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§1. KdV equation

Consider KdV equation under periodic boundary conditions with zero mean value:

(KdV) u̇+ uxxx − uux = 0, x ∈ T1 = R/2π,
∫
u dx ≡ 0.

It may be written in the Hamiltonian form

u̇− ∂

∂x

δ

δu(x)
HKdV = 0, HKdV =

∫ (
1

2
u2x +

1

6
u3
)
dx,

and defines a Hamiltonian dynamical system in the L2 function space

Z = {u(x) ∈ L2(T1) |
∫
u dx = 0}, ‖ · ‖ – the L2-norm in Z.

I provide Z with the usual trigonometric basis {es(x), s ∈ Z \ {0}}:

es(x) = cos sx, s > 0, es(x) = sin sx, s < 0.
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In Z KdV has∞-many analytic integrals of motion I1(u), I2(u), . . . and since the

works of Novikov and Lax is known to be integrable. These issues may be conveniently

described in terms of the Nonlinear Fourier Transfrorm:

Nonlinear Fourier Transform (NFT)

NFT is an analytic mapping

Ψ : u(·) 7→ v = (v1,v2,v3 . . . ), vj = (v+j , v
−
j )t ∈ R2,

such that:
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1) for any m ≥ 0 Ψ defines an analytic diffeomorphism Ψ : Ḣm → hm, where Ḣm is

the Sobolev space of zero-meanvalue functions and hm = lm2 is the weighted l2-space;

2) Ψ is a symplectomorphism, if the v-space hm is given the symplectic form

ω2 =
∑
j−1dv+j ∧ dv

−
j ;

3) dΨ(0) is the linear Fourier transform dΨ(0)u = ((u+1 , u
−
1 )t, ((u+2 , u

−
2 )t, . . . ),

where {u±j } are the (sin / cos) Fourier coefficients.

Denote Ij = 1
2 |vj |

2 and qj = Arg(vj); then {(Ij , qj), j ≥ 1} also are symplectic

coordinates, i.e. ω2 =
∑
j−1dIj ∧ dqj . We have

4) HKdV = h(I1, I2, . . . ). Accordingly,
d
dtIj = 0, d

dtqj = j ∂
∂Ij

h(I)

and in the v-variables KdV takes the form

v̇ + Φ(v) = 0, Φj(v) = jv⊥j
∂

∂Ij
h(I), v⊥j = (−v−j , v

+
j )t.

So Ij ’s are integrals of motion (or actions), qj ’s are the angles, and the v-variables

provide global Birkhoff coordinates for KdV. All solutions of KdV are almost-periodic

functions of time. In the v-variable they may be written explicitly.
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NFT has a long story. See the book Kappeler-Pöschel (Springer 2003).

Also see

SK, Galina Perelman “Vey theorem in infinite dimension and...” DCDS-A, 27 (2010), 1-24.

(arXiv 2009)
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§2. Perturbations of KdV

I will discuss small perturbations of KdV

u̇+ uxxx − uux = εF (u,Du,D2u), D = Dx =
∂

∂x
,

and small perturbations with randomness:

u̇+ uxxx − uux = εF (u,Du,D2u) +
√
ε γ η(t, x), u = uε,ω;

η(t, x) =
∂

∂t

∑
j

bjβj(t)ej(x), η = ηω.
(1)

Here 0 ≤ γ ≤ 1, ω is a random parameter, ω ∈ (Ω,F ,P), and

• all bj 6= 0 and bj ≡ b−j ;

• for any N > 0 there is CN such that |bj | ≤ CN j−N for every j. So the force

η(t, x) is smooth in x.

• {βj(t) = βωj (t)} are independent standard Wiener processes.
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TASK:

Study solutions for the perturbed KdV equation (1)

u̇+ uxxx − uux = εF (u,Du,D2u) +
√
ε γ η(t, x)

with given initial data

u(0, x) = u0(x),

for long time

0 ≤ t ≤ ε−1T,

or for even longer times.
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KAM

If the perturbation is Hamiltonian, i.e. the perturbed equation is

(∗) u̇+uxxx−uux = ε
∂

∂x
f(u, x),

then the KAM-theory applies.

