Sergei Kuksin

Damped and driven Hamiltonian PDE

(ETH-Hönggerberg, September 21, 2012)

§1. Damped-driven Hamiltonian PDE

We are interested in the following class of equations:

$$
\begin{equation*}
\langle\text { Hamiltonian PDE }\rangle=\nu \text {-small damping }+\kappa_{\nu}\langle\text { force }\rangle, \tag{*}
\end{equation*}
$$

where $\nu \ll 1$ and the scaling constant κ_{ν} is such that solutions stay of order one as $\nu \rightarrow 0$ and $t \gg 1$. The constant κ_{ν} is unknown, to find it is a part of the problem.
Equations $(*)$ are important for physics. They describe turbulence in various physical media.
\diamond All equations will be considered in the finite-volume case. The force will be random. The objects and the constructions make sense in the deterministic case as well, but then we can prove less.
\diamond The damping usually is the Laplacian. But it may be another operator, linear or nonlinear.
\diamond If in $(*)$ Hamiltonian PDE is replaced by a finite-dimensional Hamiltonian system, then $\kappa_{\nu}=\sqrt{\nu}$.

Examples. 1) 2d Navier-Stokes:

$$
\dot{u}+(u \cdot \nabla) u+\nabla p=\nu \Delta u+\sqrt{\nu}(\text { random force }), \quad \operatorname{div} u=0, \quad \operatorname{dim} x=2 .
$$

Now $\kappa_{\nu}=\sqrt{\nu}$ (I will discuss this later).
2) Burgers equation on a circle:

$$
\dot{u}+u u_{x}=\nu u_{x x}+(\text { random force }), \quad x \in S^{1}, \quad \int u d x \equiv 0 .
$$

It is well known that now $\kappa_{\nu}=1$.
3) 3d Navier-Stokes:

$$
\dot{u}+(u \cdot \nabla) u+\nabla p=\nu \Delta u+\kappa_{\nu}(\text { random force }), \quad \operatorname{div} u=0, \quad \operatorname{dim} x=3 .
$$

Very complicated equation. Right κ_{ν} is unknown. Kolmogorov believed that $\kappa_{\nu}=1$.
4) CGL:

$$
\dot{u}+i|u|^{2} u=\nu(\Delta-1) u+\kappa_{\nu}(\text { random force }), \quad x \in \mathbb{T}^{d} .
$$

Right κ_{ν} is unknown.

§2. Navier-Stokes equations

Consider 2d NSE under periodic boundary conditions:

$$
\begin{gathered}
\dot{u}-\nu \Delta u+(u \cdot \nabla) u+\nabla p=\sqrt{\nu}(\text { random force }), \quad \operatorname{div} u=0 \\
x \in \mathbb{T}^{2}, \quad \int u d x=\int \text { force } d x=0
\end{gathered}
$$

Most of results below hold true if $x \in \Gamma^{2}, \Gamma^{2}$ - a compact Riemann surface. Majority of them hold if $x \in \Omega \Subset \mathbb{R}^{2}$ and $\left.u\right|_{\partial \Omega}=0$.

The random force is smooth and homogeneous in x. As a function of time this is

- either a nondegenerate white noise,
- or a nondegenerate kick-process.

Below I assume that the force is a white noise.

Let \mathcal{H} be the L_{2}-space of divergence-free vector fields $u(x), x \in \mathbb{T}^{2}$, such that $\int u d x=0$. Then:

