Sergei Kuksin

Eulerian limit for randomly forced 2D Navier-Stokes equation

Thesis: Stationary space-periodic 2D turbulence is described by a measure in the space of divergence-free vector-field on \mathbb{T}^{2}. This measure is an invariant measure for the (free) 2D Euler equation. It comes from the small-viscosity 2D Navier-Stokes equation under the inviscid limit.

The measure is called the Eulerian limit.

§1. The equation

Space-periodic 2D turbulence is described by the small-viscosity 2D Navier-Stokes equation (NSE) under periodic boundary conditions, perturbed by stationary random force:

$$
\begin{aligned}
v_{\tau}^{\prime}-\varepsilon \Delta v+(v \cdot \nabla) v+\nabla \tilde{p} & =\varepsilon^{a} \tilde{\eta}(\tau, x) \\
x \in \mathbb{T}^{2}, \quad \operatorname{div} v=0, \quad \int v d x & \equiv \int \tilde{\eta} d x \equiv 0
\end{aligned}
$$

- $0<\varepsilon \ll 1$ and the scaling exponent a is $a<\frac{3}{2}$ (e.g., $a=0$),
- $\tilde{\eta}$ is a divergence-free Gaussian random field, white in time, smooth and stationary in x, and "sufficiently non-degenerate".

NSE defines Markov process in space \mathcal{H},

$$
\mathcal{H}=\left\{u(x) \in L^{2} \mid \operatorname{div} u=0, \int u d x=0\right\}, \quad\|\cdot\|-\text { the } L^{2} \text {-norm in } \mathcal{H}
$$

Let $v(\tau)$ be a solution of the 2D NSE above.
Notation. $\mathcal{D} v(\tau)$ - law of $v(\tau)$ (measure in $\mathcal{H})$.
Postulate 1. Only $\mathcal{D} v(\tau)$ matters.
Scaling
$v=\varepsilon^{b} u, \tau=\varepsilon^{-b} t, \nu=\varepsilon^{3 / 2-a}, b=a-1 / 2$
transforms the eq. above to

$$
\dot{u}-\nu \Delta u+(u \cdot \nabla) u+\nabla p=\sqrt{\nu} \eta(t, x), \quad(\mathrm{NSE})
$$

where $\eta(t)=\varepsilon^{b / 2} \tilde{\eta}\left(\varepsilon^{-b} t\right)$ is distributed as $\tilde{\eta}(t)$. Below I discuss (NSE).
Postulate 2. Only limiting properties as $t \rightarrow \infty$ matter.

Facts: \exists ! probability measure μ_{ν} in \mathcal{H} such that

- $\mathcal{D} u(t) \rightharpoonup \mu_{\nu}$ as $t \rightarrow \infty$ exponentially fast, for any solution $u(t)$.
- There is solution $u_{\nu}(t, x)$ s.t. $\mathcal{D} u_{\nu}(t) \equiv \mu_{\nu}$.
- $u_{\nu}(t, x)$ is stationary in t and x.
- $\operatorname{Re}\left(u_{\nu}\right) \sim \nu^{-1}$.
μ_{ν} - stationary measure; $u_{\nu}(t)$ - stationary solution.
See SK "Randomly Forced Nonlinear PDEs and Statistical Hydrodynamics in 2 Space Dimensions", Europ. Math. Soc. Publ. House, 2006

Postulate 3. 2D turbulence is described by μ_{ν} and the distribution of $u_{\nu}(t, x)$ as $\nu \rightarrow 0$.

§2. The Eulerian limit.

Fact: $\mathbf{E}\left\|\nabla u_{\nu}(t)\right\|^{2}=B_{0}, \quad \mathbf{E}\left\|\Delta u_{\nu}(t)\right\|^{2}=B_{1}$, where B_{0}, B_{1} - explicit constants.
Theorem. Along sequences $\nu_{j} \rightarrow 0$ we have

$$
\mathcal{D} u_{\nu_{j}}(\cdot) \rightharpoonup \mathcal{D} U(\cdot) \quad \text { in } \quad \mathcal{P}(C(0, \infty ; \mathcal{H}))
$$

