors F as in (4.13)-(4.15). Clearly, for any
given real g-gap solution (4.17), corresponding to a vector Ey which satisfies
(4.14), (4.17), a set £ as above can be constructed to contain Ej.

4.3. Even periodic and odd periodic solutions.
Now let us consider the SG equation under the even periodic or odd periodic
boundary conditions:

u(z) = u(r + 27) = u(—x), (EP)
u(z) = u(z + 27) = —u(—x). (OP)

They imply correspondingly Neumann or Dirichlet boundary conditions on the
half-period (see Example 2.3 in section 2.1). If (u,v) solves (4.1) and u satisfies
(EP) or (OP) then v satisfies the same boundary condition in view of the first
equation in (4.1).

Elementary arguments based on symmetries of the curve I' (see [BiK1] and
[BoK2, BoK3|) distinguish among the finite-gap solutions (4.17) those which
are even or odd:

28The assumption (4.13) is not needed for this statement to be true since for any vector E
as above one can find paths «; which join Ey; with E2;_1, are real in the sense that 7; = ;
and do not intersect each other. Using these paths instead of the spirals Y, one also gets a
real solution for the SG equation. The assumption (4.13) is imposed to choose the paths in
a canonical way, continuous in E, cf Remark below.

29equations (4.18) form a non-generate system, cf. Lemma 4.3 below.
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Lemma 4.2. The solution (4.17) is even if and only if the set E is symmetric
with respect to the inversion A — A\~ and the phase D € TY satisfies TD = D,
where T is the involution

T(U,...,Uy) = (Ug,...,Uy).
The solution is odd if and only if the set E is as above but
TD=D+A (4.19)
(A is the same vector as in (4.17)). Both in the even and odd cases we have:

TW =W, TV=-V. (4.20)

Due to complete analogy between the (OP) and (EP) cases in what follows,
we restrict ourselves to the (OP) boundary conditions (for the (EP)-case see
[BoK2], [BoK3]). The cases of even and odd g have to be treated separately
but very similar. For short we consider the even case only, so

g=2n

everywhere below.
Comparing the lemma with (4.13) we get that for any even or odd real
solution (4.17) the following relations hold:

Esj - Esien—jr1) = Eaj—1- Ean_jr1y-1=1 Vj=1,...,n. (4.21)

By Lemma 4.1, for a small finite-gap potential the corresponding vector F is
close to some vector Ly = (Iv,,ly,,...,lr,,,lr,,), where Iy, <y, if i < j.
If the potential is odd (or even), then we get from (4.21) that Iy ly,, ., =1,
that is

TY =-Y

(see (4.8)). Since Iy,’s are distinct real numbers, then Y; # 0 for all j. Using
(4.13) we get that

T < <Y, <0< Yy <o < Top.

Integer n-vectors I = (ly,...,l,), where [; = T, ; € N, numerate different
families 7;2” of odd periodic 2n-gap solutions, contractible to the zero solution.
To simplify presentation, we shall discuss only the family, formed by finite-gap
solutions such that all their first gaps are open. These solutions form the family
7™, where 1 is the vector
l=(1,2,...,n). (4.22)
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This means that T = —n,..., T, = n (and no Y, equals zero). We abbrevi-
ate this family to to 72".

The set 72" is a subset of a linear space of potentials (u(x),v(z)). By
Lemma 4.2 it is a union of n-tori, where the finite-gap solutions which fill any
torus are parameterised by the reduced phase vector D,

D= (Ds,...,D,) €T"

(other components of the vector D can be recovered using (4.19)). Finite-gap
tori which jointly form the set 72" are parameterised by vectors E € R, where

R={Ec& |V(E)eczZ*™"},

and
& ={EcC" | E satisfies (4.13)(4.15) and (4.21)}.

Due to (4.21), every 2n-vector E € & is uniquely defined by the n-vector
E = E(E), formed by its last n coordinates, and we shall view the set & as a
subset of the complex space C2", formed by vectors E = (Eont1y -y Ean), as
well as the subset of C*”. The half-dimension real subspace Ly C C2,

Lr={E|FEyj_1=Ey Vj},

is real, i.e., Lr NiLr = {0}, since the space iLp is formed by vectors E such
that Eopj;_1 = —E_Qj. Any vector £ € C?” can be uniquely decomposed as a sum
of its real part Ref € Lr and imaginary part Im¢& € ¢«Li. Noting that & is a
bounded domain in Lg, we define a domain II¢ C C?" as

II° = {F |Re E C &, |ImE| < 6},

where § > 0 is sufficiently small. Then & is a real part of the complex domain
I1¢, & = 1I° N LR, and R is a real part of the corresponding complex analytic
set R¢ C II°.

Let us denote by V and W vectors, formed by the last n components of the
vectors V' and W respectively. Due to (4.20), V(E) is an integer vector if and
only if V(E) is one. In particular the set R is formed by vectors E € & such
that

V(E) € 7. (4.23)

Elements of the set R will be denoted r. We treat R as a subset of Cn = {E},
or as a subset of C*" = {F}.

Lemma 4.3. The set & C C*" contains in its closure the vector

L= (lfrwl*nu cee 7l717l717l17117 cee 7lnuln)'
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For r sufficiently close to L the map
o —R¥™  r— (V,W), (4.24)
is non-degenerate and V(r) =1 = (1,...,n).

Theory of “small gap” finite-gap solutions (4.17), i.e. of solutions corre-
sponding to vectors E close to L, is very similar to the KdV-theory. In partic-
ular, replacing for convenience the cuts v; as they were defined above by the
segments [)\j_, )\;L], one can use elementary perturbation theory to prove that
the differentials dQ2; and d€)s are dQ; = Py(\)p~td\ and dQy = Py(\)pu~tdA,
where P; and P; stand for real polynomials of degree g = 2n (cf. Appendices
4 and 5, where similar arguments are used). After this the proof of the Non-
degeneracy Lemma, given in Appendix 6 for the KdV-case, applies to the map
(4.24) with minor modifications. The relation V = I follows from (4.23) and a
small-gap limit for the vector V (r), cf. (A4.2).

For another proof of the lemma, based on direct calculations, see [BoK3|.

By the lemma, the system of equations (4.23) has the full rank, so the set
R is an n-dimensional analytic set, smooth near the point L. It is unknown if
the set R is connected or not. We bypass this subtlety and replace the set R
as it is defined above by its connected component which contains L in
its closure. Comparing (4.23) with the last assertion of Lemma 4.3 we see that

V=l in R
From now on we shall study the SG equation in the (u,w)-variables. Ac-
cordingly, it takes the form
u=—VAuw, W= VA@u+ A" (sinu — u)),

where A = —88—;2 +1, see (2.4). This is a Hamiltonian equation in the synplectic
Hilbert scale ({Z¢}, B2). We recall that the space Z¢ is a subspace, formed by
odd periodic vector-functions from the Sobolev space H*1(S) x H5*1(S) and

that B2 = (J(du,dw), (du,dw)), where J(u,w) = (—vVAw,vAu) and (-,-)
signifies the H!-scalar product. Below s > 0.

For € R let us denote by ®(r, D)(z) the vector-function (u(z), A~'/2u(x)),
where u(z) is the r.h.s. of (4.17) and u(z) is its time-derivative, calculated for
t = 0. Now we write the finite-gap solutions, forming the set 72", as

(u,w) = o (r, D + W (r)t)().
The theta-map ®, provides global parametrisation of 72"
T2 = ®y(R x T").
This formula shows that 72" is a union of invariant finite-gap n-tori:

T = 1),  T"(r)=®o({r} x T").

reR
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4.4. Local structure of finite-gap manifolds.

When r — L, the theta-function 6(z,7) converges to 1 (cf Appendix 5)
and the finite-gap solution (4.17) converges to zero. That is, ®o(r, D) — 0 as
r — L, for any D. By Lemma 4.3, a sufficiently small neighbourhood Ry of
L in R is an analytic n-manifold. A corresponding part of the set 72" also is
smooth, as well as its closure:

Lemma 4.4. If § > 0 is suficiently small, then the set ’]:;S% = TN O;(22),
s > 0, is a 2n-dimensional analytic submanifold of Z2. It passes through
the origin and its tangent space there is spanned by the vectors (sinkz,0) and
(0, sinkz), k = 1,...,n. For any k < n — 1 and any subset {l1,...,lx} C
{1,...,n}, a closure of the manifold T(%lklk) NOs(Z2) is an analytic subman-

ifold of T=>".

In [BoK3| this result is proven by hard direct calculations. In the next
section we present another proof, based on the same ideas as in the KdV-case
(cf. Theorem 3.1"). For the SG-case the corresponding arguments are more
involved since now the L-operator is not selfadjoint.3°

Due to the lemma, a “small gap” part 72" of a finite-gap set 72" is smooth.
In striking difference with the KdV-case, we can not prove that the whole
set 72" is smooth.?! Still abusing language we call the sets 72" finite-gap
manifolds.

The finite-gap manifolds 72" and the corresponding maps ® satisfy the
assumptions i)- iv) from section 2.2. Indeed, to prove i) (the analyticity) we
remind that R is the real part of the algebraic set R¢ C II¢ C C?"*. For any
vector E = (Eont1, -y Ean) C TI¢ we take the vector E = (Eq, ..., E4,) such
that E(E) = F and E3jEs9n—j+1) = 1. The constructions of section 4.2
correspond to this vector E and any point D € T" a complex SG-solution
u(t,z), given by the formula (4.17), where D € T?" satisfies (4.19) and D is
the vector, formed by its last n coordinates. By Lemma 4.3 the solution u is
odd. So denoting ¥(E, D) = (u(0,2), 4(0,7)) |ze[—x,~ We get an analytic map
W T1¢ x {|Im D| < 6} — HZ, where & > 0 is sufficiently small, s is any integer
and H? stands for a subspace of the Sobolev space H® = H*([—m,7];C?),
formed by odd vector-functions. Let Hj, C H® be the subspace, formed by
odd periodic functions, and 7 : HS — H_, be the corresponding orthogonal
projection. The map

\IIOZWO\I/:HCX{|Im[?|<5}—>H§p

30This complifies the proof because for a non-simmetric real 2 X 2-matrix there is no
linear criterion to check if the matrix has a double eigenvalue, while for a symmetric matrix
a criterion exists: the matrix has a double eigenvalue if and only if its deviator vanishes.

318imply because it is non-smooth. We do not wish to touch here the difficult problem
of structure of its singularities.
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is analytic and for E € R it coinsides with the map @, written in terms of the
(u,v)-variables (rather then (u,w)). Hence, for any s the map ®, analytically
extends to a map II¢ x {|Im D| < §} — Z,.

The property ii) holds since by Lemma 4.4 the form ®{3; is nondegenerate
for r close to Lj iii) follows from the analyticity of the map ®¢ and from the
formula (4.17). Finally, iv) results from Lemma 4.3.

Due to lemma 4.4 we can continue to study small-gap solutions of the SG
equation in the same way as in sections 3.1 and 3.3 we study the KdV: since the
SG equation has infinitely many integrals of motion (see [McK, FT]), then due
to Vey’s theorem the equation restricted to the manifold 7:532" admits analytic

at zero Birkhoff coordinates yq,...,%2,, Where y = 0 corresponds to r = L,
i.e. to the zero solution (cf. Theorem 3.2 and see Appendix 1 in [BoK2] for
another proof of this normal form result). The radii Rq,...,R,, where

Rj = \/ y%jfl +y§]7

form a coordinate system on the manifold Ry (which is a small neighbourhood
of L in R); the form [ restricted to ’T(SSQ" equals %Z dR? A dg;, where ¢;’s
are corresponding angles,3? and the frequency vector W is an analytic at zero
vector-function of the actions I; = R? /2. Repeating arguments from section

3.3, coefficients of decomposition of the vector W to series in I, ..., I, can be
calculated. In particular,

Wi(0)=+/j2+1=5", j=1,...,n, (4.25)

and linear part of the decomposition is given by the following relations:

4.26
—12/5*, j=k. (4.26)

ow; { —16/5*, j#k,
We recall that all the first gaps are assumed to be open, see (4.22). Relations
similar to (4.25), (4.26) hold for any finite-gap manifold 7;>. In particular,

Wit(0) = W;(0) = I = Y

n—+j7°

where W is a frequency vector, corresponding to this manifold.

4.5. Proof of Lemma 4.4.

In this section we abbreviate Os(Z2) to Os.

Since A-spectrum of the L-operator with an odd periodic potential (u,w) is
inversion-invariant (see (4.63)) and continuously depends on the potential, then

Pie., qj = Arg (y2j—1 +iy2j)
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to prove that a small odd periodic potential belongs to the finite-gap manifold
72" we only have to check that )\j(u, w) # Aj (u,w) if 1 < j <nand )\;r = A
if j >n+1.

Let us denote by Ly ) = L/{u,w) the operator in the L.h.s. of (4.3). Abusing

language we say that pg # 0 is its eigenvalue, if the operator Lé‘&w) has a

non-trivial kernel. We have checked (see (4.7)) that the set of 4m-periodic
eigenvalues of the operator Ly equals to the set of its 2m-periodic/antiperiodic
eigenvalues and is {+u9 | k € Z}. Every eigenvalue is double and for any
k > 1 33 eigenvectors, corresponding to the eigenvalue ,ug, are & ,i and fi, where

.k k

5% _ S1n 5.11 | 5]% _ COS §£L'
k .k

COS 51‘ —sm§m

Going back to the operator £y we find that its eigenvectors =} and =7 with
the eigenvalue p2, are

E E
Eiozck iB gi:Ck LE gia Jj=12
Pk Apg

Here c;, = /pQ(m(4pl + 1))~ 1 is the normalising factor, so the vectors have
unit norm in the space Ly = Lo(R/47Z; CF).

By Lemma 4.1, for a small potential (u,w) the operator L, ., has two
eigenvalues, close to p9. Corresponding invariant plane Il = Iy (u, w) C Lo is
close to the plane I19, spanned by the vectors H,li,oz . 34 The plane II;, analytically
depends on the potentlal (u,w) and is O(6%)—close to IIY if ||(u,w)| = d (for
the same reasons as in the KdV-case, cf. the proof of Theorem 3.1"). It has an
Lo-orthonormal basis k’z(u, v), equal to E _ko 2 for (u,w) = (0,0), continuous in
(u,w) and uniquelly defined by the following normahsation: The vector =} is
a vector in II; which is the closest to the subspace of Lo, formed by vector-
functions such that their first components are odd functions of z.

For k = 1,2,... let us denote by Mj(u,w) a matrix of the operator £ |,
with respect to the basis Ellf, and denote by M,? the deviator, M,? = M —
+ (tr My,)E. We consider its matrix elements (M} )" and abbreviate

(MPYY = M}, (MP)? = M.

33below we do not use eigenvalues —ug and eigenvalue ug with £ < 0.

34 A spectral projector on the plane IIj can be written as a contour integral of a resolvent
of the operator L. The resolvent can be expressed in terms of the operator (L?u’w))_l, so it
is well defined.
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Clearly MP has zero eigenvalues and M)}, has a double eigenvalue if M} =
M} = 0.35 Therefore, 72" contains the set © \ ©g, where

0= {(u,w) € Os | M} = M? =0 Vk>n+1}

and
O0 = {(u,w) € O [ A] = A7, forsome 1< j<n}.

Lemma 4.5. There ezists a diffeomorphism F = F" : Os — Z? such that
F(0) =0, F.(0) =1d, (4.27)

and Os, (L) C F(©) C L for some 6; > 0, where L is the 2n-demensional
linear subspace of Z2, spanned by the vectors (sinjz,0) and (0,sinjz) with
j=1,...,n. Besides, the set F'(©) is a closed nowhere dense subset of F'(O).

We are proving the lemma at the end of this section. Now we show how
this result implies Lemma 4.4. Decreasing the manifold Ry, we achieve that
®(Ry x T™) C Os. Now let us consider the composition

G:FO@O:WOZROXTTL—)ZSO,

where F is the map from Lemma 4.5. Since 72" contains the set © \ ©g, then
range of G' contains a domain in the space L; we denote it ). We claim that

G(Wy) C L. (4.28)

To prove this assertion we take any system 1,s,... of vectors in Z¢ which
form an orthogonal complement to L in the Hilbert space ZZ. We consider all
vectors ¢; such that (G,1;) # 0. If this set of vectors is empty, then (4.28)
is proven. Otherwise let us take any vector ¢; as above and consider the set
K = {w e Wy | (G(w),y;) = 0}. This is a proper analytic subset of W,
so mes K = 0, where mes = mess,, stands for the 2n-dimensional Lebesgue
measure. Let us denote by II the orthogonal projection Z? — L. Then
Q C IIoG(K). The map Il o G is a Lipschitz mapping of the 2n-manifold
Wy to the 2n-dimensional space L, so it sends zero-measure subsets of W to
zero-measure subsets of L.3¢ Hence, mesIl o G(K) = 0 and mes@ = 0. This
contradiction shows that the set of vector 1; defined above is empty and (4.28)
follows.

We have proved that F(72") C L. Since 72" D O\ ©g, then F(72") D

F(©)\ F(©g) and the closure F(72") = F(72") contains the ball Og, (L?") as
in Lemma 4.5 because the set F'(Qg) is nowhere dense. That is,

Os,(L) Cc F(T?") C L, (4.29)

35Since M l? has zero eigenvalues if and only if its determinant vanishes.
36This follows e.g. from (A2) in Appendix 2 in Part II since the 2n-dimensional Hausdorff
measures in W and L are equivalent to the Lebesgue measures, see [Fal, Fe].
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and the first assertion of the lemma is proven for some new sufficiently small
§ > 0. Due to (4.27) and (4.29), T,T2" = F,(0)"'L** = L?", so the assertion
conserning the tangent space follows. To prove the last claim of the lemma we
note that F(ﬁ(ll,---,lk) ﬂ(95) is a neighbourhood of the origin in the space L?*
which is the subspace of L, spanned by the vectors (sinl;z, 0) and (0, sinl;x),
(j =1,...,k). This follows from (4.29), where the manifold 72" is replaced by
T2k = ’T(%lk )’ since the map F restricted to 72* is exactly the corresponding

.....

map F* for the finite-gap manifold 72*, see construction of F in the proof of
Lemma 4.5. [

Proof of Lemma 4.5. For s > 0 let us define a space $° as the set of all sequences
m = (mi,m3,my,m3,...) with finite norm [m||2 = > 5%*((m})* + (m3?)?).

Then for any s > 1 the map !
MD : 05 - 05(Z§) - *687 5 - (U,’U)) — <M11(£)7M12(€)7M21(€)7 . )

is well defined and analytic. To calculate the linearised map MP(0), for any
§ € (u,w) € Z¢,

1 1
u= NG Zuk sinkzx, w= NG Zwk sin kz, (4.30)

we have to calculate d%MD(sﬁ) |e=0. To do this we argue as in the proof
of Theorem 3.1": since the basis vectors =} () and Z3%(ef) are such that
Ei’g(sﬁ) = E,ﬁf + O(g?), then to calculate matrix elements of the operator

2 =1,2

Le¢ |m,(ce) up to terms O(e) we can replace the basis =.%(e€) by Eif. Ac-

cordingly, denoting the matrix elements by M ,ij (€), 1 <14,j <2, we have

:ci/o%((E ﬁgE).csg.(éE)g,i(x),g,g(x)> dz + O(?).

Denoting by A, B the matrices as in (4.2) with the potential (u,v) replaced
by (eu, ev) = (eu, e(—0?/02% +1)~/2w), where u and w are defined in (4.30),
we calculate the product of the three matrices under the integral sign in the
r.h.s. of the last equality. Denoting by const different e-independent matrices,
we get that the product equals to

~ 1 - 1€ 0 1
A—}—mBﬁ-const:Z(vﬁ-u;)(l 0)
isu 1 0 2
+m<0 _1)—|—const + O(e7).
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Therefore,
iecs A

M) = |

k
(v + ul)2sin 5@ oS 5 dx+

. o 47 k k
fg/iki /o u(sin? 5%~ cos” 533) dz + O(e®) + const =

. 9 27

tecy Iy

— v+u)sinkx dx —
2 Jo ( * m) 8#2 0

Since v = (—0%/0x? + 1)V 2w = \/LE > k*wy sin kx, then

ieci [*7 5
— ucos kx dx + O(e*) + const .

.9
M1 (e) = %k*wk + O(e?) + const .
Similar calculations show that

—iec2
M?2(e) = %ﬁk*wk + O(e?) + const,

. 2 1
M2 (e) = % (k + 4—)uk + O(g?) + const,,
2
and M?2'(e) equals M}?(g) up to const + O(g?). The deviator M equals the
matrix My, up to O(g?) + const; hence,

where .
my = cik*wg, mi = ci(k:—f— %>uk7 kE=1,2,....

Since [|(u,v)||2 = Y, (1+|k[**2) (u} + w}), then the map MP(0) defines
an isomorphism between Z? and $°. Now we define an analytic map F' as
F = MP(O)™' o MP. Then F satisfies (4.27), so by the inverse function
theorem F' defines a diffeomorphism Os — Z2. By the construction of this
map, © = F~1(L), so O is a 2n-manifold and F satisfies the first assertion of
the lemma.

To prove the last assertion we note that a point (u, w) € © belongs Oy if and
only if for some k < n the 2 x 2-matrix My (u,v) has a double eigenvalue. This
happens if and only if [];_, det M? = 0. Given above calculations of matrix
elements of My (u,v) show that

1 2

D 0D m m 2
Mk: (u,v) = Mk + (m% —77]”;’1:> + O(|u,’u| )
Since the vector (mi,m?,...,m2) = m forms a cordinate system on © and
O(Ju,v|?) = O(Jm|?), then the analytic functions det MP, 1 < k < n, do not
vanish identically, as well as their product. Hence, ©g is a proper analytic

subset of © and the lemma is proven. [J
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Appendix 7. On algebraic functions of infinite-dimensional argu-
ments.

Let X and X¢ be a Banach space and its complexification and O°€ signifies a
connected domain in X¢. For some n > 1, let f1,..., f,, be complex functions
on O° such that the set-valued map = — f = {f1(z),..., fu(x)} is continuous
on O.

The set f of functions is called an algebraic function if for any m, any
connected complex domain () C C™ and any analytic map F' : Q — X¢, the
set of functions f o F' is an algebraic function on @ (for the classical definition
of an algebraic function of a finite-dimensional argument see [BM] or Definition
5.1 below).

Functions fi, ..., f, are called “branches of the algebraic function f”. Abus-
ing language we also call them algebraic functions.

In nontrivial cases the branches f; are discontinuous functions®” and to
study them their sets of discontinuity have to be specified. In this book we are
mostly concerned with functions of real arguments and with algebraic functions
which are analytic extentions of some continuous functions of real arguments.
Accordingly, branches of analytic functions we consider are continuous on real
domains O° N X.

37since otherwise by the criterion of analyticity each f; is an analytic function.
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5. LINEARISED EQUATIONS AND THEIR FLOQUET SOLUTIONS

5.1. The linearised equation. Below (Z, as) stands for a symplectic space
(Z = Zg,a0 = Jdz A dz) with some fixed d, as in section 2. We continue to
study a quasilinear Hamiltonian equation

= JVH(u) = J(Au+ VH(u)) =: Vi (u), (5.1)

where ord A = da, ordVH = dy < da, ordJ = dj and d > du/2. The

equation is assumed to possess a 2n-dimensional invariant manifold
T CZ, T =0y(RxT"),

with the regular part 732" = ®g(Ry x T™). We recall (see section 2) that R is
a connected n-dimensional analytic set which is the real part of a connected
complex analytic subset R® of complex domain II° ¢ CV; R, is a proper
analytic subset of R which contains its singularities and Ry = R\ Rs;. The
invariant manifold 72" is analytic and equation (5.1) defines on 7@" a non-
degenerate integrable system. Besides, the assumptions i)-iv) from section 2
have to be satisfied. For convenience we repeat them here:

i) for any [, the map ®y extends to an analytic map I1¢ x {|Im3| < §} —

A
ii) the pull-back form ®jas is non-degenerate on Ry x T™;

iii) the pull-back of equation (5.1) to Rgp x T™ by the map ®( has the form
7 =0, 3 = w(r), where w extends to an analytic map I1¢ — C";

iv) for almost every r € Ry the tangent map w,.(r) : T, Ry — R"™ is non-
degenerate.

By iii), any solution ug(t) of (5.1) in 7&™ has the form:

uo(t) = uo(t;70,30) = Po(wo(t)),

where wy(t) = (rg,30 + tw(rg)) € Rp x T™. We linearise (5.1) about a solution
ug as above to get the nonautonomous linear equation

U= J(Av + (VH)*(uo(t))v) =: JA(t)v, (5.2)

which is our concern in this section. We recall that linear flow-maps of equa-
tion (5.2) (if they exist) are denoted as S%,, (uo(7)) (see Definition 1.2), and
supplement the assumptions i)-iv) by

v) for any solution ug of (5.1) in Z&" the flow-maps St,, (uo(7)), —0c0 <

T,t < 0o, are well defined in the space Z = Z,.
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By Theorem 1.3’ the flow-maps S?,,
of the symplectic space (Z, as).

To study equation (5.1) near 72" we shall impose an integrability assump-
tion on the linearised equation (5.2). Roughly speaking, this assumption means
that the equation (5.2) has a complete system of time-quasiperiodic Floquet
solutions. In section 6 we show how to construct for any Lax-integrable equa-
tion as in section 2 an infinite sequence of complex Floquet solutions, naturally
parametrised by an index j € Z,. It is rather difficult to prove directly the
completeness of this system (cf. [Krl, Kr2] and [EFM1]). Instead we shall
prove (see Lemma 5.4 below) that a system of Floquet solutions is complete if

1) when |j| — oo, these solutions behave as elements of a fixed complex
basis of the complexified space Z¢ times oscillating exponents;

2) Floquet exponents of the solutions depend on ry but not on the angle 39.
As functions of r¢ they do not satisfy identically resonance relations from a list
of relevant resonances defined below.

In section 6 we show how to verify the properties 1) and 2) for solutions of
Lax-integrable equations.

Formal definitions of the properties, given below in section 5.3, are rather
cumbersome since our goal was a friendly easy-to-check definition rather than
an elegant and deceptively short one (like on p. 144 of [K5]).

The time-flow of (5.2) is formed by linear symplectomorphisms which pre-
serve tangent spaces to Z@". Therefore this flow also defines symplectomor-
phisms of skew-orthogonal complements Tj0 72" to spaces Ty, 7¢" in tangent
spaces Ty, Z ~ Z.38

(u) (u € T2™) are symplectomorphisms

5.2. Floquet solutions. We call a non-zero solution v(t) of the equation
(5.2) a Floquet solution if there exists a section ¥ of the complexified tangent
bundle to Z, restricted to 73",

T°Z|72n
| v
%Zn %o RO < T" ,

~

and a complex function v(r) such that the solution v has the form
v(t) = v(t; 10, 30) = €T (wo(t), wo = (10,30 + tw(ro)). (5.3)

It is assumed that v(t) solves (5.2) for any choice of o € Ry and 39 € T™. We
call the function v(r) the (Floquet) exponent of a Floquet solution v.

384 space T%’ZBQ" is formed by all vectors £ € Ty, Z such that az(§,n) = 0 for each
n € TuyT&™.
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A Floquet solution v(t) is called a skew-orthogonal Floquet solution if ¥ in
(5.3) is a section of the complexified skew-orthogonal bundle T-¢72" (its fibres
are complexifications of the spaces Ty T7"™).

We note that the exponent v(r) of a solution v is not uniquely defined since
substituting in (5.3) ¥ = e*3W(r,3) with any integer n-vector s we write
v in terms of the new section ¥, as v = /() +@(0)$)tq (y(t)). So the
exponent v(r) is defined up to an element of the Z-module w(r) - Z", treated
as a submodule of R (it is dense in R unless all components of the vector
w(r) are proportional). Corresponding factor-frequency v(r), equal to the class
v(r)+w(r) - Z™ € R/(w(r)-Z™), is a well defined element of the factor-module
R/(w(r) - Z™). Moreover, we show below in Lemma 5.4 that in a non-resonant
situation Floquet solutions with the same factor-frequency 7 are proportional.

Let us assume that equation (5.2) has an infinite family of Floquet solutions
v = v;(t) such that different solutions have different exponents. Clearly if v; is a
Floquet solution, then 7; is a solution with the exponent —7,;(r), corresponding
to the section ¥;. We add this solution to the family; if a solution with the
exponent —7,;(r) already was there, we replace it by v;. Now the family is
invariant with respect to the complex conjugation and the set of all exponents
is invariant with respect to the involution v — —7. In addition we suppose
that the set of exponents is invariant with respect to the complex conjugation
v — v (this assumption holds trivially if all the frequencies are real); hence the
set is invariant with respect to the involution v — —v.

It is convenient to enumerate the Floquet solutions by integers from the set
Ly ={t(n+1),£(n+2),...}. We do it in such a way that, first, v_;(p) =
—v;j(p) and, second, ¥_; = U, if v; is real. So below we consider the following
system of Floquet solutions :

vi(t;70,30) = ei”j(TO)t\I/j(ro,go +tw(ro)), JE€Ly; v_j(r)=—vi(r). (5.4)

For each index k we denote by k an index such that v, = V. Clearly k=k
for any k£ and k = k if vy is real. We note that the hat-map is r-independent
in any connected sub-domain of Ry where all the functions v;(r) are different.

Let us consider any Floquet solution vi. Then v is a Floquet solution
with the exponent —vj. A solution with this exponent can be obtained as
Vg = U_f > Ug, OF @S Uk > Vj, F— U_j. These solutions must coinside since
the family (5.4) contains no more than one solution with a given exponent; so

the hat-map is odd: —k = —k. As the two solutions coinside with vy, then
V_; = W, We have got that:

U =0, and —k=—k VEk. (5.4)

Now we impose some rather non-restrictive smoothness assumptions on the
solutions (5.4). To do this in the right way we note that the sections ¥,
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restricted to a torus T"(r), are eigenvectors of the linearised time-one shift
operator S}, which acts on sections of the skew-orthogonal complex bundle
T+TE" |70 (). Indeed, we have S5, ¥; = ei (" ; 39 The operator S, analyt-
ically depends on the parameter » € R and by analogy with classical spectral
problems (see Example 5.1 below) it is plausible to assume that its eigenvalues
e™i(") and their logarithms iv;(r) are algebraic functions of r which might have
algebraic singularities at the set

A ={r|vi(r) =vp(r) forsome p#j}.

In particular, v; is analytic in r if the set A; is empty. Situation becomes
too intricate if there are infinitely many nontrivial sets A;. To avoid this
complexification we assume that

a) there is a point r € Ry where v; # vy, if j # k. Besides, there exists
j1 (depending on 72") such that v;(r) # vi(r) for all r, all k and all j
such that [j| > j1, 7 # k.
Since v_; = —v;, then by this assumption v; # 0 if j > j;.
The exponents v, with |k| > j; are assumed to be real analytic:

b) for any k such that |k| > j1, vk is a real-valued analytic function on R

(sovy =—v_pand V_j = Wk) The section ¥, extends to an analytic
map II¢ x {|Im 3| < §} — Z¢ and vy extends to an analytic function on
I1¢.

In particular, k = k if k| > j1.

For sophisticated integrable equations like the SG equation, some exponents
vi(r) with |k| < j; have non-trivial algebraic singularities (see section 6). Re-
covering later in this section global properties of the system of Floquet solutions
(5.4) we treat them as algebraic functions on the analytic set R. Next we cut
out of R the set of algebraic singularities to work with the reduced set. Nothing
unexpected happens on this way. The reader who trust this claim, or is not
concerned with the “sophisticated” equations, can assume that all the expo-
nents are analytic functions (i.e., j; = n 4+ 1) and ignore the assumptions c),
d) below, where we specify the algebraic singularities.

The assumptions we shall impose now on the exponents v, with |k| < j; are
made ad hoc: they are met by Floquet solutions of Lax-integrable equations.

Below an index k € Z,, is called small (big) if |k| < ji (respectively |k| > j1).

Definition 5.1. An N-valued continuous complex function {A1,..., Ay} on
I1¢ is called an algebraic function if there exists a holomorphic function F(r, \)

39The operator Sé* is a well-known tool to study hyperbolic invariant sets (see e.g. [Pes,
section 2.10]). The tori T™(r) we consider usually are elliptic and the operator S%, has
its spectrum in the unit circle. Sections W¥; give rise to eigenvectors of Sé* of the form
e’ 9W;(q), s € Z", j € Zp. If the system of Floquet solutions is complete (see below), then
these vectors form a basis of an appropriate Hilbert space of sections of the bundle. In this
case the operator Sé* has a point spectrum which is dense in the circle.
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on II¢ x C of the form
F(r,A) = AN + fyoa (A 4 fo(r), (5.5)

with uniformly in II¢ bounded holomorphic coefficients f;, such that the points
{A1(r),..., An(r)} exhaust all N roots of the equation F' = 0 and the discrim-
inant A of F,
A(r) = TT(r) = Ak(r),
itk
does not vanish identically. The graph of this N-valued function denotes Gy,
ie. Gy=F10)cIe xC.

The functions \; are called branches of the algebraic function, or, shortly,
algebraic functions. They are not uniquelly defined. Usually the branches of
analytic functions we consider in this book are specified to be continuos on the
real domain IT° N RY .

The holomorphic function F(r,\) of the form (5.5) is called a Weierstrass
polynomial.

Now we specify singularities of the exponents v, with small k. We denote
M = jl —n—1.

c) The functions v; with small j are continuous in R and are analytic in
R\ A, where A = U|j;<;,A;. They have the form

vi(r) =v(\;(r),r), j==x(n+1),...,£(n+ M),

where {);(r)} is some 2M-valued algebraic function and 7 is an analytic
complex function on II¢ x C, such that 0v/0\ # 0.

The functions v; are analytic in II¢ outside the discriminant set D = A~1(0).
We note that D N R is a proper analytic subset of R since by the assumption
a) no two exponents v}, v, coincide identically in R.

Remark 1. The multi-valued map r — {v;(r)}, j = £(n+1),...,£(n + M),
is analytic bounded outside the discriminant set D and is formed by roots of
the polynomial [[(v — v;(r)). This polynomial can be written in the form
(5.5), where the coefficients are symmetric polynomials of v;’s. So they are
holomorphic functions, bounded in II¢ \ D, and their singularities at D can
be removed (see [BM, GR]). Thus, the exponents v;(r) with small j form
the 2M roots of a Weierstrass polynomial. We could treat {v;} as a 2M-
valued algebraic function, but do not do this since in applications the multi-
valued function {\;(r)} appear naturally (as eigenvalues of the corresponding
L-operator) and since the corresponding sections ¥,’s also are functions of the
Aj’s, see item d) below. O

Remark 2. Let us take any two connected components O1, Oz of R\ D and a
smooth path from O; to Oy in R°\ (D U R¢) (it exists since codimension of
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D U RS in R is at least two, see [BM, GR]). For any small j we analytically
continue the functions A\; and A_; along the path from O; to O;. Since the
relation v; +v_; = 0 is preserved by this continuation, we get in O functions
vj and v_j; with some small j'. This means that the exponents v; and the
functions A; form pairs, invariant under the monodromy. [J

The set DN R¢ contains algebraic singularities of the Floquet exponents and
is contained in the set A, defined in ¢). The latter is a proper analytic subset of
R¢ since it is formed by zeroes of the non-trivial analytic function [[(v; — 1)
(the product is taken over all small j # k). We note that A contains zeroes of
the exponents v; since they are odd in j. We add A to the singular set RS:

R;:=R,U(ANR°), Rs:=R;U(ANR),

and modify the regular set Ry = R\ R accordingly.

