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1 Small oscillations in nonlinear hamiltonian PDEs

EXAMPLE: Consider the NLS equation:

(NLS) ut+i∆u−imu−ig(x, |u|2)u = 0, u = u(t, x), x ∈ Td = Rd/2πZd;

g(x, v) = v +O(v2), g – real analytic function. I wish to study small solutions for all

values of t. NOTE THAT if d > 3, then even for small and smooth initial data it is unknown

if a solution exists forever. A-priori, for this equation we have only a local flow.

WHAT IS KNOWN: i) sufficient conditions in terms of the function g and the dimension d so

that for smooth initial data solutions exist for all values of time. For example, for equation

ut + i∆u− i|u|2qu = 0, q ∈ N, x ∈ Td,

this is true if d ≤ 2 and q is any, or d = 3 and q ≤ 2. In this case non-trivial UPPER

bounds on the growth of the Sobolev norms of solutions as t→∞ are obtained by

J. Bourgain and others.
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ii) For the cubic NLS equation ut + i∆u− i|u|2u = 0 in T2, Colliander -Keel - Staffilani

- Takaoka - Tao obtained LOWER bounds for growth of SOME solutions on long (not

infinite) time intervals.

iii) The heuristic theory of wave turbulence studies behaviour of small solutions for NLS

equations when t� 1 and the space-period is not 2π, but L, where L� 1.

Naturally, to study small solutions, eq. (NLS) should be regarded as a perturbation of the

linear Schrödinger equation

(S) ut + i∆u− imu = 0, x ∈ Td .

Solutions for (S) may be written by the Fourier method:

u(t, x) =
∑
s∈Zd

use
iλsteis·x, λs = |s|2 +m.

This is a superposition of linear waves with integer wave-vectors s. The function s 7→ λs is

very important, and is called the dispersion relation.
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These solutions u are almost-periodic functions of t. I regard them as almost-periodic

curves in a functional space, and write u(t, ·) = u(t) ∈ {function space}.

An important special case is given by time quasiperiodic (or QP) solutions, which are

superpositions of finitely-many linear waves. Namely, letA ⊂ Zd, |A| = n <∞.

Consider a superposition of linear waves with the wave-vectors inA:

uA(t, x) =
∑
s∈A

use
i(|s|2+m)teis·x.

I will call the finite setA the set of linearly excited modes. The solution uA defines a QP

curve uA(t) in the function space. Let us write it as

uA(t) =
∑
s

us(t)e
is·x, us(t) = use

i(|s|2+m)t .

Then us(t) = 0 if s /∈ A, and

ρs := 1
2 |us(t)|

2 = const , s ∈ A .
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Denote by ρ = (ρs, s ∈ A) ⊂ Rn+ the vector of actions of the solution uA. Then

uA(t) ∈ Tnρ = {
∑

use
is·x, 1

2 |us|
2 = ρs if s ∈ A; us = 0 otherwise} .

This set Tnρ is an n-torus in the function space. It is invariant for the linear equation (S)

and is filled in with its QP solutions uA(t).

PROBLEMS. Study how

1) small almost-periodic solutions u(t, x) of (S) are perturbed in (NLS), for all t.

2) Study how small QP solutions uA and the corresponding small invariant tori Tnρ are

perturbed in (NLS).

Question 1) is hopelessly complicated, even for d = 1, and question 2) is what the KAM

for PDE theory studies. For d = 1 the question 2) was resolved in [SK, J.Pöschel] Ann.

Math. 143 (1996). This was done in two steps:

STEP 1. Put the equation to a normal form in the vicinity of a torus Tnρ .

STEP 2. After a proper scaling, the obtained normal form hamiltonian becomes a

perturbation of the hamiltonian of certain parameter-depending linear system. Apply to it a

KAM-theorem for perturbations of parameter-depending linear systems.
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But for d > 1 the task turned out to be much more complicated since,

Secondly, at the Step 2 the required KAM-theorem for perturbations of multi-dimensional

parameter-depending linear equations is significantly more complicated than its 1d

analogy. – This is an analytic difficulty.

