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1. Introduction

Statistical 2D turbulence is described by small-viscosity 2D Navier-Stokes equation (NSE),

perturbed by a random force:
uy — vAu+ (u - V)u + Vp = n(t, z),

rel, divu=0; 0<v <1,

Here u(t, ) € R? - velocity, p(t, ) € R — pressure, 1)(t, ) € R? —random force.
[ is either the sphere, I' = S?, or a torus
I =T2={(z1,22) |0 < 21 <a, 0 < xy < b} Or

I' e R? and u |or=0.

Below, for simplicity of notation, I' = T2 or I' € R?. So
0 0

(u-V)u=u;—u+ ug—u.
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Remarks

1) Another way to introduce randomness in Navier-Stokes equations would be through
random initial data. For that model it is more difficult to get physically interesting results. |

will not discuss it.

2) The random force in Navier-Stokes equations may be of the form

deterministic force + small random perturbation



Leray Projection. Denote
H = {u(z) € L*(I',R?), divu =0}, | -| — the L*-norm.
Then
L? = H & {u(z) = Vp}.
Denote II: L? — H. Apply II to the equation. Since IIVp = 0 and ITu = w, then
uy, — vAu + B(u) = IIn(t) =: n, (NSE)
where Au = [TAw and B(u) = II(u - V)u.
Let eq, €9, - - - € H be the basis of H, formed by eigen-functions of A,
Ae; = Nje; Vi>1

(if ' = T2, this the sin/cos basis).



Random Force. The force 7 has the form (¢, z) = > . b;3;(t)e;(x), where {3;(t)}
are i.i.d. random processes and the constants bj > () fast enough decay to zero. We can

handle 3 classes of forces:

1) (random kicks). Fix any 1" > 0 (period between the kicks)

=) (kick;) - 6(t —1T),  (kick)) belej
=1

Here 5 5 are i.i.d. random variables with some mild restrictions on their distribution; not
necessarily E€;; = 0. How to obtain a solution u (%, ) (NSE) with such a force? For

0 <t<T, u(t,z)is a solution of the free equation. At t = T’ the first kick comes and u
instantly changes from u (7", z) to u('T, x) + kick 1, for T" < t < 27T again u is a solution
of the free equation, at t = 2’1" the second kick kick 5 comes, etc.

2) (a Levi process)

e (b, w) = 322, (kicky)§(t —Tp).

Here 17,15, ... is a Poisson sequence.



3) (white noise).

d
87 (¢) = qw;(t) + 1,
where f1, fo,... are constants and w1 (t), ws(t), . .. are standard independent Wiener

processes.



Solutions. A solution u is a random process u* (t) € H. We are interested NOT in
individual trajectories ¢t — u* (t), but in distribution (=the law) of a solution w,
Du(t) =: uy. This is a probability measure in the function space H:

(@ =Pt €Q). QCH: | f(u)mldu) =B (u(t)).
H
For all 3 types of forces, considered above, u(t) is a Markov process. Therefore

Mt = S:(:LLO)v

where the operators S} (,LL()) form a semi-group of linear operators in the space of

measures in H.

Task: Study qualitative properties of distributions of solutions, i.e. of the measures
e = D(u(t)), t > 0.



Definition: a measure p on H is called a stationary measure for (NSE) if

T
If u(t) is a solution such that Du(0) = p, then Du(t) = p. ltis called a stationary
solution.

Existence of a stationary measure is an easy fact (it follows from the Bogoliubov-Krylov

compactness arguments). Not its uniqueness! — That is complicated.



32. Limit “time to infinity” (mixing).

[1] “Randomly Forced Nonlinear PDEs and Statistical Hydrodynamics in 2 Space
Dimensions”, Europ. Math. Soc. Publ. House, 2006
Recall that we consider

’LL;—VAU%—B(’U,) =1, 77(15795) :ijﬁ](t)ej(x>7 (NSE)
x € I', I as above. Coefficients b, fast decay with j: By = ) | b? < 00.
Condition (C). b; # 0 for each j < N, where N = N(By,v,T').
For example, (C) holds if b; # O for all j.

THEOREM 1. If (C) holds, then: 1) there exists a unique stationary measure L.
2) For any solution u(t) of (NSE) we have
dist(Du(t), pu) < Ce= ¢,  ¢,C > 0.
Here dist is one of the ‘usual’ distances in the space of measures (e.g., Prokhorov’s or

Wasserstein’s).
3) If force 7)(t, x) is smooth in x, then 1 is supported by smooth functions.
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So, “statistical properties of solutions for ¢ > 1 are universal and are described by a

unique stationary measure (.”

History of the result’s proof:

(2000), Kuksin-Shirikyan in CMP 213. For any I" and for kick-forces 7 assertions 1) and 2)
are established, without proving that the rate of convergence is exponentional.

(2001), E-Mattingly-Sinai in CMP 224. For I' = T? and white forces 7 such that (C) holds
and also b; = 0 for very large j, proved 1) (but not 2)) .

(2002), Bricmont-Kupiainen-Lefevere in CMP 230. For I' = T2 and white forces 1 such
that (C) holds and also b; = O for very large 7, proved 1) and 2).