Example 5.1. Eigenvalues {);} of a real matrix B(a) which analytically de-
pends on a real vector-parameter a are zeroes of the characteristic equation
det(B(a) — AE) = 0 and are algebraic functions of a. A priori they have sin-
gularities at the sets Aj, = {A\; = Ag}. Some of these singularities can be
removed by re-enumerating the eigenvalues before or behind the sets Aj;. In
particular, if the matrix B(a) is symmetric, then under proper enumeration the
eigenvalues have no singularities at all (this is Rellich’s theorem). However, if
Aj and Ay are real “before” Aj; and have nontrivial imaginary parts “behind”
Aji;, then a singularity at this set is unremovable. For example, eigenvalues of
the matrix (1 :611) are real for a < 1 and are complex for a > 1. Ata =1
they have unremovable algebraic singularities. [J

Now we pass to smoothness of the sections ¥; with |j| < ji:

d) There exists an analytic map ¥ : II¢ x {|Im 3| < 0} x C — Z¢, such that
Ui(r,3) = \If(r,g;/\j(r)) for (r,3) € Ry x T™ and all small j. Range of
the map W is contained in Z&, and U is analytic as a map, valued in
any space Z¢.

This assumption agrees with smoothness of eigenvectors in finite-dimensional
spectral problems:

Example 5.1, continuation. Let us denote by B’ the n x n matrix B?(a) =
B —)\j(a)E, so BE = )\;¢ if B7¢ = 0. Let us assume that tk B/ (a) =n — 1 for
a¢ Aj =, Ajr. Then for a ¢ A some (n — 1) x n-submatrix of B’ also has
rank n—1. Assuming for simplicity that this rank has the matrix formed by the
first n—1 lines, we denote by &,,(a), 1 < m < n, an algebraic complement to the
element BJ (a) in the matrix B’. Then the vector £ = (£1,...,&,) is nonzero
fora ¢ Aj and ) Bljmfm = 0 since: for [ = n the sum equals det B/ = 0
and for [ # n it vanishes by an elementary linear algebra. The vector £ is an
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eigenvector of B, B¢ = \j(a)§. It is a polynomial in the eigenvalue \; and in
elements of the matrix B. It vanishes at A;. [

Since the exponents \;(r), A_;(r) with small j form monodromy-invariant

pairs, then the function

n+M _ _ 2

b9) = =TT (0050500, 057500

j=n+1
is well-defined, bounded and analytic in II° x {| Im 3| < 0} outside the branching
set D x C™. Since the discriminant set D is a proper analytic subset, the
singularity at D may be removed (see [BM, section VIIL.5] or [GR]) and b
extends analytically to the whole domain II¢ x {|Imj3| < d}. We use this
function in section 5.3 below.

5.3. Complete systems of Floquet solutions. Let us take any basis {¢; |
J € Zp} of the Hilbert scale {Z,} as in the beginning of section 2 and assume
that the basis is symplectic, i.e.,

azlpj, k]l = (Joj,0k) = 6jkp; forall j €N, k€ Zo, (5.6)
where p; are some positive real numbers. For —j < 0 we set u_; = —pu;, so

now the numbers 1 are defined for j € Zy. Since {¢;} is a Hilbert basis, then
Jon = upp_y, for every k € Zg. Denoting

J _ -1
Vi T Hy
and using that .J is an isomorphism of the scale {Z,} of order —d; < 0, we get:
Ol <vl <Cij® vjiz1

with some C; > 1.
Given the basis {¢;} we define a complex Hilbert basis {¢; | j € Zo} as
follows:
1

- 1
¥ = ﬁ(% —ip_j), Yoy =1 = E(‘Pﬂ' +ip—;) VjeEN

Due to (5.6), for any j and k we have :

oy, hog] = i6j ;. (5.7)

Since Jp = prp—_p for every k, then the operators J and J are diagonal in
this basis: B

ij = i,ujwj, J¢J = ZV]JI/JJ (58)

For any real s we denote by Y the following subspace of Z; of codimension
2n;:
Y; =span{y; | j € Z,} C Zs.

The spaces {Ys, a2 |y, } form a symplectic Hilbert scale with the basis {¢; | j €

Zn).
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Example. If {¢;} is the trigonometric basis as in (1.1), i.e. @5, = 7~ /2cos kx

and ¢_; = —7'/2sin kz, then the complex basis {11} is the exponential basis
Y = (2m) 2tk O

Let {v;} be a system of Floquet solutions as in section 5.2 and {¥;} are
the corresponding sections. For any (r,3) € Ry x T™ we denote by ®1(r,3) a
complex-linear map from Y = Y7 to Z¢ which identifies ¢; with ¥;:

Di(r,3): Y= Z° o — VU,(r,3), VjE€L,. (5.9)

The map ®; will be used to formulate an important notion of completeness
of a system of Floquet solutions. Before to do this we cut out the set Ry a
“neighbourhood of infinity” and a neighbourhood of the singular set R, to get
an open domain Ry,

RieRy=R \ R,.

Possibly, R; is disconnected. To simplify notations we assume that the domain
R; belongs to a single chart of the analytic manifold Ry and treat R, as a
bounded domain in R". We fix any bounded complex domain R{ which contains
R, with its complex d-neighbourhood and does not intersect the singular set
R¢. We denote by W) the set

Wy =Ry xT"
and denote by W7 its complex neighbourhood ,
Wi = R{ x {|Im3| < d}.

Definition 5.2. A system of Floquet solutions (5.4) which satisfies the ana-
lyticity assumptions a)—d) is called complete (in the space Z = Z;) if :

0) it is formed by skew-orthogonal Floquet solutions,
and for any (r,3) € Ry x T™ we have:

la) the functions §3; = —iaa[V;(r,3),Y_;(r,3)], j € Z,, are 3-independent:
B = B;(r),

b) there is a non-empty sub-domain of Ry where no function §;(r) vanishes
identically,

c) the vectors {V;(r,3)} form a skew-orthogonal system in the space
quoc(m)TQ”7 that is:

(6] [\I/j, \I/_k] = iﬁj (r)ém \V/j, k. (510)

2) The vectors {V(w)},w = (r,3) € WY, are analytic in w and are uniformly
asymptotically close to the complex basis {¢; } and the exponents v;(r) are close
to constants. Namely,
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a) the linear map ®;(w) analytically depends on w € W{ as an operator
Y¢ — Z¢ and equals the natural embedding ¢: Y¢ — Z¢ up to a A-smoothing
operator, A > 0:

|P1(w) — t||g,a+a < C1 for all w € WY (5.11)

b) for large j the functions 3;(r) in (5.10) are analytic in R{ and are there
close to the constants p;, defined in (5.6) (cf. (5.8)):

18;(r) — pj| < Calj|=* =2 for r € RS; (5.12)

c) the exponents v; analytically extend to R{ and are there “asymptotically
close to constants”. Namely, for any r € R$ we have |v;(r)] < Csj|?4 %47 and

[V;(r)| < Calj|® (5.13)

with some real A < da+dj.

The constants C; — Cy in this definition may depend on the domain R; but
not on j.

Since the vectors ¥; analytically extend to W{ by item 2), then functions
B; are analytic in R{ and the relation (5.10) holds in W7.

Since ¥_;(w) = ¥, (w) for real w and big j, then the corresponding functions
; are real and B_; = —3;. As p; > C71j7%  then by the assumption (5.12)
we have:

1
1B, (r)| > SHi for r € R{ and j > jo (5.14)

with some new constant jo. We consider the product

J2 J2
LGN | EAGELGN | FEAGE
Jg=n+1 J=j
where the function b = Hf:—nlﬂ ﬂjz was introduced at the end of section 5.2 and
was shown to be analytic; now it is 3-independent due to the assumption 1a).
The functions 8; with big j also are 3-independent analytic. So b is analytic in
I1¢ and due to 1b) a set of its zeroes is a proper analytic subset of R°. We add
it to the complex singular set RS,

R¢ := RS UbY(0),
and accordingly modify the sets Ry and Ry. If it is necessary, we also decrease

the domain R; so that the inclusion Ry € Ry \ R; still holds true.
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Remark 3. The set R, as it is defined now is the final singular set for our
constructions. It comprises: 1) the singular part of the algebraic set R, 2) the
set of degeneracy of the pull-back symplectic form ®faq, 3) algebraic singular-
ities of the Floquet exponents and 4) points where any two of them coincide.
Finally, it contains 5) the zero-set of the function b we have just constructed.
The last set is a set of degeneracy of the system {¥;} since a vector ¥;(r,3)
is skew-orthogonal to the tangent space T,,7>" and to all the vectors W (r, 3)
as soon as (3;(r) = 0 (see (5.10)). In the same time in Lemma 5.1 below we
prove that the vectors {¥,} form a basis of the skew-orthogonal space T-¢7 2"
if r¢ R,. O
The set Ry € R\ Ry may be chosen to occupy most of Ry in the sense of
measure: If R is a bounded chart of the manifold Ry, mes, is the Lebesgue
measure in R and ~ is any positive number, then R; can be chosen in such a
way that
mes, (R \ Ry) < 7. (5.15)

Let us denote by 72™¢ the 2n-dimensional complex manifold ®q(W5) and
for u = ®g(w) € T2™¢ define the space T2 7 2™ as the set of all vectors z € Z¢
such that as[z,&] = 0 for every € € T,,72™¢. For any real u = ®g(w) € 7" we
have

Td_T2n,c — Tj_cT2n‘
A complete system of skew-orthonal Floquet solutions span the skew-orthogo-
nal spaces 727 2™, in conformity with the term “complete” we use:

Lemma 5.1. For any w € W and for u = ®g(w) the map ®1(w) defines an
isomorphism of the spaces Y and T-T*v¢, as well as of Yi A and T-7%™en
ZG, A~ In particular, the vectors {W;(w)} form a skew-orthogonal basis of the
space T-T2we,

Proof. By (5.11) the map ®;(w) is a compact perturbation of the embedding
L: Y — Z¢ so indc @ (w) = ind ¢ = 2n. As range of ®; lies in 727 2™, then
dim¢ Coker @1 > 2n. So if we can show that Ker ®; = {0}, then the range of
®, equals T.-72™¢ and the assertion concerning the spaces Y¢ and T.-7 2¢
will follow. Suppose that the kernel is non-trivial. Then it contains a nonzero
vector £ = > y;1; and we have

0=2018=> y;T;(w).
By (5.10), skew-product of the right-hand side with any vector ¥_;(w) equals
iy;B;(r). Thus, y; = 0 since 3; # 0 outside RS (we recall that this set contains
zero-set of the function 3). So &€ = 0. Contradiction.
The assertion concerning the spaces Y, o and TtT°™°NZ5 4 follows by the
same arguments since due to (5.11) the map ®;(w) is a compact perturbation
of the embedding ¢: Y7 A — Z5, A. O

Decreasing in a need the complex neighbourhood W7 of W; we get the
following result:
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Lemma 5.2. For any s € [-d—dj — A,d+ A] the operator ®1(w) : Y — Z§
analytically depends on w € W{ and is uniformly bounded. Moreover, for any
s as above the map ®1(w) —1: Y7 — Z5 A is analytic in w € W{ as well.

Proof. We consider the linear space R*" =span{y; | j = +1,...,4+n} C
(Z,a2) and provide it with the induced symplectic structure. Next for any
point w in the closure of W; we take its complex neighbourhood O¢ C Wy and
choose a linear symplectomorphism ¥y = Uo(w) : C?* — T,72™¢ C VATUN
which is real for real w and analytically depends on w € O° (It can be
constructed using any analytic Darboux coordinates in the vicinity of ®¢(w)
in 72"). By Lemma 5.1 the linear map

V(w): ZGa=C"DY{n = Z5n, (2,9) — Uo(w)z + 01 (w)y,

defines a symplectomorphism, analytic in w € O¢; the inverse map W¥(w)™?
also is bounded and analytic in w. By Proposition 1.3’, applied to the linear
maps ¥(w), the operators U(w) : Z§ — Z§, —d—d;—A <60 <d+ A, are
bounded and analytic in w € O°.

Since V¥ [(oygye= ®1, then the map @1 (w) : Y — Z¢ analytically depends
on w € O°. To prove the first assertion of the lemma it remains to cover W; by a
finite system of domains O¢ as above and choose a new complex neighbourhood
W which is contained in the union of these domains.

The second assertion follows from Proposition 1.4, applied to the map ¥
(see the remark made after the Proposition). [

Example 5.3 (Birkhoff-integrable systems, see [K3] and [Kap, BKM]). Let
Z = Zy be a space of sequences £ = (x1,¥y1;T2,¥2; ... ), given the ly-norm and
given the “usual” symplectic structure by means of the 2-form J d¢ A d€, where
J(x1,y15...) = (—y1,21;...). We do not specify the scale {Z;} and the orders
of operators, involved in the constructions below.

Let us denote p; = (9632 + yjz)/Q, q; = Arg(x; +1y;) and consider an analytic
hamiltonian h(py, pa,...). The subspace 72" C Z, formed by all vectors £ such
that 0 = 41 = Yn41 = ..., is invariant for the Hamiltonian vector field V},
and the restricted to 72" system obviously is integrable. Let us abbreviate
(P1,--spn) =0", (q1,--.,qn) = ¢" and denote by v; the functions

Oh(p™,0,...)
vi(p") = ——5——>, Jj =1L
We shall identify any p™ with the vector (p™,0,...).
The manifold 72" is filled with solutions

é(t) = {pn = const 7qn — t]/n(pn) + SOTI’ Pr = 0 for r > n},

where " € T™ and v" = (vq,...,v,). For any j > n let us consider a smooth
variation £(¢,¢) of a solution £(t), which changes no action p; except p; and
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makes the latter equal 2. That is, & = (z1,%1;,...), where

pr(t) =", () = " (") + g5 (e) + O(?);
y(t)=0 if I>n, [ #7,

and
xj(t) = ecos(tvj(p") + ¢(e)), y; = esin(tv;(p") + ¢(e)) .

Here gy () € T" and p(e) € S are phases of the solution £(t,¢). The curve
= ¢L(t,0) is a solution of the equation, linearised about the solution &(¢). It
equals

U;(t, ) = {dp" = 0,8¢" = (q0)2(0); dx(t), dy(t)},
where dx;(t) = 0y;(t) =01if [ > n,l # j and

dxj = cos(tvj(p") + @), dy; = sin(tv;(p") +¢), ¢ = ¢(0).

The curve vy, (t) = {dp™ = 0,0¢™ = ¢f-(0); dx = dy = 0} is a trivial solution
of the linearised equation (it may be obtained using the variation of £(t), cor-
responding to a shift of the phase-vector ¢™). An appropriate complex linear
combination of the solutions 9,(t,0), v,(¢,7) and the trivial solution as above
takes the Floquet form

vi(t) = eI W =(0,...:4,1;0,...)

(the pair (i,1) stands on the jth place).

Let us suppose that |v;| < Cjé4 for some d4 and that (5.13) holds. Then
the system of Floquet solutions {v;,v; | j > n + 1} is complete in the sense of
Definition 5.2. [

This example illustrates well the definition but it is too simple and too
restrictive: to be Birkhoff integrable a finite-dimensional system has to have
dim Z/2 integrals of motion, but to have a complete system of Floquet solutions
for the equations linearised about solutions in 72" it needs only n of them (see
a Floquet-like theorem in section 5.4 below).

To be useful in analytical studies of the equation (5.1) and its perturbations,
a system of Floquet solutions should be complete and non-resonant:

Definition 5.3. A system of Floquet exponents {v;(r) | j € Z,} satisfying
the assumptions a)—c) from section 5.2 is called non-resonant if:

3) there exists a domain O C Ry such that for all s € Z™ and all j, k € Z,,
j # —k, we have:

w(r)-s+v;(r)#0 in O, (5.18)

w(r)-s+wv;(r)+vg(r) 0 in O. (5.19)
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The system of Floquet solutions with non-resonant exponents also is called
non-resonant.

The functions in the left-hand side of (5.18) and (5.19) are called resonance
functions, or resonances. We note that the assumptions (5.18), (5.19) admit
a compact reformulation in terms of the factor-frequencies 7;, introduced in
section 5.2:

vi(r) # 0 and v;(r) # vi(r) in O for any j and each k # j.

Zero-set of any resonance is nowhere dense:

Lemma 5.3. If a system of Floquet exponents is non-resonant, then each res-
onance function as in (5.18), (5.19) is nonzero almost everywhere.

Proof. Let f be any resonance as in (5.19). Since the function f is analytic,
we should only check that it does not vanish identically in any connected com-
ponent O; of the set Ry. Let us assume the opposite: f =0 in O;. Since R¢
is a proper analytic subset of R¢, then we can find a smooth path in Rf from
O to O and analytically extend f along this path (see [BM]). In O we get the
relation: w - s+ v; + vr = 0, where v and vy are analytic continuations of
v; and v, respectively. By Remark 2 in section 5.2, j° # —k’. So the obtained
relation contradicts (5.19).

By the same arguments the lemma’s assertion also holds true for any reso-
nance as in (5.18). O

Finally we give

Definition 5.4. A system of Floquet solutions (5.4) satisfying a)—d) is called
complete non-resonant if it satisfies assumptions 0)-3) from Definitions 5.2,
5.3.

It turns out that the assumptions 0), 1la) and 1c) follow from 3):

Lemma 5.4. Any non-resonant system of Floquet solutions satisfy assump-
tions 0),1a) and 1c) from Definition 5.2.

Proof. To check 1c¢) we should prove that for any j # —k the function F(r,3) =
az[V,, U] vanishes identically. To do this let us consider the auxiliary function

ft;r,3),
f = v (), v ()] = VIR [0 (w(t)), Wi (w(t))] = et

where w(t) = (r,3 + tw(r)). Since the skew-product of any Floquet solutions
v; and vy, is time-independent (see Theorem 1.3" and the assumption v) from
section 5.1), then

i

=il = i(v; +vp)F + Vi F - w.
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Let us expand F in Fourier series, F = 3" €3 F(r,s). From the last identity
we get that
F(r, svj+uvk+s-w(r) =0
for all s and all r. By Lemma 5.3 the second factor is nonzero for almost all r,
so F(r,s) =0 and F(r,3) =0.
To check 1a) we note that for k = —; we have:

const = asfu; (), v (1)] = oW, (w(r)), ¥_; (w())].

Because (2.5), the curve w(t) is dense in the tori {r} x T™ for almost all r. So
as[V,;,¥_;] is a 3-independent function for almost all r. By continuity, it is
3-independent for all 7, as states 1a).

To check 0) we take any variations dr, 3 of the initial conditions for the
curve w(t) and get the corresponding solutions Vi, V;, for equation (5.2):

Vi(t) = Pox(w(t))(67,0),  Va(t) = Pox(w(t))(0,43).
We claim that F(r,3) := a2[¥;, ®o.(07,0)] = 0 for any j. Indeed, since
const = aq[v;(t), Vi(t)] = ™' F,

then the claim follows by the same arguments as above if we use the relation
(5.18) instead of (5.19). Thus ¥, is skew-orthogonal to each vector ®g.(dr,0).
Using the solution V5(t) rather than Vi (t) we get that ¥ also is skew-orthogonal
to each vector @, (0,d3). Hence, this is a skew-orthogonal solution. [

Corollary. A system of Floquet solutions (5.4) which meets the assumptions
a)—d) from section 5.2 as well as the assumptions 2), 3) from Definitions 5.2,
5.3 is skew-orthogonal to T?" and is complete non-resonant, provided the as-
sumption 1b) holds. The latter happens e.g., if there exists a point v, € R such
that W;(r,3) — v; as r tends to ry, for each j. Here R signifies the closure of
R in RY where R is a subset.

Practically the point r, corresponds to the zero-solution of the equation (5.1)
(or another trivial solution).

This result simplifies verification of completeness for a system of Floquet
solutions since it is much easier to check the non-resonance relations (5.18),
(5.19) than the completeness la)-1c).

The transformation ®; integrates the linearised equation (5.2): it sends the
curves y; = ei(T0)t); to solutions v;(t) of (5.2). It is convenient to have this
transformations symplectic and real. For this end the sections {¥;} have to be
properly reordered and normalised by multiplying by some analytic functions;
simultaneously the basis {1} also have to be transformed by a linear symplec-
tomorphism which changes finitely many its components only. In this way the
following result can be proven:
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Proposition 5.1. Given any complete system of Floquet solutions (5.4) we
can normalise the sections {¥;} and the complex basis {1;} is such a way that
the new basis still meets (5.7), for |j| > j1 the functions {1;} are orthonormal
and

Ty =iy il =

The new system of Floquet solutions still is complete. Besides,

a) for any (r,3) € W¢ = R x U(S) the map (131(7’ 3) defines a symplectic
isomorphism of Y and the skew-orthogonal space T, (D(,r 3)72" ¢ which analyti-
cally depends on (r,3) € WE;

b) the nonautonomous linear map ®1(r,3+tw(r)) sends solutions y(t) of the
autonomous Hamiltonian equation

y=JB(r)y, yeY*, (5.20)

to solutions of the linearised equation (5.2), skew-orthogonal to the manifold
T2". The operator B(r) defines a selfadjoint morphism of the scale {YS} of
order d4, analytic in r € RS, and

ord V,B(r) < A —dj. (5.21)

The operator JB(r) is diagonal in the basis {1;} and its eigenvalues are the
Floquet exponents of the solutions (5.4): JB(r)y; = iv;(r)y; for each j.

We note that the basis {¢;} may depend on a connected component of the
set R;.

Proof. To prove the theorem we replace the sets R; and R{ by any connected
components R) C R; and RY C R$, where R? = R{°N Ry, and denote
T = ®(R) x T), T¢ = ®(RY x {|Im 2| < 6}). We consider sections ¥; with
big and small indexes j separately:

1) j is big. Now the functions 3;(r), r € RY, are real nonzero and odd
in j. For |j| > jo the function sgnj - §; is positive by (5.14). If for some
J1 < || < j2 this function is negative, we interchange the Floquet solutions v,

and v_;. After this transposition every function §;(r)v; is positive (we recall

J

that the map j — v7 is odd in j and is positive for posmve j) and we replace

each section ¥; by ( ]‘-]ﬁj( ) 1/2\Ifj. Then (see (5.7), (5.10)) for big j we have
achieved:
azlthj, ;] = ao[P(w), ¥_j(w)], w € RY® x {|Imj| < d}. (5.22)

In the space span{y; | € Zj, } C Y° we consider a linear operator B(r),
r € R%, such that B(r)y; = (v;(r) VJJ) 1, for every j. That is,

JB(T)w'_“/J( )vajv VjGZjl-
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Obviously, the operator B(r) is symmetric.

2) j is small. Since the set of Floquet exponents is invariant under the
involutions v — 7,v +— —r and since the exponents do not coincide and do
not vanish in R} (see Remark 3), then real (for real r) exponents v;(r) do not
vanish as well as pure imaginary exponents, and complex ones never take real
or pure imaginary values. If a function v; is real, then we normalise 14 ; and
U, ; as in the first case and extend domain of definition of the operator B(r)
accordingly. The rest of the exponents v; are either pure imaginary or complex.
We consider the more involved complex case only.

If an exponent v, with small k is complex, then the set K = {k, —k, k. :7{:}
consists of four different numbers. We take the space C* = span c{¢4x, v, 3} C

Y ¢ and choose there new basis "&ik, 1; 1 such that

w_;; = E? 1;]% = w—kn (523)

0= (8%) [@Z:I:ka &i]};]? 1= aQ[Q/;k?Q;—k] = 02 [@2_1;7 72];] . (524)

We add this space to the domain of definition of the operator B(r) and extend
there B(r) in the following way:

TIB(r)sr, = ey (Mar, JBr), =ive (rd.; .

The extended operartor is symmetric since, first, (B, ;) = (B, Yy) = 0 for
any [ € K and any vector 1; as above, and, second,

<B@Zl1ﬂ;l2> = _w2(']Bz;l171;l2) = _Z'Vl1w2(7;l1a12l2) Vh, l2 < ’C;

so (Biy,, ) = (Biy,, 1y, ) due to (5.24).
For any u € 7¢ and any k € K, due to (5.10) we have:

ao[W;(u), Uy (u)] =0 VI#—j.

Since the function b(r) = fin 41 Bi(r) does not vanish in the domain R (see
earlier in this section), then 8; # 0 in R§ and |3;| > C~ > 0 in RS for every
J € K. Using (5.4") we get that for real  the functions 3, and 3; are complex
conjugated:

Br = o[V, U] = iox W_j Vil = G

Next we redefine the vectors ¥y and ¥_;:

v

1 1
T R T RN

keeping W_j and W¥; unchanged. The redefined vectors still meet (5.4"). Be-
sides,

—_k

Uy, U ] =1=aa[U_;, ], (5.25)
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The transformation of vectors U;, described at step 2), change the map ®;
on a finite-dimensional subspace only. The transformations described at step 1)
change ®; to Do ®¢, where D is the diagonal operator with diagonal elements,

equal ,/Vfﬁj for big j. Using (5.12) we get that the new map still satisfies

(5.11). It sends one symplectic basis to another (see (5.22)-(5.25)), so it is
symplectic. This map is real since it commutes with the complex conjugation;
it sends solutions of (5.20) to solutions of (5.2).

Since for |k| < j1 and |j| > j1 we have B(r)iy = —ivi(r)Jip and

B(r)p; = —iv;(r)J; = (v;(r) /v ),

(see (5.8)), where the functions v;(r) are analytic and |v; /v | < C|i|?4 by the
item 2c) of Definition 5.2, then B(r) defines a morphism of the scale of order
d 4, analytic in r. This morphism is selfadjoint since the linear map B(r) is
symmetric, see section 1.2.

The estimate (5.21) follows from (5.13), so the Proposition is proven. [

The leading Lyapunov exponent of linear equation (5.2) in Z; is a number a
equal to supremum over all real numbers a’ such that

tm e_“/t||v(t)||d = oo for some solution v(t) C Z; of (5.2).

A solution wug(t) of (5.1) is called linearly stable if the leading Lyapunov expo-
nent of the corresponding linearised equation (5.2) vanishes.
A direct consequence of Proposition 5.1 is the following

Corollary. If the linearised equation (5.2) has a complete system of Floquet
solutions, then the leading Lyapunov exponent of the equation corresponding to
a solution ug = ug(t;r,3) with r € Ry equals v! (r) = max{Imv;(r) | n < |j| <
)

ji}-

Proof. By the proposition any variation u/(t) of a solution ug(t) can be written
as Do.(ug)(r’,3") + ®1(ug)y’ and in terms of the prime-variables the equation
(5.2) reads as

P =0, 3 =wr), v =JB(r)y. (5.26)

Decomposing 3/(0) in the basis {t;} we find that e~ ||u/(t)||s — 0 as ¢ grows,
if a > v(r). If a < vI(r) and ; is an eigenvector of JB(r) with the eigenvalue
v; such that Imv; = a, then y/(t) = e=*i%4)_; is the y'-component of a solution
of (5.26). A norm of this solution grow with ¢ faster than e%*. [

In the next section 5.4 we quote a result from [K4] which states that a finite-
dimensional system (2.1) which satisfies i)-iv) and has n integrals of motion

40We recall that the functions v;(r) with [j| > j1 are real valued by the assumption b).
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has a complete system of Floquet solutions — this is a version of the classi-
cal Floquet theorem (see e.g. [Har|) for multidimensional time. For infinite-
dimensional systems the Floquet theorem is unknown. Still, for Lax-integrable
equations Floquet solutions can be constructed at least in two different ways.
The first one was explained in Proposition 3.1, where we e-opened any closed
gap of the L-operator to obtain an (n + 1)-gap solution and next differentiated
it in € at € = 0 to get a solution of the linearised equation. The second way is to
construct Floquet solutions as quadratic forms of eigen-functions corresponding
to closed gaps. We discuss it and use it in section 6.

5.4. Lower-dimensional invariant tori of finite-dimensional systems
and Floquet’s theorem. Let O be a domain in the Euclidean space R,
given the usual symplectic structure. Let Hy,...,H,, 1 <n < N, be a system
of commuting hamiltonians, defined and analytic in O. Let T™ C O be a torus,
analytically embedded in O, which is invariant for all n Hamiltonian vector
fields V. The vector fields are assumed to be linearly independent at any
point of the torus.

Under mild nondegeneracy assumptions on the system of hamiltonians (see
[Nek]), the torus 7™ can be proven to belong to an n-dimensional family of
invariant n-tori 7.:

T"CcT = )1, 0eReRY; T" =Ty,
reR

where 72" is an analytic 2n-dimensional submanifold of O. Moreover, the
symplectic form, restricted to 727", is nondegenerate and 72" admits analytic
coordinates (r,3), 3 € T", such that for every j = 1,...,n the vector field Vg,
restricted to 72", takes the form ), wé (r)0/03 (the functions wé(r) all are
analytic).

Instead of presenting here the nondegeneracy assumptions, we just assume
existence of a family of invariant n-tori as above. Then for any r there exist
linear combinations K, ..., K, of the original hamiltonians H; such that for
every j the vector field Vi, restricted to the torus 7} equals d/03;. Accord-
ingly, at any point (r,3) € T," every vector field Vi, defines N — n Floquet

multipliers e 1=1,...,N—n, corresponding to directions, transversal to
727 41 For simplicity we assume that 72" is a linearly stable invariant set of
every vector field Vi, (so also of every V). Then all the functions A (r) are
real.

The following result is a version of the Floquet theorem “for multidimen-
sional time”. For a proof see [K4].

41The multipliers are defined as eigenvalues of the linearized time-27 flow-map of the
vector field VK, restricted to a skew-orthogonal component to the space T(W)T%L. They
are 3-independent, see [K4].
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Proposition 5.2. Under the given above assumptions, every vector field Vi,

linearised about its solutions in T>", has a complete system of N — n skew-
orthogonal Floguet solutions with real exponents v;(r).

We note that in the finite-dimensional situation which we discuss now, the
item 2) of Definition 5.2 becomes trivial.
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6. LINEARISED LAX-INTEGRABLE EQUATIONS

6.1. Abstract setting. If (5.1) is a Lax-integrable equation, then its L, A-
pair can be used to construct solutions of the linearised equation (5.2) as qua-
dratic expressions of eigen-functions of the L-operator and its adjoint. Below
we present the construction, mostly following I. Krichever [Krl].

Let u(t) be a smooth solution of a Lax-integrable equation (5.1)=(2.9). For
any smooth vector w € Z,, we denote:

0
Li(w) = E;(t)(w) ~ o Loty +ew o

(by assumption (2.10) the operators £;(v) are well defined morphisms of order
d' of the scale {35}), and similar define operators A;(v). Let v(t) be a smooth
solution for the linearised equation (5.2). Then the curve u(t) + ev(t) satisfies
the equation (5.1)=(2.9) up to a smooth curve O(g?). Differentiating this
relation in € at € = 0, we get a Lax-representation for the linearised equation
(5.2):

%g;(v(t)) = [AL(0(t)), Lo] + [Ae, Lo(v(D))],

where Ay = A, ) and L = L, ;). Let us consider smooth eigenvectors of the
operator Ly = L,,, and of its conjugate operator L, corresponding to the same
eigenvalue \:

Loxo = AXos Loéo = Ao.-

We assume that the following initial-value problems,

X(t) = Ax(®), x(0)=x0,  &(t)=—AfE(t), £(0) = &, (6.1)

have unique smooth solutions x(¢) and £(t). Then for any ¢ we have L;x(t) =
Ax(t) and L3&(t) = A(t) (see Lemma 2.3 for the proof of the first relation;
proof of the second is identical).

We claim that

d . B
AL )€ = 0. (62)

Indeed, abbreviating £}(v(t)) to £" and Aj}(v(t)) to A’, we write the left-hand
side of (6.2) as

(L%, €) + (LX) + (L%, €)
= (L'x, —A") + (([A", L] + [A L)X, §) + (L' Ax, §)
= <[A/7£]X7€> = <A,£X7£> - <A/X7 ‘C*£> = ()‘ - )‘) <~’4/X7£> = 0.

Since L}(w) linearly depends on w € Zy as an operator from 34 to 35 _g
(see (2.10)), then

(Li(w)x, &3 = (w,a(x.§))z Vw, (6.3)
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where ¢:(x,&) = qu)(X,€) is an Z_y-valued quadratic form of x,{ € 3y,
which is C'-smooth in t. Hence, we can rewrite (6.2) as

d

7 (v(t), q:(x,€)) = 0. (6.4)

For a moment let us denote ¢;(x, &) = w. Then
(v, AyJw) = —(JAw,w) = — (0, w) = (v, W), (6.5)

where the last equality follows from (6.4). At this point we assume that the
flow-maps S%,, (u(7)) of the linearised equation (5.2) preserves the space Z.
Then the set {v(t)} formed by values at time ¢ of all smooth solutions of equa-
tion (5.2) equals Z., so w = A(t)Jw since (6.5) holds for any ¢ and for all so-
lutions v(+). Therefore Jw = JA(t)Jw, i.e. the curve Jw(t) = J(q:(x(t),£(1)))
satisfies the equation (5.2).

Thus, linearised Lax-integrable equations have solutions which can be ob-

tained as bilinear forms of eigen-functions of the L-operator and its adjoint:

Theorem 6.1. If flow-maps of the linearised equation (5.2) preserve the space
Zso and the curves x(t), £(t) are smooth solutions of equations (6.1), then the
function J(qt(x(t),ﬁ(t))) with q; defined in (6.3) solves the linearised equation
(5.2).

Remarkably, for “classical” Lax-integrable PDEs the solutions of a linearised
equation, given by the theorem, are Floquet solutions which jointly form a
complete non-degenerate family. Below we check this property for the KdV
and SG equations.

