
Abstract

s

Wave turbulence: the conjecture, approaches and rigorous results Sergei B. Kuksin

Consider the following nonlinear PDE on the torus $\mathbb{T}_{L}^{d}=\mathbb{R}^{d} /\left(L \mathbb{Z}^{d}\right), L \geq 1$:

(1) $\dot{u}+i \Delta u+\varepsilon \rho i|u|^{2} u=-\nu(-\Delta u+1)^{p} u+\sqrt{\nu}\langle$ random force \rangle.

Here $u=u(t, x)\left(t \geq 0, x \in \mathbb{T}^{d}\right)$ is an unknown complex function, the parameters ε, ν, ρ satisfy $0<\varepsilon \leq 1,0 \leq \nu \leq 1, \rho \geq 1$, and p is an integer, "not too small in terms of d " (e.g. if $d \leq 3$, then it suffices to assume that $p \geq 1$). The random force is smooth in x and is a while noise in t; it is specified below. We regard (1) as a dynamical system in a suitable function space of complex functions on \mathbb{T}^{d}. This is a random dynamical system if $\nu>0$.

The wave turbulence (WT) studies solutions of this equation for large t when $\varepsilon, \nu \ll 1$ and $L \gg 1$ (ρ and the random force for a while are assumed to be constant). Classically $\nu=0$, then (1) becomes the defocusing NLS equation; see [1, 4]. The stochastic model (1) $\nu_{\nu>0}$ was suggested in [3], also see [2] and [4]. Relation between the small parameters ε and ν is crucial. If $\nu>0$ is "much smaller than ε ", then the stochastic model becomes similar to the deterministic case, while if ν is "much bigger than ε ", then (1) becomes similar to the non-interesting linear stochastic system $(1)_{\varepsilon=0}$. Natural relation between ν and ε is

$$
\begin{equation*}
\nu=\varepsilon^{2} \tag{2}
\end{equation*}
$$

(cf. the references above and $[5,6]$). We assume it everywhere below when talking about eq. (1) with positive ν.

In the classical setting (when $\nu=0$) the WT is concerned with the behaviour of solutions for (1) with "typical initial data" when

$$
\begin{equation*}
t \rightarrow \infty, \quad \varepsilon \rightarrow 0, \quad L \rightarrow \infty \tag{3}
\end{equation*}
$$

(the relation between the three parameters in unclear and has to be specified). Usually people, working in WT, decompose solutions u to Fourier series

$$
u(t, x)=\sum_{k \in \mathbb{Z}_{L}^{d}} v_{k}(t) e^{2 \pi i k \cdot x}, \quad \mathbb{Z}_{L}^{d}=L^{-1} \mathbb{Z}^{d}
$$

One of their prime interests is the behaviour under the limit (3) of the averaged actions

$$
\left.n_{k}(t)=\left.\frac{1}{2}\langle | v_{k}\right|^{2}(t)\right\rangle, \quad k \in \mathbb{Z}_{L}^{d},
$$

where $\langle\cdot\rangle$ signifies a suitable averaging. When $L \rightarrow \infty$, the function $n_{k}(t)=$ $n_{k}^{L}(t)$ on the lattice \mathbb{Z}_{L}^{d} asymptotically becomes a function $n_{k}^{0}(t)$ on \mathbb{R}^{d}. The main conjecture of the WT, made in 1960's (and going back to an earlier work of R. Peierls on the heat conduction in crystals) says that, under a suitable scaling
of time $\tau=\varepsilon^{a_{1}} t$ and of the constant $\rho=L^{a_{2}}$, where $a_{1}, a_{2}>0$, the limit $n_{k}^{0}(\tau)$, $k \in \mathbb{R}^{d}$, exists and satisfies the wave kinetic equation
(4) $\frac{d}{d \tau} n_{k}(\tau)=$ Const $\int_{\Gamma_{k} \subset \mathbb{R}^{3 d}} n_{k_{1}} n_{k_{2}} n_{k_{3}} n_{k}\left(\frac{1}{n_{k}}+\frac{1}{n_{k_{3}}}-\frac{1}{n_{k_{1}}}-\frac{1}{n_{k_{2}}}\right) d k_{1} d k_{2} d k_{3}$,

$$
\Gamma_{k}=\left\{\left(k_{1}, k_{2}, k_{3}\right): k_{1}+k_{2}=k_{3}+k,\left|k_{1}\right|^{2}+\left|k_{2}\right|^{2}=\left|k_{3}\right|^{2}+|k|^{2}\right\} .
$$

The celebrated Zakharov ansatz (see [1, 4]) applies to this equation and implies that it has autonomous solutions of the form $n_{k}(\tau)=|k|^{\gamma}, \gamma<0$, intensively discussed in the physical literature as the Kolmogorov-Zakharov energy spectra.