Firstly, at Step 1 to put the equation to a normal form in the vicinity of a torus Tnρ , one has

to verify a number of EXTREMELY complicated algebraical non-degeneracy relations. –

This is an algebraical difficulty. See in

[Cl. Procesi & M. Procesi] – a paper in CMP, and preprints. Also see a MS by W.-M.Wang.

For the moment we see no way to handle the algebraical difficulty.

We encounter the same two problems when study small solutions of other space-

-multidimensional hamiltonian PDEs.
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I will present a way to overcome the two difficulties, suggested in

[EGK1] “KAM for nonlinear beam eq. 1: small-amplitude solutions” (arXiv 2014)

[EGK2] “KAM for nonlinear beam eq. 2: a normal form theorem” (arXiv 2015).

The idea to handle the crucial algebraical difficulty is the following: the non-degeneracy

relations which have to be checked crucially depend on the dispersion function λs. So let

us consider Hamiltonian PDEs which involve a mass-parameter m, and try to prove that

the non-degeneracy relations hold for a.a. values of m, for the reason of analyticity of

these relations in m. Next do the “KAM-job” for those a.a. typical values of m.

For the (NLS) the dispersion function is λs = |s|2 +m. It depends on m linearly, i.e. in a

degenerate way, and the idea does not work.

MAIN EXAMPLE. The Klein-Gordon equation.

(KG) utt −∆u+mu+ g(x, u) = 0, x ∈ Td, m ∈ [1, 2] .

Dispersion relation λs =
√
|s|2 +m is nice nonlinear function of m. But asymptotically

λs ∼ |s|+O(s−1) . If d > 1, then asymptotically λs = |s| is a
√

integer, so it has

complicated Diophantine properties. For the moment (KG) is a bit too complicated for us.
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2 Beam equation.

Following Geng & J. You (Nanjing), we consider instead the beam equation:

utt + ∆2u+mu+ g(x, u) = 0, x ∈ Td , g = u3 +O(u4) , m ∈ [1, 2].

Now λs = λs(m) =
√
|s|4 +m ∼ |s|2 +O(|s|−2). This is better than in the case of

(KG) equation since |s|2 ∈ Z. Preliminary transformation of the equation: denote

Λ =
√

∆2 +m, ψ = 2−1/2(Λ1/2u+ iΛ−1/2u̇) .

Then the complex curve ψ(t) satisfies:

ψ̇ = i
(

Λψ − 2−1/2Λ−1/2g(x, 2−1/2Λ−1/2
(
ψ + ψ̄

)
)
)
.

This is a hamiltonian system. It may be written as

ψ̇ = i∇ψHbeam , Hbeam =

∫ [
(Λψ)ψ̄ +G(x,Λ−1/2

(ψ + ψ̄√
2

)
)
]
dx ,

where Gv(x, v) = g(x, v). This equation is similar to NLS.
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Write ψ(x) as Fourier series

ψ(x) =
∑
s∈Zd

ξse
is·x , ψ̄(x) =

∑
s∈Zd

ξ̄se
−is·x .

Denote ηs = ξ̄s. Then ψ̄(x) =
∑
s ηse

−is·x and we may write the beam equation as

the system

(Beam) ξ̇s = i
∂H

∂ηs
, η̇s = −i∂H

∂ξs
, s ∈ Zd ,

where

Hbeam =
∑

λsξsηs +

∫
G
(
x,
∑
s

ξse
is·x + ηse

−is·x
√

2λs

)
.

Consider the infinite complex vectors ξ = (ξs, s ∈ Zd), η = (ηs, s ∈ Zd).

For a solution ψ to be real we must have the reality condition η = ξ̄.

I recall that Gu(x, u) = g(x, u), G = 1
4u

4 +O(u5).
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As before, we fix a finite set of linearly excited modes

A ⊂ Zd, |A| = n <∞, denote L = Zd \ A ,

choose a small vector of amplitudes ρ ∈ Rn+, |ρ| ∼ ε� 1, and study (Beam) in the

vicinity of the n-torus

Tnρ = {(ξ, η) : ξa = η̄a,
1
2 |ξa|

2 = 1
2 |ηa|

2 = ρa if a ∈ A; ξs = ηs = 0 if a ∈ L}

This torus is invariant for the linear beam equation, and QP solutions (ξ, η)A(t) of the

equation wind on it.