6.2. Linearised KdV equation. Now we consider the KdV equation and
take for the invariant manifold 72" a bounded part of any finite-gap manifold
7™ of the form

7" = | JTy(r), R={reR}|0<r; <KVYj} (6.6)

reR

with some fixed K > 0. We have already checked that this invariant manifold
satisfies assumptions i)—iv) (see section 5.1).
For any n-gap solution wug(t, -) € Tyy(r) the equation linearised about ug

takes the form

o1 3 0

0= Vasa + 2 B2 (ug(t, z)v). (6.7)
Since ug(t, z) is a smooth function, then this equation is well-defined in Sobolev
spaces HE with d > 1, see Example 1.6 or [Paz]. Thus the assumption v) on
the invariant manifold also is satisfied.
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The equation (6.7) has trivial solutions % and %ff, j=1,...,n (see
(3.17)). It also has non-trivial Floquet solutions of the form (5.4). We begin
with illuminative and elementary construction of these solutions in the small-
amplitude case |[r| < § < 1, assuming for simplicity that V' = (1,...,n). We
fix any m > n 4+ 1 and e-open the mth gap to get an (n + 1)-gap solution

Us € 7'(21”+2n m) smooth in . By Proposition 3.1, the function o, (t,3m,) =

%us |e=0 solves (6.7), where 3,, stands for the (n + 1)-th phase of the solution
ue. Now we use local (near the origin) Darboux coordinates (yi,...,Y2n+2)
on the manifold 7=2"*2_ constructed in Theorem 3.2 (one has to choose there
n := n + 1). Using the calculations from Example 5.3 (section 5.3) we get
that an appropriate complex linear combination of trivial solutions as above
and the solutions o,,(t,0), 0, (¢, 7), written in the y-coordinates, has the form
exp(itWp, (1)) (0, ..., i,1), where Wy, (r) is the last component of the (n + 1)-
vector W(”“)(r, 0). Since the map U, sends solutions of the linearised equa-
tion, written in the y-coordinates, to solutions of (6.7), then for any m > n+1
we get a Floquet solution v, () = U(yo(t))«(0,...,4,1):

U (t,37) = eV IU (yo(8))(0, . . .4, 1).

To study these solutions for large r we have to write the (n4 1)-gap solution u.
using the Its-Matveev formula and examine the function u. at the degenerate
limit ¢ — 0. Corresponding calculations can be carried out but they are rather
technical (see [Krl]). It is easier to construct Floquet solutions using Theorem
6.1. We are doing this later in this section.

We recall that the L-operator of the KdV equation is the Sturm—Liouville
operator £ = —9?%/02% — ug(t,x) and consider any its complex eigenfunction
X(z; \) with an eigenvalue A, satisfying the Floquet—Bloch boundary conditions:

Lx(z;0) = Ax(%;0),  x(z+2m;0) = e’x(2;0), p=p(N).

This is a periodic (antiperiodic) eigenfunction if p = 0 mod 27 (p = 7m mod 27).
Taking the function y(z, A) for an initial condition x¢, we solve the first equa-
tion in (6.1) under the same Floquet—Bloch boundary condition x(x +2m; A) =
ey (z; \) and denote the solution (¢, z; \).

Let I' = I'(r) = {P = (\,p)} be the Riemann surface, defined in section
3.2. One of the most important and elegant properties of the KdV equation
(and of the whole class of Lax-integrable equations) is that x as a function
of P is meromorphic in I" \ co and can be normalised to have at infinity the
singularity exp iV x (so x is a double-valued function of the spectral parameter
A € C). An eigen-function x which depends on the spectral parameter P € T" in
this specific way is called a Baker-Akhieser function (see [Ba] and [BB, DMN,
ZM)]). The Baker-Akhieser function admits a representation in terms of the
same theta-function € and the same vectors V., W, 3 as in section 3.2. The
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representation is given by the following formula, also due to Its-Matveev, see
in [DMN, D, BB]:

O(A(P) +i(Vz + Wt +3))0(i3)

o 2: P) = o (P)a+Qs(P)t

x(t,zim 5 P) = e 0(A(P) +i3)0(i(Ve +Wi+3)’
P=(\p)el.

Here A(P) is the Abel transformation, the same as in section 3.2, and 2y,
Q3 are Abel integrals of the differentials d€2;, d€23. The integrals are defined
modulo periods of the differentials. For P = (A, u) with real A we normalise
the integrals in the following way:

9173()\,M) = / dQl’g for ()\,,LL) S F_|_, AE R,
[Elv)‘]

where [F1, A] stands for the path in 'y through upper edges of the cuts. We
denote by o the holomorphic involution of I' which transposes the sheets:

o(A ) = (A, —p).

Denoting for any P = (A, ) with real A by yp the path from o(P) to P through
Eq, equal to vp = o(—[E1, \]) U [E1, A], we get that

1
O 3(P) = 5/ 3,
YP

since 0*dQ; = —d2; due to (3.11).

In a similar way we can normilise the integrals €21 3(A, 1) when A is a complex
number which is prohibited to rotate around any branching point of I'. In
particular, when A is such that Re A € K and

K e (El, Eg) U (Eg, E4) J---u (E2n+1, OO] (68)

(we recall that [Eq, Es], ..., [Fant+1, 00| are the cuts on I'). Namely, we define
2y 3 by the same formulas as above, where [E7, A] stands for the continuous
path [E1,ReA] U [Re, A] and [E1,Re )] is a segment in 'y as above, while
[Re A\, A] is a (uniquelly defined) path in I" such that its projection m([Re A, A])
is the segment [Re A, A] in the A-plane. The functions €; 3 are well defined
and analytic if ReA € K. Moreover, the same formulas apply when I' has
complex branching points {E;} with small imaginary parts. In this case Q3
as functions of E = (Fy,..., Fa,41) analytically extend to a small complex
neighbourhood of a real vector E. A radius of this neighbourhood depends on
the compact set K.

Now we take a point P = (A, i), close to infinity, and denote by up the
path from o(P) to P equal to a lift to T of the circle in C) centred at infinity,
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which passes through A and is cut there (see Fig. 6.1). The loop vp — pup
is contractible in I' \ oo since it envelops all the cuts, so fw—up dQ; = 0 and
Q,;(P) = %fup dQ2;. Using this equality and (3.10) with ¢ = 0 we get the
following asymptotics:

O1(P) = k+O0(™2), Qu(P) =k +O(k™), (6.9)

where k = iv/\ (the functions 2, 3, originally defined for Re A > 1, analytically
in k£ extend to a neighbourhood of the infinity).

When the branching points E; are complex, sufficiently close to the real line,
the asymptotics (6.9) hold for the same trivial reasons. Since the vector E,
formed by the single periodic/antiperiodic eigenvalues, analytically depends on
the vector r, then (6.9) holds for r from a suitable complex neighbourhood of
R? in C"™42 and for k from a neighbourhood of infinity in the complex plane.

Fig. 6.1

Remark. Strictly speaking, in the Its-Matveev formula for y we should use the
Abel transformation A(P) with the same initial point Py = E; as in the integral
for Q;, not Py = oo as in section 3.2. To replace in the formula for A(D); the
integrating from oo by integrating from FE;, we have to add the correction
I; = nfcf)l dw;. Since o*dw; = —dw; (it follows e.g., from (3.9)), then I; =
in fw dw;, where v = [00, E1]U(—0[o0, E1]). Since the cycle v envelops all the
cuts on the surface I' (see Fig. 6.1), then it is contractible. Hence, I; = 0 and
we can use Py = F; as an initial point for the Abel transformation. [
Let us denote

O(A(P) + iU +i3)0(i3)
0(A(P) + i3)0(iU + 13)

f(Usr, 3 P) =
and rewrite y as

X(t, @53, P) = e OB f (Ve - Wi, 5 P). (6.10)

42We analytically extend the map r +— E = (E1,..., E2,4+1)(r) to this neighbourhood.
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By the Riemann theorem (see [D, BB]) the first term of the denominator in the
formula for f as a function of P has exactly n zeroes which form poles of the
function P — f and lie in the ovals a1, ..., a, (see in Appendix 3.ii discussion
of the equation (A3.2)). Since |0(i§)| > C(r) > 0 for every real vector £ (see
(3.13)) and A(co) = 0, then the function f(U;r,3; P), P = (A,3), is analytic
and bounded for r from an appropriate complex neighbourhood of any compact
subset of the set R, defined in (6.6), and for (A, 3,U) from the complex domain

{Im A|, Im3|, ImU| < 4, ReX € K(r), (6.11)

where § > 0 is sufficiently small and the compact set K satisfies (6.8).

We recall that the closed gaps [A2j—1 = Ag;] are labelled by indices j €
Ny =N\ {V1,...,V,}. They belong to a suitable set K as in (6.8) which can
be chosen uniform in r from a sufficiently small complex neighbourhood of any
real r = ro. For any P = Py, where j € Ny and Py, = (£/R(Xgj), A25) € T,
the function x(¢,x; P+;) must be a periodic/antiperiodic eigenfunction; hence,
it is 4m-periodic in x. Since f is 2w-periodic, then the exponential function
in (6.10) has to be 47-periodic in = and we should have Q;(Py;) € 2Z. This
relation holds identically in ». When r tends to zero, Q1 (P;) tends to ij/2, see
(A4.3). Therefore,

i et (6.12)

Conversely, for any P which meets (6.12) the function (6.10) is 4m-periodic.
Since the operator A for the KdV equation is anti selfadjoint, then the
second equation in (6.1) coincides with the first and £(¢t) = x(¢). Now the
quadratic form ¢ as in Theorem 6.1 equals x2. Finally, since J = 9/dz, then
the solutions of the linearised equation (5.2)=(6.7), constructed in Theorem
6.1, are the curves v;(t) € Z of the form
9 —-1/2
(6.13)
Here j € Zy, P; = Pj(r) and the first factor in the right-hand side is a
convenient normalisation.
Thus we have obtained a system of Floquet solutions of the form (5.4),%3
where the sections ¥; of the bundle T°H{|72» have the form

0 (F) =

) 62Ql(Pj)m ) ‘
‘I’j(rvé)(fﬂ):a—x(w—%—wf (VﬁC;T,ﬁ;Pj)>, Jj €Ly, (6.14)
and the exponents v; are
P;

43the set of indices Zy which we use now is in obvious 1-1 correspondence with the set
L.
117



Since the differential d€23 has the form (3.11) and its integrals along open
gaps vanish, then the exponents v;(r) are real for real r and are analytic in
r (they have no algebraic singularities). We claim that this system satisfies
assumptions a)-d) (see section 5.2) and is complete non-resonant. To simplify
notation we suppose that V= (1,...,n). Now the complex basis {1; | j € Zo}
is the exponential basis 1); = €¥%/1/27 (cf. the Example in Section 5.3).

6.2.1. The system of Floquet exponents is non-resonant. To prove the non-
resonance we may assume that the vector r is sufficiently small. For any
j € Zy = Z, we denote by V(1) the (n + 1)-vector (V,j) and view the
torus TY;(r) as a degenerate (n + 1)-gap torus T";Tnlﬂ)(r, 0) (see Theorem
3.1"). Comparing (6.15) with the formula (A4.5) from Appendix 4 we get

that v;(r) = W,ET{I)(T, 0). Since the frequency vector w for finite-gap solutions
which fill the torus Ty, (r) is w = W, then the non-resonance relation (5.18)

which has to be checked takes the form

ST WY, 0)s + WY (r,0) # 0. (6.16)
=1

We can suppose that s # 0; say, s; # 0. By Lemma 3.4, for r = (¢,0,...,0)
we have:

n 3
T/Vl( T = const+ 61 —— &2 + O(e").
’ 8‘/’1
Therefore, the left-hand side of (6.16) equals to const + s1 % e2+0(eh). Tt
does not vanish identically and (6.16) follows. The nondegeneracy relation
(5.19) holds true by similar arguments.

6.2.2. The system is complete. The assumptions a)-d) are checked below.
So by the Corollary to Lemma 5.4 we only have to check the assumptions 1b)
and 2) from Definition 5.2. Because the relation (A5.3) from Appendix 5, the
function f(-;r,3; P) converges to unit as 7 — 0. Therefore ¥;(z) converges to
the complex exponent (27)~1/2e¥* = 4;(x), so 1b) follows and it remains to
check the item 2).

Given any v > 0 we fix a subset Ry € R such that mes(R \ R1) < v (see
(5.15)). For r € Ry we shall verify the properties 2a)—2c).

First we show that the map ®; is close to the embedding ¢ up to a smoothing
map. AsV_; = @j, we have to examine the vectors ¥; with j € N, only. Since
A(P;) = 152+ 0(i71) by (3.4), then k(P;) = 4j + O(j~2), where k = iV/\.
Using (6.8) and (6.15) we get that

Q3(Pj) =L +0@G™)
and

vi(r) = =17+ 037, (6.17)
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uniformly in r from some complex neighbourhood R; + ¢ of the set R;.
Since any holomorphic differential dw; has the form (3.9) (also if the branch-
ing points are complex), then

D )\ )
]<C’/ SYESVER < Cilj|7" uniformly in r € Ry + 9.
2
/4

Therefore for all U, 3 as in (6.11) and for r from R; + § the function f is close
to one, if P = P; and j is big:

[f(Usr,55P;) = 1] < CJ5] 7 (6.18)

Using (6.12), (6.18) and the Cauchy estimate we find that the functions ¥, (r,3)
defined in (6.14) are close to complex exponents:

¥(r)@) = <= 1+ () a). (6.19)

™

where
1Ci(r,3)(x)] < C’j_1 for re R+ CC"” |Im3| <6, |[Imz| <4,

with some j-independent 6 and C' = C(9).
To check the property 2a) from Definition 5.2 with A = 1 we shall show that

the linear map
> a0 ai¢(@) (6.20)

is 1-smoothing, i.e., for any r > 0 it sends a space H}(S') to the space

H)TH(SY). To do it we observe that in the Hilbert bases {(v/27 ;") te®},
{(v/2m j7 1)~ 1%} of the two spaces above the map has the matrix M with

the entries
lr—|—1 o
M;; = " /el(J_Z)“Cj(:U) dz
(cf. (Al) in section 1). Since for |Imx| < ¢ the function (; is analytic and
bounded by Cj~, then |M;;| < Cs(1/§)"1e®I=! (see e.g. in Appendix 2 to
Part II). Therefore the [1-norm of any row and any column of the matrix M is
bounded by a constant C’. Hence, a norm of the map (6.20) as a map from H{
to Hg“ is bounded by the same constant C’ due to the Schur criterion and
2a) follows.
The property 2b) follows from (6.19). Indeed, since ao[¥;, ¥_,] equals

1 ijr _—1ijx ijxT i ijx —1ijx
+2_(a2[€J , € J C—j]+a2[ej Cjaej ]+a2[e] Cj?e J C—j])a
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then ; — z/uj‘] equals

1

~5- [(D™e™)e™"5(_; — €™ D e % 4 (D™ 1e7¢;)e "¢ ] du,
where D = 0/0xz. This equality, estimate (6.19) and the Cauchy estimate
jointly imply (5.12) with (say) s = 3.

The property 2¢) with d4 +d; = 3 and A = 1 is an immediate consequence
of (6.17) and the Cauchy estimate.

6.2.3. The system satisfies the assumptions a)-d). The first assertion of a)
follows from the convergence

I/j('f’) = —2Z93(PJ) — —ijB

(see (A4.4)) which implies that for small r all the functions v; are distinct.
Since v;(0) = —j3/4, then the second assertion follows from the item 2c¢) of
Definition 5.2 which is checked already with d4 + d; = 3 and A=1.

The assumption b) holds since exponents v; are real for real r and since the
exponents and the sections are analytic, see (6.14) and (6.15). The assumptions
c), d) are now empty since all the Floquet exponents are analytic functions.

Finally for the domain R as in (6.6) we proved the following result:

Theorem 6.2. For any v > 0 and any n-vector V' there exists a subset Ry €
R, mes(R \ Ry) < 7, such that the system of Floquet solutions (6.14) with
j € Zy is complete non-resonan on the n-gap manifold ®o(Ry x T") C TZ"
(in any space HE, d > 1).

Amplification. For any R & R” the system of Floquet solutions (6.14) is

complete non-resonant on <I>O(}N% x T™).

Indeed, Risa compact part of the set R as above. To get a subset of R where
the system of skew-orthogonal Floquet solutions is complete non-resonant and
non-degenerate we should cut out R the vicinity of the singular set R, see
Remark 2 in section 5.3. The singular part of the analytic set R is clearly
empty; the Floquet exponents are analytic so the set of algebraic singularities
also is empty. The form ®{ws is non-degenerate on R (see the papers [FM, VN]
and [BKM] where this is proven in three different ways); so the set of degeneracy
of the symplectic form is empty. The functions 3;(r) do not vanish on R —
this follows from [Krl] (Theorem 1, section 1.2) or [BKM]. Hence, the set of
degeneracy of the system of functions (6.14) is empty as well. Thus, Ry = &.
So we can choose Ry = R and the system (6.14) is complete non-degenerate.
It is non-resonant by Theorem 6.2.

We do not present a complete proof of the Amplification (i.e., we do not
prove that the pull-back form ®jws and the system (6.14) are non-degenerate)
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since Theorem 6.2 is sufficient to obtain our main result — the KAM-stability
most of finite gap tori.

We note that triviality of the singular set R, is not a general property of
integrable PDEs: for the SG equation this set is not empty, as we show in
section 6.4.

6.3. Higher KdV-equations. The [th equation from the KdV-hierarchy
has an [£, A]-pair with the same L-operator £ = —9?/92% — u and with some
A-operator of the form A = A; = const 92+1/922*+1 + .. (see [DMN, MT,
ZM]). Solutions ! of equation (6.1) with A = A; are given by the Its-Matveev
formula (6.7), where the differential Q23 should be replaced by an appropriate
differential Q941 and the frequency vector W — by some vector W' (see
section 3.4). We get Floquet solutions vé- of the linearised [th equation,

.1 .
it @i 3) = €O (r 30 + W) (@), j € Ly,

where V;- = 2Q941(P;) and V; is given by (6.14). Using the normalisation
(3.32) we find that

vh=2(i/2)P 2 4 O, j €Ny (6.21)

(cf. the asymptotic (6.17) and its proof).

The system of Floquet solutions {vé} is complete nonresonant. Indeed, the
items of Definition 5.2 from 1) through 2b) describe properties of the sections
U, which are the same as for the KdV equation, so we have already checked

them. The property 2c¢) with ~A = —Al = 2] — 3 follows from (6.21). The
nonresonance property follows from (3.32) by the same arguments as in the
KdV-case.

The linearised /th equation satisfies the assumption v): its flow-maps S%,,
are well-defined linear isomorphisms of a space Z;, d > 1. Indeed, by Lemma
5.1, outside the singular set Ry x T™ the vectors {¥;(r,3)} form an equivalent
complex basis of the skew-orthogonal space T,-¢7?" C Z4, where u = ®¢(r,3).

After we choose these bases in the spaces TULOC(T)’TQ” and Tqﬁt)’f 27 the map
St

¥ .« becomes diagonal with the unit diagonal elements {ei”Jl‘ (M(=m)1. So for
r € Ry and any t,7 the maps S?,, are linear isomorphisms, as stated.
6.4. Linearised Sine-Gordon equation.

Let us take any odd periodic finite-gap solution (u,v) of the SG equation
(4.1) which lies in a finite-gap torus 7" (r) C 72" as in section 4.3 (the manifold
corresponds to the vector I as in (4.22)). In the (u,v)-variables the linearised
equation for u takes the form:

Ut — Uge + (cosu(t,z))u =0, (6.22)
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and the v-component of a solution recovers as

V= —U;

in the (u,w)-variables the equation for u should be supplemented by the fol-

lowing equation for w:
W= —A"Y2.

Abusing language, we shall say that (@, 0) (or (@, w)) as above is a solution of
the linearised equation (6.22).

Since the function u is smooth, then the linearised equation in the (@, w)-
variables is well defined in any space Z¢, s > 0. Thus, the invariant manifold
72" meets the assumption v) from section 5.1 (as well as the assumption i)-iv),
see in section 4.3).

We shall construct Floquet solutions for the equation (6.22), using Theorem
6.1. Since the operator A is antiselfadjoint, then in (6.1) x(t) = &(t), so the
vector-function J(q:(x, x)) satisfies (6.22). Since J(u,v) = (—v,u), then to
calculate u-component of Jg; we have to find v-component of ¢; (now in the
notations of section 6.1 we substitute v := (u,v) and v := (4, v)).

Denoting by Lf the operator L, corresponding to the potential (u,v) +

e(uy,v1), we have:

: 01
ace i 0
pE 50—1(014—1/133)((1 0> )+

0 0

where the dots stand for an operator, proportional to u;. Therefore the Lh.s.
of (6.3) with £ = x equals £ [ v1(z)x1x2(t, ) dx+. .., so that the v-component
of ¢; equals %Xl x2.- We have seen that the function

it 2, ) = \/LQ_W(MXQ)(W; A (6.23)

is a 4m-periodic solution for (6.22) if y; and y are the first two components
of the Baker-Akhiezer (vector-) function x(t,z; P) € C*,

£(u(t,~),v(t,~)) X(t7 E P) = )‘Xa P = ()\,,LL) el'= F(T)a

which is 4m-periodic in z.
Similar to the KdV-case, the function x is meromorphic in P € T'\ {0, 00}
and can be written as

X = x(t,@;r, D; P) = e3PPI £(Vip 4 Wt 7, D; P),

where
K(P) = 5(0 + Q)(P), w(P) = 5(2 — 0)(P)
122



and €2 o are integrals of the differentials d€2; > along a path vop from 0 to pA
The vector-function f(q;r,D;P) € C* is analytic in ¢,D € T", r € R and
P e T(r)\ {0,00}; it can be written explicitly in terms of the theta-function,
defined in section 4.2 (see [EF1, EF2, BB]). The function x is 4m-periodic if

w(P) € %Z (6.24)

(this is a well defined equation since a change of the path «op changes its 1.h.s.
by an integer number). Evoking notations from section 4.1 we see that (6.24)
implies that 7(P) is a point from the 4r—periodic spectrum of the L-operator.
That is, 7(P) equals )\;r or A; for some j (here 7 stands for the projection
['s (A, ) — A). Since the potential (u,v) is finite-gap, then

A=A =1, VjELy
Using (4.10) we see that eigenvalues \; with |j| > j; are exactly double.?s

Since the A-spectrum is invariant with respect to the complex conjugation (see
(4.62) and (4.12)), then

Ae(r) e R if k| > 4. (6.25)

On the contrary, eigenvalues \; with |j| < j; can be complex, see [McK].
Below we are interested in eigenvalues A\; with j € N,. Since they are
double, then the Baker-Akhiezer function x is 4m—periodic at the both points
Pj:t S 7.‘_—1()\],) .46
Now for j € Z,, we determine the solution @; of (6.22) as follows:

i a(t,a; PF) if €N,
U; = == . .

Here the function @ is defined as in (6.23) with A € C replaced by P € I', and
the hat-map k — k was constructed in section 5.2. We note that the function
% is a solution since (6.22) is a real-coefficient equation.

Let us denote by II the projector which sends a periodic (vector-) function
n(z) to its odd part % (n(z) —n(—=z)), and denote

£ = (uj,wy), where aj(t,z)=1Ilu;(t,z), 0t )= _A—1/2%@]0.,

44 A change of the path y9p changes the function f.
45We remind (see section 4.2) that this means that double is the corresponding eigenvalue
p=vA/4
46We denote by Pji a point in m~1(\;) which belongs to the sheet I'.
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This odd periodic vector-function is a solution of (6.22). Indeed, since cos u(t, x)
is an even function of z, then II(cosu)u = cosuIla. Hence, applying II to the
equation (6.22) with @ = 4; we find that 4 also satisfies the equation.

For any j € N,, we have aj(t,z) = ei”(Pj)tl_I(em(Pj)xflfg), where fify is
the function flfg(f/:c + Wt;r,D, Pj). Accordingly, if j € N,,, then

€0 :\/% (P <€i/€(Pj):cf1f2,
A2 [eiﬁ(Pj)m(iy(Pj)flfz +W- qu1f2)}> 5 (6.26)

and &7 = g if j € —N,,. Thus, we have constructed a system of Floquet

solutions for equation (6.22) of the form (5.4).

By construction, fi fs is an analytic function of all its arguments; v and k are
analytic functions of P € I'. Since 7T(Pj+) = )j, then by Lemma 4.1 7(P;(r))
is an algebraic function of r. Due to Corollary from the lemma, this function
is analytic if |j| > j;. Thus, the solutions §; are analytic in x, D and algebraic
in r. They are analytic in r if |j]| > j;.

The wave-number x(P;) and the exponent v(P;) can be interpreted in terms
of (2n + 2)-gap solutions with two infinitesimal extra gaps, at least for small-
gap solutions. Indeed, let (u,w)(t) = ®o(r, D + W(r)t) € T?" be a finite-gap
solution of the SG equation such that |r — L| = p < 1. Then by the last
assertion of Lemma 4.4 (with n = j and k = n), for 0 < € < p there exists a
finite-gap solution (u.,w.) C ’]'(21"+2nj) which converges to (u,w) when ¢ — 0.
The corresponding wave-vector V("1 and the frequency-vector W+ are
(n + 1)-vectors such that

VTEZTD — k(P;)), WT(LT{I) — v(Pj) as e —0. (6.27)

These limits follow from the same elementary arguments as in the KdV-case
(see Appendix 5).
Due to the first limit in (6.27) and the last assertion of Lemma 4.3,

K(P;) = j. (6.28)

This relation is proven for r close to L. Since P; is an algebraic function of 7,
then (6.28) holds identically in r. It specifies the formula (6.26).
Due to the second limit in (6.27) and the last formula in section 4.4,

v(Pj) = j =+1+j2 as r— L. (6.29)
Asymptotic evaluation of the exponents v(P;) (cf. section 6.2.2) shows that

v(Py) = j*+0(G™) as j— oo (6.29')
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(see [BiK1]).
Arguing as in the KdV-case (see Appendix 5 and (6.18)) we can see that the
function f; fy in (6.26) is asymptotically close to one:

|fife—1=o0(1) as r— L and =O0(1 as j—oo, (6.30)

where fifs = fif2(3;7, D, P) and the estimates hold uniformly in 3 from a
complex neighbourhood of the real torus.

The system of Floquet solutions which we have constructed meets the as-
sumptions a)-d) from section 5.2. Indeed, a) follows from (6.25) and (6.29)
while b)-d) result from previous discussions of smoothness of the function fi fo
and the exponent v.

The system of Floquet solutions {5 | j € N,,} is complete nondegenerate:

Nonresonance. Using Lemma 4.4 we constructed in section 4.4 coordinates
Ri1,...,R, on the small-gap part Ry of the algebraic set R such that the point
L lies in the closure Ry and has coordinates R = 0. As in the KdV-case, we
have to check the relation (6.16) and a similar relation, equivalent to (5.19).

Let us take any j > n + 1 and consider the resonant function in the lLh.s.

of (6.16), where W(n+1)(r, 0) = v;(r). We shall study this function using the

n+1
coordinates R and denote it n(R). Due to Lemma 4.4 with n:=n+1, n is an
analytic function of the arguments I, = R%/2, k = 1,...,n (see discussion at

the end of section 4.3). So if n = 0, then

o

n(0) =0, o

(0)=0 for I=1,...,n.

Abbreviating >~;'_, to Y and using (4.25), (4.26), we rewrite the first equality
as

Y ksp+jT=0 (6.31)
and rewrite the second as
4 S 4
—4( P —):, I=1,....n. 32
= Sk 7 + I 0 n (6.32)

In particular, s;/1* = C' =const for all [ < n. Substituting this relation to
(6.31) and (6.32) we get that

CY k45" =0

and A
C’(4n—1)—|—j—* =0.
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We can eliminate C' from these equalities to find that j**(4n — 1) = 4> k*2,
That is,

P+ 1)(n—1) =4 (K> +1).

We have obtained a contradiction since an integer number j? + 1 never can be
divided by four. This contradiction proves that n # 0.

Proof of the second relation is similar, see [BoK2].

We note that our arguments use essentially the assumption (4.22).

Completeness. The Floquet solutions (6.26) have the form (5.4), where for
> n + 1 the sections ¥; equals (27)~1/2I1(e™(F)= £, 5 ...). Due to (6.28),
2

J
(6.29) and (6.30), for every j we heave the following convergence:

U — —T1(e¥%, — A7/ 2%y = (¢sin jz,sinjxr) as r — L.

vor V2r

Similar,

v_;, — \/_Q_W(_Z sin jx,sinjx) as r — L.

Therefore Corollary from Lemma 5.4 applies and we only have to check the
assumption 2) from Definition 5.2. To do this we should not study complicated
solutions £ with complex exponents v since they correspond to small j, l7] < 71,
and large r. On the contrary, we have only to consider |j| > 1 or r close to L.
In these two asymptotical cases Floquet solutions for linearised SG equation
behave as complex exponents (see (6.29)—(6.30)), so to check the completeness
we can argue as in section 6.2. See [BiK1, BoK2].

126



7. NORMAL FORM

7.1. A normal form theorem. We continue to study the Hamiltonian equa-
tion (5.1) near an invariant manifold 72" = ®4(R x T™) which possesses the
properties 1)-v) as in section 5.1.

Proposition 5.1 puts the linearised equation (5.2) to a constant coefficient
normal form, provided that this equation possesses a complete system of Flo-
quet solutions. In this section we show that under this assumption the equation
(5.1) itself can be put to a convenient normal form in a neighbourhood of 72".
Namely, we show that the action-angle variables (p,q) on 72" can be supple-
mented by a skew-orthogonal to 72" vector-coordinate y in such a way that
in the new coordinate system the symplectic form is (dp A dg) ® a2 and the
hamiltonian is s

h(p) + 5(Bp)y,y) + hs(p,a.y), hs=O(|[yl*).

Here B(p) is the self-adjoint operator from Proposition 5.1 and the term hg
defines a hamiltonian vector field of the same order as the nonlinear part JVH
of the original equation (this is a crucial property of the normal form!).

We assume that the linearised equation (5.2) has a complete family of skew-
orthogonal Floquet solutions v;(t) as in (5.4), define the singular subset Rj,
Rs = RSN R as in section 5.3 (see there remark 2). As in section 5.3, we choose
any sub-domain Rj, which lies in a compact part of the regular set Ry = R\ R,
i,e. R1 € Ryp. A normal form as above will be constructed in the vicinity of
the manifold 7" = ®q(R; x T").

By Lemma 2.1 the equation (2.1) is integrable in ®o(Ry x T™). So we can
cover ®g(R; x T™) by a finite system of open sub-domains such that in each one
the equation admits analytic action-angle variables (p, ¢) as in (2.6). To simplify
notations we suppose that the action-angles exist globally in ®q(R; x T™). We
shall use these coordinates instead of (r,3). Accordingly, we write 72" as
T2 = &g(P x T"), where P = {p} € R" and T" = {q}.

We denote W = P x T". The map ®y: W — T2" C Z analytically extends
to a bounded analytic map W¢ — Z¢, where W€ is a complex neighbourhood
of W of the form W¢ = (P +0) x {¢ € C"/27xZ" | |Imq| < §}. We treat W
and W€ as submanifolds of the Hilbert manifolds ) and )<,

YV=YVi=R"xT"xYy, Y =Y;=C"x(C"/Z")xY],

where
Yd = span{goj ‘ ] S Zn} C Zd.

Since w = Vh (see Lemma 2.2), then we write the skew-orthogonal Floquet
solutions v;(t) as

vi(tip,q) = P (p,q+tVh(p)), pEP, qeT", jE Ly, (7.1)
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The linear in y map y — ®1(p,q + tVh)y as in (5.9) reduces the linearised
equation (5.2) to the constant-coefficient linear equation

y=JB({)y,..., (7.2)

where the dots stand for components of the linearised equation in directions
tangent to W x {0} (see Proposition 5.1). We denote by S5 = S5(Yy) the
manifold

Ss=W x05(Y), Y=Y,

and denote by S§ its complex neighbourhood S§ = W€ x Os(Y¢). We give S;
symplectic structure by means of the 2-form (dp A dq) & o, where oy = asly.
Since oy = Jdz A dz and the spaces {Y;} are J-invariant, then

a%/ = Jdy N dy.

Our goal in this section is to prove the following Normal Form Theorem:

Theorem 7.1. Let the Hamiltonian equation (5.1) and its invariant subman-
ifold T2 satisfy the assumptions i)—v); let a sub-domain T2" = ®g(P x T™)
be as above and (7.1) be a complete system of skew-orthogonal Floquet solu-
tions of the linearised equation (5.2). Then there exists 61 > 0 and an analytic
symplectomorphism G: (Ss,,dp A dq ® oY) — (Z,az) such that G(Ss,) is a
neighbourhood of T and

HoG = h(p)+ 5(Bp)y,y) + ha(p, ¢, y)-

Here hs = O(||y||?) is an analytic functional such that its gradient map is of
order d = max{dy, —A—dj,A—d;}, i.e. |Vyhs(p,q,y)|l;_5 < Cllyll? for any
(P q,y) € S5,

Proof of the theorem occupies the rest of this section.

To simplify the presentation we suppose below that all the frequencies v;(p)
are real and consequently the operator B(p) is diagonal in the ¢;-basis of the
space Y':

I/'p .,
B(p)p; = i >90j Vj € L.

The general case differs from this special one only in more awkward notations
since we should treat differently (but in much the same way) the indices j,
corresponding to real, imaginary and complex frequencies v;.

We start with the affine in y map @,

P =P+ Py: S5 — Z°, (p,q,y) — Po(p,q) + P1(p, ¢)y.

It is real (sends S5 to Z), bounded on bounded subsets of S§ and is weakly
analytic by assumptions b) and d). So ® is an analytic map by the criterion
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of analyticity. By Lemma 5.1 its linearisations at points from W€ x {0} define
isomorphisms of R?” x Y and Z. Thus, by the inverse function theorem the
map ® defines an analytic isomorphism of S§, and a complex neighbourhood
of T2 in Z, provided that §’ < § is sufficiently small.*7

Next we study symplectic properties of the map ®. Since restriction of ® to
W x {0} equals @y and restriction to any disc {w} x Os(Y") equals ®1(w) up
to a translation, then these restrictions are symplectic. In particular, for any
w € W the map ®,(w,0) is a linear symplectomorphism. Hence, the pull-back
form wy(w,y),

wo 1= P o,

equals (dp A dq) @ ad for w = 0 and these two forms coincide being restricted
to any disc {w} x Os(Y). It means that the difference
_ Y
WA =wg —dp N\ dq P ay
may be written as

wa = Jjww (w,y)dw A dw + jwy (w,y)dy A dw + jyw (w,y)dw A dy,

where jyw (w,y) = jiyy(w,y) and the linear operators jyww, jwy and jyw
vanish for y = 0 (see section 1.3 for the notations we use).

In the calculations we carry out below we adopt gradient-notations for lin-
earisations of the maps ® and ®; in w. Namely, we write

b, (w,y)(dw,0) = vajq)(w,y)éwj =:Vu® - dw,

where V,® = (V,®,V,®) € Z x --- x Z (2n times). Similar we write
®1,(0w,0) = V,, Py - dw, where any component Vu,;®1 is a linear operator
Y — Z. In these notations we have:

w2 [0y, dw] = aa[P1dy, Posdw + (V@1 - dw)y]
= a2[P10y, (V1 - dw)y] = (JP10y, V, P1y) - dw
and B
wo 0w, 0y] = (J (V. ®1 - dw)y, P16y).

Hence, _
Jwy (w,y)dy = (J@1(w)dy, V@i (w)y),

. N — (7.3)
Jyw (w, y)0w = —jiyy (0, )01 (w)* J (Vo @y - dw)y.

47To get this result one has to cover the set W¢ x {0} by balls By, w € W€, such that the
inverse function theorem applies to ® restricted to each ball; to find a finite system of these
balls which cover W x {0} and choose ¢’ > 0 so small that S§, is contained in the union of
these balls.
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Abbrev_iating (dw, 8y) € R2" XY to 63, we write the form wa as wa = JadzAd3,
where J is the operator matrix:

Ta=Tatwy) = | 00T, (7.4
—Jwy

The form wa is exact, as well as the forms wy and dpAdg® ol , ie. wa = dw;.