Progress in the rigorous study of the deterministic equation $(1)_{\nu=0}$ was achieved in two very different works [7, 8], but it seems that both approaches do not allow to derive rigorously the kinetic equation (4).

In our talk we report recent progress in deriving a wave kinetic equation for the limiting behaviour of averaged actions for solutions of the stochastic equation (1), (2). Let us pass in this equation to the slow time $\tau=\nu t=\varepsilon^{2} t$ and denote $\lambda_{k}=\left(|k|^{2}+1\right)^{p}$. Then the equation, written in terms of the Fourier coefficients v_{k}, reeds

$$
\begin{equation*}
\frac{d}{d \tau} v_{k}(\tau)+i|k|^{2} \nu^{-1} v_{k}=-i \rho \sum_{k_{1}+k_{2}=k_{3}+k} v_{k_{1}} v_{k_{2}} \bar{v}_{k_{3}}-\lambda_{k} v_{k}+b_{k} \frac{d}{d \tau} \beta_{k}(\tau) \tag{5}
\end{equation*}
$$

Here $\left\{\beta_{k}, k \in \mathbb{Z}_{L}^{d}\right\}$ are independent standard complex Wiener processes and the numbers b_{k} are real non-zero, fast converging to zero when $|k| \rightarrow \infty$ (the random force in eq. (5) specifies that in (1)). This equation is well posed and mixing. The latter means that in a suitable function space of complex sequences $\left\{v_{k}, k \in \mathbb{Z}_{L}^{d}\right\}$ there exists a unique measure $\mu_{\nu, L}$, called a stationary measure for the equation, such that the law $\mathcal{D}(v(\tau))$ of any solution $v(\tau)$ for (5) weakly converges to $\mu_{\nu, L}$ when $\tau \rightarrow \infty$; see in [5]. So if t is much bigger than L and ν^{-1}, then the problem of studying the behaviour of solutions for (5) under the limit (3) may be recast as the problem of studying the measure $\mu_{\nu, L}$ when $L \rightarrow \infty$ and $\nu \rightarrow 0$.

Consider the following ν-independent effective equation for (5):

$$
\begin{equation*}
\frac{d}{d \tau} a_{k}=-i \rho \sum_{\substack{k_{1}+k_{2}=k_{3}+k \\\left|k_{1}\right|^{2}+\left|k_{2}\right|^{2}=\left|k_{3}\right|^{2}+|k|^{2}}} a_{k_{1}} a_{k_{2}} \bar{a}_{k_{3}}-\lambda_{k} a_{k}+b_{k} \frac{d}{d \tau} \beta_{k}(\tau) . \tag{6}
\end{equation*}
$$

This equation also is well posed and mixing, see [5]. Denote by m_{L} its unique stationary measure. It is proved in [5] that eq. (6) comprises asymptotical properties of solutions for (5) as $\nu \rightarrow 0$. Namely, that
i) $\mu_{\nu, L} \rightharpoonup m_{L}$ as $\nu \rightarrow 0$;
ii) if $v^{\nu, L}(\tau)$ is a solution for (5) with some ν-independent initial data at $\tau=0$ and $a^{L}(\tau)$ is a solution for (6) with the same initial data, then

$$
\mathcal{D}\left(\frac{1}{2}\left|v_{k}^{\nu, L}(\tau)\right|^{2}\right) \rightharpoonup \mathcal{D}\left(\frac{1}{2}\left|a_{k}^{L}(\tau)\right|^{2}\right) \quad \text { as } \quad \nu \rightarrow 0 \quad \text { for } \quad 0 \leq \tau \leq T,
$$

for each fixed $T>0$ and every $k \in \mathbb{Z}_{L}^{d}$.

