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Wave turbulence: the conjecture, approaches and rigorous results

Sergei B. Kuksin

Consider the following nonlinear PDE on the torus Td

L

= Rd

/(LZd), L � 1:

(1) u̇+ i�u+ "⇢i |u|2u = �⌫(��u+ 1)pu+
p
⌫ hrandom forcei .

Here u = u(t, x) (t � 0, x 2 Td) is an unknown complex function, the parameters
", ⌫, ⇢ satisfy 0 < "  1, 0  ⌫  1, ⇢ � 1, and p is an integer, “not too small in
terms of d” (e.g. if d  3, then it su�ces to assume that p � 1). The random force
is smooth in x and is a while noise in t; it is specified below. We regard (1) as a
dynamical system in a suitable function space of complex functions on Td. This
is a random dynamical system if ⌫ > 0.

The wave turbulence (WT) studies solutions of this equation for large t when
", ⌫ ⌧ 1 and L � 1 (⇢ and the random force for a while are assumed to be
constant). Classically ⌫ = 0, then (1) becomes the defocusing NLS equation;
see [1, 4]. The stochastic model (1)

⌫>0 was suggested in [3], also see [2] and [4].
Relation between the small parameters " and ⌫ is crucial. If ⌫ > 0 is “much smaller
than "”, then the stochastic model becomes similar to the deterministic case, while
if ⌫ is “much bigger than "”, then (1) becomes similar to the non-interesting linear
stochastic system (1)

"=0. Natural relation between ⌫ and " is

(2) ⌫ = "

2

(cf. the references above and [5, 6]). We assume it everywhere below when talking
about eq. (1) with positive ⌫.

In the classical setting (when ⌫ = 0) the WT is concerned with the behaviour
of solutions for (1) with “typical initial data” when

(3) t ! 1 , " ! 0 , L ! 1

(the relation between the three parameters in unclear and has to be specified).
Usually people, working in WT, decompose solutions u to Fourier series

u(t, x) =
X

k2Zd
L

v

k

(t)e2⇡ik·x, Zd

L

= L

�1Zd

.

One of their prime interests is the behaviour under the limit (3) of the averaged
actions

n

k

(t) = 1
2

⌦
|v

k

|2(t)
↵
, k 2 Zd

L

,

where h · i signifies a suitable averaging. When L ! 1, the function n

k

(t) =
n

L

k

(t) on the lattice Zd

L

asymptotically becomes a function n

0
k

(t) on Rd. The
main conjecture of the WT, made in 1960’s (and going back to an earlier work of
R. Peierls on the heat conduction in crystals) says that, under a suitable scaling
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of time ⌧ = "

a1
t and of the constant ⇢ = L

a2 , where a1, a2 > 0, the limit n

0
k

(⌧),
k 2 Rd, exists and satisfies the wave kinetic equation

d

d⌧

n

k

(⌧) = Const

Z

�k⇢R3d

n

k1nk2nk3nk

⇣ 1

n

k

+
1

n

k3

� 1

n

k1

� 1

n

k2

⌘
dk1dk2dk3 ,

�
k

= {(k1, k2, k3) : k1 + k2 = k3 + k, |k1|2 + |k2|2 = |k3|2 + |k|2} .
(4)

The celebrated Zakharov ansatz (see [1, 4]) applies to this equation and implies
that it has autonomous solutions of the form n

k

(⌧) = |k|� , � < 0 , intensively
discussed in the physical literature as the Kolmogorov-Zakharov energy spectra.

Progress in the rigorous study of the deterministic equation (1)
⌫=0 was achieved

in two very di↵erent works [7, 8], but it seems that both approaches do not allow
to derive rigorously the kinetic equation (4).

In our talk we report recent progress in deriving a wave kinetic equation for
the limiting behaviour of averaged actions for solutions of the stochastic equation
(1), (2). Let us pass in this equation to the slow time ⌧ = ⌫t = "

2
t and denote

�

k

= (|k|2 + 1)p. Then the equation, written in terms of the Fourier coe�cients
v

k

, reeds

(5)
d

d⌧

v

k

(⌧) + i|k|2⌫�1
v

k

= �i⇢

X

k1+k2=k3+k

v

k1vk2 v̄k3 � �

k

v

k

+ b

k

d

d⌧

�

k

(⌧) .

