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1 Introduction: weak turbulence (WT)

(One of) origines: Rudolf Peierls, in Annalen der Physik 3 (1929)

(this is his thesis with W.Pauli). Modern state of affairs see in

[Naz] S. Nazarenko, Wave Turbulence, Springer 2011.

The method of WT applies to various equations. E.g., to NLS:

A) Deterministic setting. Consider NLS equation:

u̇− i∆u+ i|u|
2
u = 0, x ∈ Td

L = Rd
/(LZd).

WT deals with small solutions. So let us better consider

(NLS) u̇− i∆u+ ε
2
ρ i|u|

2
u = 0, x ∈ Td

L; ρ = const.

Take the exponential basis {ek = e
ik·(x/L)

,k ∈ Zd}. Then

−∆ek = λkek; λk = L
−2

|k|2.

So there is plenty of exact resonances in the spectrum of ∆. – This is a prerequisite for WT.
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We decompose u in the Fourier series, u(t, x) =
�

uk(t)ek(x), and write (NLS) as

(*) u̇k + iλkuk = −ε
2
ρi

�

k1+k2=k3+k

uk1uk2 ūk3 , k ∈ Zd
.

In WT they do the following:

� Study solutions for (∗) with a “typical” initial data u(0) = u
0, during “long” time. Time is

so long that ”solutions approach an invariant measure of (∗)”. They make

Claim: For large values of time only resonant terms in (∗) are important.

� For t � 1, they decompose solutions in asymptotical series in ε. Find first non-trivial

term of this decomposition. It is given by a complicated explicit formula (or by an equation).

� Study that formula when L → ∞. Go to a limit, by replacing sums
�

k∈L−1Zd by

integrals
�
k∈Rd . In particular, study under that limit properly scaled quantities |uk(t)|2,

and prove that

(KZ spectrum) �|uk(t)|
2
� ∼ |k|−κ

, κ > 0 ,

if |k| “belongs to the inertial range”. Here “�·�” indicates certain averaging.
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(KZ spectrum) �|uk(t)|
2
� ∼ |k|−κ

, κ > 0.

Remarks. 1) Certainly (KZ spectrum) cannot be true for all solution of (NLS). Say, because

of KAM. So we must assume that u0 is random, and then try to prove (KZ spectrum) for

typical u0, or to incorporate in the averaging �·� the ensemble-averaging.

2) It is not quite clear in what order we send ε → 0 and L → ∞. It may be better to talk

not about the limit of WT, but about WT limits.
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B) Stochastic setting. Following

V. Zakharov, V.L’vov, in Radiophys. Quant. Electronics(1975),

Cardy, Falcovich, Gawedzki “Non-Equilibrium Stat. Phys. and Turbulence”, CUP 2008.

consider small solutions of NLS equation with small damping and small random force:

(ZL) u̇− i∆u+ ε
2
ρ i|u|

2
u = −ν(−∆+ 1)pu+

√
ν �rand. force�, x ∈ Td

L,

where ε, ν � 1. Here ν – inverse time-scale of the forced oscillations; ε - amplitude of

small oscillations. They impose some relation between ν and ε.

Random Force is
�

bk
d

dt
βk(t)eik·(x/L)

, bk > 0 and bk → 0 fast,

where {βk(t)} – indep. standard complex Wiener processes.

Fact: As t → ∞, solution of (ZL) converges in distribution to a stationary measure µε,ν of

the equation (which is a “statistical equilibrium of the equation”):

Du(t) � µε,ν as t → ∞.
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Similar to the deterministic case, Zakharov - L’vov do the following:

� Write the equation in Fourier:

u̇k + iλkuk = −ε
2
ρ i

�

k1+k2=k3+k

uk1uk2 ūk3 − ν(λk + 1)puk +
√
ν bkβ̇

k
(t)

The term iρ
�

uk1uk2 ūk3 is hamiltonian, with the Hamiltonian

H
4 =

ρ

4

�

k1+k2=k3+k4

uk1uk2 ūk3 ūk4 .

� They decompose solutions of (ZL) and/or the stationary measure in series in a suitable

small parameter and find the first nontrivial term of this decomposition. Again, for that only

resonant terms of the equation are important.

� Study that term when L → ∞ to calculate the corresponding (KZ) spectrum.