Lemma 1.3 represents the 1-form w; as

wi(w,y) = (/0 (J®1(w)y, qu)l(w)ty>dt>dw
= 2(JO1(w)y, V@1 (w)y)dw = Las[®1(w)y, V@1 (w)y]dw.

We sum up the obtained results in

Lemma 7.1. The form ws = ®*ay equals to (dp A dq) ® o + d(L(w,y)dw),
where the 2n-vector L is L = Sas[®1(w)y, Vi, ®1(w)y].

So far we have examined how the map ® transforms the symplectic form as.
Now we calculate how it changes the hamiltonian H. To begin with we analyse
how the nonautonomous linear transformation ®; transforms the quadratic
part (Au,u) of the hamiltonian H.

For any w = (p,q) € W we denote ®' = ®(p,q + tVh). Since the nonau-
tonomous symplectic linear map ®* sends solutions y(t) of equation (7.2) to
solutions v(t) = ®'y(t) of (5.2), then we have the following equalities:

v — Oly + dly
J A Pty + ' JB(p)y
JAtq)ty
Thus, .
JA;®ty = 'y + &' TB(p)y. (7.5)

Taking a skew-product of (7.5) with —v, we get:

(JA®ly, Jv) ——— (@ty + ®JB(p)y, Jv)
| | (7.6
(B A Dly, y) (dty, JOly) + (B(p)y, ),

where we use that (®'JBy, J®'y) = (JBy, Jy) = (By,y) by symplecticity of
the map ®°.
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Since for t = 0 we have A; = A+ (VH).(®(w)) and & =V, (w)- Vh(p),
then relation (7.5) with ¢t = 0 implies that

@1 (w)JB(p) = J(A+ (VH)(®o(w)))P1(w) = V@i (w) - Vh(p).  (7.7)
Similar, (7.6) implies that

((B(p) — @1(w)" (A + (VH).(Po(w)))P1(w))y, y)
= (@1(w)"J (Vo @1(w) - Vh(p))y, y) = (Uw)y,y),

where 2 stands for the symmetrisation of the operator ®7J(V,®; - Vh), i.e.,
Aw) = 3 (21(w)"J(V@1(w) - VA(p)) = (Vg@1(w)" - Vh(p)) @1 (w)).
Since this relation holds for any vector y € Y, then
B(p) = @1(w)" (A + (VH)«(Po(w))) @1 (w) = A(w). (7.8)

Lemma 7.2. The operator A defines a (A + dj)-smoothing symmetric map
A: Y7 =Yg, 1a, analytic in w € W€,

Proof. The operator 2 is symmetric by its construction. It remains to check
its smoothness.

Since V@1 = V4 (P — ¢), then by (5.11) and the Cauchy estimate the
operator V,®; - VI analytically depends on w € W€ as a map Y; — Zgya.
By Lemma 5.2 the operator ®(w)*J : Z§, A — Yf 4 A also is analytic in
w. Hence, the first term of the operator 2 defines an analytic in w € W¢ map
S N )

Using Lemma 5.2 once again we find that the operator J®;(w) : Y§ — Z7, ;.
is analytic in w. Due to the second assertion of this lemma and the Cauchy
estimate, the map V@7 -h : 25, , — Y/, ; . is analytic in w as well.
Combining these two statements, we find that the second term of 2 also defines
an analytic in w € W° map Y7 — Y7, ; . o This completes the proof. U

Equalities (7.7), (7.8) were obtained for real w. Since these relations are
analytic in w, they remain true for any w € W¢.

Now we write the transformed hamiltonian H o ® as
Ho® = (ADg, Bg) + (ADg, D1y) + 3 (AP1y, P1y) + H(P),

and separate its affine in y part:

Hod = <%<Aq>0, Do) + H(<I>0)> + ((Acbo, ®1y) + (VH(®Po), <I>1y>)

+ (L(A®1y, Buy) + H(Do + Bry) — H(Do) — (VH(Bo), Bry) ).
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The first term in the right-hand side equals h(p).

By Lemma 2 the form wy = ®*ay equals (dpAdq) ®ad , when y = 0. Hence,
for y = 0 the y-component of equation (5.1), written in the (p, q,y)-variables,
is JV,(Ho®). It equals zero since the set {y = 0} is invariant for the equation.
Thus, the second term vanishes.

By (7.8), (A®1y, ®1y) = (By,y) — (VH,®1y, ®1y) — (Ay, y) . Therefore the

third term in the r.h.s. equals 3(B(p)y,y) + ha(p, ¢, y), where

hy = —2((VH).(®0)P1y, P1y)— 1 (A(w)y, y)
+ H(®o + P1y) — H(Po) — (VH (Do), P1y).

It is easy to see, using Lemmas 5.2 and 5.3, that ho defines an analytic gradient
map Vyhy: R* x Yy =Y, 4
Thus, the affine in y map ® transforms the hamiltonian H to

Ho® = h(p) + 5(B(p)y, y) + ha(p, ¢, ),

where hy = O||y||? and ord Vhy = d.

Our next goal is to normalise the symplectic structure wy = ®*a5 in Ss by
means of the Moser—Weinstein theorem (Lemma 1.4). The theorem states that
©*wy = (dp A dq) ® o, where ¢ is the time-one shift S¢ along trajectories of
a nonautonomous equation:

3 - Vt(ﬁ)? 3= <w7y)'
The vector field V!: S5 — R?™ x Y, is obtained as a solution of the equation
—(Jo+tJa)V' = al3,y), (7.9)

where

70 ((5}?, 6(]7 5y) = (_5(]7 5p7 75y)7

the operator Ja is as in (7.4) and the map a is such that differential of the
1-form a(3)d3 equals wy — (dp A dg) @ o . By Lemma 7.1, a(3) = (L(3),0),
where the 2n-vector L(3) is specified in the lemma.

We claim that the map ¢ sends S5, to S§ (01 is sufficiently small compare
to d) and transforms H o ® to a hamiltonian of similar form:

Lemma 7.3. The hamiltonian H o ® o ¢ equals to

Ho®op=h(p)+ +(Bp)y,y) + 3By, y) + hs(p, 0, y), (7.10)

where B(p) is the same as in (7.2) and B(p,q) is a linear operator of order
d, analytic in (p,q) (d is the same as in Theorem 7.1)). The function hs =

O(|ly|I?) has an analytic gradient map of order d, IVyhs(p, ¢, 9l 4pq < Cllyll*.
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The statement of the lemma is quite obvious for a finite-dimensional phase
space Ss, but not in the infinite-dimensional situation. Indeed, the transfor-
mation ¢ has the form ¢ = id+¢, where ¢ is a A-smoothing map such that
@ = O(|ly|)*>. Thus the transformed hamiltonian gets the term

(B(p)y, @) (7.11)

which is O(||y||?) with a gradient map of order d 4 —A. The number d4—A could
be relatively big and the term (7.11) could spoil the forthcoming constructions.
Fortunately, (7.11) vanishes up to a smoother term. This is essentially what
the lemma states.

We prove the lemma in next section 7.2 and now show how to complete the
theorem’s proof, given this result. To prove the theorem it remains to check
that the operator B in (7.10) vanishes. Since ¢ is analytic and O(]|yl|?)-close
to the identity, then ¢, (w,0)|{0}xy = id. Denoting w(t) = (p,q +tVh(p)) we
get that the transformation

y(t) = (@ o @) (w(t), 0)y(t) = (Px(w(t),0))y(t)

sends solutions of the equation (7.2) to solutions of (5.2).

From other hand, ® o ¢ is a canonical transformation which transforms
solutions of the equation with hamiltonian (7.10) to solutions of (5.1). In
particular, it sends the curves w(t) to solutions ug(t) of (5.1). Hence, the
linearisation (® o ¢) (w(t)) converts solutions of the linearised equation

y=J(B(p) + Bw(t))y,... (7.12)

to solutions of (5.2) and ¢.(w(t)) converts solutions of (7.12) to solutions of
(7.2) (cf. item b) of Proposition 5.1). Since a y-component of the map ¢, (w(t))
is the identity, then we must have JB(p)y = J(B(p) +B(w(t)))y. This implies
that 8 = 0 and the theorem is proven. []

7.2. Proof of Lemma 7.3. In this section we denote by {Z;} a Hilbert scale
formed by the spaces Z, = R?" x Y, and abbreviate Z; to Z. So T, hY ~ Z for
every hin Y = );.

To study the vector field V* which defines the transformation ¢ we expand
the operator —(Jo +tJa)~! in the Neumann series:

—(Jo+tJa) "t =(id = tJoda) o= > (tIoTa)™Jo.

m=0

The series converges for small ¢ since by (7.3), (7.4) the linear map

Jng(w,y): Zd — Zd+A
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is analytic in (w,y) € S§ and is proportional to y, so its operator-norm is
bounded by C§. Denoting

a(w,y) = Joa(w,y) = (wg[‘bly, (—Vq,Vp)q)ly],()) €z,

we solve equation (7.9) for V* and find that

Z tJod a)"a(w,y). (7.13)

m=0

Viw,y) = —(Jo +tJa) " a(w

l\.')lr—A

Therefore V = O(Jly||?) is a A-smoothing analytic vector field. In particular,
the flow-maps Sj of the equation j = V* with 0 <t < 1 send a domain S
with sufficiently small J; to Sj.

Isolating in the r.h.s. of (7.13) the term with m = 0 we find that the vector
field V' satisfies the self-similarity identity:

[o.@]
Viw,y) = ta(w,y) + 2(tJoJa) Z tdoda)"a = 2a(w,y) + tJoJ AV (w,y).
m=0
(7.14)
We begin an analysis of the transformed hamiltonian with its the most com-
plicated term

3(B®)y.y) o . (7.15)

We abbreviate the function 1(B(p)y,y) o S§ to &, so & equals (7.15) and
& = (B(p)y,y)/2. We have:

Lg
%<B(p)y,y>oso—%(B(p)y,w:&—ﬁo:/o 2 &t

Denoting by VX, Vqt, Vyt components of the vector field V', we get:

/01 %&dt =/01 <é<(VpB(p) - th)y,y>4

v~

qt

+ <B(p)y, V) (w, y)> ) o Stdt. (7.16)

(& J/

g

Q1

By (5.21) the function ¢; is analytic with a gradient map of order A—d 7. Now
we pass to the term Q. Since the vector a(w,y) has zero y-component, then
we get from (7.14) that

Qi = t(B(p)y, Ny JoJ AV (w,y)) = —t(JB(p)y, L, JaV*(w,y)),
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where I, stands for the natural projector Z — Y. Due to (7.4), Il,JaAV! =
—Jivy Vi, where we abbreviate (V/, V) to V,;. So we get the following formula:

Qt =t (jwy (w,y)JB(p)y) - Vi (w,y), (7.17)

where - stands for the scalar product in R?". Using (7.3) and (7.7) we write
the second factor in the right-hand side of (7.17) as

R** 3 jwy (w,y)JB(p)y = (J®1JBy, V., ®1y)
= —(A®1y, Vo ®1y) — (VH) . (P0)P1y, Vi P1y)
— (J(Vy@1 - Vh)y, Vo, ®1y), (7.18)

where &1 = ®;(w) and ®g = ®o(w). Using (7.8) we rewrite the first term in
the r.h.s. of (7.18) as

— $Vu (AP (w)y, 1 (w)y)
= 3Vu[ = (B()y, y) + (VH). (Do) ®1(w)y, 1 (w)y) + (A(w)y, y)].

Using (5.20) as well as Lemmas 5.2 and 7.5 we find that this is a quadratic in y
form, corresponding to a linear operator of order max (& —dy,dyg,—A—dy) =
d. By Lemma 5.2 the second term in the r.h.s. of (7.18) corresponds to a
linear in y operator of order dy and the third term — to an operator of order
—dj —2A. Thus, jyw(w,y)JB(p)y is a quadratic in y form which we write
as %(‘Bl(w)y, y), where ord B, = d and the linear operator B, is analytic in
w € Ss (more precisely, B is not a linear operator but 2n of them).
Now let us consider the third factor in (7.17), V! = (V! ,...,V} ). For
[l =1,...,2n we denote by II; the projector Z — R which sends (w,y) to w;
(so I;V* = V). Below we write estimates for the vector @ and the operator
IT; JoJa which follow directly from the formulas for a and the operator jyyy,
taking into account the smoothness of the operators ®; and V&1, specified in

Lemma 5.2:

la(w, y)llm < Cnllyllllyll-d-a—a, for any m,
||HZJ0'7A(w7y)||z—d—A—dJaR < CHyH for any [, (7-19)
L JoTA(w,y)l| 2,8 < Cllyll-a-a-a, for any .

For any [ let us consider the function (w,y) — ILitJoJa(w,y)a(w,y). Since
the operator-valued map y — Ja(w,y) is linear in y, then linearisation of this
function, applied to a vector (0,7), equals

(HltjojA (U}, y)) (a* (U}, y) (07 77)) + HZtJOjA (w, n)a(wu y)
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Using (7.19) we bound this number by

Ctllyllllas(w,)(0,n)l~a-a-a, + Ctllnll-a-a-a, lall < Crtlyl*Inll-a-a-a,-

Hence, ||V, (L tJoJaa)|larard, < C|ly||?. Similar estimates hold for higher-
order in t terms in (7.13). Since ||V ILallg+a+a, < Clly| due to the last
estimate in (7.18), then for (w,y) € S§ we get:

IVy Vi latatd, < 5VyIlia+ Vy(ILtJoJaa) + ... [la+a+d,
< C(lyll + tlyll> +-..) < Culyll

(we used (7.19) once again). Thus, the functions qu)j, j=1,...,2n, are analytic

and bounded by C||y||?; their gradient maps are (A + dj)-smoothing and are
bounded by C||y||.

We have seen that any function @), 0 <t < 1, is analytic in the domain Ss,
where it is bounded by C|ly[|* and ||V,Q:|,_s < C|ly||*. Because the formula

(7.16), the function %(By,y) o — %(By,y> has a gradient map of order d,
which satisfies similar estimates.

By the formula (7.13) the map V* is analytic A-smoothing and is bounded
by Clly||*. Therefore, the map ¢ —id is A-smoothing: ||¢ —id|lara < C1|ly||?
and

||90*(w7 y) — id||8,s+A < 02||y|| Vs € [_d —A—dj,d+ A] (7.20)

(the estimate for ¢—id is obvious and (7.20) follows from (1.19)).
Finally, for any 3 = (w,y) € S5, we write the transformed hamiltonian as

Ho®op(3) =(h(p) + 3(By.y) + 3(By.y) o (5)
— 3(By,y) +how(s) = h(3) + haop(s)
and denote
ha = (3(By,y) oo — 5(By,y)) + hop —h+hy 0.
Since ¢ = Ofly|l and p—id= Ol|y||*, then hy = O|ly||?>. The gradient of the
first term was shown to be of order d. Since
V(hoy)=p*(Vhoyp)=(p" —id)Vhop+ Vhoyp

and Vh € R?" x {0}, then due to (7.20) V(hop)(3) € Z4+a+d,- So the gradient
map of the second term has the order —A —d;. The gradient map of the last
term has the same order as Vhy, i.e. d (we use (7.20) once again). We have

seen that . . .
hg = O||y||2, OI‘thQ =d.

Now we denote quadratic part of ho as 1(B(p,q)y,y) and set hy = hy —
3(By,y), s0
Hodop=h(p)+5(By,y) + 3(By,y) + hs(p,q,y).

The operator 28 has the order (z as well as V h3, and the lemma is proven. [
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7.3. Examples. 1)Korteweg-de Vries equation. The KdV equation in a So-
bolev space Zg = HZ(S') with d > 1, given a symplectic structure by the form
ag = ((=0/0x) tdu, du)r, takes the form (2.1) (see Example 2.1). Its restric-
tion to a bounded part 72" of any finite-gap manifold 72" (see (6.6)) satisfies
the restrictions 1)-v) and the corresponding system of Floquet solutions (6.13)
is complete non-resonant with

A=A=1 d;j=1 dy=0, ds=2.

Therefore Theorem 7.1 provides KAV with a normal form with d = 0. To state
the result, we find the singular subset Ry C R (see (5.15))%® and choose any
domain Ry € R\ Rs;. We cover Ry up to its zero-measure subset by non-
overlapping sub-domains Riq, R12,... such that the KdV-equation restricted
to any manifold ®o(Ry; x T") = 7" admits action-angle variables (p, q) with
p € P; @ R" as in (2.6).

For any s we denote by Yy C H§(S!) the closed subspace spanned by the
functions {cos jz, —sinjx | j € Ny }. Applying Theorem 7.1 we get:

Theorem 7.2. For any d > 3 there exists 6 > 0 and an analytic symplecto-
morphism

G: (Pj x T" x Os(Yaq),dp ANdq @ o ) — (Hf, az)

which contains ’]}2" in its range and is such that G~ transforms KdV to the
Hamiltonian system

)
~V,H (7.21)

p - _qu7 q - VpHa y - O

with a hamiltonian H of the form H = h(p) + (B(p)y,y) + hs(p,q,y). Here
h(p) is the KdV-hamiltonian, restricted to 7}2”, B(p) is the linear operator in
Yy with eigenvectors cosmx, —sinmzx and eigenvalues vy, (p) (m € Ny) and
hs = O(||y||3) is a function with a zero-order analytic gradient map.

2) Higher KdV equations. Let us take any Ith equation from the KdV-
hierarchy. Since the same (as in the KdV-case) sections U, of the skew-
orthogonal bundle to a finite-gap manifold 7" give rise to Floquet solutions
of the equation, then the same map ®; reduces the linearised /th equation to
the equation jy = JB'(p)y in the space Y. Here J = 0/0x and B'(p) is a linear
operator with the eigenvectors cos jx and — sin jz, corresponding to the eigen-

l

values v;(p) as in (6.21) Therefore, the same map G with s > 2p+1 reduces the

Ith KdV equation in the vicinity of 7" (the same as above part of 7;;") to the
equation (7.21) with H = H'(p,¢,y) = hu(p) + 5(B'(p)y,y) + hh(p, ¢,y). Here

48In the KdV-case the set Rs is empty. We neglect this nice specificity of KdV.
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h; is the hamiltonian of the Ith equation, restricted to ’]}2” (so Vhy = WO,
cf. (3.19)) and the operator B!(p) has the eigenvalues le.. Now A =dy; =1 as

in the KdV-case, dy = 2I, dy =2/ —2 and A = 3 — 2l by (6.21). So d = 2l — 2
and hs = O(||y||3) has an analytic gradient map of order 21 — 2.

3) Sine-Gordon equation. For the SG equation under the odd periodic (OP)
boundary conditions in the variables (u,w) € Z¢ (s > 0),

u=—VAw, W= VA(u+ A (sinu — u)),

let us consider any its finite-gap manifold 72" = ®¢(R x T") as in section 4.3.
We checked that this manifold satisfies assumptions i)-v), and in section 6.4
we constructed a complete nondegenerate system of Floquet solutions for the
linearised equation. Accordingly, for any compact subset R; of a regular part
Ry of the algebraic set R we can find a countable system of non-overlapping
smooth domains Rq; which cover R; up to a zero-measure subset, such that:
For any j, in the vicinity of the manifold ®¢(R1; x T") in Z¢ the SG equation
admits the normal form, described in the Theorem 7.1. In difference with the
KdV-case, for some domains Ry; corresponding linear Hamiltonian operators
J B have non-imaginary eigenvalues.

To have this normal form result, it is not really essential to consider the
SG equation under the OP boundary conditions. Indeed, for any ¢ > 1 and
any integer g-vector Y the theta-formula (4.17) subject (4.18) defines a 2g-
dimensional finite-gap manifold, formed by g-dimensional invariant tori of the
SG equation under periodic boundary conditions (corresponding arguments are
more strightforward compare to the OP case). Arguing as in section 6.4, for
the linearised SG equation we construct a system of Floquet solutions of the
form (6.26). Now we have “twice as many” of them since the solutions are
parameterised by an index (I, ), where [ € Z~ U0 and k € {4, —}. The set of
exponents v(P,1) is asymptotically double. Namely,

V(PH:) —1"—0

both when [ — oo and when the open gaps [Ea;_1, Ea;] shrink. This set of
Floquet solutions can be checked to be complete nondegenerate, but because of
the asymptotycal degeneracy corresponding arguments become more technical
compare to the elementary number-theory ones, used in the odd periodic case
in section 6.4.

Accordingly, the SG equation under periodic boundary conditions also can
be put to the normal form in the vicinity of any its finite-gap manifold.
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Part 11
1. A KAM THEOREM FOR PERTURBED NONLINEAR EQUATION

1.1 The Main Theorem and related results.

Let ({Z.,},a2), as = Jdz A dz be a scale of symplectic Hilbert spaces as
in section 1.2 (so the operator J defines an isomorphism of the scale of order
—dy <0) and let H be a quasilinear hamiltonian of the form

H = 3(Az2) + H(2),

where A is a selfadjoint isomorphism of the scale of order d4 > —d;. We fix
any d > d 4 /2 and assume that the function H is analytic in the space Z; (or in
a neighbourhood in Z; of the manifold 72", see below) and defines an analytic
gradient map of order dy, VH : Z; — Z4_q4,,. We have dy < d due to the
quasilinearity of the hamiltonian H. The corresponding Hamiltonian equation
takes the form:

= JVH(u) =J(Au+ VH(u)), (1.1)

where J = (—.J) ! defines an isomorphism of the scale of order d; > 0.

As in sections 1.2.1 and I.5.1 we assume that the equation (1.1) has an
invariant manifold 72" = ®g(Ry x T") filled with quasiperiodic solutions
uo(t;r,3) = Po(r,3 + tw(r)) which satisfies the assumptions i) — v). The mani-
fold Ry is the regular part of an n-dimensional real analytic set R (which in its
turn is a real part of a complex analytic set R°). By R we denote any chart on
Ry analytically diffeomorphic to a bounded connected subdomain of R". We
identify R with this domain and supply it with the n-dimensional Lebesgue
measure mes,,.

As in section 1.5, we also consider linearisation of the equation (1.1) about
a solution ug as above:

v =J(Av+ (VH).(uo(t)) v), (1.2)
and assume that (1.2) has Floquet solutions v;(t),
vi(t;7,3) = €1 (1,5 4 tw(r), € Zn, (1.3)

where v_; = —v;.
Our concern in this section is a hamiltonian perturbation of the equation
(1.1):
= J(Au+ VH(u) +eVH;(u)), (1.4)

and behaviour of solution for (1.4) near the manifold 72". We assume that H;
is an analytic functional such that its gradient map V H; is analytic of order
dy in a neighbourhood of the manifold 732" in Z,.
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By d we denote the real number from Theorem 1.7.1:
d = max {dg, —A —dy, ~A— dr},

where dg,d; are as above, —A is the order of the linear operator ®; — ¢ (see
(I1.5.11)) and A is the exponent of growth in j of “variable parts” of the the
Floquet exponents v;(r) (see (1.5.13)).

Let us fix any p such that 0 < p < 1/3. Now we state a KAM theorem
which is the main result of this book:

Theorem 1.1 (the Main Theorem). Let the invariant manifold T32" satisfy
the assumptions i) — v) and the system of Floquet solutions (1.3) is complete
nonresonant. Besides,

1) (spectral asymptotic): dy :=das+dj > 1 and

vi(r) = Ko + K14 4 KR4t y(r),

where K1 > 0, dy > d} > ... (the dots stand for a finite sum), the functions v,
analytically extend to R, where they are bounded by Cj* with some » < d;—1;

2) (quasilinearity): d < dy — 1.

Then most of the invariant tori T™(r) of equation (1.1) persist in (1.4) when
e — 0 in the following sense: for any chart R C Ry as above, a Borel subset
éa € R and a Lipschitz embedding 33° : EE x T" — Zg, analytic in the second
variable, can be found such that:

a) mesy(R\ R:) — 0 as e — 0,

b) the map (X° — @) : R. x T" — Z4 is bounded by Ce?, as well as its
Lipschitz constant, and is analytic in ¢ € T™;

¢) each torus T™(r) := X5({r} x T"), r € R., is invariant for the equation
(1.4) and is filled with its time-quasiperiodic solutions h.(t) of the form b (t) =
be(t;7,3) = X5(r, 3 + twe(r)), where |w. — w| + Lip (we —w) < CeP.

Let mes!! be the n-dimensional Hausdorff measure on R (see [Fal] and the
Appendix below) and let p,, be any finite measure, absolutely continuous with
respect to mes’’. Then the regular set Ry C R is a set of full p,-measure
since the singular set R\ Ry has a positive codimension. As p, is absolutely
continuous with respect to the Lebesgue measure’ and since the charts R as
above jointly cover Ry, then by the Main Theorem most of the tori T™(r),
r € R, persist in the perturbed equation in the sense that the persisted ones
correspond to 7 from a subset R. such that p,(R\ R:) — 0 as e — 0. In
applications below we are using the Main Theorem in this global reformulation.

We note that the theorem’s assertions are empty unless € > 0 is sufficiently
small since the set R. may be empty for non-small €.

Lsince mes’! is, see [Fal, Fed).
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Amplification. The statements b), c¢) of Theorem 1.1 remain true with p
replaced by any p’ < 1. Besides, |w. — w| < Ce.

We denote
T = Og(W), W=RxT" and T2"=3X°(W.), W.=R. x T".
The set ’ZQ” is a remnant of the invariant manifold 72" in the perturbed
equation (1.4).2
Since 72" is a 2n-dimensional manifold embedded to Z4, then its 2n-dimen-
sional Hausdorff measure mes;, TQ" is finite and positive: this follows from the
estimate (A2) applied to the map @ : W — 72" and to its inverse. The

remnant set ’22" is very irregular (it is totally disconnected). Still it carries
most of a measure of the set 72"

Proposition 1.1. Under the assumptions of Theorem 1.1,

mesit T2" > mesht T>" —o(1) ase — 0.

Proof. By the assertion a) of the theorem and by the estimate (A7) (see the
Appendix) we get that

mesy;, (W \ W) = o(1). (1.5)
The map Py : W — <I)0(W ) C T2n ig Lipschitz and has a Lipschitz inverse,
so the map ¢ o QJO : <I>0(WE) — 752” has the form id + L, where Lip L <

CeP (we use the assertion b)). Now estimate (A5) implies that mesQnTQ" >
rnesZnQ)o(W) O(g”). Since meslt (®o(W \ W.)) = o(1) by (1.5) and (A2),
then the assertion follows. [

Under the assumptions of Theorem 1.1, a solution wug(t;r,3) of (1.1) is lin-
early stable if all Floquet exponents v;(r) are real (see the Corollary to Proposi-
tion I.5.1). Let us assume that this is the case for all r € R. Then the solutions
he(t;7,3) of the perturbed equation (1.4) with r € R. also are linearly stable,
provided that this equation linearised about h. satisfies some a priori estimate.
We recall that by the assumption v) the flow maps St,, (h-(7)) of the linearised
equation are well defined in the space Z;. We say that the linearised equation
is uniformly well defined (in Zg) if

1L, (b(7)) |0 < C1e%2=7) for all ¢, 7. (1.6)
The solutions h.(7) = ho(7;7,3) lie in the torus 7/*(r) and the map 3 — h-(0) is
a diffeomorphism of the standard n-torus and T*(r). Therefore the assumption

(1.6) is fulfilled if for every phase 3 € T™ the unit-time flow-map S¢,, (h-(0;7,3))
is a bounded linear operator in Z,;, continuously depending on 3.

2By no means we claim that the invariant tori 77 (r) with r € B\ R. really disappear
when we switch in the perturbation e JV H; — it is just unknown what happens to them, even
when the phase-space Z is finite-dimensional. See [Mol] and section III “Beyond the tori”
n [Laz].
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Theorem 1.2. If under the assumptions of Theorem 1.1 all Floquet exponents
vj(r) are real for v € R, then a solution h.(t) is linearly stable, provided that
equation (1.4) linearised about this solution is uniformly well defined.

(Examples we consider below in section 2 show that the assumption of the
uniform well-definedness is quite non-restrictive).

We prove the two theorems and the amplification, reducing them to similar
statements concerning perturbations of parameter-depending linear systems.
We present the reduction in next section and prove the theorems on parameter-
depending equations in section 2.

1.2 Reduction to a parameter-depending case.

We perform the reduction in four steps.

Step 1 (localisation). Let us denote by Ry the set of singularities of the
frequency map w, Ry = {r € R | detw,(r) = 0}, and denote R, = (R,NR)URy,
where Ry is the singular set, constructed in section 5.3 (see there Remark 2).
By the assumption iv), Ry is a proper analytic subset of R. So R also is
one, and for any given positive 7o we can find a finite system of M connected
subdomains R; C R\ R, such that dist (rj,ryr) > C(y) > 0if r; € R and
T € Ej/ with j # j. Besides,

a) mes (R \ Uél) < Y0,

b) the hamiltonian system restricted to ®(R; x T™) admits analytic action-
angle variables (p, q), where p € P, @ R™ and ¢ € T". The map (p,q) — (r,3)
has the form r = r(p), 3 = ¢+ 30(p). This map, its inverse and the hamiltonian
h = hi(p) all are J-analytic with some positive § = (7p). By Lemma 1.2.2,
Vh(p) = w(r(p));

c) for every [ the gradient map p — Vh(p) = w(r(p)) defines a diffeomor-
phism P, — Q; € R" which is d-analytic as well as its inverse;

d) since each domain R, is connected, then the eigen-vectors 1; of the op-
erator JB(r) are r-independent when r € R;.

Step 2 (a normal form theorem). At this step of the proof and at the next
Step 3 we consider any fixed domain R, as above and drop the index .

Applying Theorem 1.7.1 we find an analytic symplectomorphism G such that
G~! transforms equation (1.1) in the vicinity of ®o(R x T™) to the form given in
the theorem. The same symplectomorphism converts the perturbed equation
(1.4) to the Hamiltonian system

p=—-V¢H., ¢=V,H., y=JV,/H.. (1.7)
Here pe P, q € T", y € Os(Yy) and

H. = h(p) + 2(B(p)y,y) + ha(p, ¢, y) + cH1(p, q,y)
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with hs = O(||y||3) and ord V,hs = d. The operator B(p), the functions
h, hs, Hy and their gradients all are §-analytic in the corresponding domains.

Step 3 (introducing a parameter). Let us consider the following neighbour-
hoods of the torus 7§ = {0} x T" x {0} in Y = Y; and Y° = )§:

Qs = O5(R")XT" x O5(Yyq) C Vg =R" x T" x Yy,

1.8
Q5 = Os5(C")x{|Imgq| < d} x Os(Y]) C Y5 =C" x (C"/27Z") x Y. (18)

In the equation (1.7) we perform a shift of the action p:

(p7 q’ y) = (ﬁ—i_ a’? ’qv7 g) = Shift’a(ﬁ? g’ g)’

where a € P is a parameter of the shift. After this transformation the hamil-
tonian H. becomes an analytic function H.(p, ¢, §; a) of the tilde-variables
from the domain @f§. It has the following form:

H. = h(a) + Vh(a) - p+ 2(B(a)y,§) + cH1(p + a, G, §) + hs(p, 4, §; a),
where
hs = O35 + 181 + BIIF1D),  I1Vyhsll,_q = OUlaI3 + 1BlI7lla)

(so ord Vhs = d).

The functions h, Hq, hs and the Floquet exponents v; are analytic bounded
functions of the parameter a € P+ §. Because the property c) from Step 1, the
map P 5 a+— w = Vh(a) € Q defines an analytic Lipschitz diffeomorphism of
P and a bounded domain €2 C R. We drop the tildes and change the parameter
a to w. Now the hamiltonian H,. reeds as

He(p,q,y;w) = h(a) +w-p+ 5(Bw)y,y) + eHi(p, q,y;w) + hs(p, ¢, y; w).

The operator JB is diagonal in the complex symplectic basis {1;}, constructed
in Proposition [.5.1:
JBl/}] = iljj (T)¢j V] € Ly,

Since the hamiltonian H. is d-analytic, then by the Cauchy estimate it is
Lipschitz in a € P as well as in w € ). This is all we need from its dependence
in the parameters.

In the vicinity of the torus 77 = {0} x T™ x {0} in (s the hamiltonian H.
is a perturbation of the ¢g-independent hamiltonian H,,

Ho=w-p+ 5(Bw)y,y)

(we neglect the irrelevant constant h(a)). Indeed, ¢ is small and the term hg
has on T}’ a high-order zero.
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The hamiltonian equations with the hamiltonian H. (p, ¢, y; w) take the form:
p=—Vy4(eHi+hs), ¢=w+Vy(eH; + hs),
y=J(B(w)y+eVyHi + Vyh3).
We abbreviate (p, q,y) to h and rewrite (1.9) as
b = Vs, (h).

In the context of equations (1.9), we call the functions v;(w) (i.e., the eigen-
values of the operator JB, devided by i), frequencies of the linear equation.

Hamiltonian vector fields with hamiltonians of the form H. are studied in
[K]. Now we break the proof of Theorem 1.1 to present the main theorem from
[K] in a form generalised to suit our purposes. After this we make the last step
to complete the proof.

(1.9)

1.3. A KAM-theorem for parameter-depending equations.

To state the theorem we need, we relax restrictions on the hamiltonian H.
as in the assumptions 0)-3) below:

0) The operator JB(w) is diagonal in the complex basis {¢; | j € Z,} as in
Proposition 5.1. Namely,

JB(w); = wj(w)p; V.
1) The complex functions v;(w), j € Z,, are Lipschitz, are real for |j| > j;
with some j; > n+1 and are odd in j, v; = —v_;. For j > n+1 and for some
fixed wq € €2 the following asymptotics hold:

. . 1 . 2 .~
v (wo) — K1j™ — Kij% — Kij%—...| < Kj%, 110)
Lip v; < Kj¢, '

where K1 >0,d; > 1,0 < d< dy — 1 and the dots stand for a finite sum with
some exponents dy > di > d? > ....

2) The functions hs and H; are analytic in (p, ¢,y) € Q§ and everywhere in
Q5 satisfy the estimates:

|Hi| + ||vyH1||d—CZ+dJ <1 Vw, \
|hs| < K(lpl* + [lyll3)  Yw,

IVyhally_gra, < K(plllylla +1lyl7) Ve, (1.11)
the same estimates hold for Lipschitz constants

in w € Q0 of these functions and their gradients.

3) Q is a bounded Borel set in R™ of positive Lebesgue measure, such that
diam Q < K5 and |w| < K for every w € .

Let us choose any p € (0, %) and denote by ¥ the map (¢,w) — (0,¢,0) €
Qs. For the equations (1.9) the following theorem holds which states that the
torus T} persists as an invariant torus of (1.9) for most w, if ¢ is sufficiently
small:
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Theorem 1.3. Suppose that the assumption 1)-8) hold. Then there exist in-
tegers jo > n and My, depending only on n, dy, d, K, K1, Ky and K{,K? ...,
with the following property: If

5w+ lnp1Vpp1(W) + -+ 1,5 (W) > K3 >0 (1.12)
for all w € ), all integer n-vectors s and all jo-vectors | such that
sl< My, 1<[]<2,

then for arbitrary v > 0 and for sufficiently small e < &(y) (€ > 0), a Borel
subset Q. C Q and a Lipschitz embedding 3. : T™ x Q. — Qs, analytic in
q € T™, can be found with the following properties:

a) mes (Q\ Q) <7;

b) IS — Doy, P < Cer;

c) each torus X (T" x {w}), w € Q, is invariant for the flow of equation
(1.9) and is filled with its quasiperiodic solutions h(t) of the form b(t;q,w) =
Y (g + w't,w), where w' = W' (w) and |w' — w| + Lip (W —w) < CeP.