See my book (SK, OUP, 2000) and the book by Kappeler-Pöschel (Springer, 2003).
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Let us apply the NFT and write perturbed KdV (1) in the v-variables:

v̇k + Φk(v) = εPk(v) +
√
ε γ
∑
j

Bkj(v)
d

dt
βj(t), 0 ≤ t ≤ ε−1T.

It is convenient to go to the slow time τ = εt:

(2)
d

dτ
vk + ε−1Φk(v) = Pk(v) + γ

∑
j

Bkj(v)
d

dτ
βj(τ), 0 ≤ τ ≤ T.

TASK: Study solutions of (2) for 0 ≤ τ ≤ T .

Denote

I(v(τ)) = (I1(v), I2(v), . . . )(τ) ∈ R∞+ ,

q(v(τ)) = (q1(v), q2(v), . . . )(τ) ∈ T∞.

Then we have to

a) study the actions I(v(τ)), 0 ≤ τ ≤ T – the main task,

b) study the angle q(v(τ)), 0 ≤ τ ≤ T .
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Usually (since Laplace and Lagrange) to do this people write equations for I(τ)

d

dτ
Ik = Gk(I, q) + γ

∑
j

Hkj(I, q)
d

dτ
βj(τ), 0 ≤ τ ≤ T

(we have no terms of order ε−1 since for ε = 0 the functionals Ik are integrals of motion

for KdV). Next they average these equations in q to get a system of equations on the

I-vector:

(AvEq)
d

dτ
Ik = 〈Gk〉(I)+γ

∑
j

〈Hkj〉(I)
d

dτ
βj(τ),

where

〈Gk〉(I) =
∫
Gk(I, q) dq, 〈Hkj〉(I) = . . . .

They clame that solution of the averaged system well approximates the actions I(v(τ))

for 0 ≤ τ ≤ T . This is the classical averaging. For the non-random case see the books

by Arnold - Kozlov - Neshtadt (Springer) and by Lochak - Meunier (Springer).

Unforunately, the (AvEq), corresponding to the perturbed KdV (2) are VERY singular. So I

will proceed similar, but differently:
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§3. Effective equations for I(v(τ)).

We study eq. (2) (the perturbed KdV, written in the v-variables):

d

dτ
v(τ) + ε−1Φ(v) = P (v) + γB(v)

d

dτ
β; v(0) = v0 = Ψ(u0), 0 ≤ τ ≤ T.

Now β(τ) = (β1(τ), β2(τ), . . . )t and B(v) is an infinite matrix.

P (v) is called the drift and B(v) – the dispersion operator. Its square B(v)Bt(v) is the

diffusion operator. This equation is singular when ε→ 0.

Effective equation for (2):

(3)
d

dτ
v(τ) = 〈P 〉(v) + γ〈〈B〉〉(v)

d

dτ
β; v(0) = v0.

〈P 〉(v) – effective drift; 〈〈B〉〉(v) – effective dispersion operator. They are defined as

follows:

11



Effective drift 〈P 〉(v). For any vector θ = (θ1, θ2, . . . ) ∈ T∞ consider the

corresponding rotation in the space of vectors v:

Πθ : v = (I, q) 7→ v′ = (I, q′), q′ = q + θ

(this is the rotation by the angle θj in each vj -plane).

Then 〈P 〉 is defined as follows: 〈P 〉(v) =
∫
T∞ Π−1θ ◦ P (Πθv) dθ.

Effective dispersion operator 〈〈B(v)〉〉. This is a non-symmetric ‘square root’ of the

averaged diffusion:

〈〈B(v)〉〉 · 〈〈B(v)〉〉t =

∫
T∞

(
Π−θ ·B(Πθv) ·Bt(Πθv) ·Πθ

)
dθ.

It is constructed to be analytic in v.