Same remark as before has to be made concerning the two limits �small parameter� → 0

and L → ∞.
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We choose ε2 = ν – this is within the bounds, usually imposed in physics. It is illuminating

to pass to the slow time τ = νt:

(ZL) uτ − iν
−1∆u+ iρ|u|

2
u = −(−∆+ 1)pu+ �rand. force��, x ∈ Td

L.

This is the equation I will discuss, mostly following my work with Alberto Maiocchi, who is

now a post-doc in Paris.
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We suggest to study the WT limits (at least, some of them) by splitting the limiting process

in two steps:

I) prove that when ν → 0, main characteristics of solutions uν have limits of order one,

described by certain effective equation.

II) Show that main characteristics of solutions for the effective equation have non-trivial

limits of order one, when L → ∞ and ρ = ρ(L) is a suitable function of L.

Step I has been done rigorously, and I discuss it in this talk. I stress that the results of

Step I along cannot justify the predictions of WT since the (KZ spectrum) cannot hold when

the period L is fixed and finite.

At the end of my talk I will show that a heuristic argument a-la WT with a suitable choice of

the function ρ(L) leads in the limit of L → ∞ to a Kolmogorov-Zakharov type equation

and to a (KZ spectrum).
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2 Averaging for PDEs without resonances

In my works [1] SK & A.Piatnitski, JMPA (2008); [2] SK, GAFA ( 2010);

[3] SK, Ann. Inst. Fourier - PR, 2013.

I studied the long-time behaviour of solutions for perturbed hamiltonian PDE without strong

resonances. Namely, in [1,2] I considered equations like

u̇− iuxx + i|u|
2
u = ν(uxx − u) +

√
ν �rand. force�, x ∈ S

1
,

and in [3] – equations like

(∗) u̇+i(−∆+V (x))u+iν|u|
2
u = −ν(−∆+1)pu+

√
ν �rand. force�, x ∈ Td

,

where p ∈ N and V (x) is such that there are no resonances in the spectrum of

−∆+ V (x). The key idea was suggested in [2] – describe the long-time behaviour of

the actions in the perturbed equations, using certain auxiliary Effective Equation. This is a

well posed quasilinear SPDE with a non-local nonlinearity. For eq. (∗) without resonances,

the Effective Equation is linear and does not depend on the Hamiltonian term νi|u|2u.
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Situation changes if we add a non-linear dissipation and consider the equation

u̇+ i(−∆+ V (x))u+ iν|u|
2
u = −νC|u|

2q
u− ν(−∆+1)pu+

√
ν �rand. force�.

Now the effective equation is non-linear.

Main Results:

1) Actions of solutions for the initial-value problem for the equation, for t ≤ const ν−1

converge in distribution (as ν → 0) to those of the Eff. Eq.

2) Consider stationary solutions of the equation. They converge in distribution to stationary

solutions of Eff. Eq.
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3 Averaging for PDEs with resonances

Now the new results.

[KM1] SK & A. Maiocchi, Preprint, arXiv 1309.5022

[KM2] SK & A. Maiocchi, paper under preparation.

We apply the method of [1-3] to the equation of Zakharov-L’vov with ε
2 = ν, written using

the slow time τ = νt:

(ZL) uτ − iν
−1∆u+ iρ|u|

2
u = −(−∆+ 1)pu+ �rand. force��,

We write u(τ, x) =
�

uk(τ)eik·(x/L), and re-write the equation in Fourier:

d

dτ
uk + iλkν

−1
uk = −iρ

�

k1+k2=k3+k

uk1uk2 ūk3 − (λk + 1)puk + bk
d

dτ
βk(τ)

where k ∈ Zd. We wish to control the asymptotic behaviour of the actions 1
2 |uk|

2(τ) and

other characteristics of solutions via suitable effective equation. The Effective Equation for

(ZL) may be derived through the interaction representation, i.e. by transition to the fast
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rotating variables a:

ak(τ) = e
iν−1λkτvk(τ), k ∈ Zd

(the variation of constant). Note that

(*) |ak(τ)| ≡ |vk(τ)|.

In these variables the (ZL) equation reeds

d

dτ
ak =− (λk + 1)pak + bk e

iν−1λkτ d

dτ
β
k(τ)

− iρ

�

k1+k2=k3+k

ak1ak2 āk3 exp
�
−iν

−1
τ(λk1 + λk2 − λk3 − λk)

�
.