Concerning the notations used in the statement b), see the section Notations.

Amplification. Assertions b), ¢) hold with p replaced by one. The constant
C in c) is y-independent.

Theorem 1.4. If in Theorem 1.3 all the frequencies v; are real, then any
solution H(t) is linearly stable provided that the equation (1.9) linearised about
this solution is uniformly well defined in the space R?™ x Y.

1.4. Completion of the Main Theorem’s proof.

Step 4 (proof of Theorems 1.1 and 1.2, given Theorems 1.3 and 1.4). Now
we apply Theorem 1.3 to equation (1.9) with Q equal to a Borel subset €; of
the domain € = {w(r) | r € R}, 1 =1,..., M, which we construct below.

The assumptions 1)-3) hold with the constants from n through d}, d3, ...
the same as in Theorem 1.1, while the constants K and K. depend on ~.
We take jo = ja(70) and My = M;i(vy) as in Theorem 1.3 and consider all
resonances as in (1.12). Since the system of Floquet exponents {v;(r)} is non-
resonant, then each resonance does not vanish identically. As these functiop\g
are analytic, we can find K3 = K3(v9) and for every [ can find a subset {; C
such that mes (€ \ ;) < 7o/M and (1.12) holds for all w € €.

For every | we apply Theorem 1.3 with v = £(v) (the function £ > 0 will
be chosen later) to find the subset ;. C €, mes (€ \ Qi) < 7, and the map
Yie : T x Qe — Q5. _ _ _

Now we are in position to define the set R. C R and the map »° : R.xT" —
Qs, claimed in Theorem 1.1. We set:

N M
R.=|J{reR |w(r) €}, °(r3) =G o Shift, o Di(q(3), w(r)),

1=1
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where ¢ = ¢(r,3), p = p(r,3) and the map (r,3) — (p,q) is the action-angle
transformation from Step 1.
The set R. and the map >° satisfy all the claims of Theorem 1.1. Indeed,

M
mes (R \ R.) = mes (R \ UR) +Zmes{r €R | w(r) e O\ )
=1

M —
+ Zmes {reRy|w(r) ¢}
=1

Denoting  sup|det dw/dr|~! by C(v) we see that mes (R \ R.) is bounded
by 70 + Y0 + C(v0)ME&(y0). This is smaller than 37, if we choose £(v9) =
Y0/(C(~v)M). This means that we can choose vy = vy(¢) in such a way that
mes (R \ R) < 3o goes to zero with € and the assertion a) of Theorem 1.1
holds.

The tori 3°({r} x T™) are invariant for equation (1.4) and are filled with its
quasiperiodic solutions of the form §.(t), where w. = &'(p(r)).

The estimates for 3¢ — &y and w,(r) — w(r) readily follows from the corre-
sponding estimates in Theorem 1.3.

It remains to majorise Lipschitz constants of the differences as above. Let
us take any two points (r1,31) and (72, 32) in }N?,s x T™. If r; and ro belong to
the same set }N%l, then the estimates for increments? of ¥ — &y and w, — w
follow from the corresponding estimates for the increments of (0, ¢,0) and
w' —w. If r; and r9 belong to different sets El, then |r;y —ro| > C(vy) > 0
and the increments of the differences divided by increments of the arguments is
bounded by Cie” /C(7). Since we can choose the rate of decaying v(g) — 0 to
be as slow as we wish, then we can achieve C1e”/C(7) < Ca¢e?, if we chose for
p in Theorem 1.3 any number from the interval (p,1/3). Thus, the estimates
for the Lipschitz constants are proven.

The last arguments also show that the estimates |w’ —w| < Ce and Lip (w' —
w) < Ce imply that |w. — w| < Ce and Lip (w. — w) < Cpe? for any p' < 1.
It means that the Amplification to Theorem 1.3 implies the Amplification to
Theorem 1.1.

Finally, since linearisation of the symplectomorphism which sends solutions
h(t) of (1.11) to solutions h.(¢) transforms solutions of the corresponding lin-
earised equations, then Theorem 1.2 follows from Theorem 1.4.

1.5. Around the Main Theorem.
The Main Theorem of this book was first stated in [K3] in a less general form,
where it was proven with some details missing.* The Normal Form Theorem

3i.e., the estimate |(we — w)(r1) — (we — w)(r2) < CeP|ry — ra|, etc.

4The main omitting was that a KAM-theorem for unbounded perturbations of a parame-
ter-depending linear system (Theorem 1.3 of this book) was given there without a proof.
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from section 1.7.1 was proven in [K3| (see there Lemmas 6-8) in the context
of analytic functions (rather than algebraic ones). The “infrastructure” of the
Main Theorem, i.e. convenient ways to construct Floquet solutions and to check
their completeness through nondegeneracy and non-resonance, was developed
later, see [K7] and references in sections 5, 6.

The KAM-Theorem 1.3 for parameter-depending linear systems and for per-
turbations, given by bounded nonlinear operators was first proven in [K1, K2].
The same theorem for unbounded perturbations demands the additional non-
trivial step — Theorem 5.1. It was proven in [K8] (a preprint of this work
arrived in 1995). Finite-dimensional versions of Theorem 1.3 were first proven
in [El] and then in [P1].

Theorem 1.3 is an important by itself result since it applies to parameter-
depending Hamiltonian PDEs with small nonlinearities and with one-dimensi-
onal space variable. See [K], where many applications are given.

Theorem 1.3 is proven under the assumption that the unperturbed linear
system has

single spectrum  {%i)\; | j € N}, (1.13)
where
Aj=Cjt+o(j), d>1, (1.14)
and
A=Al = Ottt v (1.15)

For systems with small bounded nonlinearities the single-spectrum assump-
tion (1.13) can be replaced by the assumption that the eigenvalues \; asymp-
totically have the same multiplicity m > 2 and the corresponding spectral
spaces asymptotically are “much the same”.? This version of Theorem 1.3 is
due to Chercia-You [ChY] who observed that the proof of the theorem, given in
[K,P2], generalises to the asymptotically multiple situation as above if to find
the operator f¥¥ from the homological equation (3.21) (see section 3 below) one
treats its Hilbert matrix F' as a block-matrix, formed by m x m-blocks; i.e., as
a Hilbert matrix over the ring of m x m complex matrices rather than a matrix
over complex numbers. (These arguments do not apply to systems with small
unbounded nonlinearities since for our proof of Theorem 5.1 it is important
that the unknown function z(q) in the equation (5.1) is a scalar-valued — not
a matrix-valued — one.)

The version of Theorem 1.3 due to Chercia-You applies to nonlinear wave
and nonlinear Schrédinger equations under periodic boundary conditions since

5For the most important case m = 2 this means the following: The eigenvalues form pairs

)\j', A; such that |>\j' - )\J_| < Cj~% with a suitable d > 0. The linear Hamiltonian operator,
restricted to corresponding invariant complex planes in the complexified phase-space, equals
iINE+O(~%).
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linear parts of these equations have asymptotically double spectra which satisfy
(1.14), (1.15).

The assumption (1.15) can be relaxed and replaced by some (rather im-
plicit) restrictions on clusters, formed by the sequence {\;}. This follows from
another KAM-scheme, applicable to the problems we discuss. The scheme is
due to Craig-Wayne [CW] and it was much developed by Bourgain [Bour2],
for its short description see Appendix 3 below. The main advantage of the
Craig-Wayne-Bourgain approach is that it applies to nonlinear perturbations
of the two-dimensional linear Schrodinger equations under periodic boundary
conditions: for these equations (1.14) holds with d = 1, assumption (1.15) is
violated, but control for the clusters is sufficient to prove that most of time-
quasiperiodic solutions of the linear equation with a potential of a general
form withstand small nonlinear perturbations [Bour2]. Disadvantages of this
approach are that, first, it does not apply to equations with unbounded per-
turbations and, second, it does not allow to control Lyapunov stability of the
persisted solution.

Except the global results concerning KAM-persistence most of finite-gap
solutions and the results on perturbations of parameter-depending linear equa-
tions we have just discussed, the “KAM for PDEs” theory includes the third
topic. Namely, theory of small oscillations in nonlinear Hamiltonian PDEs.
Let us consider, for example, a nonlinear Klein-Gordon equation with an odd

nonlinearity:
oo

Ut = Ugy — MU + Z apu? . m,a; >0, (1.16)
k=1

u(t,0) = u(t,m) = 0.

Appropriate positive constants b; and by can be found such that (1.16) can be
written as
Upy = Ugq — by sinbyu + O(|ul?),

i.e., as a high-order perturbation of the SG equation wu; = g, — by sinbsu.
Accordingly, most of small-amplitude finite-gap solutions of the SG equation
persist in equation (1.16) and a set of the persisted solutions is “asymptotically
dense near the zero solution”.® This result follows from a version of the Main
Theorem, where the set R has the size € to a positive degree (see [K], p. 53).
A corresponding theorem was proven in [BoK2|. Later it was observed that
it is technically easier to treat (1.16) as a perturbation of another integrable
system, namely its Birkhoff normal form; see [KP, P4].

(o)
6That is, for any vertexed at the origin open cone in the phase-space H 1[0, 7] X L2[0, ]
(see item 4 of Example 2.3 in section 1.2.1), the set of persisted solutions intersects the cone
by an infinite set which has the origin its accumulation point.
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Appendix 1. Lipschitz analysis and Hausdorff measure.
A map G which sends a metric space Q1 to a metric space ()2 is called
Lipschitz if its Lipschitz constant Lip G is finite, where

L 6 sup d5512(C (@), G0)
sy disti(z,y)

(Through the book, @1 and @2 are subsets of Banach spaces or of the direct
product of an m-torus with a Banach space). In particular, if X¢ Y° are
complex Hilbert (or Banach) spaces and a map F : X¢ D @ — Y admits an
analytic extension to a neighbourhood @ + 9, where it is bounded by C, then

Lip(F:Q —»Y¢) <C§ !

by the Cauchy estimate.

We recall (see [Fe, BV]) that a subset A C @1 has a finite m-dimensional
Hausdorff measure mes’ (A) and the measure is less than C' < oo, if for each
0 > 0 we can cover A by a countable system F' of subsets S C )1 such that
diam S < ¢ for every S in F' and

a(m)2”™ Y " (diam S)™ < C, (A1)

SeF

where a(m) > 0 is a positive constant, equal to the m-volume of the unit ball

O1(R™) if m is an integer. Now mes’t(A) is defined in the natural way:

mes’ (A) = inf{C | mes™(A) < C}

(as usual, mes’ (A) = oo if the set under the inf-sign is empty).
Since a Lipschitz map G as above sends a covering F' = {S} of a subset
A C @i to the covering G(F) = {G(S N F)} of the set G(F) C Q2 and

diam G(5) < LipG - diam S, then
mestG(A) < (Lip G)™mes’t A. (A2)

Now let A be a subset of a Banach space B and let G : A — B be a map of
the form
G=id+ Gy, LipGi<pu<l. (A3)

Then the map G~! : G(A) — A is well defined and
LipG~' < (1—p)~ " (A4)

Indeed, if G(z;) = y; for j = 1,2, then (21 —x2) + (G1(z1) — G(22)) = y1 — Y2.
So
ly1 — yall = llz1 — 22| = [[Grz1 — Graz| = (1 = p)||lzr — 22|
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and (A4) follows.
Using (A2) with G = G and G = G~! we estimate how a Lipschitz map of
the form (A3) changes Hausdorff measures of sets:

(1 —p)™mes™ A < mes™G(A) < (1 + p)™mes™ A. (A5)

If A is a subset of R™, then its upper Lebesgue measure, mes,,* A, is defined
in a way similar to (A1). Namely, mes,,*A < C’ if A can be covered by a
countable system of balls B; = O, (b;, R™) such that

a(m)) rit <’ (A6)

(the radii r; can be chosen smaller than any given p > 0) and mes}, A is the
infimum over all C’ with this property. Choosing F' = {B; N A} we get that
mes’* A < C’. Conversely, given any covering F' = {S} of A, for each S we
denote rg = diam .S and choose a point ag € S. Then the system of balls
Bs = O,4(ag,R™) covers A and a(m) Y r¢ < 2™C. Thus,

mest A < mes,,*A < 2™mest A for any A C R™. (A7)

If A is a Borel subset of R, then mes,,*A = mes,,A. Besides, mes,, A =
mes’t A (see [Fe]). We shall not use this fact since the elementary estimates
(A7) are sufficient for our purposes.

If A is a Borel subset of R™ and G : A — R™ is a Lipschitz map of the
form (A3), then we can repeat the arguments used to derive (A5) to esti-
mate mes,,G(A) via (1 + p)™mes,, A. Indeed, since A is a Borel set, then
mes’, A = mes,, A and for any C’ > mes,, A we can find a covering of A by
balls O, (b;,R™), j = 1,2,..., which satisfies (A6). Next we extend G to

a map G : R™ — R™ with the same Lipschitz constant < 1 + p (this is the
Kirszbraun theorem, see [Fe, Fal]). The balls O, (G(bj),R™) cover the set
G(A) and the sum of their volumes is less than (1+ux)C’. Since C’ may be cho-
sen arbitrarily close to mes,, A, then mes,,G(A) < (1 + )™ mes,, A. Applying

the same arguments to the inverse map G~! and using (A4) we get:

Lemma Al. If A C R™ is a Borel set and G = id+ G, : A — R™ is
a map such that LipGy < p < 1, then (1 — p)"mesp, A < mes,G(A) <
(1+ p)™mesp, A.
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2. EXAMPLES

2.1 Perturbed KdV equation.
Let us consider a perturbed KdV equation under zero mean-value periodic
boundary conditions:

4 2 O (2.1)

27
u(t,x) = u(t,x + 2m), / udx =0,
0

where f(u,z) is a C%-smooth function” (d > 1), -analytic in u. Then the
nonlinear part of the vector field V. defines an analytic morphism of order one:

0
Hg — [—Ig—l7 U — %qu +€%f1:(u7x>7

(see Example 1.1.1). The equation is hamiltonian in the symplectic space
(HE, as), ag = (0/0x) " du A du, with the hamiltonian

27
H. = /0 (%U’Q — iu?’ - sf(u(a:),x)) dx.

For ¢ = 0 this is the KdV equation and a bounded part 72" of any finite-gap
manifold 73",

T = {T"(r) c " | 0 < rj < Ko},

satisfies the assumptions i)-v) (see in section 1.3.2.). The linearised KdV equa-
tion has a system of Floquet solutions which is complete nonresonant (sec-
tion 1.6.2). The assumption 1) of the Main Theorem now holds with d; = 3,
dl =--- =0 (see (1.6.17)) and 2) holds since dy = d = 1 (see in section 1.7.3).
We get:

Theorem 2.1. For any p < 1 and for sufficiently small € > 0, there exists
a Borel subset R of the cube R = {0 < r; < Ko} and a Lipschitz map
¥ R? x T — HZ(SY), analytic in the second variable, such that:

a) mes,(R"\ R?) — 0 ase — 0,

b) the map X° is e-close to the map ®o, Po(r,3)(x) = G(Vz + 3,7) (see
(1.3.16)), also in the Lipschitz norm,

c) each torus TI'(r) = ¥¢ ({r} xT™), r € RZ, is invariant for equation
(2.1) and is filled with its linearly stable time-quasiperiodic solutions of the
form t — 38(r,3 + twe(r)), where the n-vector w. is Ce-close to W (r).

7H%-smoothness is sufficient, see in [K]
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To get the result we used Theorem 1.1, its Amplification and Theorem 1.2.
The last theorem applies since the linearised KdV equation is uniformly well
defined due to arguments in Example 1.1.6 (see (1.1.13)).

The theorem implies that the union of all linearly stable time-quasiperiodic

solutions becomes infinite-dimensional and dense in H¢, asymptotically as ¢ —
0:

Corollary 2.1. The space HE contains a subset Q. filled with linearly stable
time-quasiperiodic solutions of (2.1) such that its Hausdorff dimension tends
to infinity when ¢ — 0 and for any fived function v € HE we have:

distya(v, Qe) — 0. (2.2)

e—0
In particular, the set |J.. Q- is dense in Hg.

Proof. We define Q. as a union of all sets $(R™ x T") = 72", corresponding
to all n-gap manifolds 72%, n = 1,2,.... By Proposition 1.1, the set i?” has
positive 2n-dimensional Hausdorff measure when ¢ is small. Thus, dimyQ. —
0.

To prove (2.2) we note that for any x> 0 one can find n > 1 and an n-gap
potential u(z) such that |[u—v||; < p (this is a famous result of V.A.Marchenko,
see [Ma], Theorem 3.4.3 and [GT], p.27). Accordingly, u equals to ®¢(r,3) with
some r € R and 3 € T". If ¢ is sufficiently small, then by the assertion a) of
the theorem, there exists r1 € R. such that |r — 1| < u. Using b), we get
that [[u — X°(r1,3)||x < Cp+ e” and (2.2) follows since ¢ > 0 can be chosen
arbitrary small. [

Another immediate consequence of the theorem is the observation that the
Its - Matveev formula (1.3.15) with corrected frequency vector W, “almost
solves” the equation (2.1) for all ¢:

Corollary 2.2. For any r € R} and any 3 € T" there exists an n-vector
W_(r) and a solution u.(t,x) of (2.1) in H such that

0? ,
Slip |lue(t, ) — 2@ nO@E(V-+Wt+3);7)|la — 0.

Proof. Let us take any sequence {r. € R.} which converges to r as ¢ — 0 and
take uc(t) = X°(re, 3 + twe(r)). Then

[ue(t) — Po(r, 34wet) [k < |luc(t) — Po(re, 3 +wet)lk
+ H(I)O(raaﬁ +wst) - @0(7“75 + wst)Hk = 0(1) ase — 0.

This implies the result since ®¢(r,3 + wet)(x) = 286—;2 Inf(i(Ve+ W t+3);r),
where W, = w.. 0O
152



An easy analysis of the first step in the proof of Theorem 1.3 (see [K6]) shows
that the new frequency vector W, has the form W_(r) = W(r) + eWy(r) +
O(e?), where components Wf of the n-vector Wj are obtained by averaging
along the torus 77 (r) & of the function

6 () (- [ fwnrde). s=1m

Here G : (p,q,y) — wu(-) is the normal form transformation from Theorem 1.7.2.
Therefore the assertion of Corollary 2.2 can be viewed as an averaging the-
orem: for most r and for all 3 the functions

2
2% mO(i(Ve + Wit +3);7), W.=W(r)+eWi(r)+ O(e?),
approximate solutions of the perturbed KdV equation (2.1) for all t and =,
where the n-vector Wi is obtained by the averaging described above. Here
“for most r” means “for all r outside a set whose measure goes to zero with &”.
Thus, the result proves a stronger version of the Whitham averaging princi-
ple for space-periodic solutions (classically the Whitham principle deals with

solutions which are bounded uniformly in space and locally in time, see in
[DN]).

2.2. Higher KdV equations.
Let us consider a perturbation of the [-th equation from the KdV-hierarchy:

.0
U = %<VUHZ + €qu1), (23)

where

27
Hi(u) = K; / <u(l)2 + (higher-order terms with <[ —1 derivatives)) dz
0

and H, = fozﬂ f(z,u,...,ul"D)dz. The function f is assumed to be C-

smooth in z,...u"Y and d-analytic in w,...,u!~1. Since
YRR (1)
VUHI :Z(—l) @fu(j)(l‘,...,u ),
j=0

then arguing as in Example I.1.1, we see that a%VuH 1 is an analytic map of
order 2 — 1: it analytically maps H{ to Hg_2l+1 if d> 1.

8with respect to the measure (27)~"dq = (27)~"dj3.
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Let us take a bounded part 72" of any n-gap manifold. It is invariant for
the [-th KdV-equation (equal to (2.3).—¢) and it satisfies the assumptions i)-iv)
(see sections 1.3.6 and 1.6.3). The linearised equation has a complete system of
Floquet solutions (see section 1.6.3). Due to (1.3.33) this system is nonresonant
(cf. section 1.6.2.1).

Now Theorem 1.1 applies to equation (2.3) since the assumption 1) holds
with d; = 20+1, d} = --- =0 (see (1.6.21)) and 2) holds with dg = d = 21 +1.

We see that most of n-gap solutions of the [-th KdV equation persist in the
perturbed equation (2.3) with sufficiently small € in the same sense as for the

KdV equation. For the persisted solutions obvious reformulations of Corollaries
2.2, 2.3 hold.

2.3 Time-quasiperiodic perturbations of Lax-integrable equations.

Slight modification of the Main Theorem’s proof implies that most of finite-
gap solutions of a Lax-integrable equation persist under a small perturbation
of the equation’s hamiltonian by a time-dependent functional, provided that
the functional is time-quasiperiodic and its frequency vector is “typical” in a
sense to be specified.

Below we restrict our presentation to the KdV equation, perturbed by a
time-quasiperiodic forcing;:

1 3 0

(2.4)
u(t,z) = u(t,x + 2m), /udx =0.

Here f(£, x) is an analytic function on the torus ']I'éw XxTL ~ TMHL 5 c RM is a

frequency vector and & € T™ is a phase. The frequency vector is assumed to
be a parameter of the problem. It varies in a bounded domain R of a positive
measure:

oeReRM,  mesyR>0.

The equation (2.4) is Hamiltonian and its hamiltonian is
M. (u,t) = / (= L+ L 4 ef(to + &, 2)u(x)) du.

Let us take any bounded part 72" of a finite-gap manifold 72" as in section
2.1, ie., 72" = U{T™(r) | r € K}, where K = {0 < r; < Ky}. Subdividing in a
need the cube K to smaller cubes and cutting out a narrow layer {r € £ |0 <
r; < p for some j}, 0 < u < 1, we may achieve that:”

9the subdividing and the cutting out both are unnecessary in the KdV case but they are
needed for more involved equations.
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i) the KAV equation, restricted to the manifold 72", admits there global
analytic action-angle coordinates (p,q), where p € P € R™ and ¢ € T",

ii) the gradient-map p — Vh(p) defines a diffeomorphism Vh : P — P’ C R"
(here h is the KdV-hamiltonian, restricted to 72").

Applying Theorem 1.7.2, we construct in the vicinity of the manifold 72"
in a space HZ(S1), d > 3, analytic simplectic coordinates (p, q,y), where (p, q)
are as above and y € Os(Yy). In these coordinates the hamiltonian H. takes
the form

He = HEY (p, q,y) + ehi(p, ¢, y, to + &),

where
HEAV _ h(p) + %(B(p)y, y) + h3(p,q,v)

and hq(p,q,y,€) is the functional u(-) — [ f(&, z)u(x) dz, written in the vari-
ables (p,q,y) and depending on the parameter £ € T". The equation (2.4)
takes the form

p=—-VyHe, G=VyHe, §=JV,H. (2.5)

Now we extend the phase space P x T™ x Os(Yy) = {(p,q,y)} to the space
P x Os(RM) x T" x T x O5(Yy) = {(p, I, q,&,v)}, given the symplectic form
dp A dq + dI A d€ + Jdy A dy, and replace the nonautonomous equations (2.5)
by the following autonomous system of higher dimension:

p=-VH., I=-VeH,,
q = vpﬁsa 5 = VI’):{E7 (26)
y=JV,H..
Here He(p, 1,q,&,y) = HEY (p,q,y) + 0 - I + ch1(p,¢,y,€) (we note that the
hamiltonian H. is affine in the actions I'). Certainly, the (p, ¢, y)-component of
any solution for (2.6) such that £(0) = &y gives a solution for (2.5).

Next we perform the parameter-depending shift of the action p as at the
Step 3 from section 1.2:

/

p=p +a q=¢,...,y=9y; acP
Then
7:{5 :ConSt+w'p/+Q'1/+%(B(a)ylvy/>+5h/1(p/7"'7y/;a>+hé(p/7"'7y/;a>7

where w = Vh(a) and hy = O(||y'||® + |p'|?). Denoting # = n + M, P =
P x O5(RM) and

W, IY=pecP, (,&)=q v =7, (wo =,
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we write the hamiltonian as

He(p, G, §; @) = const + @ - p+ S(B(w)F, §) + ehr + hs

(we replaced the parameter a € P by w = Vh(a) € P’ using that the gradient-
map is non-degenerate by the assumption ii) ). The function hs is O(||7]|3+p|?)
and the functions iLl, Bg both are I’-independent.

Theorem 1.3 applies to the hamiltonian H. (P, G, 7; @), where the parameter
@ belongs to the set P’ x R. Since the functions hy and hs are I’-independent,
then for any m the functions Hs,,, H3,, from a hamiltonian’s decomposition at
the m-th step of the KAM-procedure (see Step 1 in section 3.2 below) are I'-
independent as well. Hence, the vectors h?, h'P hOP (see (3.16)) are such that
their last M components, corresponding to linear in I’ terms, vanish. Therefore
the hamiltonians F' at the Step 2 also are I’-independent. Accordingly, the
canonical transformations S, are identical in £ and do not change linear in I’
parts of the hamiltonians H,,: they remain equal to ¢ - I’ (see Step 1 of the
proof). Hence, the limiting map Ay has the form Ay (w,0) = (we(w, 0), 0).

Let us fix any d € N. Reformulating the theorem’s assertions in terms of the
original equation, we get the following result:

Theorem 2.2. For any p < 1, there exist a Borel subset Q. C K X R, a
Lipschitz map we : Q. — R™, Ce-close to the map (r,0) — W(r), and a
Lipschitz map ¢ : Q. x T" x TM — HZ(SY), analytic in T x T such that:

a) mespy (KX R\ Q) — 0 ase — 0;

b) for any & € T™ the map Q. x T* — HF(SY), (r,0,3) — X°(r,0,3,€), is
ef-close to the original p-independent map Pq, also in the Lipschitz norm;

c) every curve (=(t) = X°(r, 0, 3 + tw:(r, 0), &0 + to, ), where (r,0) € Q- and
3 € T", is a solution of (2.4) with zero Lyapunov exponent.

The solutions (°(t), constructed in the theorem, are quasiperiodic with n+ M
frequencies. Their hulls are (n + M)-tori which lie in e”-neighbourhoods of the
corresponding (“persisted”) n-gap tori T7(r).

For most frequency vectors g, the set K, = {r € K | (r,0) € Q.) which
enumerates the persisted finite-gap tori 7" (r), approximates the whole set
in measure. Indeed, denoting by u,, and s the normalised Lebesgue measures
on K and R respectively, we have (i, X uar)(Q:) = 1 — v, where v goes to 0
with €. By the Fubini theorem,

/ pn(Ko) pae(do) =1 — .
R

In particular, for any positive 4/, uas-measure of the set, formed by all frequen-
cies o € R such that u,(K,) <1 —+', goes to zero with ¢.
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2.4 Perturbed SG equation.
Now we consider a perturbed SG equation under the odd periodic boundary
conditions:

U = Uygy — sinu + ef), (u, x),
u(t,x) = u(t,x + 2m) = —u(t, —x). (2.7)

Similar to the SG equation, we write (2.7) as a system of two first order equa-
tions:

Aw, w=+VA (u+ A (sinu — u) + ef), (u, z)). (2.8)

This system is Hamiltonian in the symplectic Hilbert spaces ({20}, B2), s > 0,
where By = (J(du,dw), (du,dw)). The corresponding hamiltonian is H, =
%H(u,w)”% + eH_ (u,w), where

H_ (u,w) = /0 7r(Cos u(z) —ef(u,z))dz.

We remind that Cosu = — cosu+1— 2u?, that the space Z0 C H*T!(S;R?) is
given the H5+!-scalar product and that J (u, w) = (—vAw, vV Au) (see sections
[.2.1 and 1.4.3).

Concerning the function f we assume that:

(H1) f(u,x) is a smooth function, d-analytic and even in u, even and 27-
periodic in x.

If the equation is considered in a space Z¢ with small s > 0, then these
assumptions may be relaxed. For example, if s = 0 or 1, then the following
assumption suffice:

(H2) f(u,z) is a C*T1l-smooth function, d-analytic in x and vanishing for
u = 0, 7 identically in z.

Due to the same calculations as in section 1.2.1, VH_ (u, w) = (A7 (sinu —
u — ef! (u,x),0). Denoting g(u,x) = sinu — u — e f], (u, x), we write JVH, as

JVH. (u,w) = (0, A 2g(u, z)). (2.9)

Let us assume that (H1) holds. Then the map u(x) — g(u(x),z) gives rise to
a zero order analytic morphism of the Sobolev scale H'(S) for I > 1 (see in
section 1.1.2). Therefore for any s > 0 the r.h.s. of (2.9) defines an analytic
map Z° — H*T2(S;R?).

Due to (H1), the function g(u(x), z) is odd periodic. Hence, range of the map
(2.9) is contained in the space Z7,; and JVH, defines an analytic morphism
of the scale {Z2} of order —1 for s > 0.

If s = 0 or 1 and (H2) holds, then we argue differently and view the perturbed
SG equation (2.7) as an equation under Dirichlet boundary conditions

u(t,0) =u(t,7) =0 (D)
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(cf. the end of section 1.1.2). Accordingly, we treat (2.8) as a Hamiltonian
system in the symplectic space {Z, 32} where for s = 1,2 the space Z; is

Z, ={¢ € H*'([0,7]; R?] | £(0) = £(m) = 0},

and for any integer s the space Z; is formed by restrictions to [0, 7] of vector-
functions from Z¢.

Now (2.9) defines an analytic map Z, — H*"2([0, 7|; R?). If (u,w) € Z
with s = 0 or 1, then the function g(u(x), z) belongs to H*T1[0, 7] and vanishes
at © = 0 and x = 7 (as well as u(x)). Hence, (0, g) € Z5 and the vector-function
A=12(0,9) = (0, A"1/2g) belongs to Zs,1. Therefore, range of the map (2.9)
is contained in Zs 41 and JV H. defines an analytic morphism of the scale {Z,}
of order one for 0 < s < 1.

For any n let us take the finite-gap manifold 72" = ®y(R x T") as in section
1.4.3. Tt is filled with odd periodic finite-gap solutions (I.4.17), where branching
points Fq, ..., Ey, of the corresponding Riemann surfaces I' satisfy relations
(1.4.13)—(1.4.15), (1.4.18) and (I.4.21). We remind that the restrictions (1.4.14),
(I.4.18) and (I.4.21) are imposed to guarantee that the solution (1.4.17) is real
odd periodic, and that the assumption (1.4.15) is non-restrictive since there C'is
arbitrary number. In the same time, the assumption (I1.4.13) is superficial, see
the Remark in section 1.4.2 and discussion which follows Theorem 2.4 below.

The finite-gap manifold 72" satisfies the assumptions i)-v) and the linearised
SG equation has a complete nonresonant system of Floquet solutions, con-
structed in section 1.6.4. Since v(P;) = j*+0(j7!) = j+0(j 1) (see (1.6.29")),
then the Main Theorem and its Application apply with d; =1, d} =--- =0
and d = —1. Denoting by u, any finite measure on the n-dimensional real
algebraic set R which is absolutely continuous with respect to the Hausdorff

H .
measure mes,", we get:

Theorem 2.3. Let us fix any p' < 1 and assume that the function f(u,x)
satisfies (H1), or (H2) if s =0 or 1. Then there exists a Borel subset R. C R
such that p,(R\ R:) — 0 as € — 0 and for any r € R. the finite-gap torus
T7(r) = ®o({r} x T™) C Z?¢ persists as an analytic invariant n-torus of the
equation (2.8) in Z2 (or in Zs if s =0 or 1). The persisted torus is filled with
time-quasiperiodic solutions of equation (2.8) and is o(e”")- close to T™(r).

In difference with the KdV-case, some of the persisted time-quasiperiodic
solutions are not linearly stable (as well as the corresponding unperturbed
finite-gap solutions).

Similar results with the same proof hold for even periodic finite-gap solutions
and for finite-gap solutions with an odd number g of open gaps (see [BiK1]).
If (u,w) is an odd periodic solution (1.4.17) which violates (I1.4.13), then it
belongs to some finite-gap manifold as in the Remark in section 1.4.2. So if
this solution lies in the same connected component of this manifold as the zero
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solution, then the Main Theorem applies to prove that most of odd periodic
finite-gap solutions (1.4.17), close to (u,w), persist in the perturbed equation
(2.8).

Remark. If the SG equation was considered under periodic boundary conditions
(rather than under odd periodic), then its g-gap z-periodic solutions (1.4.17)
would form 2g-dimensional manifolds 729 with singularities and in the vicinity
of 72" the SG equation can be put to the normal form as in the Theorem 1.7.3
(in the section 1.7.3 we briefly indicated corresponding arguments, taking for
granted that the system of Floquet solutions is nonresonant). The perturbed
equation (2.7) has the form (1.4) and meets assumptions of the Main Theorem
with one exception: the exponents v;(r) are now asymptotically double and
go in pairs v;+, where both exponents v;; and v;_ for j — oo have the same
asymptotic expansion as in item 1) of the theorem. Accordingly, to prove
persistence most of x-periodic finite-gap solutions of the SG equation one needs
a version of the Main Theorem which applies to equations with asymptotically
double Floquet exponents. To get it one needs a corresponding version of
Theorem 1.3 for perturbations of linear equations with asymptotically double
frequencies v;. Recently this result was proven by Chercia and You [ChY] (see
in section 1.5). Using it one can repeat our arguments to get KAM-persistence
most of z-periodic finite-gap solutions.

2.5 KAM-persistence of lower-dimensional invariant tori of nonlinear
finite-dimensional systems.

Let R2Y be an Euclidean space, given the usual symplectic structure, let
TN = U,cr T be an analytic submanifold of R2V | diffeomorphic to R x T™,
R € R", and Hy,...,H, be commuting hamiltonians, as in Proposition 1.5.2
(so they are defined and analytic in the vicinity of 72" and each torus T is
invariant for every hamiltonian vector field Vi, ).

Let us take any hamiltonian — say, H;. Then the vector field Vi, |72»
has the form ) w;(r)0/03, and by Proposition 1.5.2 linearised equations have
Floquet solutions with analytic frequencies v;(r).

Applying Theorem 1.1 we get that:

Theorem 2.4. Let us assume that the following analytic functions do not
vanish identically:

Lov(r)+s-wlr), 1€ZN™™ 1<||<2; s€Z" (2.10)

Let h be an analytic function, defined in the vicinity of T?"™. Then most of
the tori T persist as invariant n-tori of the perturbed Hamiltonian vector field
Vi, 4en, 0 < € K 1, in the sense, specified in Theorem 1.1. The persisted tori
are filled with quasiperiodic solutions with zero Lyapunov exponents.