GOAL: Study solutions of (Beam) near Tnρ .
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3 Small divisors and the mass parameter

Definition. A finite set of linearly excited modesA ⊂ Zd is called admissible if

a, b ∈ A, a 6= b ⇒ |a| 6= |b| .

Lemma. Admissible sets are typical: take at random n points a1, . . . an in the large cube

Kd = {s ∈ Zd : |sj | ≤ N, j = 1, . . . , d}.

SetA = {a1, . . . , an}. Then P{A is admissible } = 1−O(N−1) .

Everywhere below I assume thatA is admissible.

The frequencies of the linearised at zero equation are

λa = λa(m) =
√
|a|4 +m = |a|2 +O(|a|−2).

Denote by ω the frequency-vector of the linearly excited modes:

ω = ωA(m) = (ωa, a ∈ A) ∈ Rn, ωa = λa .

Then ωa1 6= ωa2 if a1 6= a2 since the setA is admissible.
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FACT: small divisors for the KAM-constructions are

R(m) = k ·ω(m)+ laλa(m)±lbλb(m), k ∈ Zn, la, lb ∈ Z, 0 ≤ |la|+ |lb| ≤ 2 .

I recall that ω(m) = (λa(m), a ∈ A) ∈ Rn, and that λs(m) =
√
|s|4 +m, where

m ∈ [1, 2].

Main Lemma (based on results of Bourgain and Bambusi). There is a “bad” zero-measure

subset C ⊂ [1, 2] such that for each divisorR(m) we have:

- eitherR(m) ≡ 0,

- or for each m /∈ C we have |R(m)| ≥ κ(m)|k|−cn , where κ(m) > 0, and cn is

some (fixed) polynomial of n.

Remark. How it may be thatR ≡ 0? – Take |k| = 1, la = 0, lb = 1 and choose the sign

“-”. ThenR(m) = ωj(m)− λb(m), where ωj = λa for some a ∈ A. But this is

dead-zero if b is such that |a| = |b|.
IfR ≡ 0, then ether k = 0 andR = λa − λb, where |a| = |b|, orR is as above, orR
is the sum or the difference of two divisors as above.
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4 The normal form

I recall that in terms of the Fourier coefficients ξ = (ξs, s ∈ Zd), η = (ηs, s ∈ Zd), the

Hamiltonian of (Beam) is

Hbeam =
∑

λsξsηs +

∫
G
(
x,
∑
s

ξse
is·x + ηse

−is·x
√

2λs

)
=: H2

beam + . . . ,

and that we wish to study (Beam) near the n-torus

Tnρ = {(ξ, η) : ξa = η̄a,
1
2 |ξa|

2 = 1
2 |ηa|

2 = ρa if a ∈ A; ξs = ηs = 0 if a ∈ L}

The vector ρ = (ρa, a ∈ A) is small, or order ε� 1. I write it as ρ = ερ̃,

ρ̃ ∈ [1, 2]n ,

and regard ε as the size of the perturbation, and ρ̃ – as a parameter.
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Near Tnρ I make the usual elementary change of coordinate: I keep the coordinates ξs, ηs
with s ∈ L without change, and pass from ξa, ηa with a ∈ A to the action-angles (r, θ):

r ∈ Rn, θ ∈ Tn : ξa =
√

2(ρ̃a + ra) eiθa , ηa =
√

2(ρ̃a + ra) e−iθa , a ∈ A .

Now the torus Tnρ reeds

Tnρ = {r = 0, θ ∈ Tn, ξs = ηs = 0 ∀ s ∈ L} .

In the new variables the quadratic part
∑
s∈Zd λs(m)ξsηs of the hamiltonian becomes

H2
beam = Const + ω(m) · r +

∑
s∈L

λs(m)ξsηs .

I recall that L = Zd \ A.

DENOTE Lf = {s ∈ L : |s| = |a| for some a ∈ A} , L∞ = L\Lf .