By definition of the effective objects 〈P 〉 and 〈〈B〉〉, the effective equation

d

dτ
v(τ) = 〈P 〉(v) + γ〈〈B〉〉(v)

d

dτ
β; v(0) = v0.

is invariant under the rotations Πθ . That is, if v(τ) solves (3), then Πθv(τ) also does.

12



Why the effective equations (3) are important?

(3)
d

dτ
v(τ) = 〈P 〉(v)+γ〈〈B〉〉(v)

d

dτ
β.

– Because they “covers” the averaged equation (AvEq):

Lemma. Let 0 ≤ γ ≤ 1. If v(τ) solves (3), then I(v(τ)) solves (AvEq). If I(τ) is a

solution of (AvEq), then there exists a solution v(τ) of (3) such that I(v(τ)) = I(τ).

Solution of (3) exists and is unique.

Averaging Principle: Let vε(τ) be a solution of the perturbed KdV (2) and v0(τ) be a

solution of the effective equation (3). Then

sup
0≤τ≤T

|I(vε(τ))− I(v0(τ))| = o(1) as ε→ 0.

TASKS: 1) Prove the Averaging Principle for various classes of perturbed KdV equations.

2) Study properties of the effective equation (3)
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DIGRESSION: Whitham averaging

I am discussing perturbations of fast in time oscillating solutions of KdV, written in slow time

τ = εt:

d

dτ
u+ ε−1(uxxx − uux) = F (u,Dxu,D

2
xu), 0 ≤ τ ≤ T.

Similar one can consider perturbations of fast IN SPACE AND TIME oscillating solutions,

written in slow time τ and slow space X = εx ∈ R:

d

dτ
u+ε2uXXX−uuX = F (u, εDXu, ε

2D2
Xu), u(0, X) = v(x,X); 0 ≤ τ ≤ T.

Corresponding averaging principle is due to Whitham. It was not justified completely for

any class of perturbations of KdV (still, see works of Lax, Levermore and Venakides). But

corresponding averaged equations are being intensively studied (cf. Task 2 – study

properties of the effective equations.

To justify the Whitham averaging is a very hard open problem.
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Examples of effective equations. 1) Let the perturbation be ε∂2/∂x2 +
√
εγη(t, x).

I.e. F (u,Dxu,D
2
xu) = ∆u. Denote by ∆̂ the Fourier-image of Laplacian:

∆̂ : v 7→ v′, v′k = −k2vk ∀ k. Claim: now 〈P 〉 = ∆̂ + 〈lower order term〉.
So effective equation (3) is a quasilinear (stochastic) heat equation

d

dτ
v(τ) = ∆̂v + 〈. . .〉+ γ〈〈B〉〉(v)

d

dτ
β.

2) Consider non-stochastic Hamiltonian perturbation F (u) = ∂
∂xf(u, x) (now γ = 0).

Then 〈P 〉(v) is an integrable hamiltonian vector field, and the averaged equation for I(τ)

is d
dτ I(τ) = 0. So

averaging principle⇒ adiabatic invariance of actions I(τ) for solutions of the perturbed KdV.

CONJECTURE. The actions Ij(u(t) of solutions u(t) for KdV under hamiltonian

perturbations indeed are adiabatic invariants. I.e. they change by o(1) of time-intervals

t ≤ Cε−1.
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§4. Damped-driven KdV

[1] SK, A. Piatnitski “Khasminsii–Whitham averaging for randomly perturbed KdV equation”

J. Math. Pures Appl. 89, 400-428 (2008).

[2] SK “Damped-driven KdV and effective equations. . . ” . To appear in GAFA, see in ArXiv.

Consider the original randomly perturbed and damped KdV, using the slow time τ = εt:

(4) u′τ + ε−1(uxxx − uux) = uxx + γη(τ, x), 0 < γ ≤ 1; u(0, x) = u0(x).

Due to Example 1 above the corresponding effective equation is

(5) v′τ = ∆̂v + F ′(v) + γ〈〈B〉〉(v)
d

dτ
β(τ), v(0) = v0 = Ψ(u0).

