
Sergei Kuksin

Quantum averaging, KAM and diffusion.
(based on a joint paper with A. Neishtadt)

Marseille, 13.10.2012

1



§1. The quantisation.

Consider non-autonomous hamiltonian system on T ∗Td = Rd × Td = {(p, q)} with a

Hamiltonian H(p, q, t):

(1) ṗ = −∇qH, q̇ = ∇pH.

Corresponding quantum hamiltonian operatorH is obtained by replacing in H qj 7→ xj ,

pj 7→ ~
i
∂
∂xj

:

H = H(~
i∇x, x, t).

For example, if

H(p, q, t) = |p|2 + V (t, q),

then

H = −~2∆ + V (t, x).

The Plank constant ~ is very small if we use the usual units SI to measure physical

quantities, but it is ∼ 1 if we use the atomic units. Both cases ~� 1 and ~ ∼ 1 are

important.
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The principle of quantisation tells that some quantitative properties ofH (e.g., some its

spectral properties), when ~→ 0, may be expressed in terms of the classical equation (1)

(the semiclassical limit). And that some qualitative properties of the quantum systems are

parallel to those of the classical equations (1). I will discuss this parallelism for some

KAM-related theories.

The evolutionary Schrödinger equations with the non-autonomous Hamiltonian operator

H = −~2∆ + V (t, x) is the equation

i~ u̇ = −~2∆u+ V (t, x)u.

Let {ϕs(x), s ∈ Zd}, be some Hilbert basis of L2(T d), maybe depending on t. Take

any solution u(t, x) and decompose it in this basis: u(t, x) =
∑
s us(t)ϕs(x). Then∑

|us(t)|2 ≡Const. I recall that |us|2 is the probability that the quantum particle

occupies a state s.

What happens to quantities |us(t)|2 as t growths, i.e. how the total probability
∑
|us(t)|2

is distributed between the states s ∈ Zd when t� 1? This is the question which is

addressed by the theorems I will discuss. For most of the talk I will assume that ~ = 1.

3



§2. Quantum adiabaticity.

Let a classical Hamiltonian H has the form H = Hε = |p|2 + V (εt, q).

Then, if ∀τ the Hamiltonian Hτ = |p|2 + V (τ, q) is integrable, the classical averaging

(or “adiabatic”) theory applies to the classical system (1) (Laplace, Lagrange, Gauss, . . . ).

Consider the corresponding quantum HamiltonianHε and the (nonautonomous)

Schrödinger equation:

(2) u̇ = −iHε(u) = −i
(
−∆u+ V (εt, x)u

)
.

The quantum adiabaticity deals with solutions of (2). It is as old as the quantum

mechanics, e.g. see

P. Dirac (1925) “The adiabatic invariance of the quantum integrals”.

(Note that Schrödinger published his equation one year later, in 1926.)

What this is about?
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DenoteHτ = −∆ + V (τ, x). Let {ϕs(τ) = ϕs(τ ;x), s ∈ Zd}, and {λs(τ)} be the

eigenvectors and eigenvalues ofHτ , each λs(τ) continuous in τ . Let u(t, x) be a

solution of the Schrödinger equation (2), satisfying u(0, x) = ϕs0(0),

(“a pure state initial data”), where s0 is such that for each τ , λs0(τ) is an isolated

eigenvalue ofHτ of a constant multiplicity. Decompose u(t) in the basis {ϕs(εt)}:
u(t, x) =

∑
s us(t)ϕs(εt;x). The quantum adiabatic theorem says that u(t, x) stays

close to the eigenspace, corresponding to λs0(εt):

Theorem 1 (M. Born - V. Fock (1928) and T. Kato (1950))

sup
0≤t≤ε−1

∑
s:λs(εt) 6=λs0

(εt)

|us(t)|2 → 0 as ε→ 0.

The result remains true if x ∈ Rd andHτ has mixed spectrum, but λs0(τ) always is an

isolated eigenvalue of constant multiplicity.