Denote $n_{k}^{L}(\tau)=\frac{1}{2} \mathbb{E}\left|a_{k}^{L}(\tau)\right|^{2}$ and choose in (6)

$$
\begin{equation*}
\rho=L^{1 / 2} \rho_{0}, \quad b_{k}=L^{-d / 2} b_{k}^{0} . \tag{7}
\end{equation*}
$$

Using certain heuristic tools from the arsenal of WT, in [6] we proved, on the physical level of rigour, that under the limit $L \rightarrow \infty$ the function $\mathbb{Z}_{L}^{d} \ni k \mapsto$ $n_{k}^{L}(\tau)$ weakly converges to a function $\mathbb{R}^{d} \ni k \mapsto n_{k}(\tau)$, which is a solution of the damped/driven wave kinetic equation

$$
\begin{align*}
\frac{d}{d \tau} n_{k}(\tau)=-2 \lambda_{k} n_{k}+\left(b_{k}^{0}\right)^{2} & +\int_{\Gamma_{k}} \frac{f_{k}\left(k_{1}, k_{2}, k_{3}\right)}{\lambda_{k}+\lambda_{k_{1}}+\lambda_{k_{2}}+\lambda_{k_{3}}} n_{k_{1}} n_{k_{2}} n_{k_{3}} n_{k} \tag{8}\\
& \times\left(\frac{1}{n_{k}}+\frac{1}{n_{k_{3}}}-\frac{1}{n_{k_{1}}}-\frac{1}{n_{k_{2}}}\right) d k_{1} d k_{2} d k_{3} .
\end{align*}
$$

Here the surface $\Gamma_{k} \subset \mathbb{R}^{3 d}$ is the same as in (4), and the function f_{k} is constructed in terms of Γ_{k}. It is positive, smooth outside the origin, and such that $C^{-1} \leq f \leq$ C for all k, k_{1}, k_{2}, k_{3} and a suitable constant C. Moreover, the Zakharov ansatz applies to (8) under a certain natural limit and allows to construct its homogeneous solutions of the Kolmogorov-Zakharov form. Based on this heuristics result and the rigorous assertions i), ii) above, we conjectured in [6] that, under the double limit $\lim _{L \rightarrow \infty} \lim _{\nu \rightarrow 0}$, the function $\mathbb{Z}_{L}^{d} \ni k \mapsto n_{k}^{\nu, L}(\tau)=\frac{1}{2} \mathbb{E}\left|v_{k}^{\nu, L}(\tau)\right|^{2}$ weakly converges to a function $n_{k}^{0}(\tau), k \in \mathbb{R}^{d}$, which is a solution of eq. (8). The main goal of this talk is to announce the following result, which is a modification of that conjecture:
Theorem (SK, a work under preparation). Let $\mathbb{R}^{d} \ni k \mapsto v_{k}^{0}$ be a smooth function with compact support, let $v_{k}^{\nu, L}(\tau)$ be a solution of (5), (7) such that $v_{k}^{\nu, L}(0)=v_{k}^{0}$ for $k \in \mathbb{Z}_{L}^{d}$, and let $n_{k}^{\nu, L}=\frac{1}{2} \mathbb{E}\left|v_{k}^{\nu, L}\right|^{2}$. Let $\nu \rightarrow 0$ and $L \rightarrow \infty$ in such a way that $\nu L \rightarrow 0$ sufficiently fast. Then there exists $\tau_{0}>0$ such that

$$
\lim _{\nu \rightarrow 0, L \rightarrow \infty} n_{k}^{\nu, L}(\tau)=n_{k}^{0}(\tau) \quad \text { for } 0 \leq \tau \leq \tau_{0}
$$

where $n_{k}^{0}(\tau), k \in \mathbb{R}^{d}$, is a solution for (8), and the limit holds with respect to a suitable weak convergence of functions.

References

[1] V. Zakharov, V. L'vov, G. Falkovich, Kolmogorov Spectra of Turbulence, Springer 1992.
[2] J. Cardy, G. Falkovich, K. Gawedzki, Non-equilibrium Statistical Mechanics and Turbulence, CUP 2008.
[3] V. Zakharov, V. L’vov, Statistical description of nonlinear wave fields, Radiophys. Quan. Electronics 18 (1975), 1084-1097.
[4] S. Nazarenko, Wave Turbulence, Springer 2011.
[5] S. Kuksin and A. Maiocchi, Resonant averaging for weakly nonlinear stochastic Schrödinger equations, preprint (2014).
[6] S. Kuksin, A. Maiocchi, Derivation of a wave kinetic equation from the resonant-averaged stochastic NLS equation, Physica D 309 (2015), 65-70.
[7] J. Lukkarinen, H. Spohn, Weakly nonlinear Schrödinger equation with random initial data, Invent. Math. 183 (2011), 79-188.
[8] E. Faou, P. Germain, Z. Hani, The weakly nonlinear large box limit of the 2D cubic nonlinear Schrödinger equation, preprint (2013).