Here F ′ is analytic operator of order one. So (5) is quasilinear stochastic heat equation. It

turns out to be well posed.

Theorem. Let uε(τ, x), 0 ≤ τ ≤ T , be a solution of (4) and v(τ) be a solution of the

effective equation (5). Let vε(τ) = Ψ(uε(τ)). Then I(vε(·)) ⇀ I(v(·)) as ε→ 0, in

distribution.
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Under the limit ε→ 0 the phase q(vε(τ)) becomes uniformly distributed on T∞:

Theorem . For any continuous function f(τ) we have∫ T

0

f(τ)D
(
q(vε(τ))

)
dτ → dq ·

∫
f(τ) dτ.

HereD
(
q(vε(τ))

)
is the law of q(vε(τ)) ∈ T∞ and dq is the Haar measure on T∞.

Problem. Is this convergence true when γ = 0, for a typical initial data? Actually, what

happens to solutions of the perturbed equation with γ = 0 when time is very large???
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§5 . The double limit for damped-driven KdV
(work in progress)

Existing techniques and some reasonable conjectures on properties of the NFT (which

have to be verified) allow to prove that the effective eq. (5)

d

dτ
v(τ) = ∆̂v + F ′(v) + γ〈〈B〉〉(v)

d

dτ
β(τ)

has a unique stationary measure µ.

Consider the original randomly perturbed KdV equation:

(6) u̇+ uxxx − uux = εuxx + γ
√
ε η(t, x).

It has a unique stationary measure. Denote it µε. Then

Du(t) ⇀ µε as t→∞

for any solution u(t).

It is known that {µε} is compact and all limiting measures (as ε→ 0) are invariant for

KdV. But how can we identify them? Is there one limiting measure, or there are many?
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Theorem. 1) The limit µ0 = limε→0 µ
ε exists and is an invariant measure for KdV;

2) Write µ0 in the (I, q)-variables, i.e. consider (I × q) ◦ µ0. Then

(I × q) ◦ µ0 = (I ◦ µ)× dq.

In particular, I ◦ µ0 = I ◦ µ.

Accordingly we have

Theorem (the Double Limit). For any smooth function u0(x) let uε(t, x) be a solution of

the damped-driven KdV (6), equal u0 at t = 0. Then

lim
ε→0

lim
t→∞

D [(I × q)(uε(t))] = (I ◦ µ)× dq

So, the unique stationary measure µ of the effective equation (5) is the key to study

perturbed equations!
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Example (linear approximation). Consider the random force γ(d/dτ)β(τ), where

β(τ) =
∑
j

bj(τ)ej(x), with bm0 = b−m0 = 1 and bl � 1 if |l| 6= m0.

Denote µ = µγ . Send γ to zero.

Claim. We have µγ = µ1
γ +O(γ2) , where µ1

γ is the Gaussian measure in the plane

Rem0
⊕ Re−m0

⊂ Z with zero meanvalue and the dispersion matrix σ2I ,

σ2 = 1
2γ

2j−2.
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§6 . Summary.
Consider the randomly perturbed and damped KdV equation

u̇+ uxxx − uux = εuxx + γ
√
ε η(t, x), u(0, x) = u0(x) ∈ C∞.

For 0 < ε� 1 its solution uε may be well approximated in terms of the solution for the

effective equation

d

dτ
v(τ) = ∆̂v + F ′(v) + γ〈〈B〉〉(v)

d

dτ
β(τ), v(0) = v0.

That is, for t = ε−1τ , τ ∼ 1, we have

D
(
I(uε(t))

)
⇀ D

(
I(v(τ))

)
as ε→ 0.

While for t� ε−1 we have

D
(
I(uε(t)), q(uε(t)

)
⇀ (I ◦ µ)× dq as ε→ 0,

where µ is the unique stationary measure for the effective equation.

When γ → 0 the measure µ = µγ may be decomposed in asymptotical series in γ.
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