Note that in difference with the classical adiabaticity, now we DO NOT assume that the

Hamiltonians |p|2 + V (τ, q) are integrable.
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§3. Around Nekhoroshev’s Theorem

Start with classical systems. Let (p, q) ∈ Rd × Td. Let Hε(p, q) = h0(p) + εh1(p, q)

and h0 is steep (e.g., it is strictly convex). Let (p(t), q(t)) be a solution. Then there are

a, b > 0 such that

(3) |p(t)− p(0)| ≤ εa ∀ |t| ≤ eε
−b

.

That is,

(∗) under perturbed hamiltonian dynamics integrals of unperturbed system

change only a bit during exponentially long time.

There are many related results. For example: let

Hε(p, q, t) = h0(p) + εh1(ωt; p, q), ω ∈ RN ,

where h1(ξ; p, q), ξ ∈ TN (N ≥ 1) is analytic. Then for a typical ω estimate (3) is true.

In particular, let us take

Hε(p, q, t) = |p|2 + εV (ωt; q).
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The corresponding quantised Hamiltonian is the operator−∆ + εV (ωt;x), and the

corresponding evolutionary equation is u̇ = −i(−∆u+ εV (ωt;x)u).

Do we have any analogy of the Nekhoroshev estimate

under perturbed dynamics integrals of the unperturbed system

change only a bit during exponentially long time?

Yes, even with ε = 1! Consider u̇ = −i(−∆u+ V (t, x)u). Denote

‖u‖2r =
∑
|us|2(1 + |s|2)r , r ∈ R.

Theorem 2 (J. Bourgain, 90’s). Let V (t, x) = Ṽ (ωt, x), ω ∈ RN , where ω is a

Diophantine vector and Ṽ is a smooth function on TN × Td. Then for each r ≥ 1 there

exists c(r) such that

‖u(t)‖r ≤ (ln t)c(r)‖u0‖r, ∀ t ≥ 2.

So if u0 is smooth, then the high states s stay almost non-excited for exponentially long

time.

Is it important that V (t, x) is time-quasiperiodic? Not really!
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We discuss

u̇ = −i(−∆u+ V (t, x)u)

Theorem 2′ (J. B. ) Let V be smooth and Ck-bounded uniformly in (t, x) for each k.

Then for each r ≥ 1 and a > 0 there exists C such that

‖u(t)‖r ≤ C ta‖u0‖r, ∀ t ≥ 2.

Also see papers by J-M Delort and W-M Wang (and cf. Theorem 1).

Problem. Prove any long-time stability result for actions of an integrable classical system

under nonautonomous perturbations which are smooth and bounded uniformly in t.
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§3. Quantum KAM

Let (p, q) ∈ Rd × Td. Consider integrable hamiltonian h0(p) = |p|2. Consider its

perturbation Hε(p, q) = h0(p) + εV (ωt, q), ω ∈ RN , V is analytic. For the

corresponding Hamiltonian equation we have a KAM-like result:

for a typical (p(0), q(0)) and a typical ω the solution (p(t), q(t) is time-quasiperiodic.

The quantised hamiltonian defines the dynamical equation:

u̇ = −i
(
−∆u+ εV (tω, x)u

)
, x ∈ Td.

We regard the vector ω as a parameter of the problem:

ω ∈ U b Rn.
Denote L2 = L2(Td,C). Provide it with the exponential basis {eis·x, s ∈ Zd}. For any

linear operator B : L2 → L2 let (Bab, a, b ∈ Zd) be its matrix in this basis.

The theorem below see in

[EK1] H. Eliasson and S. Kuksin, CMP 286 (2009), 125-136.

The 1d case is due to Bambusi-Graffi (2001).
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We talk about the equation u̇ = −i
(
−∆u+ εV (tω, x)u

)
.