ξf = (ξs, s ∈ Lf ) , ξ∞ = (ξs, s ∈ L∞) .

Define ηf and η∞ similarly.

Lf is the shade of the setA on L.
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I recall that

Hbeam = Const + ω(m) · r +
∑
s∈L

λs(m)ξsηs + . . . .

Assume thatA is admissible. Then for m ∈ [1, 2] outside the zero-measure bad set C, in

[EGK1] we obtain the following

Normal Form Theorem:

16



THEOREM 1. For any action-vector ρ̃ ∈ [1, 2]n there exists a canonical transformation

from new variables
(
r̃, θ̃, (ξ̃s, η̃s, s ∈ L)

)
to the old variables

(
r, θ, (ξs, ηs, s ∈ L)

)
,

such that in the new variables the Hamiltonian Hb = Hb(r̃, θ̃, ξ̃, η̃; ρ̃) reeds:

Hb = Ω(ρ̃) · r̃ +
∑
a∈L∞

Λa(ρ̃)ξ̃aη̃a + ε
〈
K(ρ̃)

(
ξ̃f , η̃f

)t
,
(
ξ̃f , η̃f

)t 〉
+H3.

Here:

Ω(ρ̃) = ω +O(ε), Λa(ρ̃) = λa +O(ε), H3 – higher-order term;

K(ρ̃) – complex symmetric matrix, K(ρ̃) = O(1).

All these objects are explicit. Moreover,

i) the hamiltonian operator iJK(ρ̃), corresponding to K(ρ̃), for some choices of the set

A is stable ∀ ρ̃, but for some other its choices it is unstable ∀ ρ̃.

ii) The vector-function Ω(ρ̃) is affine, Ω(ρ̃) = ω(m) + εLρ̃, where the linear operators

L,L−1 ∼ 1.

iii) The Hamiltonian vector-field iJ∇H3 is 1-smoothing. Estimates on H3 depend on the

mass parameter m ∈ [1, 2] \ C.
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The normal form Hamiltonian:

Hb = Ω(ρ̃) · r̃ +
∑
a∈L∞

Λa(ρ̃)ξ̃aη̃a + ε
〈
K(ρ̃)

 ξ̃f

η̃f

 ,

 ξ̃f

η̃f

〉+H3.

The difficulty here is the matrix K(ρ̃) since its Hamiltonian operator iJK(ρ̃) IS NOT

Hermitian or anti-Hermitian. What do we know about iJK(ρ̃)?

i) for most values of the action ρ̃, the operator iJK(ρ̃) is invertible;

ii) if d = 1, the eigenvalues of iJK(ρ̃) are elliptic. If d ≥ 2, some of them may be

hyperbolic;

iii) if d = 2, then for typical ρ̃ the hyperbolic eigenvalues are simple. But for d ≥ 3 it

seems that for some setsA the hyperbolic spectrum of iJK(ρ̃) may be multiple for all ρ̃

(but the operator iJK(ρ̃) has no Jordan cells).

So, to treat Hb for d ≥ 3 we need a really good KAM theorem! For the finite-dimension

case such KAM-theorem was proved by You with collaborators. For the PDE case at hand

a needed theorem is proven in [EGK2]. Applying it to the NF we get:
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5 KAM theorem

For each m /∈ C we have:

THEOREM 2. There is a bad set of action-vectors [1, 2]nbad ⊂ [1, 2]n = {ρ̃}, small in the

sense of measure: meas [1, 2]nbad ≤ Cεa, a > 0, such that if ρ̃ /∈ [1, 2]nbad, then the

time-QP solution (ξ, η)A(t) of the linear beam equation persists as a time-QP solution of

(Beam). The persisted solution is linearly stable if and only if the hamiltonian matrix

iJK(ρ̃) is stable. If d = 1, then iJK(ρ̃) always is stable. If d ≥ 2, then for some

admissible setsA it is unstable (for all values of ρ̃).

Remark. If d ≥ 2, then the constructed linearly unstable KAM-solutions (ξ, η)A(t) of

(Beam) create around them certain zones of instability. So the KAM theory implies some

instability results for small-amplitude solutions of (Beam)!
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