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§1. Damped-driven Hamiltonian PDE

We are interested in the following class of equations:

〈Hamiltonian PDE〉 = ν-small damping + κν〈force〉, (∗)

where ν � 1 and the scaling constant κν is such that solutions stay of order one as

ν → 0 and t� 1. The constant κν is unknown, to find it is a part of the problem.

Equations (∗) are important for physics. They describe turbulence in various physical

media.

♦ All equations will be considered in the finite-volume case. The force will be random. The

objects and the constructions make sense in the deterministic case as well, but then we

can prove less.

♦ The damping usually is the Laplacian. But it may be another operator, linear or nonlinear.

♦ If in (∗) Hamiltonian PDE is replaced by a finite-dimensional Hamiltonian system, then

κν =
√
ν.
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Examples. 1) 2d Navier-Stokes:

u̇+ (u · ∇)u+∇p = ν∆u+
√
ν (random force), divu = 0, dimx = 2.

Now κν =
√
ν (I will discuss this later).

2) Burgers equation on a circle:

u̇+ uux = νuxx + (random force), x ∈ S1,

∫
u dx ≡ 0.

It is well known that now κν = 1.

3) 3d Navier-Stokes:

u̇+ (u · ∇)u+∇p = ν∆u+ κν (random force), divu = 0, dimx = 3.

Very complicated equation. Right κν is unknown. Kolmogorov believed that κν = 1.

4) CGL:

u̇+ i|u|2u = ν(∆− 1)u+ κν (random force), x ∈ Td.

Right κν is unknown.
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§2. Navier-Stokes equations

Consider 2d NSE under periodic boundary conditions:

u̇− ν∆u+(u · ∇)u+∇p =
√
ν (random force), divu = 0, (NSE)

x ∈ T2,

∫
u dx =

∫
force dx = 0.

Most of results below hold true if x ∈ Γ2, Γ2 – a compact Riemann surface. Majority of

them hold if x ∈ Ω b R2 and u |∂Ω= 0.

The random force is smooth and homogeneous in x. As a function of time this is

• either a nondegenerate white noise,

• or a nondegenerate kick-process.

Below I assume that the force is a white noise.
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LetH be the L2-space of divergence-free vector fields u(x), x ∈ T2, such that∫
u dx = 0. Then:

• (NSE) has a unique statistical equilibrium (= a stationary measure). This is a

space-homogeneous measure µν in the spaceH such that the distributionD(u(t))

of any solution u(t, x) of (NSE) converges to µν as t→∞.

• The set of stationary measures {µν , 0 < ν ≤ 1} is pre-compact in the space of

measures inH, and every limiting measure µ0 = limνj→0 µνj is an invariant

measure of the 2d Euler equation (i.e. of (NSE)ν=0). It also is space-homogeneous.

• This limiting measures µ0 are “genially infinite-dimensional”: µ0-measure of any

finite-dimensional subset ofH equals zero.

• DenoteHs = H ∩ 〈Sobolev space of order s〉. Then µ0(H2) = 1.

Conjecture 1. µ0(H2+ν) = 0 if ν > 0.

Conjecture 2. The energy spectrum of the measure µ0 behaves as Ek ∼ k−5.

These two conjectures are closely related.
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The limiting invariant measure(s) µ0 describes the space-periodic 2d turbulence. But it is

unknown if µ0 is unique, i.e. if it depends on the sequence νj → 0, and how to calculate it.

To study the limiting measure(s) µ0 means to study the periodic 2d turbulence.

See

[SK, A. Shirikyan] “Mathematics of 2d Statistical Hydrodynamics” CUP (2012). See my

web-page

For the inviscid limit in the 1d Burgers equation we now know a lot. The best results (in a

sense, they are final) are obtained by Alexander Boritchev in his thesis, see

[Boritchev] Sharp estimates for turbulence in white-forced generalised Burgers equation,

arXiv 2011.

Below I will discuss the case when the Hamiltonian PDE is either an integrable PDE, or a

linear Hamiltonian PDE in a general position. Then a progress may be achieved using a

form of averaging.
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§3. Damped-driven linear Schrödinger equation.

Consider small oscillations in a damped-driven NLS in the presence of an external electric

field. Then the corresponding Hamiltonian PDE is a linear Schrödinger equation with a

potential. We assume that the damping is nonlinear and write the equation using the slow

time τ = νt:

(1)
∂u

∂τ
+ν−1i (−∆u+ V (x)u) = ∆u−γR|u|2pu− iγI |u|2qu+ (random force),

x ∈ Td, γR, γI ≥ 0, γR + γI = 1; V (x) ∈ C∞(Td;R).