Theorem 3. If ε� 1, then for most ω we can find an ϕ-dependent complex-linear

isomorphism Ψ(ϕ) = Ψε,ω(ϕ), ϕ ∈ TN ,

Ψ(ϕ) : L2 → L2, u(x) 7→ Ψ(ϕ)u(x),

and a bounded Hermitian operator Q = Qε,ω such that a curve u(t) ∈ L2 solves the

perturbed equation if and only if v(t) = Ψ(tω)u(t) satisfies

v̇ = −i
(
−∆v + εQv

)
.

The matrix (Qab) is block-diagonal, i.e. Qab = 0 if |a| 6= |b|, and it satisfies

Qab = (2π)−n−d
∫
Tn

∫
Td

V (ϕ, x)ei(a−b)·x dxdϕ+O(εγ), γ > 0.

Moreover, for any p ∈ N we have ‖Q‖Hp,Hp ≤ C1 and ‖Ψ(ϕ)− id ‖Hp,Hp ≤
εγ
′
C2, γ′ > 0. “For most” means “for all ω ∈ Uε ⊂ U , where mes (U \ Uε) ≤ εκ for

some κ > 0”.
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Corollary. For ω as in the theorem all solutions u(t, x) are almost-periodic functions of

time. For any p they satisfy

(1− Cε)‖u(0)‖p ≤ ‖u(t)‖p ≤ (1 + Cε)‖u(0)‖p, ∀ t ≥ 0

(this is the “dynamical localisation”).

Proof. Since Q is block-diagonal, then ‖v(t)‖p = const. Since v(t) = Ψ(t)u(t) and

‖Ψ− id ‖Hp,Hp ≤ εC2, then the estimate follows. �

Remarks. 1) Let n = 0. Then the perturbed equation is u̇ = −i
(
−∆u+ εV (x)u

)
.

Theorem states that this equation may be reduced to a block-diagonal equation

u̇ = −iAu, where

Aab = 0 if |a| 6= |b|. This is a well known fact.

2) For n = 1 the theorem’s assertion is the Floquet theorem for time-periodic equations. In

difference with the finite-dimensional case, this is a perturbative result, valid only for

‘typical’ frequencies ω ∈ R and small ε.
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Proof. The perturbed equation is a non-autonomous linear Hamiltonian system in L2:

u̇ = −i δδūH
ε(u), Hε(u) = 1

2 〈∇u,∇ū〉+ 1
2ε〈V (ϕ0 + tω, x)u, ū〉.

Consider the extended phase-space L2 × Tn × Rn = {(u, ϕ, r)}.
In this space the equation above can be written as the autonomous system

u̇ = −i δ
δū
Hε(u, ϕ, r),

ϕ̇ = ∇rHε = ω,

ṙ = −∇ϕHε,

where Hε(u, ϕ, r, ε) = ω · r + 1
2 〈∇u,∇ū〉+ 1

2ε〈V (ϕ, x)u, ū〉.

Hε is a small perturbation of the integrable quadratical hamiltonian

h0 = ω · r + 1
2 〈∇u,∇ū〉. To perturbations of h0 applies the KAM-theorem from

[EK2] Eliasson-Kuksin, “KAM for nonlinear Schrödinger equation”, Ann. Math. 2010.
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How the theorem from [EK2] implies Theorem 3 ? Let us write Hε as

Hε(u, ϕ, r, ε) = ω · r +
1

2
〈∇u,∇ū〉+ εf(u, ϕ, r).

In our case f = 1
2 〈V (ϕ, x)u, ū〉.

KAM Theorem from [EK2]: There exists domain O = {‖u‖ < δ} × Tn × {|r| < δ}
and symplectic transformation Φ : O → L2 × Tn × Rn which transforms Hε to

h0 = ω′ · r +
1

2
〈∇u,∇ū〉+ ε〈Qu, ū〉+ f ′(u, ϕ, r),

where f ′ = O(|u|3) +O(|r|2).