- (NSE) has a unique statistical equilibrium (= a stationary measure). This is a space-homogeneous measure μ_{ν} in the space \mathcal{H} such that the distribution $\mathcal{D}(u(t))$ of any solution $u(t, x)$ of (NSE) converges to μ_{ν} as $t \rightarrow \infty$.
- The set of stationary measures $\left\{\mu_{\nu}, 0<\nu \leq 1\right\}$ is pre-compact in the space of measures in \mathcal{H}, and every limiting measure $\mu_{0}=\lim _{\nu_{j} \rightarrow 0} \mu_{\nu_{j}}$ is an invariant measure of the 2d Euler equation (i.e. of $(N S E)_{\nu=0}$). It also is space-homogeneous.
- This limiting measures μ_{0} are "genially infinite-dimensional": μ_{0}-measure of any finite-dimensional subset of \mathcal{H} equals zero.
- Denote $\mathcal{H}^{s}=\mathcal{H} \cap\langle$ Sobolev space of order $s\rangle$. Then $\mu_{0}\left(\mathcal{H}^{2}\right)=1$.

Conjecture 1. $\mu_{0}\left(\mathcal{H}^{2+\nu}\right)=0$ if $\nu>0$.
Conjecture 2. The energy spectrum of the measure μ_{0} behaves as $E_{k} \sim k^{-5}$.
These two conjectures are closely related.

The limiting invariant measure(s) μ_{0} describes the space-periodic 2d turbulence. But it is unknown if μ_{0} is unique, i.e. if it depends on the sequence $\nu_{j} \rightarrow 0$, and how to calculate it.

To study the limiting measure(s) μ_{0} means to study the periodic $2 \mathbf{d}$ turbulence.
See
[SK, A. Shirikyan] "Mathematics of 2d Statistical Hydrodynamics" CUP (2012). See my web-page

For the inviscid limit in the 1d Burgers equation we now know a lot. The best results (in a sense, they are final) are obtained by Alexander Boritchev in his thesis, see [Boritchev] Sharp estimates for turbulence in white-forced generalised Burgers equation, arXiv 2011.

Below I will discuss the case when the Hamiltonian PDE is either an integrable PDE, or a linear Hamiltonian PDE in a general position. Then a progress may be achieved using a form of averaging.

§3. Damped-driven linear Schrödinger equation.

Consider small oscillations in a damped-driven NLS in the presence of an external electric field. Then the corresponding Hamiltonian PDE is a linear Schrödinger equation with a potential. We assume that the damping is nonlinear and write the equation using the slow time $\tau=\nu t$:
(1) $\frac{\partial u}{\partial \tau}+\nu^{-1} i(-\Delta u+V(x) u)=\Delta u-\gamma_{R}|u|^{2 p} u-i \gamma_{I}|u|^{2 q} u+$ (random force),

$$
x \in \mathbb{T}^{d}, \quad \gamma_{R}, \gamma_{I} \geq 0, \gamma_{R}+\gamma_{I}=1 ; \quad V(x) \in C^{\infty}\left(\mathbb{T}^{d} ; \mathbb{R}\right)
$$

Some restrictions should be imposed on d, p and q. The random force is smooth, white in time and non-degenerate.

$$
\begin{equation*}
\frac{\partial u}{\partial \tau}+\frac{i}{\nu}(-\Delta u+V(x) u)=\Delta u-\gamma_{R}|u|^{2 p} u-i \gamma_{I}|u|^{2 q} u+(\text { random force }), \tag{1}
\end{equation*}
$$

Denote $\mathcal{H}^{r}=H^{r}\left(\mathbb{T}^{d} ; \mathbb{C}\right)$. Eq. (1) defines in \mathcal{H}^{r} a Markov process.
Applying the methods, developed in the last 10 years to study the randomly forced 2d NSE, one can show that eq. (1) has a unique stationary measure:

Theorem (SK-Shirikyan, Harier, Odasso, Shirikyan). Under more restrictions on d, p, q eq. (1) has a unique stationary measure μ^{ν}. For any solution $u(\tau)$ of (1) we have

$$
\operatorname{dist}\left(\mathcal{D}(u(\tau)), \mu^{\nu}\right) \rightarrow 0 \quad \text { as } \quad \tau \rightarrow \infty
$$

\diamond This theorem is not at all a finite result since some of the restrictions ARE NOT TECHNICAL. E.g., if $\gamma_{R}=0$, then we must have $p \leq 1$. On the contrary, its counterpart for equations with kick-forces IS a final result.