The terms, constituting the nonlinearity, oscillate fast as ν goes to zero, unless the sum of

the eigenvalues in the second line vanishes. So only the terms for which this sum equals

zero contribute to the limiting dynamics. The processes {β̃
k
(τ), k ∈ Zd} such that

d
dτ β̃

k
(τ) = e

iν−1λkτ d
dτ β

k(τ) also are stand. independent complex Wiener processes.

Accordingly, the effective equation should be the following damped/driven hamiltonian
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system

d

dτ
vk = −(λk + 1)pvk −Rk(v) + bk

d

dτ
β̃
k(τ), k ∈ Zd

,(Eff.Eq.)

where Rk(v) is the resonant part of the hamiltonian nonlinearity:

Rk(v) = iρ

�

k1+k2=k3+k
|k1|2+|k2|2=|k3|2+|k|2

vk1vk2 v̄k3 .

It is easy to see that R(v) is the hamiltonian vector field R = i∇H4
res, where H4

res is the

resonant part of the Hamiltonian H4:

H
4
res =

ρ

4

�

k1+k2=k3+k4

|k1|2+|k2|2=|k3|2+|k4|2

vk1vk2 v̄k3 v̄k4 .

� We have to impose some restrictions on p and d to make (ZL) well posed. E.g.,

p = 1, d ≤ 3 (if p > 1, then d may be bigger than 3).
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Properties of H4
res and of Eff. Eq.:

Lemma. 1) H4
res has two convex quadratic integrals of motion, H0 =

�
|vk|

2 and

H1 =
�

(|vk|2|k|2).

2) The hamiltonian vector-field i∇H4
res(v) is Lipschitz in sufficiently smooth Sobolev

spaces.

3) (EffEq) is well posed in sufficiently smooth Sobolev spaces.
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(ZL)
d

dτ
uk + iλkν

−1
uk = −iρ

�

k1+k2=k3+k

uk1uk2 ūk3 − (λk + 1)puk + bk
d

dτ
βk(τ)

(EffEq)
d

dτ
vk = −Rk(v)− (λk + 1)pvk + bk

d

dτ
βk(τ), k ∈ Zd

.

Actions of a solution u
ν(τ) are

I
ν
k(τ) =

1
2 |u

ν
k(τ)|

2
, k ∈ Zd

.

Theorem 1. Let uν
k(τ) and v(τ) be solutions of (ZL) and (EffEq) with same initial data.

Then, for each k and for 0 ≤ τ ≤ 1,

DI
ν
k(τ) � D|vk(τ)|

2 as ν → 0.
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Does the effective equation control the angles ϕk = arg uk =: ϕ(uk)? No, instead it

controls the angles of of the a-variables, aνk(τ) = e
iν−1λkτvνk(τ). Let (sk,k ∈ Zd), be

a resonant vector, i.e. an integer vector of finite length such that
�

skλk = 0.

Then
�

skϕ(uk) =
�

skϕ(ak). Therefore we have

Theorem 1�. Under assumptions of Theorem 1, let s be a resonant vector. Then
�

skϕ(uk(τ)) −→
�

skϕ(vk(τ)) as ν → 0, in probability,

after mollification in τ .
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Now consider a stationary measure µ
ν for (ZL). Let uν(τ) = (uν

k(τ),k ∈ Zd) be a

corresponding stationary solution, i.e.

D(uν(τ)) ≡ µ
ν
.

Theorem 2. Every sequence ν
�
j → 0 has a subsequence νj → 0 such that

D(Ik(u
νj )) � D(Ik(v(τ)) as νj → 0 ,

for each k, where v(τ) is a stationary solution for the Eff. Eq.

What about phases of the stationary solutions, ϕk(uν(τ))?

Assume that Eff. Eq. has a unique stationary measure. Let v(τ) be a corresponding

stationary solution.
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For any N ≥ 1 consider

ϕ
νN (uν(τ)) = (ϕν

k(u
ν(τ)), |k| ≤ N) ∈ TDN ,

ϕ
N (v(τ)) = (ϕk(v(τ)), |k| ≤ N) ∈ TDN .