Torus T0 = 0×Tn × 0 is invariant for the transformed system, so Φ(T0) is invariant for

the original equation. This is the usual KAM statement. NOW it is trivial: it simply states

that u(t) ≡ 0 is a solution on the original equation.
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But KAM theorem above tells more! Simple analysis of the proof (see a Remark in [EK2])

shows that if the perturbation εf is quadratic in u and r-independent, then

the KAM-transformations are linear in u and do not change ω.

So the transformed hamiltonians stay quadratic in u. Hence, the transformed hamiltonian

h0 is such that f ′ = 0. That is,

h0 = ω′ · r +
1

2
〈∇u,∇ū〉+ ε〈Qu, ū〉.

This proves Theorem 3.
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§4. Quantum diffusion.

Let (p, q) ∈ Rd ×Td. Consider Hε(p, q) = |p|2 + εV (ωt, q), ω ∈ RN , V is analytic.

Fix any initial data (p0, q0). Then

i) by KAM, for a typical ω a solution such that (p(0), q(0)) = (p0, q0) is

time-quasiperiodic;

ii) for exceptional ω we “should” have the Arnold diffusion: the action p(t) of a

corresponding solution “diffuses away” from p0.

The quantised hamiltonian defines the dynamical equation:

u̇ = −i
(
−∆u+ εV (tω, x)u

)
, x ∈ Td.

Claim 4. Let d = 1, N ≥ 2 and the potential V is nondegenerate in a suitable sense.

Then there exist a smooth function u(0, x) and ω ∈ RN such that

lim sup
t→∞

‖u(t)‖s =∞

for some s ≥ 1.
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An example of a time-periodic potential V , satisfying the assertion, is given by Bourgain. It

is conjectured by H. Eliasson that the validity of the Claim for a typical potential follows

from the method of his paper

H. L. Eliasson, Ergod.Th. Dynam. Sys 22 (2002), 1429 - 449.

Proof of this assertion is a work under preparation.
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§5. Perturbed harmonic and unharmonic oscillators.

> Consider Schrödinger equation in R1:

u̇ = −i
(
− uxx + (x2 + µx2m)u+ εV (tω, x)u

)
,

where µ > 0, m ∈ N, m ≥ 2; V (ϕ, x) is C2-smooth in ϕ, x and analytic in ϕ,

bounded uniformly in ϕ, x. An analogy of the KAM-Theorem 3 holds. See

[SK1993] LNM 1556 (Section 2.5) for the needed KAM-theorem.

> Due to Bambusi-Graffi (CMP 219 (2001), 465-480) the result holds for non-integer m.

That is, for equations

u̇ = −i
(
− uxx +Q(x)u+ εV (tω, x)u

)
,

where Q(x) ∼ |x|α, α > 2 as |x| → ∞. Moreover, they allow V →∞ as |x| → ∞.

> Liu-Yuan (CPAM, 2010) allow faster growth of V in x. They proved an analogy of

Theorem 3 for the quantum Duffing oscillator

u̇ = −i
(
− uxx + x4u+ εxV (tω, x)u

)
.

17



> Due to Grebert and Thomann (CMP 2011) the assertion holds for the perturbed

harmonic oscillator

u̇ = −i
(
− uxx + x2u+ εV (tω, x)u

)
.

What happens in higher dimensions, d ≥ 2 ? – Nobody knows.
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§6. Quantum adiabatic theorem in semiclassical limit

Consider the classical system on T ∗Rd = Rd × Rd with a smooth Hamiltonian

H(p, q, εt) = |p|2 + V (εt, q),

and the corresponding quantum system

i~ u̇ = −~2∆u+ V (τ, x)u = Hτu, τ = εt.

We assume that for each τ the potential V (τ, x) grows to infinity with |x|, so the operator

Hτ = −~2∆ + V (τ, x) has a discrete spectrum.