Some restrictions should be imposed on d, p and q. The random force is smooth, white in

time and non-degenerate.
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(1)
∂u

∂τ
+
i

ν
(−∆u+ V (x)u) = ∆u− γR|u|2pu− iγI |u|2qu+ (random force),

DenoteHr = Hr(Td;C). Eq. (1) defines inHr a Markov process.

Applying the methods, developed in the last 10 years to study the randomly forced 2d NSE,

one can show that eq. (1) has a unique stationary measure:

Theorem (SK-Shirikyan, Harier, Odasso, Shirikyan). Under more restrictions on d, p, q

eq. (1) has a unique stationary measure µν . For any solution u(τ) of (1) we have

dist (D(u(τ)), µν)→ 0 as τ →∞.

♦ This theorem is not at all a finite result since some of the restrictions ARE NOT

TECHNICAL. E.g., if γR = 0, then we must have p ≤ 1. On the contrary, its counterpart

for equations with kick-forces IS a final result.

MAIN PROBLEMS. a) What happens to solutions uν(τ, x) as ν → 0?

b) What happens to the stationary measure µν as ν → 0?
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It is easy to see that the set of stationary measures {µν , 0 < ν ≤ 1} is pre-compact in

the space of measure. So µνj ⇀ µ0 as νj → 0. As before, one can check that µ0 is an

invariant measure for the corresponding Hamiltonian PDE, which is now the linear

Schrödinger equation

(Lin.Schrödinger) u̇+ i(−∆u+ V (x)u) = 0.

But which one? - This equation has plenty of invariant measures! And does the limit µ0

depend on the sequence νj → 0??

I recall that in the case of NSE we do not have answers to these questions.
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v-coordinates.

Consider A = −∆ + V (x). Assume that V ≥ 1. Let ξ1, ξ2, . . . be its L2-normalised

real eigenfunctions and 1 ≤ λ1 ≤ λ2 ≤ . . . – corresponding eigenvalues. Assume that

the spectrum {λ1, λ2, . . . } is nonresonant in the sense that∑
λj · sj 6= 0 ∀ s ∈ Z∞, 0 < |s| <∞.

This is a mild restriction: majority of potentials V are non-resonant.

FOURIER TRANSFORM. For any u(x) ∈ H = L2(Td,C) decompose it in the ξ-basis:

u(x) = v1ξ1 + v2ξ2 + . . . , vj ∈ C.

Denote v = (v1, v2, . . . ). These are the (complex) v-coordinates. Consider the map

Ψ : u(·) 7→ v.

This an unitary isomorphismH → l2.
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In the v-coordinates (Lin.Schrödinger) reeds

∂

∂τ
vj + iν−1λjvj = 0 ∀ j.

Consider the action-angle variables for these equations

Ij =
1

2
|vj |2, ϕj = Arg vj ∈ S1; I = (I1, . . . ) ∈ R∞+ , ϕ = (ϕ1, . . . ) ∈ T∞.

In these coordinates the equations become

İj = 0, ϕ̇j + ν−1λj = 0 ∀j .

Let us write eq. (1) in the v-variables:
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∂

∂τ
v + iν−1diag {λj}v = Ψ

(
∆u− γR|u|2pu− γI |u|2qu

)
+ Ψ

(
(random force)

)
,

where v = (v1, v2, . . . ) and u := Ψ−1(v). Pass to the action-angles:

∂

∂τ
Ij + 0 = Fj(I, ϕ) + (random force)j , j ≥ 1,

∂

∂τ
ϕj + ν−1λj = . . . , j ≥ 1.

Now we are in the setting of the averaging theory. Accordingly we expect that the limit

limν→0 I
ν(τ) (0 ≤ τ ≤ T ) exists and satisfies the averaged I-equations:

∂

∂τ
Ij(τ) = 〈Fj〉(I) + 〈(random force)j〉, j ≥ 1.

Here 〈Fj〉(I) =
∫
T∞ Fj(I, ϕ) dϕ and 〈(random force)j〉 is defined by similar

stochastic rules. In infinite dimensions this idea does not work well since I(τ) ∈ R∞+ –

this is a very bad phase-space, and the averaged I-equations are singular! To study the

limiting dynamics of I(τ) we consider other - non-singular - limiting equations.
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Effective equations.