MAIN PROBLEMS. a) What happens to solutions $u^{\nu}(\tau, x)$ as $\nu \rightarrow 0$?
b) What happens to the stationary measure μ^{ν} as $\nu \rightarrow 0$?

It is easy to see that the set of stationary measures $\left\{\mu^{\nu}, 0<\nu \leq 1\right\}$ is pre-compact in the space of measure. So $\mu^{\nu_{j}} \rightharpoonup \mu^{0}$ as $\nu_{j} \rightarrow 0$. As before, one can check that μ^{0} is an invariant measure for the corresponding Hamiltonian PDE, which is now the linear Schrödinger equation
(Lin.Schrödinger)

$$
\dot{u}+i(-\Delta u+V(x) u)=0 .
$$

But which one? - This equation has plenty of invariant measures! And does the limit μ^{0} depend on the sequence $\nu_{j} \rightarrow 0$??

I recall that in the case of NSE we do not have answers to these questions.

v-coordinates.

Consider $A=-\Delta+V(x)$. Assume that $V \geq 1$. Let ξ_{1}, ξ_{2}, \ldots be its L_{2}-normalised real eigenfunctions and $1 \leq \lambda_{1} \leq \lambda_{2} \leq \ldots$ - corresponding eigenvalues. Assume that the spectrum $\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$ is nonresonant in the sense that

$$
\sum \lambda_{j} \cdot s_{j} \neq 0 \quad \forall s \in \mathbb{Z}^{\infty}, \quad 0<|s|<\infty
$$

This is a mild restriction: majority of potentials V are non-resonant.
FOURIER TRANSFORM. For any $u(x) \in \mathcal{H}=L_{2}\left(\mathbb{T}^{d}, \mathbb{C}\right)$ decompose it in the ξ-basis:

$$
u(x)=v_{1} \xi_{1}+v_{2} \xi_{2}+\ldots, \quad v_{j} \in \mathbb{C}
$$

Denote $\mathbf{v}=\left(v_{1}, v_{2}, \ldots\right)$. These are the (complex) v-coordinates. Consider the map

$$
\Psi: u(\cdot) \mapsto \mathbf{v}
$$

This an unitary isomorphism $\mathcal{H} \rightarrow l_{2}$.

In the v-coordinates (Lin.Schrödinger) reeds

$$
\frac{\partial}{\partial \tau} v_{j}+i \nu^{-1} \lambda_{j} v_{j}=0 \quad \forall j
$$

Consider the action-angle variables for these equations

$$
I_{j}=\frac{1}{2}\left|v_{j}\right|^{2}, \quad \varphi_{j}=\operatorname{Arg} v_{j} \in S^{1} ; \quad I=\left(I_{1}, \ldots\right) \in \mathbb{R}_{+}^{\infty}, \quad \varphi=\left(\varphi_{1}, \ldots\right) \in \mathbb{T}^{\infty}
$$

In these coordinates the equations become

$$
\dot{I}_{j}=0, \quad \dot{\varphi}_{j}+\nu^{-1} \lambda_{j}=0 \quad \forall j .
$$

Let us write eq. (1) in the v-variables:

$$
\frac{\partial}{\partial \tau} \mathbf{v}+i \nu^{-1} \operatorname{diag}\left\{\lambda_{j}\right\} \mathbf{v}=\Psi\left(\Delta u-\gamma_{R}|u|^{2 p} u-\gamma_{I}|u|^{2 q} u\right)+\Psi((\text { random force }))
$$

where $\mathbf{v}=\left(v_{1}, v_{2}, \ldots\right)$ and $u:=\Psi^{-1}(\mathbf{v})$. Pass to the action-angles:

$$
\begin{aligned}
& \frac{\partial}{\partial \tau} I_{j}+0=F_{j}(I, \varphi)+(\text { random force })_{j}, \quad j \geq 1 \\
& \frac{\partial}{\partial \tau} \varphi_{j}+\nu^{-1} \lambda_{j}=\ldots, \quad j \geq 1
\end{aligned}
$$