We will fix ε so small that it allows to make some statements about the dynamics of the

classical system, and then pass to the limit as ~→ 0. This limiting dynamics may be quite

different from that in Section 2 on quantum adiabaticity when ~ is fixed and ε→ 0. This

was first demonstrated by M. Berry.
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Systems with one degree of freedom.

Let the classical Hamiltonian Hτ (p, q) = H(p, q, τ) = −p2 + V (τ, q) has one degree

of freedom. Assume that for each τ = const in the phase plane of Hτ there is a domain

filled by closed trajectories. In this domain we introduce action-angle variables

I = I(p, q, τ), χ = χ(p, q, τ) (χ ∈ T1), and express Hτ via the action variable and τ ,

Hτ (p, q) = E(I, τ).

For ε > 0 let (p(t), q(t)) be a solution of the perturbed classical system with the

nonautonomous Hamiltonian H(p, q, εt).

Theorem (classical averaging). There exist ε0, c1 such that for 0 < ε < ε0 we have

|I(p(t), q(t), εt)− I(p(0), q(0), 0)| < c1ε for 0 ≤ t ≤ 1/ε .
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Bohr-Sommerfeld Quantisation Rule. Assume that for each τ = const ∈ [0, 1] and

each I∗ ∈ [a, b] the classical Hamiltonian Hτ has a unique trajectory with the action

I = I∗. Then the quantum operatorHτ has a series of eigenfunctions

ϕs(τ) = ϕs(τ, x) such that the corresponding eigenvalues are

λs(τ) = E(Is, τ) +O(~2), where Is = ~(s+ 1/2) ∈ [a, b].

Let u(t, x) be a solution of the Schrödinger equation with a pure state initial condition:

i~ u̇ = −~2∆u+ V (εt, x)u, u(0, x) = ϕs0(0;x).

Denote by Pτ(α,β) the spectral projector in L2(R) onto the linear span of vectors ϕs(τ)

with Is ∈ (α, β).

Theorem 5. There exist ε0, c1 such that if 0 < ε < ε0 and 0 < ~ ≤ ε, then for any

m ≥ 1 and a suitable c2(m) > 0 we have

(4) sup
0≤t≤ε−1

||u−Pεt(Is0−c1ε,Is0+c1ε)
u|| < c2(m)

(~
ε

)m
.
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Thus u(t, ·) stays close to the eigenspace that corresponds to eigenvalues from the

O(ε)-neighbourhood of λs0(εt) (dimension of this space is∼ ε/~). I recall that for

~ = 1 it stays close to the eigenspace, corresponding to f λs0(εt) (it has a finite

dimension∼ 1).

Systems with many degrees of freedom. Now let d ≥ 2. Assume that for any τ the

Hamiltonian Hτ = |p|2 + V (τ, q) is integrable. Let u(t, x) be a solution of the quantum

system

i~ u̇ = −~2∆u+ V (εt, x)u,

such that u(0, x) = ϕs0(0;x).

Conjecture. For d ≥ 2 relation (4) is not in general true since the l.h.s. is∼ Cε, uniformly

in 0 < ~ < ε, due to “the quantisation of the capture in resonance”.

That is, with probability∼ ε the quantum particle escapes the spectral vicinity of the

original state s0. There is a specific prediction what happens to this defect of probability.
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Consider the Schrödinger equation

i~ u̇ = −~2 ∆u+ εV (tω, x)u, x ∈ Td.

If ~ = 1, it was treated in the KAM-Section 3. By analogy with the results above in this

section:

Problem. Study solutions of this equation for typical ω with fixed ε ≤ ε0 (ε0 sufficiently

small), and ε ≥ ~↘ 0. Find their relations with KAM-properties of the classical

hamiltonian system with the Hamiltonian |p|2 + εV (ωt, q).

(It may be that this is not just ”right scaling” of the question – e.g. it may be that V (ωt, q)

has to be replaced by V (~aωt, q) with a suitable exponent a.)

See

SK and A.Neishtadt, arXiv 2012
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