Denote Â = diag {λj , j ≥ 1} and consider new equation, constructed by a kind of

averaging:

(2)
∂

∂τ
v =

(
− Â+ L

)
v +R(v) + (random force).

Here L, R and the force are constructed by some explicit rools, and

• L =diag {lk} – bounded linear operator, constructed in terms of the Fourier transform

of the potential V (x), such that−Â+ L ≤ −1
2 Â.

• The nonlinearity R(v) is constructed from the dissipative term of eq. (1) −γR|u|2pu.

This is a nice locally Lipschitz analytic mapping.

• random force in (2) is explicit:

(random force)k = ∂
∂τ Ykβk(τ), where Yk =

(∑
l b

2
l |Ψkl|2

)1/2
.

Eq. (2) is called the Effective Equation. This is a semilinear stochastic heat equation with a

non-local nonlinearity, written in terms of Fourier coefficients of a solution.
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The Effective Equation is independent from the Hamiltonian part−iγI |u|2qu of the

perturbation in eq. (1). If we add to eq. (1) any other Hamiltonian term i∇uh̃(u), this will

not change the Effective Equation. It depends only on the damping.

Examples. 1) If γR = 0, then effective equation is linear.

2) If p = 1, i.e. the dissipative nonlinearity in eq. (1) is −γR|u|2u, then

R(v)k = −γRvk
∑
l

|vl|2Lkl,

where Lkl is some explicit tensor. So Effective Equations take the form

∂

∂τ
vk = (−λk + lk)vk − γRvk

∑
l

|vl|2Lkl + Yk
∂

∂τ
βk(τ), k ≥ 1.
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Equation (1):

∂u

∂τ
+
i

ν
(−∆u+ V (x)u) = ∆u− γR|u|2pu− iγI |u|2qu+ (random force).

Effective Equation (2):

∂

∂τ
v = −Âv + Lv +R(v) + (random force).

Theorem 1. Let uν(τ), 0 ≤ τ ≤ T , be a solution of eq. (1), uν(0) = u0, and

vν(τ) = Ψ(uν(τ)). Let v0(τ) be a solution of Effective Equation (2) such that

v0(0) = v0 = Ψ(u0). Then

I(vν(τ))→ I(v0(τ)), 0 ≤ τ ≤ T,

as ν → 0, in probability.

15



Let µν be a unique stationary measure for (1) and Ψ ◦ µν – this measure, written in the

v-variables.

Lemma. Effective Equation (2) has a unique stationary measure m0.

Theorem 2. Ψ ◦ µν ⇀m0 as ν → 0. I.e., the unique stationary measure of (1),

written in the v-variables, converges to the unique stationary measure of the Effective

Equation (2).

That is, for ANY solution uν(τ) of (1) we have

limν→0 limτ→∞D(Ψ(uν(τ)) = m0.

Example. If γR = 0, then the Effective Equation is linear. Its unique stationary measure

m0 is the Gaussian measure which is the law of the Ornstein-Uhlenbeck process∫ 0

−∞
es(−Â+L) · (diag {Yj}) dβ(s).
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Equations without dissipation.

Following Debussche–Odasso (2005), consider similar 1d-equations without dissipation

but with friction :

∂u

∂τ
+ν−1i (−uxx + V (x)u) = −γR|u|2u−iγI |u|2qu+(random force), γR > 0.

Now the effective equation is the system

∂

∂τ
vk = −γRvk

∑
l

|vl|2Lkl + Yk
∂

∂τ
β̄k(τ), k ≥ 1.

This is a stochastic ODE in the space l2.

Theorems 1, 2 remain true.
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Big Problem. Study for these equations the limit

〈space-period〉 → ∞.

I believe that this corresponds to the Weak Turbulence.

For all these results see

SK “Weakly nonlinear stochastic CGL equations”. ArXiv 2011, to appear in Ann. IHP PS.
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§4. Damped-driven KdV

(See SK, GAFA 20 (2010), 1431-1463. ) Consider the damped-driven KdV:

(3) u̇+uxxx−uux = νuxx+
√
ν (random force), x ∈ T1 = R/2π,

∫
u dx ≡ 0.

KdV equation (3)ν=0 admits a nonlinear Fourier Transform (NFT) which is an analytic

mapping

Ψ : u(x) 7→ v = (v1,v2, . . . ), vj ∈ R2,

such that

a) dΨ(0)(u(x)) = û is the Fourier transform of u(x);

b) (Quasilinearity): the nonlinear part of Ψ, i.e., the mapping Ψ− dΨ(0), is 1-smoother

than Ψ;

c) Ψ transforms KdV to the equation

v̇j + Φj(v) = 0, j = 1, 2, . . . ,

where vj · Φj(v) = 0 for each j. So, each Ij(v) = 1
2 |vj |

2 is an integral of motion.
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See:

[1] T. Kappeler, J. Pöshel “KdV & and KAM”, Springer 2003.