Now we are in the setting of the averaging theory. Accordingly we expect that the limit $\lim _{\nu \rightarrow 0} I^{\nu}(\tau)(0 \leq \tau \leq T)$ exists and satisfies the averaged I-equations:

$$
\frac{\partial}{\partial \tau} I_{j}(\tau)=\left\langle F_{j}\right\rangle(I)+\left\langle(\text { random force })_{j}\right\rangle, \quad j \geq 1
$$

Here $\left\langle F_{j}\right\rangle(I)=\int_{\mathbb{T} \infty} F_{j}(I, \varphi) d \varphi$ and $\left\langle(\text { random force })_{j}\right\rangle$ is defined by similar stochastic rules. In infinite dimensions this idea does not work well since $I(\tau) \in \mathbb{R}_{+}^{\infty}{ }_{-}$ this is a very bad phase-space, and the averaged I-equations are singular! To study the limiting dynamics of $I(\tau)$ we consider other - non-singular - limiting equations.

Effective equations.

Denote $\hat{A}=\operatorname{diag}\left\{\lambda_{j}, j \geq 1\right\}$ and consider new equation, constructed by a kind of averaging:

$$
\begin{equation*}
\frac{\partial}{\partial \tau} \mathbf{v}=(-\hat{A}+\mathcal{L}) \mathbf{v}+R(\mathbf{v})+(\text { random force }) \tag{2}
\end{equation*}
$$

Here \mathcal{L}, R and the force are constructed by some explicit rools, and

- $\mathcal{L}=\operatorname{diag}\left\{l_{k}\right\}$ - bounded linear operator, constructed in terms of the Fourier transform of the potential $V(x)$, such that $-\hat{A}+\mathcal{L} \leq-\frac{1}{2} \hat{A}$.
- The nonlinearity $R(v)$ is constructed from the dissipative term of eq. (1) $-\gamma_{R}|u|^{2 p} u$. This is a nice locally Lipschitz analytic mapping.
- random force in (2) is explicit:
$(\text { random force })_{k}=\frac{\partial}{\partial \tau} Y_{k} \boldsymbol{\beta}_{k}(\tau)$, where $Y_{k}=\left(\sum_{l} b_{l}^{2}\left|\Psi_{k l}\right|^{2}\right)^{1 / 2}$.
Eq. (2) is called the Effective Equation. This is a semilinear stochastic heat equation with a non-local nonlinearity, written in terms of Fourier coefficients of a solution.

The Effective Equation is independent from the Hamiltonian part $-i \gamma_{I}|u|^{2 q} u$ of the perturbation in eq. (1). If we add to eq. (1) any other Hamiltonian term $i \nabla_{u} \tilde{h}(u)$, this will not change the Effective Equation. It depends only on the damping.

Examples. 1) If $\gamma_{R}=0$, then effective equation is linear.
2) If $p=1$, i.e. the dissipative nonlinearity in eq. (1) is $-\gamma_{R}|u|^{2} u$, then

$$
R(\mathbf{v})_{k}=-\gamma_{R} v_{k} \sum_{l}\left|v_{l}\right|^{2} L_{k l},
$$

where $L_{k l}$ is some explicit tensor. So Effective Equations take the form

$$
\frac{\partial}{\partial \tau} v_{k}=\left(-\lambda_{k}+l_{k}\right) v_{k}-\gamma_{R} v_{k} \sum_{l}\left|v_{l}\right|^{2} L_{k l}+Y_{k} \frac{\partial}{\partial \tau} \boldsymbol{\beta}_{k}(\tau), \quad k \geq 1
$$