$U(t, x)$ is stationary in t and x. Moreover,
a) every its trajectory $U(t, x)$ is such that $U(\cdot) \in L_{2 l o c}\left(0, \infty ; \mathcal{H} \cap H^{2}\right)$,
b) it satisfies the free Euler equation

$$
\begin{equation*}
\dot{u}+(u \cdot \nabla) u+\nabla p=0, \operatorname{div} u=0 \tag{Eu}
\end{equation*}
$$

c) $\|U(t)\|^{2}$ is time-independent. If $g(\cdot)$ is bounded continuous function, then $\int g(\operatorname{rot} U(t, x)) d x$ is time-independent.
d) $\mu_{0}=\lim \mu_{\nu_{j}}=\mathcal{D} U(t)$ is invariant measure for (Eu).
e) $\int_{\mathcal{H}}\|\nabla u\|^{2} \mu_{0}(d u)=B_{0}, \int_{\mathcal{H}}\|\Delta u\|^{2} \mu_{0}(d u) \leq B_{1}, \int_{\mathcal{H}} \| e^{\sigma \nabla u \|^{2}} \mu_{0}(d u)<\infty$.
μ_{0} and $\mathcal{D} U(\cdot)$ describe the space-periodic 2D turbulence.
Task: Study μ_{0} and the distribution of U.

§3. Disintegration of μ_{0}.

L - set of bounded Lipschitz functions $\mathbb{R} \rightarrow \mathbb{R}$, and $\left\{g_{1}, g_{2}, \ldots\right\}$ - dense in L sequence. Consider map $G: \mathcal{H} \cap H^{1} \rightarrow \mathbb{R}^{\infty} \times \mathbb{R}$:

$$
u(x) \mapsto\left(\left\{\int g_{j}(\operatorname{rot}(u(x)) d x, j \geq 1\}, \quad\|u\|^{2}\right)\right.
$$

This is the set of all integrals of motion for (Eu). For any $b \in \mathbb{R}^{\infty} \times \mathbb{R}$ denote $G_{b}=G^{-1}(b) \subset \mathcal{H} \cap H^{1}$ the iso-integral set. Each G_{b} is invariant for (Eu).

Denote $\lambda=G \circ \mu_{0}$ - measure on $\mathbb{R}^{\infty} \times \mathbb{R}$.
Theorem 1. $\forall b$ there is measure θ_{b} on G_{b} such that
i) θ_{b} is invariant for (Eu), restricted to G_{b},
ii) $\mu_{0}=\int_{\mathbb{R}^{\infty} \times \mathbb{R}} \theta_{b} \lambda(d b)$.

This is a disintegration of measure μ_{0}. It is unique.
Task: Study measures θ_{b} and measure λ.

Definition. θ_{b} 's - the iso-integral measures,
λ - the distribution of integrals of motion.

Iso-integral measures θ_{b}.

Nothing is known about them.
Conjecture: For a.e. b, (Eu) restricted to G_{b} is uniquely ergodic.
(Wait till the end of the lecture for the motivation.)
If so, then θ_{b} is this ergodic measure.
It is plausible that measures θ_{b} 's are "rather singular".

§4. λ (distribution of integrals of motion).

μ_{0} - Eulerian limit; $\lambda=G \circ \mu_{0}$, where $G(u) \in \mathbb{R}^{\infty} \times \mathbb{R}$ - vector of all Euler's integrals of motion, evaluated for $u(x)$.
Theorem 2. $\lambda(\{u \mid\|u\|>K\}) \leq C e^{-\sigma K^{2}}$ for any $K \geq 1$, $\lambda(\{u \mid\|u\|<\delta\}) \leq C \sqrt{\delta}$ for any $\delta>0$.

That is, Energy of turbulent flow is big (is small) with small probability.
For any N consider projection of vectors in \mathbb{R}^{∞} on the first N components:

$$
\pi_{N}: \mathbb{R}^{\infty} \times \mathbb{R} \rightarrow \mathbb{R}^{N} \times\{0\}
$$

Theorem 3. The measure $\pi_{N} \circ \lambda$ is absolutely continuous with respect to N-dimensional Lebesgue measure.

Corollary. If $K \subset \mathcal{H}$ is a compact of finite Hausdorff dimension, then $\mu_{0}(K)=0$.
That is, The distribution of integrals of motion is non-singular.

§5. The balance relations.

REMINDING. $u_{\nu}(t)$ - stationary solution of (NSE); $\mathcal{D} u_{\nu}(t)=\mu_{\nu}$ - stationary measure. $\mu_{\nu_{j}} \rightharpoonup \mu_{0}$ - Eulerian limit.