[2] S.K, Galina Perelman, DCDS-A 27 (2010), 1-24.

The perturbed KdV (3), written in the v-variables, is similar to the damped-driven linear

Schrödinger eq. (1), written in its own v-variables:

d

dτ
v(τ) + ν−1Φ(v) = P (v) +B(v)

d

dτ
β; 0 ≤ τ ≤ T.

Here β(τ) = (β1(τ), β2(τ), . . . )t and τ is the slow time.
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We can write down the corresponding effective equation:

(4)
d

dτ
v(τ) = 〈P 〉(v) + γ〈〈B〉〉(v)

d

dτ
β; v(0) = v0.

Here 〈P 〉(v) – effective drift; 〈〈B〉〉(v) – effective dispersion operator. They are defined

as follows.

For any vector θ = (θ1, θ2, . . . ) ∈ T∞ consider the rotation Πθ of the l2 space of

vectors v which rotates the component vj by the angle θj . Then 〈P 〉 is

〈P 〉(v) =

∫
T∞

Π−1
θ ◦ P (Πθv) dθ

(note that the integrand is the vectorfield P (v) on the space l2, transformed by the linear

transformation Πθ of that space). 〈〈B〉〉(v) is defined in a similar way.

Eq. (4) turns out to be a quasilinear stochastic heat equation, written in the Fourier

variables. It is more complicated than the previous effective equation (2) since now the

noise is non-additive. Still it allows to study (3) in the same way as we studied (1).
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The approach also applies to other perturbations of KdV. For example, to

(5) u̇+ uxxx − uux = −νu+ ν (Hamiltonian term) +
√
ν (random force).

Now the effective equation is an SDE in l2 (not an SPDE !). It is independent from the

Hamiltonian part of the equation.
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§5. Remarks on non-equilibrium statistical physics.

(jointly with Armen Shirikyan and Andrey Dymov).

Let us apply to the perturbed KdV equation above the NFT (i.e. write it in the v-variables):

v̇j + Φj(v) = ν
(
(−vj +Qj(v) +Hj(v)

)
+
√
ν Bj(v)

d

dτ
β(τ), j ≥ 1;

vj ∈ R2 . The system in the l.h.s. is an integrable chain of coupled rotators;

Q – a HS operator, H(v) – a Hamiltonian vector field, B(v) – the dispersion operator.

Eq. has a unique stationary measure µν , and we use an effective equation to study its

behaviour as ν → 0.

By analogy, consider a system of N � 1 free nonlinear rotators with a small

Hamiltonian coupling and damp-drive it:

v̇j + ifj(|vj |2)vj + γHj(vj ,vj−1,vj+1) = −νvj +
√
νTj β̇j(t); vj ∈ C.

Here 1 ≤ j ≤ N , 0 < ν < γ < 1, fj ∈ R, Tj ≥ 0, βj(t) – standard complex Wiener

process and H – a Hamiltonian vectorfield. Let µν,γ,N be the unique stationary measure.
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v̇j + ifj(|vj |2)vj + γHj(vj ,vj−1,vj+1) = −νvj +
√
νTj β̇j(t);

1 ≤ j ≤ N , 0 < ν < γ < 1, fj ∈ R, H – a Hamiltonian vectorfield;

µ = µν,γ,N – the unique stationary measure. E.g., fj = f for all j.

Question. How behaves µ when N � 1, ν ≤ γ and γ, ν → 0?

Proposition. Let γ = ν and Tj > 0 for all j. Then for ν → 0 and N →∞
(or ν → 0, while N � 1 is fixed)

we have µν,γ,N → µ0, where µ0 = µT1 ⊕ µT2 ⊕ . . . and µT is the stationary

(Gaussian) measure for the process

v̇ = −v +
√
T β̇j(t), v ∈ C.

If γ � ν, the system may start to feel resonances. For γ =
√
ν we can control them for

SOME systems as above and show that Proposition remains true (but not if γ �
√
ν).

By analogy with the Weak Turbulence me make

Conjecture. If γ =
√
ν and N = N(ν)→∞, then generically the limit limν→0 µν,γ,N

depends on the Hamiltonian part H .
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