Equation (1):

$$
\frac{\partial u}{\partial \tau}+\frac{i}{\nu}(-\Delta u+V(x) u)=\Delta u-\gamma_{R}|u|^{2 p} u-i \gamma_{I}|u|^{2 q} u+(\text { random force })
$$

Effective Equation (2):

$$
\frac{\partial}{\partial \tau} \mathbf{v}=-\hat{A} \mathbf{v}+\mathcal{L} \mathbf{v}+R(\mathbf{v})+(\text { random force })
$$

Theorem 1. Let $u^{\nu}(\tau), 0 \leq \tau \leq T$, be a solution of eq. (1), $u^{\nu}(0)=u_{0}$, and $\mathbf{v}^{\nu}(\tau)=\Psi\left(u^{\nu}(\tau)\right)$. Let $\mathbf{v}^{0}(\tau)$ be a solution of Effective Equation (2) such that $\mathbf{v}^{0}(0)=\mathbf{v}_{\mathbf{0}}=\Psi\left(u_{0}\right)$. Then

$$
I\left(\mathbf{v}^{\nu}(\tau)\right) \rightarrow I\left(\mathbf{v}^{0}(\tau)\right), \quad 0 \leq \tau \leq T
$$

as $\nu \rightarrow 0$, in probability.

Let μ^{ν} be a unique stationary measure for (1) and $\Psi \circ \mu^{\nu}$ - this measure, written in the v-variables.

Lemma. Effective Equation (2) has a unique stationary measure m_{0}.
Theorem 2. $\Psi \circ \mu^{\nu} \rightharpoonup m_{0}$ as $\nu \rightarrow 0$. l.e., the unique stationary measure of (1), written in the v-variables, converges to the unique stationary measure of the Effective Equation (2).

That is, for ANY solution $u^{\nu}(\tau)$ of (1) we have

$$
\lim _{\nu \rightarrow 0} \lim _{\tau \rightarrow \infty} \mathcal{D}\left(\Psi\left(u^{\nu}(\tau)\right)=m_{0}\right.
$$

Example. If $\gamma_{R}=0$, then the Effective Equation is linear. Its unique stationary measure m_{0} is the Gaussian measure which is the law of the Ornstein-Uhlenbeck process

$$
\int_{-\infty}^{0} e^{s(-\hat{A}+\mathcal{L})} \cdot\left(\operatorname{diag}\left\{Y_{j}\right\}\right) d \boldsymbol{\beta}(s)
$$

Equations without dissipation.

Following Debussche-Odasso (2005), consider similar 1d-equations without dissipation but with friction :
$\frac{\partial u}{\partial \tau}+\nu^{-1} i\left(-u_{x x}+V(x) u\right)=-\gamma_{R}|u|^{2} u-i \gamma_{I}|u|^{2 q} u+($ random force $), \quad \gamma_{R}>0$.
Now the effective equation is the system

$$
\frac{\partial}{\partial \tau} v_{k}=-\gamma_{R} v_{k} \sum_{l}\left|v_{l}\right|^{2} L_{k l}+Y_{k} \frac{\partial}{\partial \tau} \bar{\beta}_{k}(\tau), \quad k \geq 1
$$

This is a stochastic ODE in the space l_{2}.
Theorems 1, 2 remain true.

Big Problem. Study for these equations the limit

$$
\langle\text { space-period }\rangle \rightarrow \infty .
$$

I believe that this corresponds to the Weak Turbulence.

For all these results see
SK "Weakly nonlinear stochastic CGL equations". ArXiv 2011, to appear in Ann. IHP_PS.

§4. Damped-driven KdV

(See SK, GAFA 20 (2010), 1431-1463.) Consider the damped-driven KdV:
(3) $\dot{u}+u_{x x x}-u u_{x}=\nu u_{x x}+\sqrt{\nu}$ (random force) $, \quad x \in \mathbb{T}^{1}=\mathbb{R} / 2 \pi, \quad \int u d x \equiv 0$.