Here {�
k

, k 2 Zd

L

} are independent standard complex Wiener processes and the
numbers b

k

are real non-zero, fast converging to zero when |k| ! 1 (the random
force in eq. (5) specifies that in (1)). This equation is well posed and mixing. The
latter means that in a suitable function space of complex sequences {v

k

, k 2 Zd

L

}
there exists a unique measure µ

⌫,L

, called a stationary measure for the equation,
such that the law D(v(⌧)) of any solution v(⌧) for (5) weakly converges to µ

⌫,L

when ⌧ ! 1; see in [5]. So if t is much bigger than L and ⌫

�1, then the problem
of studying the behaviour of solutions for (5) under the limit (3) may be recast as
the problem of studying the measure µ

⌫,L

when L ! 1 and ⌫ ! 0.
Consider the following ⌫-independent e↵ective equation for (5):

(6)
d

d⌧

a

k

= �i⇢

X

k1+k2=k3+k

|k1|2+|k2|2=|k3|2+|k|2

a

k1ak2 āk3 � �

k

a

k

+ b

k

d

d⌧

�

k

(⌧) .

This equation also is well posed and mixing, see [5]. Denote by m

L

its unique sta-
tionary measure. It is proved in [5] that eq. (6) comprises asymptotical properties
of solutions for (5) as ⌫ ! 0. Namely, that

i) µ
⌫,L

*m

L

as ⌫ ! 0;
ii) if v⌫,L(⌧) is a solution for (5) with some ⌫-independent initial data at ⌧ = 0

and a

L(⌧) is a solution for (6) with the same initial data, then

D
⇣

1
2 |v

⌫,L

k

(⌧)|2
⌘
*D

⇣
1
2 |a

L

k

(⌧)|2
⌘

as ⌫ ! 0 for 0  ⌧  T ,

for each fixed T > 0 and every k 2 Zd

L

.
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Denote n

L

k

(⌧) = 1
2 E|a

L

k

(⌧)|2 and choose in (6)

(7) ⇢ = L

1/2
⇢0, b

k

= L

�d/2
b

0
k

.

Using certain heuristic tools from the arsenal of WT, in [6] we proved, on the
physical level of rigour, that under the limit L ! 1 the function Zd

L

3 k 7!
n

L

k

(⌧) weakly converges to a function Rd 3 k 7! n

k

(⌧), which is a solution of the
damped/driven wave kinetic equation

d

d⌧

n

k

(⌧) = �2�
k

n

k

+ (b0
k

)2 +

Z

�k

f

k

(k1, k2, k3)

�

k

+ �

k1 + �

k2 + �

k3

n

k1nk2nk3nk

⇥
⇣ 1

n

k

+
1

n

k3

� 1

n

k1

� 1

n

k2

⌘
dk1dk2dk3 .

(8)

Here the surface �
k

⇢ R3d is the same as in (4), and the function f

k

is constructed
in terms of �

k

. It is positive, smooth outside the origin, and such that C�1  f 
C for all k, k1, k2, k3 and a suitable constant C. Moreover, the Zakharov ansatz
applies to (8) under a certain natural limit and allows to construct its homogeneous
solutions of the Kolmogorov-Zakharov form. Based on this heuristics result and
the rigorous assertions i), ii) above, we conjectured in [6] that, under the double
limit lim

L!1 lim
⌫!0, the function Zd

L

3 k 7! n

⌫,L

k

(⌧) = 1
2 E|v

⌫,L

k

(⌧)|2 weakly
converges to a function n

0
k

(⌧), k 2 Rd, which is a solution of eq. (8). The main
goal of this talk is to announce the following result, which is a modification of that
conjecture:

Theorem (SK, a work under preparation). Let Rd 3 k 7! v

0
k

be a smooth function

with compact support, let v⌫,L
k

(⌧) be a solution of (5), (7) such that v⌫,L
k

(0) = v

0
k

for k 2 Zd

L

, and let n⌫,L

k

= 1
2E|v

⌫,L

k

|2. Let ⌫ ! 0 and L ! 1 in such a way that
⌫L ! 0 su�ciently fast. Then there exists ⌧0 > 0 such that

lim
⌫!0, L!1

n

⌫,L

k

(⌧) = n

0
k

(⌧) for 0  ⌧  ⌧0 ,

where n

0
k

(⌧), k 2 Rd, is a solution for (8), and the limit holds with respect to a
suitable weak convergence of functions.
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