This reduction of the Main Theorem is a much easier result than the theorem
itself. Its claim remains essentially true under weaker assumptions: it suffice
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to check that only functions (2.10) with |I| = 1 do not vanish identically, see
[Bourl] (we note that under this weaker assumption the claim about Lyapunov
exponents is not true).
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3. PROOF OF THEOREM 1.3 ON PARAMETER-DEPENDING EQUATIONS

As in section 1.7.1 we restrict ourselves to the case when all frequencies v;(w)
are real, i.e.,

j1:n+17

since the general case differs from this one in more cumbersome notations
only. We shall prove the theorem after some elementary transformations of the
problem which we perform in the next section. The proof is rather technical
and a reader who is not used to the KAM-techniques is advised to read first the
Addendum where the classical Kolmogorov theorem is proven using the same
ideas which we exploit below in a more involved situation.

3.1 Preliminary reductions.

The proof becomes more complicated when either the frequencies v;(w) have
linear growth with j (i.e., in (1.10) dy = 1), or the perturbations H; and hs
define hamiltonian vector fields JVH; and JVhs of positive order d > 0.
Since d < dy — 1, then these two complications cannot happen simultaneously.
Equations with d < 0 were considered in [K, P2] and results of these works
imply Theorem 1.3 for d; = 1. Thus, it remains to prove the theorem for
dy > 1. In this case it is convenient to replace the assumption 1) of the
theorem by the weaker assumption:

1") The real functions vj(w) are Lipschitz in w and odd in j, positive for
positive j. For all j, k they satisfy the following inequalities:

Kb — Ky <v(w) < Kij4 Y,
vj(w) = v(w)| = Kt 5% — k%] Vo, (3.1)

Llp Vj S Kl jd.

Before to prove the theorem we shall have made some trivial reductions.
Since j; = n + 1, then the operator J is diagonal in the complex basis {;}.
Therefore the operator B(w) is diagonal in the complex basis {¢; = (¢; —
isgnje_ij)/V2}|j € Zy}, as well as in the real basis {¢;}, which is a sym-
plectic basis for the form as. Let us consider the linear operator M which for
every j sends the vector ¢; to (v )}/2¢;. This operator defines an isomorphism
of the scale {Y;} of order d;/2 since J defines an isomorphism of order d;. As

as = J du A du, then M*ay = (M*JM) du A du, where
M*JMyeyj; =+pz;, j>n+1.

That is, {¢;} is a Darboux basis for the form M*ay. The equations (1.9)
transformed by the map id x M are Hamiltonian with respect to a symplectic
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structure defined by the form dp A dq® M*as. The corresponding hamiltonian
is
HEoM:w-p—}—%(B(w)y, y)+eHy oL+ hsolL,

where B(w) = M*B(w)M. So

B(w)p; = [vj(w)le;,  Bw)w; = vj(w)|y; ¥ j € Zy. (3.2)

Clearly the new hamiltonian and the new symplectic form satisfy the as-
sumptions 1)-3) of Theorem 1.3 with d; = 0. Thus, it remains to prove the
theorem with d; = 0 and V]‘-] =sgnj. The operator B(w) is diagonal in the
bases {¢;} and {9;}. Corresponding eigenvalues are {|v;(w)|}.

Finally we note that it suffice to prove the theorem for equation (1.9) with
hs = 0. Indeed, if we stretch the variables:

/

p=e*p, q=3q, y=-¢'3y,

then in the tilde-variables we get a Hamiltonian equation with the hamiltonian

He=w P+ 2H(BW)7, §) + e /3Hy +e72/3hs.

Denoting H (3, , §; w) = (eY3H +e72/3h3)(e?/3p, G, '/37; w) and using (1.11)
we see that both H; and its gradient are !/3-small. Thus, a version of Theo-
rem 1.3 for perturbations with Az = 0 implies the general theorem for € replaced
by €'/ (i.e., it proves the general theorem for any p < $). Similarly with the
Amplification.

Below in section 3.2 we prove the theorem and the Amplification for hg = 0.
As we have explained, these results imply the assertions we claim in section 1.3
with a worse exponent p. To get the right exponent one should repeat the proof
given below for equations with a non-zero hs. All arguments and estimates
remain quite similar but become longer. See [K] where we did this job for
equations with d<0.

3.2 Proof of the theorem.
Here we prove Theorem 1.3 for dy = 0 and hz = 0, i.e., for a hamiltonian
‘H. of the form:

He=w-p+5(BWy,y) +eH(p,q,y;w)
(we re-denoted Hy as H). The corresponding equations are:

p = _qu H(haw)7
¢ =w+eVy H(h;w), (3:3)

y=J(Bw)y+eVy, H(h;w)),
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where (p,q,y) € Qs, see (1.8). Below we abbreviate (p, q,y) to b.

We shall use systematically notations for Lipschitz maps, described in the
section Notations. In particular, if By, By are complex Banach spaces, O is a
domain in B; and f maps O; x () to By, we write

115 = max (sbup I (b,0)] sup Lip £ (b, 9),

where Lip f(b, -) stands for a Lipschitz constant of the corresponding map from
) to Bs. So our assumptions concerning the function H(h;w) = H; (see (1.11))
mean that
c Q 679
[H|9® + |V, H |99 <1 (3.4)

(we abbreviate || - ||¢ to || and ||+ ||z to || - [|57)-

We shall need some additional notations:

Notations. We introduce an increasing sequence {e(j)}, where e(0) = 0
and for m >1

e(m)=1"724+...+m?)/K,, K,=21"2+2"2+...)

(thus e(m) < 1/2 for all m) and introduce two decreasing sequences, {¢,, } and

{0 }: N
em =TT 5 =60 (1 — e(m)).

For § > 0, by U(d) we denote the complex d-neighbourhood of the n-torus:
U(6) ={q € C"/2xZ" | Img| < 6},

and denote by U,,,m = 0,1,..., the complex domains U, = U(J,,). We also
consider complex neighbourhoods O,, of the torus 77 = {0} x T™ x {0} in )7,
where

Om = 052/3 (Cn) X Um X 051/3 (ch) C yc.
Besides, we define the intermediate numbers

5%:6%5m+%5m+1=5m—j/(6K*(m+1)2)’ 0<j<5,

and the intermediate domains

O = Oa-ic,y23(C") X U(8,) X Oamie yra V), Upy = U(37,)-

m

If £ < 1 (i.e., € is sufficiently small), then

O0m D0 >...00% 20,41 D...D1T5.
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A few times in proofs of auxiliary results we use domains O/, with half-integer
indexes j.

By C,C7 etc. we denote different positive constants independent from e
and m; by C(m), Ci(m) etc. — different functions of m of the form C(m) =
C1m®2; by C¢(m), C¢(m) etc. — functions of the form exp C(m), exp C(m).
By C.,Ci(m), C¢(m) etc. we denote fixed constants and functions. The
constants C, Cy, ... and the functions C(m), C°(m) may depend on ~.

We observe that for each C°(m) and each o < 0 the estimate C°(m) < €7,
holds for all m provided that &€ < 1. We profit from the assumption that ¢ < &
with sufficiently small £ > 0 and use inequalities like

Ce(m)ef, < 1

without extra remark.

The KAM-procedure. Theorem 1.3 will be proven by the KAM-procedu-
re. That is, for m = 0,1,... we shall define a subset €2,, C €2, an analytic
function H,, on the domain O,, as above and a symplectic transformation
Sm ¢ Om+1 — Opy. For m = 0 we choose ¢y = 2 and Hy = H.. For
every m > 0, 5, transforms H,, to Hy11, i.e., Hpy © Sy = Hpy1. We shall
show that the system Vi, on O,, N)Y; is integrable modulo a term O(e?)).
So the transformation Sy o ... o0 S,,_1 with a big m “almost integrates” the
initial equations (3.3). Finally, we shall see that the limiting transformation
Sg oSy 0... is well-defined and integrates the equations.

We start with inductive constructing the transformation S,, and the hamil-
tonian H,,+1 and finish with investigating the limiting transformation Syo.S; o

Hamiltonians Hy,. On a domain O,,, we consider a hamiltonian H,, (h;w)
of the form

Hm = HOm(pvy;w) + 5mHm(h;w)u (35)

where
Hom =p - A (w) + 5(Bm(g;0)y, ), (3.6)

and w € €,,, where €),,, is a Borel subset of ) such that
mes(2\ Q) < ye(m). (3.7)
The map w —— A,, is Lipschitz and
A (@) — | EP < CeMPe(m). (3.8)

The operator B,, is selfadjoint and is diagonal in the basis gpj[:

Bt = (™ (w) + 8™ (g w) o Vi €N,
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(in particular, B,, commutes with B). Here V](-m) are real functions, close to

the original frequencies v;:
|V§m) — v PP < j‘ZCape(m). (3.9)

The functions ﬁ;m) are real for real ¢ and analytically in ¢ extend to U,,,. They
are Lipschitz in w € €2, and satisfy the estimates:

/ B dg =0, |gy" U < 9 Cerelm).
In particular, |Vqﬁj(.m)|U71anm < jJC’(m)sp (the Cauchy estimate) and
IV Bullfm < C(m)e?,  doi=d—d. (3.10)

For —j € —N,, we set V(_T;‘L) = —VJ('m); 5(_7?) = —53('m)- Then

IBpib; = i (W) + 8™ (g 0)); Vi € Zn.

The functional H,, is assumed to be analytic in O,, and to meet the following
estimates:
|H,,,|Omtm < 2™ (3.11)

IV Hp|Sm % < ept/3om d,=d—d. (3.12)

Hamiltonian equations with the hamiltonian H,, have the form
p= _% <Vqu(q; w>y> y> - EquHmv q= Am(w) + Emvpl—lmv (313)
Yy =JBn(q;w)y + emJVyHp,. (3.14)

Clearly the initial hamiltonian H. has the form Hy. (One should chose
Ao(w) = w, B, = A, Hy = H and Q,, = Q. The assumptions (3.7)—(3.10)
with m = 0 become empty, while (3.11), (3.12) follow from (3.4).)

Transformations S,,. Our goal is to find for every m an analytic symplec-
tomorphism S;, : Op41 — O, which transforms the hamiltonian H,, to a
hamiltonian H,,,+1 = H,, © Sy, where the latter has the form (3.5) with m re-
placed by m + 1. The transformation .5, is constructed in four steps which are
essentially identical to those in [K]. The only difference comes during “averag-
ing” when we extract from the perturbation the whole diagonal of Hesse,, H,,
and add it to the integrable part Hy,, — not only the diagonal’s averaging in
q as in [K].19 Because of this, the operators B,, depend on ¢ (their analogies in
[K] are ¢g-independent). Accordingly, homological equations written in terms of
these operators become more involved. Their resolution is based on a theorem
on first-order linear differential equations with variable coefficients, proved in
section H.

We remind that everywhere below ¢ < &, where ¢ is sufficiently small.

10We are forced to do so since if d > 0 (and the perturbing vector field is unbounded),
then to kill the diagonal part of Hess ey, Hy, the transformation Sy, must be unbounded.
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Step 1: Averaging and splitting the perturbation.

Isolating affine in (p, ¢) and quadratic in y parts of the hamiltonian H,,, we
rewrite it as

Hyp, = h(g;w) +p-h'P(q; )+ (y, h¥ (g; )+ (h¥" (¢; w)y, y) + Ham (h; w), (3.15)

where b = (p,q,y) and Han = O(|p]* + [[y[l3 + |p| [[ylla). Next we change h
(and so H,,) by an w-dependent constant to achieve (2m)~™ [ hidg = 0 (this
change is irrelevant since it does not affect the Hamiltonian equations). We
denote by h% averaging of the vector-function h'?:

hP = (27)" / h'Pdq,
and set
hP = b — O A1 = Ay + e, hOP(W). (3.16)
Now we rewrite ‘H,,, = Hop + e H,n, as
Hm = H(l) m+1(p7 Y; w) + gm(I{2m + HSm) (h) w)?

where
H{pi1 =0 Mg+ 5 (Bmy,y)

and the function Hs,,, equals to

Hyp = R +p-hP + (y,hY) + (h¥y, y).

Lemma 3.1. The terms of the decomposition (3.15) estimate as follows:

a)

|hq|Um,Qm < om.
|h1p|Um,Qm S 2m€:n2/3’
|hp|Um,Qm < 2m+1€—2/3,
— m
TTL?Q’ITL -
[hY ]| < 2me 3,

thy

UwL7Qm m —2/3
dd, <207

Besides, the operator h¥Y is symmetric and is real for real q.

b) In the domain Ony1 C Oy, the term €, Hs,y, is smaller than the ad-
missible disparity of the next step (cf. (3.11), (3.12)):

O ,Q 2 om+1
5m|H3m| e tim S 3 2 Em+1,

5m||vyH3m||dOCm+l’Qm < % 2m+1€727{i1.

c) The functions Hay,, Hsp, are analytic in b € Oy, and are real for real
arguments.
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Proof. a) The estimate for h? results from (3.11) since h?(q;w) = H,,, (0, ¢, 0;w).

To prove the estimate for h'? we observe that h'?(q;w) = V,H,,(0, ¢, 0;w),
so the estimate follows by application the Cauchy estimate to the map p —
H,.(p,q,0;w) at p = 0. To bound the Lipschitz constant in w we consider the
map p — H,,(p,q,0;w1) — Hy(p,q,0;ws) and argue as above.

The estimate for hP obviously follows from the previous ones.

The estimate for hY results from (3.12) with y = 0.

The estimate for the operator h¥Y follows by applying Cauchy estimate to
the map V,H,, : y — V,Hp,(q,0,y;w) since h¥¥ = %(VyHm(07q, O;w))*. This
operator is symmetric and real (for real ¢) as a Hessian of a real function.

b) Let h = (p,q,y) € Opmy1 and v = /3. Then ((z/u)gp,q, (z/y)y) € O,
for z from the unit disc in the complex plain. Let us consider the function
Z Hm((z/y)2p, q, (z/u)y;w) and its Taylor series at zero:

z z
Ho((2)?p, 0, (D)yiw) = ho + haz + haz® + -+ .

By (3.11) and the Cauchy inequality, |hx| < 2™ for all k. Since Hs,,(h;w) =
hsv® + hyv* + - -+ | then we have:

2m571n+p

2
Em|Ham (h;w)| = e |hav® + havt 4+ -] < < . omtle

1—v

if £ is sufficiently small. In a similar way one estimates the Lipschitz constant
of H. 3m-
To estimate V, Hs,, we consider the map

z z .
¢ = VyHn((5)%p,0, (D)y;w) = ho + Bz + - €Y

By (3.12), |1 ]la. < em'/?2™ for all k. So

em | VyHsm (B w)lla, =em[[hor? + hyv® + - |lq,

2
v 2 93
< :8%{32771 S 557',{_1_12m+1 .

A similar estimate holds for the Lipschitz constant, so the assertion b) is proved.
¢) The analyticity of the functions is evident. Their real-valuedness for real
arguments results from the real-valuedness of the hamiltonian H,,. U

By the second estimate in item a) of the lemma, |ROP|tm-LiP < ome, 213,
Therefore,
|Am . Am+1|Qm,L1p < 2m€71n/3.

So the vector A,y satisfies (3.8) with m :=m + 1.
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Step 2: Formal construction of the transformation S,, and derivation
of homological equations.

We construct the transformation 5, as the time-one shift along trajectories
of an auxiliary Hamiltonian vector field

p=——enVelF, (= VpF, y=¢enJV,F, (3.17)
where the hamiltonian F' has the same structure as Ho,,:
F=flqgw)+p- fP(gw)+ Y faw) + (P (aw)y, v).

The flow {S*} of Hamiltonian equations (3.17) is formed by canonical trans-
formations (see Theorem 1.1.7), and we set S,,, := S*|;=1. Then formally

Hon (S (05 0); w) = Hon (B w) + €m{F, Hin } + O (e7,),
where {-,-} is the Poisson bracket (see Theorem 1.1.4 and formula (I1.1.23)).
Taking into account assertion b) of Lemma 3.1, we get that in O,,4+1 the com-
position H,, o .5, can be written as
Hum © S = Hppy + 5m(H2m + VpF VoHg 1 = VoF - VpHg, g+
+(JV,F, VyH(l)m+1>) + O (em+1)-
We observe that
va()m—Fl = Am+17 qu(l)m+1 = % <Vqu yay>7 v?JI_I(/)7TL—|—1 = Bmy

and abbreviate

A1 =, - -V,= B,, = B.

Now we rewrite H,,, o .S,, as
Hum 0 S = Hpyn
+em 3 ((f7-VyB)y,y) — 0f1/0u’ —p- 0f /0
— (v, 0f¥/0w") — (y, (0" /0" )y) + (By, Jf¥) + 2(By, J f*y)

+hT+p- 07+ (y, ) + (y, h77y) | + O (emta). (3.18)

(The term in the square brackets equals Ha,, + {F, Hymi1})-
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We wish to find the function F' in such a way that contents of the square
brackets in the r.h.s. of (3.18) vanishes up to an admissible disparity we define
below. For this end f?, fP, f¥ and fYY should satisfy the homological equations:

0f1/ow’ =h'(gw),  OfF/0u’ = hP(qw), (3.19)

ofY/ow’ — BJfY = hY, (3.20)
OfYY /0w + fYWJIB — BJfY = h¥ + 1 fP.V,B=:h'%
(the disparity will be introduced later). We define the functions a; as
aj(q; w) = 5 (W07, 0f) + 5 (W05, 97 ), Vi€ Ny,

and define the operator A,, as

Am(q7 w) = dlag {an+17 On+1,An4-2, Gn42, . - - }

(i.e., Amgoj.t = ajcp;.t for each j). Finally we set

RO (q; w) = K'Y (q; w) — A (q; w).

We note that both operators h%Y and h'YY depend on a solution fP of the
second equation in (3.19).

We observe that JB = BJ and rewrite the last homological equation for
fY¥ with h'%Y replaced by h°% (i.e., introducing a disparity):

OfYY /dw’ + [f¥¥, JB] = hov, (3.21)

If f9,..., f¥¥ solve the equations (3.19) — (3.21) then the contents of the
square brackets in (3.18) equals (4,,y,y) and

{F, Hy oy} = —Ham + (Amy, ). (3.22)

Step 3: Solving the homological equations.

The following result is classical for the KAM-theory. For a proof see Lem-
mas Al, A2 in Appendix 2 below.
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Lemma 3.2. Let us define the set Q' as
Q' ={weQ, || s <CHm+1)"2s|™" for some s = s(w) € Z™\{0}}.

Then mesQt < ~v(m + 1)72/3K, 11 if C is chosen sufficiently large. For
w € Q,\Q! equations (3.19) have analytic solutions, real for real arguments
and such that

£9) U\ < C(m), [P\ < o230 ().

Using the estimate for the solution f? as well as Lemma 3.1 a) and (3.10),
we get that

Ul an\Q! _
1R )|\ < C(m) e, 23,

Hence,
) _
jaj[Vm 2\ < GAC(m) e 2® V> n+1

and we arrive at the following

Corollary. The operator h®¥Y satisfies the estimate

Ul Q,\Q! _
1R09)|5mE < O (m) €, 23

Equations (3.20), (3.21) are more complicated than (3.19). We start with
more difficult equation (3.21).

Lemma 3.3. There exists a Borel subset Q% C Q,,, such that mesQ? < y(m+
1)72/(3K,) and

'dl o kdl
(m+1) _  (m+1) > |J |
Y & = Ca(m) (5)

w5+

for all w € Q\ (Q2UQY), all j,k € Zy, and all s € Z™, with some constant
C,+(m) and some exponent ¢, > 0. Here and below for j € Z we write j4 =

sgn ||,

The proof follows [K] and will be given in section 3.3.

We recall that the operator JB = JB,,(¢q;w) is diagonal in the complex
basis {¢; | j € Z, } and has the eigenvalues i7;, where

vi(gw) = v\ (W) + 8™ (g w).

Hthe constant K is defined at the beginning of section 3.2.
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Let us denote by {fr;j(q;w) | k,j € Z,,} and {hy;(q;w) | k,j € Z,,} Hilbert
matrices of the operators f¥¥ and h%Y with respect to the complex basis {¢;}
of the space Y. Then fi; = (fY4;,¢_) (see Appendix 1.2) and the operator
[f¥¥, JB] has a Hilbert matrix with the entries

((fYIB — JBfY )0 _k) = ((fYY I B, b_x) + (f¥;, BJY_) =
i (fYY%5, 0 k) + v, (fP5, 0 k) = (D5 — k) frj-

Hence, in terms of the matrix elements fi; the equation (3.21) reeds as

0

Y fri(qgw) +i(0j — Uk ) (g3 W) frj = i (g w) (3.23)

for every k,j € Z,. Due to the definition of the operator h°¥Y, its diagonal
part vanishes:
hik(g;w) =0 VEk.

Besides, the matrix of the operator h%? as a map Yy — Yy is
{1kl |j1= | k. € Zn},

provided that the spaces Y and Y; are given the complex Hilbert bases
{1517 %b;} and {|j|~%1b;} respectively (see (A3) in section I.1). Using the
Corollary from Lemma 3.2, we get an estimate for the r.h.s. of (3.23):

1 1 _ . —
[geg | Vo2 NE < O (m) 3,22 | | .

Let us observe that

7= o= (" =) @)+ (3 = BY) (g5 w)
is the sum of a constant which is > max(|j|, |k[)®~!/C (due to (3.1)) and a
g-dependent function of order

e max([j], [k[)%.

Since d can be positive, then (3.23) is a perturbation of a constant-coefficient
equation by a variable-coefficient term which can be arbitrary large. Still since
d < dy — 1, then the “very large” constant-coefficient part of (3.23) suppresses
the “large” variable coefficient one: Theorem 5.1 we prove below in section 5
implies'? that for w € Q,, \ (! U Q?) equation (3.23) has a unique analytic
solution fr; and

Ul
|k |7

U2 e
NUm < S
|fkj| <C (m) |jd1—]€d1|

12applying the theorem one should choose n1 = c¢1, na = n, K1 = C(m)/|j% —k?|, Ky =
Cm? and A = Cm™2.
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The operator fYY : Y7 — Y7 has a Hilbert matrix F with the entries
Fyj = |k|?fr; |j|~? Using the estimate for hy;, we get that
|[Fij ()] < C“(m)e PRI 1 =k, k#,
for each ¢ € U2,. Since Fy;, = 0 and d; > d+ 1, then

4 d
—2/3 |37| dx
> |Fijl <& PCE(m / / / |jd1_$d1|

k 1 31
< ;2305 (m) 517 % log || < C%(m) €52/,

Similar estimate holds for ¢*-norms of rows of the matrix F. Therefore a norm
of the operator f¥¥(q) : Y; — Y, with any ¢ in U2, is bounded by C¢(m)e m2/8

by the Schur criterion.

So the norm of f¥¥(q), ¢ € U2, is estimated. To estimate the Lipschitz

constant, we consider an 1ncrement JXY of the operator f¥¥, fX¥ = f¥¥(q;w1)—
fY¥(q; wg) It satisfies the equation

OfXY ) 0w’ +[f2Y, JB] = h¥¥ =V f¥¥ (g; ws) - (w1 —ws) —[f(q;w2), JBa) = HY,
where h%y and Ba stand for increments of h°%% and B. We see that for ¢ € U3,
IHE (q; ) [la,a. < CF(m)ey,2? |wr — wal.

So the given above arguments estimate Lipschitz constant in w for f¥Y when

q € UL. We can use intermediate domains like U, 32 to get a similar estimate
for ¢ in Urzn.

Lemma 3.4. Ifw € Q,\(Q'UQ?), then equation (3.21) has an analytic
solution fYY which is a symmetric in Y ¢ operator, real for real q and such that

m

Quite similar (but simpler) arguments show solvability of equation (3.20):

Lemma 3.5. There exists a Borel subset Q3 C Q,,, mesQ® < v(m + 1)72/
3K, such that for w € Q,, \ (Q UQ3) the equation (3.20) has an analytic
solution fY(q;w), real for real q, and such that

2 1 3
fo )| N < o) 6,213,

Now we define the set 2,11 as
Qi1 = A \ (L UQ2UQY). (3.25)

Due to the estimates for measures of the sets Q', Q2 Q3. obtained in Lem-
mas 3.2, 3.3 and 3.6 we have:

mes (Q\Qnp1) < mes (AN\Qy,) +y(m+1)"2/K, < vye(m+1).
So the set Q,,41 satisfies (3.7) with m :=m + 1.
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Step 4: Study of the transformation S,,.

To carry out arguments of this step and of the next one, we shall use the
symplectic Hilbert scale ({Z, = R?"xY,}, dpAdq®az) and its complexification.
The scalar product in Zj is denoted (-,-). The spaces Zy and Zj are covering
spaces for the manifolds V = )Yy and V¢ = Y§ with respect to the natural
projections, see section 1.1.3. In addition to the usual norms || - ||, we provide
spaces in the scales {Z;} and {Z¢} with the weighted norms || - ||+ ) and
I s> where

+ 4 +2
10 &I x 5y = PP +em? [€]* + em® [lyl5-

By ZF and Z¢* we denote the spaces Z, and Z¢, given the norms we have just
defined. Clearly, spaces Z} and Z~ are dual with respect to the inner product
(-,-). Therefore, for any linear operator A : Z, — Z;, we have:

1Al (+.0).(+.0) = 1A (= —5)(—.—a)- (3.26)

The weighted norms provide the manifolds ) and Y¢ with distances dist 4 4.
It follows from the definitions of the domains OJ, that

dist(_ 4)(O7T1, Y\ O) > C~ (m) Vj (3.27)

We recall that S, = S*|;—1, where {S'} is the flow of the system (3.17)
which we now write as

where Vr(h) = Vp(h;w) = (=VF, V,F, JV,F). The estimates from Lem-
mas 3.2, 3.4, 3.5 (and the Cauchy estimate) show that the vector field Vg is
analytic in the domain O2%° and

2.

o) 5
”ngFH(_W:d

St < of(m)er/®. (3.29)

A straightforward analysis of terms forming the linearised vector field Vg,
based on the same lemmas, shows that

leVE(H) o0 < Ce(m)ei,{?’ V06| <d (3.30)
and
1€V ()]l (—0).(—0) < C(m)el/? V0] < d, (3.31)

for every h € O3 . The same estimates hold for Lipschitz constants in w €

Qi1
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Lemma 3.6. The map S,, is an analytic symplectomorphism which maps
OJ. to OI~t for j = 3,4,5. This map is close to the identity, namely:

a) ||Sm— id||Om 2t < C’f(m)s,lf{B, where || - || stands for the norm || - ||a
or |- ll—a
O Qi e 1/3
b) || Smx—id]|-. < C§(m)ey,”, where || - ||.. stands for the operator
norm || - |lo,e or || - [|(=,6),(—.6), with any |0] < d.

c) All the estimates, stated above for the map Sy, = S |i=1, remain true for
the maps St with 0 <t < 1.
Proof. Since S'(h) — b = fg emVE(ST(h)) dr, then by (3.29) and (3.27) the
map S, = S! sends OJ, to OJ~! and [|S,,—id || < Ce(m)e}n/g. This map is
an analytic symplectomorphism due to Theorem 1.1.3. To check its Lipschitz
constant in w, we take any wy,ws € Q41 and denote by h;(t) a solution for
(3.28) with h;(0) = h € O, and w = w;, j = 1,2. We have to estimate the
difference n(t) = h1(t) — b2(t). The curve 7 satisfies the equation

n=cenVr(h1;w1) — emVin(h2; wa).

Due to (3.30) and (3.31) the map ¢,V is Lipschitz in h-variable, so a norm of
the r.h.s. estimates by Ce(m)es,l,{S(HnH + |wa — w1]). Accordingly,

d €
Sl < ¢ (m)e*(Inll + lw2 = wnl),  0(0) =0.
Using the Granwall estimate we find that

1Sm (B w1) = S (B w2) | = In(L)]| < C(m)ey/*|wz — wil.

So the assertion a) is proven.

To prove b), we note that for any ¢ the curve ¢t — S*(h).€ is a solution of the
linearised equation & = &,V (h(t)).&. Since Sy, = S'., then the estimates for
the operator (S, —id) follow from (3.30) and (3.31) (cf. Proposition 1.1.4).

The same arguments as above apply to any map S*, thus proving c¢). O

Step 5: The transformed hamiltonian.

Now we study the transformed hamiltonian H,, 0Sy, = (H{ 11 +m(Hom +
Hs,,)) © Sy Since the functional Hj,, ., is smooth on the space )J; and the
flow-maps S? are C''-smooth in ¢, then

d
dt H(/)m—i—l oS =ep {F, H(/)m—H} oS = —em(Ham — (Amy,y)) o St,
where the second equality follows from (3.22) and the first one — from Theorem
I.1.4. Now we can calculate the second derivative:

d? d

719 H(/)m+lost = _gm%(

o Hom—(Amy, y))oS" = —ep, {F, Han—(Amy,y)}oS".
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Thus,

H{pmy1 ©Sm = Hppg © Sty =
1

/ d / t d2 !/ t

:H0m+1+£ Hypp1 08 t=0+ [ (1—1) p7e) Hy,, 105dt =
0
= H(/) m—+1 + €m<Amy7 y> - 8mIJQm
1
— 2t [ (=0 0P o — (A} o 81,

0

Calculating similar %(Hzm + H3,p) 0 S we find that

1
Em(HQm + HBm) COm = gm(HZm + HBm) + éfn / {F, HQm + H3m} o Stdt
0

Therefore, the transformed hamiltonian can be written as

Hp 0 Sm :H0m+l +emHzm
1

st [ (6= D Hom — (A} 0 57)

0
1

+ 87271 /{F, Hgm + H3m} o Stdt,
0

where we denoted
H0m+1 = H(l) m4+1 + <Amy7 y>

The hamiltonian Hg,, 1 has the form (3.6) with m :=m + 1 and with
Bm+1 = Bm -+ QEmAm

Since diagonal elements a; of the operator A,, are bounded by ij (m) em!/?

(see Lemma 3.2 and its discussion), then diagonal elements V§m+1) + ﬂ§m+1)

of the operator B, satisfy the a priori estimates (see (3.9), etc.) with m
replaced by m + 1.

For j =1,2,3,4 we denote by A; H the j-th term in the r.h.s. of the formula
for H,, 0 S,,. To prove that the hamiltonian H,,+1 := H,, o S, has the form
(3.5) we should check that

AQH + AgH + A4H = €m+1Hm+17 (332)
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where H,,+1 is a function satisfying estimates (3.11), (3.12) in the domain
Om+1-

By lemma 3.1, the term AsH and its y-gradient are smaller than % times
the r.h.s.’s of (3.11) and (3.12) respectively. The estimates for AsH and AyH
will follow from the following statement:

Lemma 3.7. If H is an analytic function such that

m?

[H|Om St < Com) e, ||V, HIgm O < 0o m) e, (3.39
then for any 0 <t <1 we have:

[{F, H} o §"Ommt1 < C¢(m) e/ (3.34)

and
IV ({F, HY 0 S| 5"+ < Cf(m) e (3.35)

Postponing the lemma’s proof we complete Step 5: Application of Lemma
3.7 to functions H = €2, (Hay, — (Any,y)) and H = €2 (Hayp, + Hay,), followed
by integration of the corresponding inequalities (3.34) from ¢ = 0 to ¢t = 1,
proves that in O,,4; the function AsH + A4H is bounded by 2C%(m) 5?,1/3 <
%2m+18m+1, as well as its Lipschitz constant in w € €2,,+1. Similarly, due to

(3.35) the gradient V, (AsH + A4H) is bounded by %2m+15i{il. Therefore the
hamiltonian H,,+1 := Hy, 0SSy, has the required form (3.5) with m replaced by

m + 1.

Proof of the lemma. Due to the first inequality in (3.33) (and, as usual, the
Cauchy estimate), we have |V1,1T17|072n79m+1 < C’f(m)gfrfg and \VqH|OEn’Qm+1 <
C§(m)e?,. Using this estimate jointly with (3.33) and (3.29) we find that

{F, H}|Ommt1 < C%(m)ed/3, (3.36)

Since S,, analytically maps O, to O3, by Lemma 3.6, then we get (3.34).

To prove (3.35) we first have to bound gradient of the Poisson bracket
{F,H}. The bracket is formed by three terms, where the most difficult one
is the term (JV, F,V,H). Its gradient is VH,IT; JVF — VI, JVH (1T} is
the operator which sends a vector y to (0,0,y)). Using (3.29) and (3.33) we
get that for h € O} the d.-norm of the gradient is bounded by C¢(m)e,,, as
well as its Lipschitz constant in w. Analysing similar two other terms we get
that

O Qg1 e
IVy{F, HY|g, < C%(m)em.

Due to (3.36),

IV {F, H}|OmSmit < C5(m)e2/?, |V {F, H}OmPmtt < C5(m)el/?.

m )
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Thus,
IV{F, H}H(+ d. )m+1 < C3(m)ey) a3, (3.37)

So we have:

Ol Qi1 " Oh Qi1 e
IVHE HY o 89|y = 157 (0)VIE, HY [0 7 < C(m)ey.

This inequality follows from (3.37) since by (3.26) and the assertions b) and c)
of Lemma 3.6 (with # = —d..) the map S**(h;w) defines an operator in Z( 4,),
analytic in h € O, and Lipschitz in w € Q,,11. Now (3.35) is proven since

—1/3
IVy ol <em IV gy O

Step 6: Transition to limit.

Here we show that the set (SpoSio...) (Tf) C Vg is a smooth torus,
invariant for the equations (3.3).

Let us denote €2, = N§,,,. Then €. is a Borel subset of €2 and by (3.7)
mes(Q\Q) < v/2.
For 0 <r < N we denote by X%, the map
YN ON XQn — Op, (hyw)— S.o0...08v_1(h),

where S;(h) = S;(h;w). Asusual, X]. stands for the projection Ily : O, x§, —
O,.. We claim that for all »,m > 0

157 4 = Tyl < e, (3.39)
Indeed, let us rewrite the identity X7, (h;w) = S, (/1) (h;w);w) in the form
2 pm — My = (S, — y) o (873, x o) + (271, — Iy),

where Il (h,w) = w. By Lemma 3.6, Lipschitz constant of the map (S, —IIy) :
Or11 X Q. — Z; is less than €. So, denoting the L.h.s. of (3.38) by D/
get that

r+m> we

Dr,., <Cm)e® (DI}, +2) + Drf} .
As DT = 0, then (3.38) follows by induction.

Let us also observe that because Lemma 3.6, for any finite »r < N and any
h € On the tangent map X7, (h) is close to the identity:

153, (h) —idlee < &7 V0] <d (3.39)
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(abusing notations we now view X%, as a map Oy — O,, so £}, is a map from
Z to Z).

Let us denote by O the set
O ={0} xU(6/2) x {0} C V5.

This is a complex neighbourhood of the torus 7§ = {0} x T™ x {0} in the
complex cylinder {0} x (C"/27Z"™) x {0}, which is contained in each domain
O, since 6, > 6/2.

As a consequence of (3.38) we get that for every m > 0 and for each w € Q.
the maps X7, \ restricted to O converge (as N — o0) to an analytic map

X(w) O — Oy C Yy,

and 37" o XE = X7 for all p > m.