KdV equation (3) $)_{\nu=0}$ admits a nonlinear Fourier Transform (NFT) which is an analytic mapping

$$
\Psi: u(x) \mapsto \mathbf{v}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots\right), \quad \mathbf{v}_{j} \in \mathbb{R}^{2}
$$

such that
a) $d \Psi(0)(u(x))=\hat{u}$ is the Fourier transform of $u(x)$;
b) (Quasilinearity): the nonlinear part of Ψ, i.e., the mapping $\Psi-d \Psi(0)$, is 1 -smoother than Ψ;
c) Ψ transforms KdV to the equation

$$
\dot{\mathbf{v}}_{j}+\Phi_{j}(\mathbf{v})=0, \quad j=1,2, \ldots
$$

where $\mathbf{v}_{j} \cdot \Phi_{j}(\mathbf{v})=0$ for each j. So, each $I_{j}(\mathbf{v})=\frac{1}{2}\left|\mathbf{v}_{j}\right|^{2}$ is an integral of motion.

See:
[1] T. Kappeler, J. Pöshel "KdV \& and KAM", Springer 2003.
[2] S.K, Galina Perelman, DCDS-A 27 (2010), 1-24.
The perturbed $\mathrm{KdV}(3)$, written in the \mathbf{v}-variables, is similar to the damped-driven linear Schrödinger eq. (1), written in its own \mathbf{v}-variables:

$$
\frac{d}{d \tau} \mathbf{v}(\tau)+\nu^{-1} \Phi(\mathbf{v})=P(\mathbf{v})+B(\mathbf{v}) \frac{d}{d \tau} \beta ; \quad 0 \leq \tau \leq T
$$

Here $\beta(\tau)=\left(\beta_{1}(\tau), \beta_{2}(\tau), \ldots\right)^{t}$ and τ is the slow time.

We can write down the corresponding effective equation:

$$
\begin{equation*}
\frac{d}{d \tau} \mathbf{v}(\tau)=\langle P\rangle(\mathbf{v})+\gamma\langle\langle B\rangle\rangle(\mathbf{v}) \frac{d}{d \tau} \beta ; \quad \mathbf{v}(0)=\mathbf{v}_{0} \tag{4}
\end{equation*}
$$

Here $\langle P\rangle(\mathbf{v})$ - effective drift; $\langle\langle B\rangle\rangle(\mathbf{v})$ - effective dispersion operator. They are defined as follows.
For any vector $\theta=\left(\theta_{1}, \theta_{2}, \ldots\right) \in \mathbb{T}^{\infty}$ consider the rotation Π_{θ} of the l_{2} space of vectors v which rotates the component \mathbf{v}_{j} by the angle θ_{j}. Then $\langle P\rangle$ is

$$
\langle P\rangle(\mathbf{v})=\int_{\mathbb{T}_{\infty}} \Pi_{\theta}^{-1} \circ P\left(\Pi_{\theta} \mathbf{v}\right) d \theta
$$

(note that the integrand is the vectorfield $P(v)$ on the space l_{2}, transformed by the linear transformation Π_{θ} of that space). $\langle\langle B\rangle\rangle(\mathbf{v})$ is defined in a similar way.

Eq. (4) turns out to be a quasilinear stochastic heat equation, written in the Fourier variables. It is more complicated than the previous effective equation (2) since now the noise is non-additive. Still it allows to study (3) in the same way as we studied (1).

The approach also applies to other perturbations of KdV. For example, to
(5) $\quad \dot{u}+u_{x x x}-u u_{x}=-\nu u+\nu($ Hamiltonian term $)+\sqrt{\nu}($ random force $)$.

Now the effective equation is an SDE in l_{2} (not an SPDE !). It is independent from the Hamiltonian part of the equation.

§5. Remarks on non-equilibrium statistical physics.