Denote $\xi_{\nu}(t, x)=\operatorname{rot} u_{\nu}(t, x)$ and

$$
\Gamma_{\nu}(\tau)=\left\{x \in \mathbb{T}^{2} \mid \xi_{\nu}(t, x)=\tau\right\}, \tau \in \mathbb{R}
$$

Theorem 4. For any $\nu>0, \tau \in \mathbb{R}$

$$
\mathbf{E} \int_{\Gamma_{\nu}(\tau)}\left|\nabla \xi_{\nu}\right| d \gamma=B \mathbf{E} \int_{\Gamma_{\nu}(\tau)}\left|\nabla \xi_{\nu}\right|^{-1} d \gamma
$$

$B-$ an explicit constant, $d \gamma$ - length element on $\Gamma_{\nu}(\tau)$.
These are infinitely-many relations, satisfied by measures rot o $\mu_{\nu}, \nu>0$.

Corollary. The Eulerian limit μ_{0} satisfies

$$
\begin{aligned}
& \qquad \int_{\mathcal{H}} e^{\sigma|\operatorname{rot} u(x)|} \mu_{0}(d u) \leq C, \quad \int_{\mathcal{H}} e^{\sigma|u(x)|} \mu_{0}(d u) \leq C \text {, } \\
& \text { for any } x \text {, with some } \sigma>0, C \geq 1 \text {. }
\end{aligned}
$$

§6. Two models for 2D NSE.

A. Replace in (NSE) 2D Euler eq. by KdV eq.

$$
\dot{u}+u_{x x x}-u u_{x}=0
$$

We get the damped-driven KdV equation:

$$
\begin{align*}
& \dot{v}-\nu v_{x x}+v_{x x x}-6 v v_{x}=\sqrt{\nu} \eta(t, x) \tag{1}\\
& x \in \mathbb{T}^{1}=\mathbb{R} / 2 \pi \mathbb{Z}, \quad \int v d x \equiv \int \eta d x \equiv 0
\end{align*}
$$

Eq. (1) has a unique stat. measure μ_{ν}. The limit $\mu_{\nu_{j}} \rightarrow \mu_{0}$ as $\nu_{j} \rightarrow 0$ exists, and μ_{0} is an invariant measure for the KdV. Now the corresponding iso-integral sets G_{b} are diffeomorphic to \mathbb{T}^{∞}, and the iso-integral measures θ_{b} are isomorphic to the Haar measure on \mathbb{T}^{∞}. They are uniquely ergodic. Measure λ (the distribution of integrals of motion) now is a stationary measure for the corresponding Whitham-averaged equation.

SK, A. Piatnitski, JMPA (2008), to appear

Whitham-averaged equation.

$(I, \varphi), I \in \mathbb{R}_{+}^{\infty}, \varphi \in \mathbb{T}^{\infty}$ - action-angle variables for KdV. KdV becomes

$$
\dot{I}=0, \quad \dot{\varphi}=W(I)
$$

Eq. (1) becomes :

$$
d I=\nu F(I, \varphi) d t+\sqrt{\nu} G(I, \varphi) d \beta_{t}, \quad d \varphi=\ldots
$$

Averaged equation:

$$
\begin{equation*}
d I=\langle F\rangle(I) d \tau+\langle\langle G\rangle\rangle(I) d \beta_{\tau}, \tag{2}
\end{equation*}
$$

where $\tau=\nu t$ and

$$
\langle F\rangle(I)=\int_{\mathbb{T} \infty} F(I, \varphi) d \varphi, \quad\langle\langle G\rangle\rangle(I)=\ldots
$$

Theorem. In the (I, φ)-variables the limiting measure μ_{0} is $\mu_{0}(d I d \varphi)=\nu(d I) \times d \varphi$, where ν is a stationary measure for eq (2).

B (finite-dimensional model). Replace in (NSE) the 2D Euler eq. by the Euler equation for rotating solid body:

$$
\dot{M}+\left[M, A^{-1} M\right]+\nu M=\sqrt{\nu} \eta(t) .
$$

$M \in \mathbb{R}^{3}$ - momentum, A - operator of inertia. Iso-integral sets are formed by 1 or 2 circles. Iso-integral measures θ_{b} may be written explicitly. λ - unique stationary measure for the averaged equation.

For the results in A, B see my paper
SK, "Rigorous results and conjectures on stationary space-periodic 2D turbulence" (mp_ arc 07-134 or my web-page)