For any w € ). fixed, the linearisations ¥} . (h) define analytic maps
from O to the space of linear operators Z§ — Z§, where Z5 = C*" x Y. Due
to (3.39), for any [0| < d the norms [|X]" v, (b)|le,¢ are bounded uniformly in
N > 1 and in h € O. By analyticity, the limiting map 7, satisfies (3.39) as
well. That is,

IS7(B). —idlog <eh W, VO] <d (3.40)

Due to the estimate which follows Lemma 3.1, the maps A,, converge to a
Lipschitz map A : Q. — R"™ such that

|Aoo - w|QE,Lip < 081/3,

and
Moo — A | < C(m)el/3. (3.41)

Now for any w € (). we consider the curve
hoo(t) = (07 qo + tAoo(€)70) - T(;L

and the curves h,,(t) = X% (hoo(t)) C O, We are going to show that ho(t) is
a solution of the equation (3.3). To do this, we first use (3.40) to get that

b = 22, (hoo)hoo = (0, A, 0) + O (££,) € Zg.

Next, abbreviating equations (3.13), (3.14) to

6 = VHm (h)u b € Omv (342)
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and using estimates (3.11), (3.12) and (3.41) we see that
Vi, (bm) = (0, Ap, 0) + O(eh,) = (0, Ass, 0) + O(ef,)

in the space Z4_g4,. Therefore,

b — Vi, (bm) = O(e7,)

in Zg_q,. Since 9, (0m) (Vie,, (hm)) = Vage(ho) and X9, (h,)bm = bo, then,
applying to the last equality the operator X% _(b,,) and using (3.39) with 6 =

d — dyi, we get that .
bo — Vaoho = O (1))
in Zyg_4,- As m can be taken arbitrarily large, then the Lh.s. is zero and

ho(t) is a solution of the system (3.3) (which coincides with (3.12)—(3.14) when
m = 0).
Now assertions of Theorem 1.3 follows if we choose Y. (¢, w) = X2 (0, ¢, 0; w)

and W' = Ao (w).

3.3 Proof of Lemma 3.3 (estimation of the small divisors).

We denote Aji(w) = l/(-erl)(w) — V,EmH)(w) and rewrite the assertion of the

J
lemma as
% — k)

lw' s+ Ajp(w)] > k= W

(3.43)

for all j,k € Z\{0} and all w in Q\Q2, where Q = Q\ Q. Here the constants
Cyx,c1 and the Borel subset 22 C Q such that mesQ? < v(m + 1)72/(3K.,),
are to be found.

If |[s|] < M; and j < jo then (3.8), (3.9) and the assumption (1.12) of
Theorem 1.3 jointly imply (3.43) (provided that ¢ is sufficiently small), so
henceforth we may suppose that

‘S’ Z M1 or _] Z jQ, (344)

where M; and jo will be chosen later.

Let us denote for a moment D(j, k,s) = w’ - s+ Ajr(s). Then
D(]v k? S) = D(_ka _j7 8) = _D(_]7 _ku _8)7
so to prove (3.43) it is sufficient to consider j and k such that

izl =k, j#k (3.45)
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(for j = k the estimate (3.43) is trivial). For further usage we note that j and
k as above satisfy the elementary inequality®?:

i =k = di(5) (3.46)

Now we observe that
[Ajsl > Cot | — kM. (3.47)

Indeed, if j > ja, then the estimate (3.47) with Cy = 2K, follows from (3.1)
and (3.9), (3.46), while for j < j the estimate with Cy ' = K3/2 results from
the assumption (1.12) with s = 0 and from (3.9).

By virtue of (3.47), the estimate (3.43) holds trivially if |s| < C~!]j% —
k|, where C is any constant, bigger than 2Cy|w’|; say, C' = 2Cy(K + 1) (see
assumption 3) of the theorem). So we can assume below that

s| > O] % — kN (3.48)

In particular, s # 0.

Let us denote by L the set of all triples (k, j, s) as in (3.44), (3.45), (3.48).
For any (k,j,s) € L we define Q(k,j,s) C Q as a set of all w € Q violating
(3.43) for the chosen triple (k, j,s). Let us take for Q2 the union

0 = J{Q(k.4,5) | (k,j,s) € L}.

Clearly, (3.43) holds for w outside Q2. So it remains to estimate measure of
Q2. Here the key is the following result:

Lemma 3.8. For any triple (k,j,s) € L we have
mes Q(k, j,s) < Ck,

provided that jo, My are sufficiently large in terms of the quantities, listed in
Theorem 1.3 (k was defined in (3.43)).

Proof. By (3.8), the map
Qo wr— w =Apyii(w) € R

is Lipschitz-close to the identity. So it is a Lipschitz homeomorphism which
changes the diameters of sets and their Lebesgue measure no more than twice

Bfor j=1 the inequality is obvious. For j = 2 it holds since the L.h.s. is > j9 —(j—1)%1 >
di(j —1)M 1 > da(j/2)0
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(see Lemma Al in Appendix 1). Therefore to estimate measure of the set
Q(k, j, s) is equivalent to estimate measure of its image ',

Q = Aerl(Q(kvj? S))
To do this we express vy, v;, Ag; as function of w’ and write the set Q' as
Y ={w €A1 (Q) || 5 — A ()] < K}

The set Q' is bounded since it is contained in the bounded set w’(€2). So by
the Fubini theorem to majorise a measure of this set it suffice to majorise one-
dimensional measure of the intersection of €2’ with any line in R", parallel to
the vector S = s/|s|. That is, with any line L, = {n+¢S|t € R}, n € R%. The
intersection of )’ with L, corresponds to t from the set

{t|IP@)| < &}, (3.49)
where I' is the function
D(t) := (w'(t) - s + Mgz (W'(2))), W'(t) =n+tS.

Let us observe that (0/0t)w’ - s = |s| and that Lip A < C;j?, where Lip Ajg
stands for a Lipschitz constant of the map w’ — Ajj (we use (1.10) and (3.9)).
Then for any t; > to we have:
P(tl) - F(tg) Z |S|(t1 - tg) - (tl - tg)LipAk]’
> (i —to) (|s| = Cj%) > C7 (tr — ta) (" — kT = C1j9)
>y (0~ t2) (5 = Ca ) (3.50)

(we use (3.48) in the third inequality and (3.46) in the forth one). So if j > jo
and jo is sufficiently large, then

[(t1) — T'(te) > t1 — to.

If j < jo, then by (3.44) |s| > M;. Using the second estimate in (3.50) we get
that )
L(t1) = T(ts) > (t — ta) (M1 — Cjg) > t1 — to,

if we choose M; > Cj§z+ 1.

Thus, measure of the set (3.49) is less than 2. Since diam w'(Q2) < 2 diam
< 2K, then by Fubini mes €)' < 2I€Cn_1K£L_1, where ¢,,_1 is a volume of the
1-ball in R*~1. As mes Q(k, j,s) < 2mes ', then the lemma is proven. [
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Now an estimate for measure of ? is straightforward:

C
2 - —C1 'd1 d1
mes ° < ;mesQ(k:,j,s) < Colm) XS:(S> ]2}; (J9r — k).
(j,krs)EL
By (3.46) and (3.48), j < C|s|% where dy = 1/(d; — 1). Since |k| < j, then
cardinality of the set {(j,k,s) € L | sis fixed} is less than 2C|s|?¥. Using
(3.48) we see that the inner sum in the r.h.s. estimates as follows:

Yo G-k <O Y (s < Cifs)Pr
ik

J.k J,
(4,k,s)EL (3,k,8)EL
Therefore,
mes Q? < ¢ Z(s>2d0+1*cl < v

Cix(m) — 3(m+1)2K,’

S

if c; > 2dy+n+1 and C,.(m) is sufficiently large.
Lemma 3.3 is proven.

Appendix 2. Some inequalities for Fourier series.

Let B¢ be a complex Banach space and f : U(J) — B¢ be a complex-
analytic map such that || f||g < 1. We can write f as Fourier series,

fa@)= S fo e, f, = / F(q) e~ i*dq/(2m)" € B,
TTL

SEL™

Let us replace the integration over T" by integration over the shifted torus
T —i(0 —¢) s C U(6). Since after the shift we have |e*?%| < e~ 5I(®=¢) then

| £sllB < e 151(®=¢) for every positive e. Thus, we have

Ifsllp <e”ls1? vsezm (A1)
Conversely, if for some d > 0 we have ||fs||p < (s)?e~ 5% for every s, then

||f|‘g(5*0) < Z <S>d e—elsl <C /‘:E’d e—elzl gy
Rn

seEL™

—Cpd [yt e My =Cag (A2
Rn

As a consequence of estimates (A1), (A2) we get:
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Lemma Al. If f: T™ — B¢ is a zero-meanvalue map, analytically extendable
to U(9), and w is a Diophantine n-vector, namely

lw-s|>1s|7%/C, VseZ"\0 (A3)
with some positive d and C,, then the equation
ou ou ou
—(q) = — = — A4
oo (@ =1, o ijaqj, (A4)
has a unique zero-meanvalue analytic solution u(q) and
lull 5" < CuCap™ I £1I" (A5)

for any 0 < p < 0. If f = f(q;a) is a Lipschitz function of an additional
parameter a € U, then

U(6—p),A —n— U(6),2
|ul| 5™ < CL.Cap = £ 50 (A6)

Lemma A1l'. If a map f : T" — B¢ analytically extends to U(S) and an
n-vector w is incommensurable with a real constant E, namely

lw-s+E|>(]s|+1)7%/C, VseZm, (AT)
then the equation
O (g) +iBu = f(g) (A8)
Jo I TEE =M

has a unique analytic solution u(q). This solution satisfies (A5). If f = f(q;a)
is Lipschitz in a € A, then u = u(q; a) satisfies (A6).

To prove (A5) we expand u(q) and f(q) to Fourier series denoting by u, and
fs the corresponding Fourier coefficients. Then fo = up = 0 and us = fs/(iw-s)
if s # 0. Thus,

luslls < Culsl? £l < Culsle 07 5
by (A1), and the estimate (A5) follows by (A2).

To get (A6) it is sufficient to apply (Ab5) to an increment u(g; a1) — u(g; az)
of the solution w.

Proof of Lemma A1’ is quite similar.

Remark. If B¢ is a complexification of a real Banach space B and the map f
is real, i.e., f(q) € B for ¢ € T", then the solution u(q) of equation (A4) is

real since u(q) is an analytic map which also solves (A4); so it must be equal

to u(q). If u(q) solves (A8) with real f(q), then v = u(q) is the unique analytic
solution of the adjoint equation Ov/dw — iE = f.

If d > n and Q2 is a bounded subset of R", then the set {2, formed by all
w € Q which violate the Diophantine assumption (A3) has a measure O(C;!):
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Lemma A2. Ifd >n—1, then mes,Qc, < C(d,Q)/C..

Proof. The set ()¢, is a union of subsets €25 C €2,
Qo ={weQ||w-s| <|s|7¢/C.}, sez"\O0.

Each set Q, is an intersection of 2 with the set {|w - s| <|s|7¢/C.} which is a
strip of width |s|=471/C, in R™. Thus, mes,Q, < C(Q)|s|~%"1/C, and

mes, o, < Zmesnﬂs < @ Z ‘S|_d_1 _ C(g,Q) 0O
s#£0 * s#£0 *

Similar result with the same proof holds for the relation (A7):
Lemma A3. Ifd > n and |E| > C;!, then the subset of all w € Q which
violate (A7) is a measurable set of measure < C(d,Q, E)/C.

If for any analytic function f(q) such that ||f||g(5) < 1, we cut its low-
frequency part off, namely for any R > 1 define f? as

ffa)= > foe™,
|

s|>R

then by (A1) for any positive p < § we have:

IFRISC2 < § elile < / eten1 gy —
R

|s|>R

_ - —-m (n_l)' e—gR n—m
=C mZZI 0 —(n —n) R . (49)

Take any k > 0. Then by (A9),

_ ko " (n—1) _ -
HfRHg(fS 0) < CR kp k Z ((n_—)e pR(pR) +k
m=1

m)!

S Cn,k R_kg_n_k7
(A10)

since e~ *gn~mtk < ) for every x > 0 and any k > 0, m < n.
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Appendix 3. On the Craig—Wayne—Bourgain KAM-scheme.

There is an alternative KAM-approach to prove that for small ¢ and for
most parameters w equation (3.3) has an invariant torus, close to the torus
Ty = {0} x T™ x {0}. This approach is due to Craig-Wayne-Bourgain [CW,
Bour2].

In this appendix we describe the corresponding scheme in comparison with
the one, used in section 3 (and in the Addendum). Our description is very
vague. In particular, we do not specify which function norms for functions of
q € T™ have to be used.

Domains and hamiltonians. We use a suitable family of domains Y D Q¢ D
Q1D --- DTy, NQ; =Ty, and of hamiltonians H,,, defined on these domains.
Every hamiltonian H,, has the form

Hin =0 A (w) + 5 (Bm (@ 0)y, y) + €mHpm (5 w), (A11)

where w € Q,, and Q,, is a “large” Borel subset of 2 (e.g., it satisfies (3.7)).
The selfadjoint operator B,, is not assumed to commute with B, but it is close

to this operator:
| Bin(q; w) — B(w)]| < Ce(m)e. (A12)

The sequence 0 = e(0) < e(1) < --- < 1/2 is defined as above in section 3.2; the
sequence {e,,} decays to zero “sufficiently fast” (but €,,11 > €2,) and ¢ = .

In particular
€m < Ce(m)c™ Vm>1

for any positive c¢. The corresponding Hamiltonian equations are:

p=—3 (VeBu(g:w)y,y) —emVelm, ¢=NAn(w)+enVpHn,

. (A13)
y=JBn(g;w)y + €mJVyHy,.

For m = 0 we have Hy = He, so (A13),,—0=(3.3).

We note that the torus 7§ is invariant for equation (A13) up to terms of
order €,,. As in section 3, we wish to construct symplectic transformations .5, :
Qm+1 — Qm such that H,, 0S,, = Hyp1. Then the limiting transformation
S =5p085;... (if it is well defined) provides us with an invariant torus S(7}")
of equation (3.3), filled with quasiperiodic solutions S(0, ¢ + tA,0).

To construct the transformation .S, given a hamiltonian H,,, we first isolate
an affine in p, quadratic in y part of H,, and write H,, in the form (3.15):

Hyy = b (g;w) +p - h'P(g;w) + (y, h¥ (g5 w)) + (W7 (g3 )y, y) + Ham (h; w).

Neglecting a h-independent part of H,,, where h = (p, q,y), we achieve (h?) = 0,

where (...) stands for the averaging (2m)~™ [...dg. As at Step 1 (see section

3.2 or the Addendum), we denote h%? = (h'P), h? = h'P — h%P. In crucial

difference with the proof of Theorem 1.3, we do not average the quadratic part
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h¥¥, but add the whole of it to the integrable part. Accordingly, we write H,,
as

Hp =p- (Am + emh()p) —f—%< (Bm + 2e,,hYY) v, y>
A;;.l B?Zn
+€m(hq +Dp- h? + <y,hy>) +€mH3m-

~
Hlm

As in section 3.2, we assume that the domains @, shrink to 7] sufficiently
fast, so that |eHs,,| < %Em_t'_l in Qi1 Accordingly, €, Hs,, is an admissible
part of the term €,, 1 H,,+1 and it remains to kill the term ¢,, H1,,. To do this
we use a transformation S,, which is a time-one shift along trajectories of a
Hamiltonian vector field V;  r, where the hamiltonian F' has the same structure
as Hy,p, i€,

F = flqw)+p- fPlgw) + {y, fY(g;w)).

Abbreviating A,,41 = W', W' -V, = /0w’ and arguing as at Step 2, we get
that:

Hum © Si = Hon + €m{F, Hp } + O(€2,)

=p - Apg1 + 3By y) + € | —0f1/00" —p-0fP /0

- <y7 afy/aw/> - <y7 (afyy/aw/)y> + <B7/ny7 ny> + Hlm

- %m ((f7 - Ve Bp)y,y) + O (em+1).

Therefore, if the functions fP, f¢ and fY satisfy the homological equations
of1/ow = h(q;w),  OfF /0w’ = hP(q;w), (Al4)

ofY /0w’ — By, JfY =hY + O (ém+1/€m) » (A15)

then the transformed hamiltonian H,, o S, takes the form (A1l) with m =
m + 1, where By,41 = B, + € (f? - V,)B.,.

As at the Step 3, the equations (A14) are classical and and can be solved
easily if w € ;11 with an appropriate set €2,,,+1. In the same time the equation
(A15) is much more difficult than equation (3.21), obtained at Step 3, since
the operators B, (q;w)J, ¢ € T™, do not commute. All known ways to solve
“noncommutative” equations (A15) are perturbative. They use assumption
(A12) as well as additional properties of the perturbation (B], — B)J and
of the spectrum {#i\;} of the operator B.J. The first results on equations
of the type (A15), (A12) were obtained by Frohlich-Spencer in their works
on the Andersen localisation (see [F'S]). There they called an operator which
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resolves the equation Green function. Since then Green functions were studied
in a number of papers (the best results by the time when this appendix was
written are due to Bourgain [Bour2]), but “right” conditions which would imply
solvability of (A15), (A12) still are missing. So every time when an equation of
this kind arrive, one has to solve it anew. See [CW, Bour2, Krie|] and references
in these papers.

After the equation (A15) is resolved, one constructs the transformation S,,
and obtains the new hamiltonian H,,+1 = H,, © Sp,. The limiting trans-
formation S = Sy 0 S; o ... provides the invariant torus S(7}"), filled with
quasiperiodic solutions of the equation (3.3).
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4. LINEARISED EQUATIONS

In this section we consider linearisation of equations (3.3) about any solution
ho(t), constructed in Theorem 1.3, and prove Theorem 1.4. We abbreviate (1.3)
as

{] = VHs (h(t))7 b = (p7Q7y)7

and write the linearised equations as
1= Vi (bo(t))«n. (4.1)

Analysis of equation (4.1) given below uses the symplectic transformations
S; and their compositions ¥, = S, 0---0Sy_1, defined at Step 6 of the proof
of Theorem 1.3.

To study (4.1) we consider linearisation of any transformed equation (3.42)
about the transformed solution b,,, = (E?n)_lf)o =20 boo:

Nm = Vi, (Dm (£))«0m.- (4.1)

This equation coincides with (4.1) if m = 0, and the linear transformation

Lin(t) = 2 (hin (1))

sends solutions of (4.1,,) to solutions of (4.1). By (3.39) limiting linear maps
Loo(t), t € R, exist and define zero-order automorphisms of the scale {Z; =
R?" x Y,} for |s| < d. Moreover, each map L,,(t) is symplectic since the maps
S; are symplectomorphisms. The limiting maps L. (t) are symplectic as well.

For any 0 < m < oo and any t the map L,, satisfies the estimates
1Lm()llo.0 + 1L, (B)]lo.0 <3, 0] <d. (4.2)

Since the linearised equation (4.1) is uniformly well-defined by assumptions of
Theorem 1.4, then due to (4.2) equations (4.1,,) also are uniformly well-defined:
for any m, the flow-maps (S7 17 )ss(hm (7)) of (4.1,,) are such that

(m)T

1(STHE )i (7)) ]l0.0 < Ce®2t for any t and any |0] < d.

(m)T

Because (4.2) with m = oo, to estimate solutions 7o (t) of (4.1,,) with m =0
is equivalent to estimate their transformations 7. (t) = (Loo(t)) 170 (). We can
not directly go to limit in (4.1,,) to write for 7 (¢) a limiting equation (4.1).
Instead we shall obtain estimates for the limiting curve 7., by examining p-,
g- and y-components of solutions 7,, with large m.
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For any 0 < r < m < oo we define linear transformations L], as L7 (t) =
YT (B (t))s. Clearly, LI = (L£,)"! o L,,. Using once again (3.39) we find that

Hﬁ:n — ing’g < C&f. (4.3)

Now we write (4.1,,) as a system of equations for 1, = (1,74, 7y ), omitting
dependence on m (and on the parameter w which is now irrelevant):

Np = —€mVap Hmllp — €mVa,qg Hmig — €mV g,y Hmy,
Mg = EmVpp Hmlp + emVp.q Hmlg + €mVpy Hmiy,
My = J Am (@ () 11y + €m IV y p Hintlp
temdVy g Hnng +emIVyy Hyny.

(4.17)

Here V, ,Hp, is a linearisation in p of the gradient map V,H,,, i.e., a linear
map R" — R", etc.

We need a refinement of estimates (3.11), (3.12):

Lemma 4.1. The hamiltonian ., H,, meets the following estimates:

Vy(lemHm)B)|]| <C(1+e(m)), j=1,....,n, heEO,, (44)

de

H 9
Op;

(the numbers e(m) were defined in section 3.2, C' is an m-independent con-
stant), and

0o 0

a. 9. < ¢ ] = DY .
o (e ) ()] < €, Jik=1.m

Proof: For m = 0 the estimate (4.4) follows from (3.4) and the Cauchy
estimate since the domain of analyticity Q¢ of the function Hy = H is e-
independent. Now we suppose that the estimate is proven for m = m and show
that it holds for m = m+1. Since (0/0p;)VyHam = 0 (see Step 1 in section 3.2)
and H,, = Hoy,+ Hspy, then e, Hs,,, also meets (4.4). By our constructions, the
next-step perturbation €,,+1Hpy1 1S €1 Hm+1 = emHam + AsH + A4 H, see
(3.32). By Lemma 3.7 gradients in y of the terms A3 H and AyH are majorised
in domain O3 by C{(m)e,,. So for any h € O,,41 and any j = 1,...,n we
have:

0 1
—V, A H <Ce LI G —
|| ap] Vy l (h)”dc = C (m)[':m — QK*(m ‘I’ 1)2’

l=3,4
(the Cauchy estimate). Since the term e, Hs,, satisfies (4.4) for h € O,,, then
(4.4) with m = m + 1 follows.
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Proof of the second estimate is analogous. [J

By (3.11), (3.12) and the last lemma, system (4.1/ ) can be abbreviated as

Np = Op,n(gfn)na
g = Ogp(C(m))ny + Ogq(eh)nq + Oq,y(l)ny (4.5)
Ty = JAm(Qm(t))ny + Oy,p(l)np + Oy,q(gﬁz)nm

where O, (e%,) stands for a time-dependent linear operator Zg; — R"™, n — p,
of the norm O(e?,) and similar with O, ,(C¢(m)),...,O0q4(€?,). The linear
operators Oy (1), 0, »(ef,) are bounded as operators valued in Yy, .

For j =n+1,n+2,... let us denote by ;o € Zg any unit vector of the
form

(the complex basis 1; of the space Y was defined above) and denote
53('6”) = L3(0) &o = o + O(eh,),

where the second equality follows from (4.3). Let £§m) (t) be a solution of (4.1,,)
such that SJ(-m)(O) = J(.gl). Form =0,1,... the map £, sends SJ(-m) (t) to 53(-0)(15).

A diagonal element l/J(-m) + ﬁj(-m) of the operator B,,(q;w) (defined in section
3.2) equals

vi(w) + 2210 (g0) + -+ 2600 (g5 0),

gl)(q; w) is a diagonal element of the quadratic part of perturbation
g H; at [-th step of the KAM-procedure. Since any function ag-l) (-;w) is analytic
in U} and is bounded there by j‘ZC’(l)al_w ® (see a discussion which follows

Lemma 3.2), then for any w in ). we have the convergences:

where 2¢;a

8™ (g;w) — B (g3 w) and 1™ (w) — v7°(w) as m — o,

where the functions ¢ — (7° are analytic with zero mean-value. Letting m —

(m)

oo in the estimates for functions ﬁ;m) and v; 7, we get:
‘5;)0‘U(6/2),QE + |VJOO o Vj’QE’Lip < ngjcz‘

Denoting by Be, the limiting operator B (¢; w) = diag{r°+35°| j > n+1},
we consider the corresponding nonautonomous linear equation in the space Yy:

Y(t) = JBoo(qo + W't;w)y(t), ' = As(w). (4.7)
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Let us consider a solution y(t) = y;(t) of (4.7) such that
yj(O) =Yjo as in (46) (48)

It has the form y;(t) = v/ (¢); + y~7(t)¢—;, where y/ and y~7 are complex-
conjugated functions and 37 satisfies the equation

P (1) =i + 85 (g0 + w't))y (1)
Since 35° and v$° are real functions, then |y/(t)| = const. That is, ||y;(t)[la = 1.

Now let us consider in Zy the curve n](-m) (1),

28 = (0, / Oy (L) ()7, (7)),

where the curve y; is as above and O, ,(1) is the linear operator from the
second equation in (4.5)= (4.1/,). Clearly, its Zz-norm is bounded by Ct + 1.
Analysis of equations (4.5) shows that since y; satisfies (4.7), then 77" solves
the equation (4.5) with a disparity, formed by the term O, ,(¢£,)n, Oq 4(€%, )14

and Oy 4(e?,)n, with n = (np,0g,1y) = nj(.m)(t). This disparity majorises by

C'(t + 1)eP,. Since n](m)(O) = (0,0,y;(0)) = J(-gn) and the linearised equation
(4.1,,,) is well defined, then we get the estimate for divergence of nj(-m) (t) from

the exact solution §§m) (t):

1™ () = n$™ (#)]la, < Ceb, et (4.9)

with some C, C}.

The operator L], sends fj(.m) to 53(;«) and satisfies (4.3). Therefore by (4.9)

n](.m) (t) converges (as m grows) to

() = (Loo) e (1)

uniformly for bounded ¢’s. Denoting by IL,, II,, II,, the natural projectors which
send Zg to R}, Ry and Yy respectively, we get from this convergence that

e =0, |, (1)]la =1. (4.10)

For 7y < 1 let 572

T1 %%

= 572, (bo(71)) be the flow-maps of equation (4.1) and
S™  be the conjugated maps:

T1 %%

7o
S‘rl * %

= Loo(12) "1 0872, 0 Log(T1)
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(the linear operator S‘Tf** sends §2°(71) to £7°(72)). We write Zg as R xRy x Yy

T

and accordingly write 5':12** in the block form:

S:f** = | Sap  Saa Say
As &9 = £,.(0)&;, then SE,, (&) = £°°)(t) and we get from (4.10) that
J J 0 J J

Spy =0, ||syyllaa = 1. (4.11)
For each g € T", the map Y, sends the curve g+w't € T™ to a solution of the

initial equation (3.3). So X, conjugates translation of T™ along w’ with the flow

of (3.3) and its linearisation X, = EOO‘ (0} xR7 x {0} conjugates linearisation of
q ~

the translation with the corresponding operator S. This means that

Spg =0, Sqq=1d, sy4=0. (4.12)

Each map S‘Zf** is symplectic as a composition of symplectic maps. Hence,

(6%} [5177—-12** (51717 07 0)7 5:12**(0, 5Q27 0)] = <5p17 6q2>R" v 51717 5Q2 S R™.

Because (4.11) and (4.12) this implies that (sp,0p1,dg2)rn = (dp1,0g2)Rn.
Hence,
Spp = id. (4.13)

Since the flow-maps S72,, are uniformly well-defined, then

HS’TQ Hd,d < C|’ST2 Hd,d < 0601|T1_T2|. (4.14)

T1 %% T1 %%

Now we can estimate the norm of the operator S'g** with large T. To do
this let us write Z; as

Zg=RyxE, E=RyxY;={u=I(q,y)}

Enlarging accordingly the blocs of ST>

T

g2 _ ( ®pp Spu
TRk 5 5 .
pp  Supp

By (4.12), (4.13), (4.14) we have:

«+» We write this operator as

spu =0, spp =id, sl =1, |8l < Ce“rlmml, (4.15)
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For any (po, o) € Zg and T € N we can write S, (po, o) as
Soes(Pos po) = ST_y 0+ 0 55, (po, Ho).

Denoting (pj;, pt;) = 5;_1** o---08},.(po, o) and using (4.15) we see that
psl = pi-al,  lluslla < lwj—rlla + Calpj-l;

where Cy = Ce®'. Therefore we get the following component-wise inequality:

(IpT|)<<id U)T(Ipol):( [pol )
lprlla ) — \C2 id 120]la |10l + (C2 + T)|po|

We have seen that any solution 7(t) of (4.1) meets the estimate

In@lla < 3lnec)lla < (Cr + tC2)[[n(0)]a,

where 74 (t) = (L% )71 (t)n(t). So Theorem 1.4 is proven.
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5. FIRST-ORDER LINEAR DIFFERENTIAL EQUATIONS ON n-TORUS

It is well known (see Lemma A1’ in Appendix 2) that the first-order constant
coefficient differential equation

Oz -
—28—w+Ex—b(q), qge T, (5.1)

where E' is a non-zero real constant and 0x/0w = V,z(q) - w with a fixed real
n-vector w, has a unique analytic solution z(q) if the function b(q) is analytic
and the vector w is incommensurable with E. Namely,

w-s+E|> (|s|+1) "' /K, forall seZ", (5.2)

for some n; > 0 and Ky > E~L. If b(q) is analytic in U(d) (we recall that U(6)
stands for the complex J-neighbourhood of the real n-torus) and

bV = sup |b(q)| <1,
q€eU(9)

then the solution x also is analytic in U(§) and
2|VO=2) < CK;A™™™ for 0< A < 6. (5.3)

If we replace (5.1) by the equation with variable coefficients

—ig—z + Ex + Bh(q)z = b(q), (5.4)

where B is a real parameter and h is an analytic in U(d) function such that
A7 <1, / h(g) dg =0,

then we can find an analytic function H(q) such that 0H/0w = h, provided
that the vector w is Diophantine. Namely

lw-s| >|s|7"? /Ky for all s € Z"\D0, (5.5)

with some no > 0 and Ky > 1. Moreover, |H|U(5_A) < CKo AT "2 (see
Lemma A1l). The substitution # = e~*PHy reduces (5.4) to the equation with
constant coefficients

Jy _ iBHp _.
—Z%—l—Ey—e b=:B(q).
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According to the said above, this equation has a unique analytic solution y(q)
and |y|V00=28) < C1 K A~ exp(CKyBA™"7"2). Thus (5.4) has a unique
analytic solution z(q) and

].r|U(5_A) < CK{A™" "™ exp (CQKgBA_"_"2).

The last estimate becomes void if we have no upper bound for B. Our goal in
this section is to majorise the solution z by a B-independent constant, provided
that ' > B. More specifically, provided that

E>C; >0 and EY > CB, (5.6)

where C,C7 > 0 and 0 € (0,1) are fixed constants.
The “right” estimate for the solution = turns out to be independent of B
and F. This is stated by the following

Theorem 5.1. Under the assumptions (5.2), (5.5) and (5.6) the equation
(5.4) with [h|V® p|VC) <1 (0 < § < 1) has a unique analytical solution
x(q). For any 0 < A < 6 this solution satisfies the estimate

2|V A) < CK AT ™ exp (C1K, " ATmmemdy, (5.7)

where di = (n + ng + 2)%9.

In the theorem and in its proof C,(C4,... are different positive constants,
independent of w, A,9,60, E, K; and Ks.

The estimate (5.7) is crucial to prove Lemmas 3.4 and 3.5 (with exponents
ny,ny and constants K7, Ky specified in section 3).

Proof of the theorem: Let us denote
C, = CugK Y/ vna+?)
with Cyo > 1 to be chosen later. We may assume that
B> (C./A). (5.8)
since otherwise we would write Bh as BK'(K'~'h), where K’ is a sufficiently

large constant, and replace B by BK', h by h/K'.

To prove (5.7) under the assumption (5.8) we shall approximate the Diophan-
tine vector w in (5.4) by vectors w = w, with rationally dependent coefficients
(¢ =2,3,...) and find an integral representation for an approximate solution
for equation (5.4) with w replaced by w. We show that the approximate solu-
tions satisfy (5.7). Next we send £ to infinity to get the estimate (5.7) for the
unique exact solution of (5.4).

All constants C, C1, ... below are ¢-independent.
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Step 1. Approximations for the frequency vector. For an integer ¢ > 2
we consider the vector fw € R™ and define Ny, € Z" as an integer vector which
is the closest to fw. Then

@

—¢IN < )
jw o=

(5.9)

For any vector s € Z™ we denote (s) = |s| + 1.

Lemma 5.1. There exist constants r € (1 —£~1,14+¢1) and C > 2 such
that LE ¢ rZ and the vector @, defined as

SO Ny - /4
wW=wpp = —, L=-,
b g /ri
15 incommensurable with E. Namely,
s T .
|s-w+E|zé— VselZ". (5.10)
1

It is clear from (5.9) that the vector @, constructed in this lemma, is such

that
vn C

- vn o1
o] <2(lw|+ =) and ]w—w|§z(—+\w|+g): T

20 2

Proof: By (5.2) and (5.9) any vector @ as above satisfies the estimate
& s+E| > (s)™" /K1 = Cls|/t > 5 ()™ /Ky

if (=1 < (s)7™™~1/(2CK}) or, equivalently, if

< | —— =: Np.
s < <2(JK1) 0

So below we shall consider |s| > Ny only.

Take any s € Z" which violates (5.10) for some choice of r € S := (1 —
=11+ ¢71). Then |sg - @| > E/2, since K; > E~! and C > 2. Therefore the
set

B <S>—n—n1—1
Ag, = {re S | |so - wer + E| < N—}
CK;
is a segment of length < 4<s>*”*”1*1/C’K1. So
C C 20K,

mes Ay < —— Ny™m 1 = ,
|s|9No K CKy !
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which is less than ¢~ if C' is chosen sufficiently large.

Therefore, there exists a point r € S which lies outside all the sets Ag with
|s| > Ng. The corresponding vector w = wy , satisfies all estimates (5.10). We
can choose r to be different from the numbers ¢E/j, j = £1,+2,... and the
lemma is proven. O]

Since |w — @| < C/¢ and the vector w is Diophantine (see (5.5)), then

s~ @ > (2Ko |s|"2) ™Y if 0 < |s| < (¢/20K,)Y (D) —. [, (5.11)

Let us denote by h, Fourier coefficients of h(g). Then |hs| < e 9lsI by
estimate (A1) in Appendix 2. Besides, hy = 0 since the meanvalue of h vanishes.
Now we define the resonant and the regular parts of h as

hres(q) _ Z hs eis~q7 hreg(q>: Z hs eis-q,

8#0 s
s-@=0 s-@7#0

50 h = h"% + hyeg.

For j =1,2,3 we denote

Ul =U(§ — jA/4).
Lemma 5.2. The functions h"** h,., are analytic in U' and

‘hres’Ul < CA_n_l <£/K2)—1/(n2+1), ‘hreglUl < CA™™.