(jointly with Armen Shirikyan and Andrey Dymov).
Let us apply to the perturbed KdV equation above the NFT (i.e. write it in the v-variables):

$$
\dot{\mathbf{v}}_{j}+\Phi_{j}(\mathbf{v})=\nu\left(\left(-\mathbf{v}_{j}+Q_{j}(\mathbf{v})+H_{j}(\mathbf{v})\right)+\sqrt{\nu} B_{j}(\mathbf{v}) \frac{d}{d \tau} \beta(\tau), \quad j \geq 1\right.
$$

$v_{j} \in \mathbb{R}^{2}$. The system in the I.h.s. is an integrable chain of coupled rotators;
Q - a HS operator, $H(v)$ - a Hamiltonian vector field, $B(v)$ - the dispersion operator.
Eq. has a unique stationary measure μ_{ν}, and we use an effective equation to study its behaviour as $\nu \rightarrow 0$.

By analogy, consider a system of $N \gg 1$ free nonlinear rotators with a small Hamiltonian coupling and damp-drive it:

$$
\dot{\mathbf{v}}_{j}+i f_{j}\left(\left|\mathbf{v}_{j}\right|^{2}\right) \mathbf{v}_{j}+\gamma H_{j}\left(\mathbf{v}_{j}, \mathbf{v}_{j-1}, \mathbf{v}_{j+1}\right)=-\nu \mathbf{v}_{j}+\sqrt{\nu T_{j}} \dot{\beta}_{j}(t) ; v_{j} \in \mathbb{C}
$$

Here $1 \leq j \leq N, 0<\nu<\gamma<1, f_{j} \in \mathbb{R}, T_{j} \geq 0, \beta_{j}(t)$ - standard complex Wiener process and $H-$ a Hamiltonian vectorfield. Let $\mu_{\nu, \gamma, N}$ be the unique stationary measure.

$$
\dot{\mathbf{v}}_{j}+i f_{j}\left(\left|\mathbf{v}_{j}\right|^{2}\right) \mathbf{v}_{j}+\gamma H_{j}\left(\mathbf{v}_{j}, \mathbf{v}_{j-1}, \mathbf{v}_{j+1}\right)=-\nu \mathbf{v}_{j}+\sqrt{\nu T_{j}} \dot{\beta}_{j}(t)
$$

$1 \leq j \leq N, 0<\nu<\gamma<1, f_{j} \in \mathbb{R}, H$ - a Hamiltonian vectorfield;
$\mu=\mu_{\nu, \gamma, N}-$ the unique stationary measure. E.g., $f_{j}=f$ for all j.
Question. How behaves μ when $N \gg 1, \nu \leq \gamma$ and $\gamma, \nu \rightarrow 0$?
Proposition. Let $\gamma=\nu$ and $T_{j}>0$ for all j. Then for $\nu \rightarrow 0$ and $N \rightarrow \infty$ (or $\nu \rightarrow 0$, while $N \gg 1$ is fixed) we have $\mu_{\nu, \gamma, N} \rightarrow \mu_{0}$, where $\mu_{0}=\mu_{T_{1}} \oplus \mu_{T_{2}} \oplus \ldots$ and μ_{T} is the stationary (Gaussian) measure for the process

$$
\dot{v}=-v+\sqrt{T} \dot{\beta}_{j}(t), \quad v \in \mathbb{C}
$$

If $\gamma \gg \nu$, the system may start to feel resonances. For $\gamma=\sqrt{\nu}$ we can control them for SOME systems as above and show that Proposition remains true (but not if $\gamma>\sqrt{\nu}$).

By analogy with the Weak Turbulence me make
Conjecture. If $\gamma=\sqrt{\nu}$ and $N=N(\nu) \rightarrow \infty$, then generically the limit $\lim _{\nu \rightarrow 0} \mu_{\nu, \gamma, N}$ depends on the Hamiltonian part H.