I will decompose TDN = {θ} as TDN = T1 × T2 = {(θ1, θ2)}, and will denote

π1 : TDN → T1, π2 : TDN → T2.

Theorem 3. Let Eff. Eq. has a unique stationary measure. Then

1) for each k,

D(Ik(u
ν)) � D(Ik(v(τ)) as ν → 0 ,

and

2) ∀N , there is an unimodular linear isomorphism

L : TDN → TDN � T1 × T2 = {(θ1, θ2)},

such that

D(L(ϕνN (uν(τ))) � D(π1 ◦ L(ϕ
N (v(τ))× dθ

2
.
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So, if in addition the (ZL) equation has a unique stationary measure, then for ANY its

solution u
ν(τ) we have

lim
ν→0

lim
τ→∞

D
�
I(uν(τ))

�
= D(I(v(τ)),

where I = (Ik,k ∈ Zd) and v(τ) is a stat. solution of Eff. Eq. And similar limit holds for

the distribution of the angles of uν(τ).

But when Eff. Eq. has a unique stat. measure? I note before hand that existing technique

allows to prove the uniqueness only for equations which have at most cubic growth.
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d

dτ
vk = −(λk + 1)pvk −Rk(v) + bk

d

dτ
β
k(τ), k ∈ Zd

,

Rk(v) = iρ

�

k1+k2=k3+k
|k1|2+|k2|2=|k3|2+|k|2

vk1vk2 v̄k3 .
(Eff.Eq.)

Theorem 4. 1) Let p = 1. Then Eff. Eq. has a unique stat. measure if d ≤ 3.

2) Take any d. Then Eff. Eq. has a unique stat. measure if p ≥ pd for a suitable pd ≥ 0.
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4 Limit L → ∞ (on the physical level of accuracy).

Now let us parametrise the Fourier modes by

k ∈ Zd
L := Zd

/L ,

and write the Eff. Eq. as

d

dτ
vk = −Rk(v)− γkvk + bk

d

dτ
βk(τ), k ∈ Zd

L,

Rk(v) = iρ

�

k1+k2=k3+k
|k1|2+|k2|2=|k3|2+|k|2

vk1vk2 v̄k3 .
(EffEq)

Here γk = (a|k|m + b).

Consider the moments

M
k1,...kn1
kn1+1,...kn1+n2

(τ) = E(vk1 . . . vkn1
v̄kn1+1 . . . v̄kn1+n2

).
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Physical Assumptions:

i) Quasi-Gaussian approximation:

M
l1,l2
l3,l4

∼ M
l1
l1
M

l2
l2
(δl3l1 + δ

l4
l1
)(δl3l2 + δ

l4
l2
) ,

and similar for higher order moments.

ii) Quasi stationary approximation for equations in the chain of moment equations.

Denote

nk = L
d
M

k
k /2 , b̃k = L

d/2
bk.

nk - normalised energy of the wave-vector k.
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Accepting the two hypotheses above we get the KZ kinetic equation:

Theorem 5. When L → ∞ we have

d

dτ
nk = −2γknk + b̃

2
k

+4
ρ
2

L

�

Γ
dk1dk2dk3

fk(k1,k2,k3)

γk + γk1 + γk2 + γk3 + γk4

× (nk1nk2nk3 + nknk1nk2 − nknk2nk3 − nknk1nk3).

(KZ)

Here Γ is the resonant surface,

Γ = {(k1,k2,k3) ∈ R3d : k1 + k2 = k+ k3, |k1|
2 + |k2|

2 = |k|2 + |k3|
2
},

γk = (a|k|m + b), fk(k1,k2,k3) - some bounded smooth function, constructed in

terms of the normal frame to Γ at (k1,k2,k3).

Because of the dissipation in the Eff. Eq., our (KZ) equation is “better” then usually the

(KZ) equations are: the divisor in the integrand has no zeroes.
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The KZ spectra.

I recall that γk = a|k|m + b. Looking for solutions of (KZ), where nk depends only on |k|

and arguing a-la Zakharov, we find the following:

i) if 0 < a � b � 1, then

nk ∼ |k|−d+2/3
, or nk ∼ |k|−d

.

ii) if 0 < b � a � 1, then

nk ∼ |k|−
m+3d−2

3 , or nk ∼ |k|−
m+3d

3 .
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