Proof: The estimate for h,e4 is obvious (see (Al) and (A2) in Appendix 2).
In order to estimate h"® we observe that if s - @ = 0, then by (5.11) |s| > L
and for ¢ in U' we have

|hres| < Z 6—|s\A/4 < CA_n_lL_l
|s|>L

(see estimate (A10) with R = L and k = 1). Thus, the estimate for h"** also
is proven. 0

Lemma 5.3. There exists a f unction f[, analytic in U', such that 8I:j/
0 = hyeg and [H|U' < CKyA—12,

Proof: Let us define H as a Fourier series with coefficients ﬁs, where

= _{0, if s-T=0
" L hy/(5-Q) otherwise.
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Since modulus of any non-zero denominator is bigger than 1/¢ > 1/(2¢), then
by (5.11), for any ¢q in U! we have:

\f[(q)\ <2 Z |s|™2 Ky e~ 1518/4 4 9¢ Z o—lsla/4

Now the assertion follows. For: the first sum is obviously bounded by

2K Z |s|"2e 151874 < CK, |z|"2e w124 gy

SEL™ Rm

n

= C/KQA_n_n2 / |y|n2€—|y|A/4 dy = ClKQA_n_n2,

and the second one is bounded by Co Ko A™"""2~1 due to the estimate (A10)
with k£ =ngo + 1. O

Step 2. Approximating equations. Let us approximate the equation (5.4)
by replacing the vector w by @ = Wy, and replacing h(q) by its regular part
hreg. This gives the equation

—1 2—; + Ex + Bhyegr = b(q). (5.12)

The substitution = e~*Bfy with H as in Lemma 5.3 reduces (5.12) to

. Oy _ ,iBHp _.
oo + Ey =¢€"""b=: B(q). (5.13)

By Lemma 5.1 this equation meets the condition (5.2) with ny :=n+mny+1,
so for any analytic (3 it has a unique analytic solution y. The estimate (5.3) for
ly| is insufficient for our purposes and we shall get better one using an integral
representation for y. To this end, we consider the equation

—ip % + Ez=f(t), teS'=R/27Z. (5.14)

If E ¢ uZ, then the unique periodic solution of (5.14) can be written as

27

K .
z(t):%/“ / e 1 E/IWT £t — 1) dr,
0

where K, = i/(1 — e~"7"). Indeed, for f = e*! we have z = *'/(E +
kw), which is the periodic solution of (5.14). An arbitrary periodic f can be

expanded in Fourier series, and the assertion follows.
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Next, we take any R € T™ and consider the solenoid through R:
t— R+t05 e T" =R"/2rn Z". (5.15)

Since /& = Ny is an integer vector, then the solenoid is a 2w-periodic loop
in T™. On the other hand, for a function on T™ and for its restriction to the
solenoid one has 8/0t = £ 8/0%. Then equation (5.13) restricted to the loop
(5.15) takes the form (5.14) with

p=10" f(t) = BR+ ),

The assumption F ¢ uZ is satisfied since /E ¢ rZ by Lemma 5.2. Therefore

27

y(R) = K0 / e_iEéTﬁ(R — (o) dr.
0

Finally, we denote v = &/|@|?, z = ¢7 (so Elr = Ev -%z) and obtain the
integral representation for the (unique) solution z of (5.12):

27l
2(q) = Ky / e BB/ (BO-B-D) g Q)| __ = (5.16)
0

Here we treat @ as a point in R™ and H, b as analytic 27-periodic functions.

The constant E is an unbounded real parameter; so we have represented
x(q) as a rapidly oscillating integral Fourier. Its phase function is complex
whenever ¢ is complex.

Step 3. Study of the oscillating integral (5.16). Denoting ¢ = B/E and

U(q,Q) = H(q) — H(q¢ — Q) we observe that
i) o< Cc—1/0p1-1/6 < C—l/@(A/C*)dl(l/O—l) — C‘l/G(A/C*)”+n2+2
(see (5.6) and (5.8));
ii) ¥(q,0) = 0;

iii) for ¢ in U? the function V¥ is analytic in @ and
|VQ\11(q7.)|U(A/2) + |\Ij(q7_)|U(A/2) < CKyA—" 21

(by Lemma 5.3 and the Cauchy estimate);

iv) the phase function of the Fourier integral (5.16) can be written as
—iE(v-Q+ pV).
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Let us consider the substitution
Q=R+ f(R) = O(R),
where R € T" and f is a complex function. Then
v Q+0%(¢,Q)| g_gny =V R+ F(R) +0¥(q, R+ f(R)®).

In order to simplify the phase function we wish to vanish a sum of the last
two terms in the r.h.s. To achieve this aim the function f has to satisfy the
following equation:

f(R)+0%(q, R+ f(R)w) =0.

If C,p is sufficiently large, then by i) and iii) the function ¥ satisfy the following
estimates

10V| + [0V U] < (A/C)" T2 20K, A2 = OO ™A

for g € U?, R € U(A/2) and |f| < A/Cy, where Cy = (Jw|+1). Since the r.h.s.
of the last inequality is smaller than A/Cy provided that C,g is sufficiently
large, then by the implicit function theorem the equation has a unique solution
f(R) = f(g, R) which is a complex-analytic function of the argument R € U(A/
2). This solution satisfies the estimate

fIVA2) < AJCu,

where C,1 goes to infinity with C,o. On the other hand, due to ii), one has

f(0,q9) =0.
With this choice of the function f the map R — ®(R) analytically extends
to U(A/2) and is there close to the identity.

Now let us view (5.16) as an integral of a holomorphic function along the
segment S = [0, 27/] - @ in the complex plane C! = C& C C™, namely

x@)zkawL/e‘m“”“@“%R”wq—zadRﬂww
S

In this integral we can replace the contour S = {R} by ®(S) = {Q} c C!
since both the contours lie in the domain of analyticity and their end points
coincide. As f(R) + 0¥(q, ®(R)) =0, then

z(q) = Kp; / R T ®) %
®(S5)
. .. dR
K [ BT QUL+ Bl S ()
S
_ - —iEv-R d_R
=Ky S/ e 9(R) Bk (5.17)



where we use the same notation f for the function f restricted to C! and denote
9(R) =b(g — Q(R)) (L +[&] f'(R)), ReC.

This function is analytic in U(A/4) and is bounded there by some constant C;.

In order to estimate the r.h.s. of (5.17) we expand g in Fourier series,

g=>_ gs R g < Cy e 1A (5.18)
(see (A1)). Now we have

2l

—i(E—e-s ng —iE2ml
x(q):]CEZng / e (E—e )tdt:]CEg o (6 E2 £_1>’
s 0 s

p— w .
since & - £ is an integer. Therefore z(q) =Y. g5/ (E — & - s). By (5.10), (5.18)
and (A2) for ¢ € U? the solution z estimates as follows:

CK N o
(o) < —= Y (s e A < Oy AT, (5.19)

We stress that this estimate is independent of /.

Step 4. Transition to limit. Changing the notation, we denote by z,(q) the
solution of (5.12) that we have constructed, and rewrite (5.12) as

—iwy - Vay + Exy + Bh(q)xy = b(q) + z¢(q),

where z; = Bh™z,. By (5.19) and Lemma 5.2, |z,|V” < M ¢=1/(n2+1) with
some M independent of £. Moreover, still by (5.19), the sequence {z,} contains
a subsequence such that both {z,} and {Vx,} converge uniformly in U3 D
U(0 —A). Namely zy; — x and Vz, — Vz, where

2(q) VO~ < CLE AT (5.20)

As zp — 0 and Wy — w, then z(q) is a solution of (5.4).

Since (5.20) implies (5.7), then Theorem 5.1 is proven. [
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ADDENDUM. THE THEOREM OF A.N. KOLMOGOROV

A1l. Introduction.

The celebrated theorem of Kolmogorov states that most (in the sense of mea-
sure) of quasiperiodic solutions of an integrable analytic Hamiltonian equation
persist under analytic perturbations of the hamiltonian, provided that Hessian
of the hamiltonian does not vanish identically. Kolmogorov stated this result
and sketched its proof in [Kol]. The proof was written later in full details
by Arnold and Moser, who used similar ideas to tackle other problems, thus
originating the KAM-theory (see e.g., [A2, Mol]).

During more than 40 years of its history the theorem has been sharpened
and new important related results were proven. Many of them can be found in

the books [AKN, BHS, Her2, Laz, Mol, Tr|.

Despite the improvements and developments, the Kolmogorov result still
remains “the KAM-theorem”, both because its beauty and its huge interdisci-
plinary importance (this result is quoted and discussed in majority of scientific
works, devoted to chaotic and regular dynamics).

Below we present a proof of the theorem, based on the techniques and ideas,
developed to prove the abstract KAM-theorem of this book. Some of these
techniques are due to the author,’ some were developed by other mathemati-
cians.? We follow closely the proof of Theorem II.1.3. Namely, we keep its
notations and some fragments of arguments below are identical to the corre-
sponding fragments of the proof of Theorem II.1.3.

A2. Theorems A and B.

Let P be a connected bounded domain in R™. In the symplectic space
(PxT"™, dpAdq) we consider an integrable hamiltonian system with the analytic
hamiltonian h(p):

p=0, ¢=Vph(p), (1)

and its perturbation:

p - _que(pa Q)v q - vae(pa 6)' (2)

Here 0 < ¢ < 1 and He = h(p) + eH1(p,q) with some analytic function Hj.
The phase-space P x T" is filled with Lagrangian tori 7)) = {p} x T", which
are invariant for the integrable equation (1). The theorem of A.N.Kolmogorov
states that most of them persist as analytic invariant tori of the perturbed
equation (2), provided that e is sufficiently small and

Hess h(p) # 0. (3)
More specifically, the following result holds for any pg € (0,1/9):

Hn particular, the idea to treat hamiltonians as a Lipschitz (rather than analytic) func-
tions of the frequency-vector.

2In particular, the idea to pass from Theorem A below to Theorem B is due to J.Moser.
It has been systematically used by J.Pdschel.
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Theorem A. Let (3) holds. Then there exist a Borel subset P. C P and a
Lipschitz embedding ¥, : P. x T™ — P x T™, analytic in the second variable,
such that:

a) mesp,(P\ P.) — 0 as e — 0;

b) the map 3. is CeP°-close to the identity map, both in the uniform and in
the Lipschitz norm;

c) each torus T}, = X .(1}}), p € P, is invariant for equation (2) and is
filled with its time-quasiperiodic solutions he(t) of the form h(t) = b(t;p,q) =
Ye(p,qt+twe(p)) (p€ P, qeT"), where w. = we(p) and |w.—Vh(p)| < Cero.

Since the function h is analytic, then due to (3) the set {p | Hess h(p) = 0}
is a closed zero—measure set. Hence, for any v > 0 we can find a finite system
of open connected subsets P; C P such that mes (P \ UP;) < v and Vh defines
diffeomorphisms Vh : F] — R™.  Accordingly, it is sufficient to prove the
theorem with (3) replaced by the stronger assumption:

the map Vh : P — Q € R" is a diffeomorphism. (4)

(To get Theorem A from this new result it suffice to apply it to the sets P; and
next send v to zero).

To prove the theorem we have to check that a “typical” torus 1), a € P,
persists under the perturbation. After our goal is formulated in this way, it is
natural to scale the equation near the torus 77"

p=a+e3p, q=4q. (5)

Since dp A dg = e 2/3dp A dg, then in the tilde-variables the hamiltonian takes
the form3:

He(B, G a) = e 2*(h(a+ €/3p) + eHi(a + /P, §))
= e 23h(a) + Vh(a) - p+ /3 (H + e Thy).

Here hy = h(a + €2/3p) — €2/3Vh(a) - p, so e *hy = €'/30(|p|?). Accordingly,
H, + ¢ 'hy is an analytic function such that

B b
|Hy + € thy| < C  for p e O5(C"), a€P+gcC, Im G| < (6)

5 ’
uniformly in 0 < e < 1. Due to (4), we can replace the parameter a € P of the
substitution (5) by the parameter w,

w = Vh(a) € Q= Vh(P).

3This is one of basic properties of Hamiltonian equations (see [A1], cf. the Corollary to
Theorem 1.1.12). It can be trivially checked by substituting (5) to equations (2).
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Let us denote
H(p, Gw,e) = Hi 4+ € 'hy la—(vn)-1(w) -

Neglecting the irrelevant constant e~2/3h(a), we write the hamiltonian H, as
He(p, Giw.e) = w-p+ e PH(p, G w,e).
Due to estimates (6), the function H is Lipschitz in w € €2, analytic in p, ¢ and

|H|05(C”)XU(5/2)7Q <C,

uniformly in e. Here for any ¢’ > 0 we denote

U(")={qeC"/2xZ" | |[Imq| < &'} .

|05(C")xU(5/2),0

Concerning the norm | - , see the section Notations.

Now Theorem A follows from its sibling (which is another appearance of the
Kolmogorov’s theorem):

On the domain (Os x T™, dp A dq), where Oy abbreviates O5(R™), let us
consider the linear hamiltonian Hy = w - p, depending on the parameter w €
) € R", and its analytic perturbation H.,

He=w-p+eH(p,gw,e).
Corresponding perturbed Hamiltonian equations are:
p=—-eV4H, ¢=w+eV,H. (7)

Choosing any p € (0,1/3) and denoting by ¥y the map T™ x Q@ — O5 x T
which sends a point (¢,w) to (0, q), we have:

Theorem B. Let H be an analytic function of the (p, q)-variables such that
|1T-I|O<‘((Cn)XU(‘S)’Q < 1 with some 6 > 0, uniformly in 0 < & < 1. Then there
exist a Borel subset Q. C Q and a Lipschitz map V. : T" x Q. — Os x T,
analytic in the first variable, such that:

a) mes,(Q\ Q) —0ase— 0,

b) ’qjs _ \I/()’TnXQ‘S’Lip < CEP,

c) each torus ¥.(T" x {w}), w € Q., is invariant for the flow of equation
(7) and is filled with its quasiperiodic solutions V. (qo + w't,w), where go € T",
W =w'(w) and |w' —w| < CeP.

To show how Theorem B with ¢ replaced by §/2 and ¢ equal to C'el/3 implies
Theorem A, we choose P. = (Vh)™1Q. and define the map . : P. x T —
P x T™ as follows:

Ye(p,q) = (p + 2311, 9. (¢, Vh(p)), M, T. (g, Vh(p))>
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(IT, and I, stand for the natural projectors on R™ and T™ respectively). Since
the substitution (5) transforms a solution (p, ) of (7) to the solution of (2),
then the curves Y. (p, ¢+twe(p)), where w.(p) = w’'(Vh(p)), satisfy the equation
(2). Clearly the maps Y. and w. meet the estimates in assertions b) and c) of
Theorem A, so the theorem follows.

The restriction pg < 1/9, imposed in Theorem A, looks unnatural and indeed
it is superficial: the theorem remains true for any pg < 1. To get this result,
first few steps of the KAM-procedure which proves the theorem, should be done
“by hand”, see in [K] Refinement 2, p.51.

A3. Sketch of the proof.
Proof of the Theorem B, presented below, uses a version of the KAM-
procedure. We start with its brief description.
Let us introduce the sequence of real numbers {e,,} which “very fast” con-
verge to zero:
ey =" >0,

and a decreasing sequence of complex neighbourhoods O,, of the torus {0} x T™:
Om = 0_2/3(C") x U(dm).

Here {d,,} is the defined below in section A5 decreasing sequence 6 = §y >
51 > 2+ >6/2. By OF we denote a real part of the complex domain O,,.

The KAM-procedure we use is given by the following construction. For
m=0,1,... we find:

1) an analytic function H,, on the domain O,, which is 5%3-01056 to an
appropriate linear function p - A,, (for m = 0, the function Hy equals H.).
This function is treated as a hamiltonians of the corresponding Hamiltonian
system;

2) a Borel set €, C Q such that 2, C Q,,_1 and Qy = Q;

3) a symplectic transformation Sp,(-;w) : O, — O}, defined for w in
Qun+1, which analytically extends to O,,+1 and transforms the function H,, to
Hm+1-

When the objects above are obtained, we note that the transformation Sy o
-+ 08,,—1 with a large m “almost integrates” the equation (7). Indeed, since
H.,, “almost equals” p-A,,, then the curves t — (0, g+ A,,t) “almost satisfy” an
equation with the hamiltonian H,, and the curves t — (Spo---0S,,-1)(0,q +
A,,t) “almost satisfy” the original one, provided that w € Q,,. The limiting
transformation Sy o Sy o... is defined on the torus {0} x T" if w € Q. := N,
and sends the limiting curves (0, ¢ + Axt) to exact solutions.

A4. Reformulation of the theorem’s assertion.

We note that Theorem B which we are going to prove is equivalent to the
following result: for any v > 0, there exists a Borel subset {25 C € such that
mes, (2 \ £25) < v and the assertions b), c), of the theorem hold as soon as
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e < &(y), where &(7y) > 0 is continuous in v and goes to zero with «. This
function may be assumed to be monotonic in v.* So the inverse function ~(¢),

7(e) = min{y | £(7) = ¢},

is positive for € > 0, goes to zero with ¢, and the set (). := ny(s) satisfies all
claims of Theorem B.

A5. Proof of Theorem B.
We introduce an increasing sequence {e(j)} as in section I11.3.2. That is,
e(0) =0 and

e(m)=1"724+--+m /K., K.=2(1"2+2"2+...), (8)

so e(m) < 1/2 for all m. Now we define a “radius of analyticity d,, at the m-th
step” as

Om = 0p(1 — e(m)).
We shall use the sequence {¢,,} and the domains O,,, defined earlier. Besides,

we define the intermediate numbers 47, :

el .
S =00 > 61 > 568 =5, 5%:Tjam+%5m+1,

and the intermediate domains OJ, and U},

Om =020, 2200 D01, 0 =04, s xU(),
Un=U2 DUl >--- DU =Uny1, Ul =U)

(the inclusion O%, > O,,.1 holds provided that ¢ is sufficiently small).

Below (as well as in the proofs of Part II) C, C; etc. stand for different pos-
itive constants, independent of m and e¢; C(m), C1(m) etc. stand for different
functions of the form C(m) = Cym®2. The constants C; may depend on .

All arguments will be done under the assumption that ¢ is sufficiently small,
i.e. € < ¢ for some positive £(y). Since the sequence &, decays with m faster
than any exponent, then choosing & sufficiently small we may achieve that

C(m)el, <1 Vm >0,

for any fixed C'(m) and v > 0. We shall use this estimate without further
remarks, decreasing in a need £ finitely many times.

“4since if £ is not monotonic, then we can replace it by the bigger (i.e.,“better”) function

€(y) = max{&(7) | 0 < 7 < v}, modifying the sets 25 accordingly.
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Hamiltonians H,,. For any m > 0 we consider an analytic hamiltonian
H.n(p,q;w) on the domain O,,, depending on the parameter w € Q,, C Q.
For m = 0 this hamiltonian equals H.. For any m > 0 it has the form

Hm - HOm(p;w) + EmHm(pa q;w)' (9)

The term Hj,, is a liner function
Hom = p - A (w);

this is an “essential part” of the hamiltonian. The term ¢,,H,, is viewed as a
perturbation. The set §2,,, is a Borel subset of {2 such that

mes (2 \ Q) < ye(m). (10)
The map w +— A,, is Lipschitz and is close to the identity:
| A (w) — w|Pm P < 9K, e1/3¢(m) (11)

(] - [=MP stands for the Lipschitz norm, see Notations, and K, is defined in
(8)). The function H,, is assumed to be analytic in O,, and satisfy there the
following estimate:

|H,, |0 Sm < 2™ (12)

Corresponding Hamiltonian equations take the form
p=—-—enVeHm, {¢=~A,+enVHpy. (13)
The original equations (7) are the equations (13)|,,=0. The hamiltonian Hy =

H and the frequency vector Ay = w clearly satisfy (12) and (11) with m = 0.

Now our goal is to construct the chain of symplectic transformations Sy,
S1, ... which successively transform the hamiltonian Hy = H. to H;, Hs etc.,
as it was indicated above.

Step 1: Averaging. Isolating an affine in p part of the hamiltonian H,,,
we write it as

H,, = h(q;w) +p-h'P(q,w) + Hap(p, q;w),

where Hs,, = O(|p|?). Subtracting from H,, the irrelevant constant, equal to
its mean-value in ¢, we achieve that (27)~" f h%dq = 0. The g-component of
equation (13) for p =0 is

G = A + enh(q;w).
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Following the general ideology of averaging (see in [AKN]), we calculate the
averaged frequency A,,41(w),

Apmi1 = Ay + €, h%P, AP = (2%)_”/h1pdq,

and modify accordingly the essential part Hy,, of the hamiltonian. Namely,
denoting h? = h'? — hP we rewrite H,, as

Hiw =p - A1 +em (R +p - hP) +en Hop (14)
—— — ——
H07n+1 Hlm

Clearly,
Hlm + H2m - Hm — D hOp(w).

Lemma 1. The terms of the decomposition (14) estimate as follows:

a) |hQ|UM7Qm <™,
‘hOp’Qm,Lip <2. 2m67—n2/3’

Uy Qrm 1.-2/3
|hP| < gmHle—2/3,

b) In the domain O,yy1 C Oy, the term e, Hop, is twice smaller than the
bound for a perturbation €,,+1H,,+1 of the next step:

6m|I{2m|Om+1’Qm < 2mf‘:erl-

c) The functions Hyy,, Hap, are analytic in O, and are real for real argu-
ments.

Proof. a) The estimates for h? and its Lipschitz constant follow from (12) since
hi(q;w) = Hy,n (0, q;w).
Since h'P(q;w) = V,Hp (0, g;w), then (12) and the Cauchy estimate imply
that
’h1p| < 2m€7—n2/3.

Since h°P is an average of h'P, then its norm is bounded by 2’”5;2/ ® and the
norm of A? = h'? — K% is bounded by 2 - 2’”5;12/ % So to prove a) it remains
to estimate the Lipschitz constants in w. To bound a Lipschitz constant of h'?
we consider the vector-function (V,H,,(0,q;w1) — VpHp (0, ¢ w2))/|wi — wel
and argue as above. This bound implies the claimed estimates for Lipschitz
constants of A% and hP.

b) Let (p,q) € Oppy1 and v = £20/3  Then for any z from the unit complex
disc we have ((z/v)p,q) € Oy,. On this disc let us consider the function z +—
H,,((z/v)p,q;w) and its Taylor series at zero:

Hm(Sp,q;w> =ho + hiz + ho2? + ...,
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where hy = hi(q;w). By the Cauchy inequality and (12), |hy| < 2™ for every
k. Therefore,

lemHom (p, Q)| = em|hov® + hav® + ... | < e®2" |1 +v 4+ 12+

1
4
< gin-‘r P/3:2m < €m+12m,

if £ is sufficiently small. A similar estimate holds for the Lipschitz constant, so
the assertion is proven.

c¢) The analyticity is obvious; the functions are real for real arguments since
the hamiltonian H,, is. O

Due to item a) of the lemma and (11),
Apy1 — w[FBP < 9K eY3e(m) + 2mH1el/3 < oK, eV 3e(m + 1) (15)

since 2m+1e}/? < 2e/3(m + 1)72 for every m > 0 if ¢ is sufficiently small.
Hence, A,, 11 satisfies (11) with m :=m + 1.

Step 2: Formal construction of the transformation S5,, and deriva-
tion of homological equations. We construct the transformation 5, as
the time-one shift along trajectories of an auxiliary autonomous Hamiltonian
vector field

p=——enVeF, ¢=¢e,V,F. (16)

The transformation S, has to kill an “essential part” of the perturbation in
hamiltonian (14), where the “perturbation” is given by the terms of order &,.
Due to the item b) of Lemma 1, the term &,, Ha,, is irrelevant, so the essential
one is €,, Hi,,. The informal rule to kill a term is that the auxiliary hamiltonian
has to be similar to a term to be killed. Accordingly, we take the hamiltonian
F' of the same form as Hy,,:

F=fgw) +p- fPgw)
The flow of equation (16) is formed by canonical transformations S* and

d
T Hm S* |i—0= em{F, Hpm} + O(e2),

where {F,H,;,} = V,F -V Hy — Vo F - Vo, H,, (cf. Theorem 1.1.7). Since
Hp = HOerl +emHim +emHom, and EmHom = O(Em+1) in the domain Om+1

by Lemma 1, then for (p,q) € O,,41 the transformed hamiltonian H,, o S,, =
Hpm o St |1=1 equals

Hm(sm(p7 q;w);w) = HOerl + 8m(fllm + {F7 Hm}) + O(‘Serl)-
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Noting that V,Hom41 = Apt1, VgHom+1 = 0 and abbreviating

/ /
Apyi=w, W -V,=

o'’
we have {F, Hy i1} = —%F. Since formally

em(Him + {F, Hin}) = em(Him + {F, Hym11}) + O(e},),
then

of1 ofp
HmOSmZHOm+1+5m (hq+p'fq_ 83:/ —p- af)/) +O(5m+1).

Therefore we shall have
Hyp +{F, Homt1} =0 (17)
and the transformed hamiltonian H o S, will (formally) take the desired form

P A1+ O(Emy1) in the domain Oy,4q (cf. (9) with m :=m + 1), provided
that the functions f¢ and fP satisfy the following homological equations:

af1
N hi(q;w),
ofP
aw/ = h’p(q; w)

Step 3: Solving the homological equations. This step is described by
the following lemma:

Lemma 2. Let us define the set Qi1 as Qy, \ ', where

O ={we Q|- s <C m+1)"2s|"
for some s = s(w) € Z™ \ {0}}7

and C = C(v) is sufficiently large. Then

a) mes, Y < ~y(m+1)"2/K, (for the constant K, see (8));

b) for any w € Q11 the homological equations have unique zero-meanvalue
analytic solutions f1 and fP, real for real arguments, and such that

1 1
[Tt < O(m), [ fP|Tme S < Cm)e, PP,

Proof. As ' = A, 11 satisfies (15), then the map Q,, > w — &' is Lipschitz-
close to the identity. So it changes the n-dimensional Lebesgue measure no more
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than twice (see Lemma Al in Appendix II.1). Therefore, mes, Q" < 2mes,2,
where

Q= {weQ+1]|w s <CHm+1)"?|s|™" for some s # 0}

(here © + 1 is the 1-neighbourhood of € in R™. This set clearly contains range
of the map w — w’).

By Lemma A2 from Appendix I1.2, mes,Q < C(Q)(m + 1)"2/C. So a)
follows, if we choose C' sufficiently large.

The assertion b) results from Lemma Al in the same Appendix with C, =
C(m+1)? and p = 4, — 6}, = GK*((STOHP since analytic norms of the functions
h? and h? are bounded in Lemma 1. [J

Step 4: Study of the transformation S,,. The transformation .5,, is a
time-one shift along trajectories of the Hamiltonian equations (16), which we
now write as

d

G0 =eu( = ViF(p.gi0). f(00) = enVpgw).  (18)

We abbreviate (p,q) = b, so these equations abbreviate to
h = 5mv(h; w)'
We shall study equations (18) in domains O, j > 2, supplied with new
distance dist_. The distance corresponds to the weighted norm |- |_ in the

space C" x C"* = C?", where

(. &)|- = |p|* + e, /31¢|>.

The space C2", given this norm, denotes C2". It follows from Lemma 2 and
the Cauchy estimate that

2
e VO Ot < O(m)el/3. (19)

Identifying tangent spaces T, O2, with C"™ x C", we write the linearised vector

_9f 9% F
field ¢, V, as the block-matrix &, ( gq 8?22 ) A straightforward anal-
9q

ysis of the blocks (again based on Lemma 2 and the Cauchy estimate) shows
that ,
lem Vi ()| Ot < C(m)ey)?, (20)

where || - || stands for the operator norm C?* — C?" or C?" — C?".
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Lemma 3. The map S, is an analytic symplectomorphism which maps OJ,
to OJ—1 for j = 3,4,5. It is close to the identity, namely:
3

@) | S — id| O™ < Oy (m)enl?;

b) ||Sma —ial||ofn’Qerl < C’g(m)&?%?’, where || -|| stands for the operator norm
C?" — C?" or C?" — C?n.

c) All the results, stated above for the map S,, = S, remain true for any
mapSa,OSHSI.

Proof. Since ‘ _
dist_ (02,0, \ O ) > C~1(m) Vj>1,

then in virtue of estimate (19) the map S,, is an analytic symplectomorphism
which maps each domain O/ , j > 3, to OJ~1.
As

1
&Amw)—hzané V(S (B;w); w)dt,

then (19) implies the estimate for S,, —id, claimed in a). To bound the Lipschitz
constant in w, we denote n(t) = S*(h;w;) — S*(h;w2) and note that this curve
satisfies the equation

n=ecnV(h;wi) —enV(h2;w2).

Due to (20), Lipschitz constant of the map &,V in b, calculated both in the
weighted and non-weighted norms, is bounded by C (m)e%?’. Accordingly,

d
gl = C(m)en*(Inl- + w2 — wnl),  n0(0) =0.

So |n(1)|- < C4 (m)e},{3|w2 — w1 | by the Granwall lemma and the assertion a)
is proven completely.

To prove b) we note that for any ¢ the curves t — S*(h).& satisfy the
linearised equation & = e, Vi(h(t), so the estimates for the map Sy, — id
follow from (19) and (20).

The same arguments as above apply to any map S?, 0 < 6 < 1, thus proving
c). O

Step 5: The transformed hamiltonian. At this step we study the
transformed hamiltonian

7_(m o Sm - H0m+1 o Sm + 6m(I—Ilm + HQm) o Sm (21)

Since

ﬂU=ﬂ®+M®+AU—wm®ﬁ
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for any C%-smooth function f(t), then

d
Hom+41 0 Sm = Homi10S" =Homi1 + EHOWH—I 0 S 1o

1 d2 .
+/0 (1 — t)ﬁHOmH o S'dt.

Using (17) we get:

d
%H0m+1 08" =&, {F, Hyms1}0S" = —emHimo S
and
d? t d t 2 t
@H()m—i—l 0S" = _8mEHlm 0S" = —€m{F, Hlm} o S*.
Therefore,

1
H0m+1 9] Sm = Hom_|_1 - 8mH1m - 6371/ (1 - t){F, Hlm} @) Stdt.
0
Similar, since %(Hlm + Hop) 0 St = e {F, Hipy + Hop} 0 S, then

1
gm(Hlm‘I'HQm)o mZEm(Hlm—FHQm)—l—{f%n/ {F, H1m+H2m}OStdt.
0

Substituting the obtained relation to (21) we find that
7_(m o Sm :HO m+1 — EmHlm + Em(Hlm + HZm)

1 1
2 [0, By o St 42, [, Hi + Ha o S'at
0 0

That is, Hy, 0 Sy = Homa1 + €my1Hmy1, where

1
8m+1I—Im+1 — 5mH2m+572n/ ((t - 1){F7 Hlm}
0

+{F, Hy, —p-h°P}) o S'dt. (22)

We checked at the end of Step 1 that the frequency map A,,+1 satisfies (11).
Now we claim that also the domain 2,41 and the hamiltonian H,,+1 := H,, o
Sm satisfy corresponding estimates estimates (10) and (12) (with m replaced
by m + 1). Indeed, since Q,,,11 = Q,;, \ €/, then using Lemma 2 we get:

mes (Q\ Q11) < mes (2\ Q) + mes Q' <

ve(m) +~y(m+1)72/K* = ye(m + 1),
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s0 Q41 satisfies (10).

It remains to check that the term €,,11 Hyy41, defined by (22), satisfies (12)
with m := m 4+ 1. The term ¢,, Hs,, was treated in Lemma 1. To estimate the
integral-terms we note that by (12), Lemmas 1, 2 and the Cauchy estimate,
everywhere in O2, we have:

|V, K [|Om Bt < C(m)ey 23, ||V K||Om @mt < C(m),

where K = F, or K = Hy,, or K = H,, — p- h°P. Therefore all the Poisson
brackets which enter (22), for all ¢ are bounded by C (m)eff/ % everywhere in
02, as well as their Lipschitz constants. Due to Lemma 3, the transformations
St with 0 < ¢t <1 map O3, to O2, and they are Lipschitz-close to the identity.
Hence, the integral in the r.h.s. of (22) and its Lipschitz constant in w € €, 11

are bounded by C(m)s%g.

Step 6: Transition to limit. Here we show that the set (SpoSjo...)({0} %
T™) C R™ x T™ is an analytic torus, invariant for equation (7). By h we denote
points (p,q) € R™ x T™; by Il and II, we denote the projectors (h;w) — b
and (h;w) — w, respectively. Besides, we set

Q. =Ny,

and
O={0} xU((6/2) CcC" x (C"/2nxZ").

Then €. is a Borel subset of 2 and mes (2\ Q) < /2 due to (10). The set O is
a neighbourhood of the torus {0} x T™ in the complex cylinder {0} x (C™/2#xZ™),
which is contained in every domain O,, since d,, > 0/2.

For 0 < r < N we consider the maps

YN :ONxQn — O, (hyw)— Spo---0Sy_1(h),

where S;(h) = S;(h;w) (by definition, X7 is the projection II). We note that
the domain of definition of every map X% contains the set O x (..
We claim that
S0 ar — Ty O % <, (23)
uniformly in M > 0. The estimate follows by indication in M. Indeed, for
M = 0 it is obvious. If M > 1, then

Srar — My = (S, — Ty) o (S75h, x I1) + (S75h, —11y).

T

Let us denote the L.h.s. of (23) as D] ,,. Using the last identity, Lemma 3 and
the base of induction we find that

DIy < CO(r)er/3(DIth, +2) + Dith, <3C(r)er/® +ef,, <ef,
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o (23) follows.
Similar to (23),

II—ET (h;w) —id[| <e7 (24)

for any r < N and any h € ON, w € Qpn. To prove the estimate it suffice to
write 75 E’” using the chain rule and apply Lemma 3.

Due to (23) for every m > 0 and for each w € €., the maps X7, v (- w),
restricted to O, uniformly converge as N — oo to an analytic map

Y (w) O — O,

and 37" o 3B = 3T for all p > m. By analyticity, the derivatives %Z% N
converge to a derivative of the limiting map. Using (24) we get that the latter
satisfies the estimate

||—2m( w)—id|| <ef, V(h,w) € O x Q.. (25)

Now we discuss the frequency vectors A,,. Due to the recurrent definition
of Apyyq in terms of A,, and item a) of Lemma 1, [A™+1 — Am @™ Lip <
2m+15717{3. So the maps A,, : Q,,, — R", restricted to §2., converge to a limiting
Lipschitz transformation Ay : Q. — R™ such that |Ay — id|?% 1P < Cel/3
and

Ao — Ay | < 27mF261/3,

Let us fix any w € €. and gg € T". We consider the curve
Boo () = (0, g0 + tAx(w),0) C {0} x T™

and its images under the maps X7, i.e. the curves b,,(t) = X2 b (t) C Op,.
We shall show that ho(¢) is a solution for (7). To do this we first use (25) to
get that

B = 2% (Bo)hoe = (0, Asc) + O(efy) C R,
Let us denote by V,,, a Hamiltonian vector field with the hamiltonian H,,. By
(12), Vi (hm) = (0,A,) + O(eP,). Since A, = Ay + O(e?,), then V(b)) =
(0,As) + O(e?,) and we get that
B = Vin(Bm) + O(eh,). (26)

The linear map %2, (h,,,) sends by, to o, sends Vp, (hm) to Vo(ho) and its norm
is bounded by two due to (24). Applying this map to (26) we get that

ho = Vo(ho) + O(c%,)

for every m. Hence, hy = Vo(bo). That is, the curve X% (0, qo + tAs(w)) is a
solution of equation (7) for any gg € T", if w € Q..
This proves Theorem B if we choose Y. (q,w) = X2 (0, ¢;w) and o’ = A (w).
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