Etc, see in [1].
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33. Consequence of the mixing.

Ergodicity:

THEOREM 2 (SLLN). For any solution u(t) of (NSE) and any ‘good’ f () we have

s ds = ). s

All important functionals f(u) are good.
So “for a 2d turbulent flow time-average equals ensemble-average”. See in [1].
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THEOREM 3 (CLT). Let (y, f) = 0. Then

f/ f(u ds AN(O o),

for some oy > 0.

EXAMPLE: Fix any point x¢ and take f(u) = u(xg). If the force is homogeneous, then &
is independent from x. It would be very good to calculate it.

So “on large time-scales a turbulent flow is Gaussian”.
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4. Eulerian limit.

Below ' = T? = {1 < 1 < a, 0 < 25 < b} and the force 7 is white in time.

Statistical 2d turbulence is described by solutions of (NSE) with << 1. Consider the

equation with small 7 and with the force, multiplied by some degree of v:

u, —vAu+ B(u) =v*n, a€R  (maybe a=0). (%)
Proposition (see [1]). Solutions of () remain ~ 1 as v — 0 if and only if a = %
Accordingly, below we discuss equation

u, —vAu+ B(u) = vvn, 0<v <1, (NSE,)

Remark. By suitable scaling of u, ¢ and v, for any a we can reduce eq. (*) to
eq. (NSE,).
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Let (C) holds. Then eq. (INSE),,) has a unique stationary measure ,,, and
e Du(t) — pu, ast — oo exponentially fast, for any solution u(t).
e There is a solution u, (t, ) s.t. Du, (t) = .

e u,(t,x) is stationary in t. It is homogeneous in x if the force 7)(¢, x) is and is smooth

in x if the force 7 is.
e Reynolds number of u,, is Re(u,) ~ v~ 1.

Task: study u,, and u,, as v — 0.

Fact: E ||Vu,(t)||* = By, E]|Au,(t)||* = By, where

Bo=) b7, Bi=)» b\

A;’s — eigenvalues of the Stokes operator.

Below | always assume that the force 7)(t, x) is homogeneous in .
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Theorem 4 (Eulerian Limit), see [1]. Every sequence Vé- — (0 has a subsequence

v; — 0 such that the process Uy, (t, :1:) converges in distribution to a limiting process
U(t,x) . The process U (t, x) is stationary in ¢t and homogeneous in . Moreover,

a) every its trajectory U (, x) is such that U(+) € Lg..(0,00; H N H?), and satisfies
the free Euler equation

4+ (u-Vu+Vp=0, divu=0. (Eu)

b) The energy E(U) = 3||U(1)||> = 5 [ |U(t, x)|? dx is time-independent. If g(-) is
a bounded continuous function, then [ g(rot U (¢, x)) dx also is time-independent.

c) o = lim 1., = DU () is an invariant measure for (Eu).

Oy, [Vull? poldu) = Bo, [, [ Aul]? po(du) < By, [, eIV1" pup(du) < oo.
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YK 1o and DU (-) are called the Eulerian limit (for eq. (N.SE),)). They describe the 2D
turbulence since they describe solutions of (NSE) with v << 1 and Re > 1.

Measure L1 is supported by Sobolev space 2 1If we write

1
u(x) = Z Us T?‘ S / lwg|*po(du), s € Z2.

SEZ2

then

> 1B = [ ulye o(du) < x.

sEZ>
| cannot prove a better estimate. Numerics show that the relation above gives the right
level of decay of £/ and

Z s|*T°E, =00 for &> 0.

If so, then it is likely that s ~ |s|~% - (log— correction). Then
Z|s|~r E, ~ r~3 - (log— correction), as the Kreichnan theory predicts.

But | cannot prove that.
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Task: a) Check if the Eulerian limits 149 and DU () depend on the sequence v; — 0.

b) Study the measure (1o and the distribution of the process U'.
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35. Properties of the Eulerian limit.

We have 11, — po, where (1, — the stationary measure for (V.S E), ) and jig — invariant
measure for (Eu). By the theorem on the Eulerian limit, some exponential moments of the
energy E(u) = 2||ul? are finite. Hence, for some C' > 0,0 > 0 we have

po{E(u) > K} < Ce %" forany K > 1.

So the energy of turbulent flow is big with small probability. Can the energy be small? This
also is unlikely:

Theorem 5. jio{ E(u) < §} < const\/6 forany § > 0.

This result is important both physically and mathematically. In particular, it shows that

tof{ E(u) = 0} = 0. This is crucial for further study of the measure f1g and the Eulerian
limit U .

Theorem 5. Distribution of energy, corresponding to (i, has an (integrable) density with
respect to the Lebesgue measure, i.e dF = pg(e) de.
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Recall that measure i is supported by H2(T?, R?). Consider functionals

Fi: u(z)— [ (rotu(x))¥ dr, j>1.
T2

They are integrals of motion for (Eu). Consider the mapping
HN :H — RN, ’LL(ZB) — (Fl,...,FN>.

Consider 11 o 1o — the image of measure (1o under this map.

Theorem 6. The measure 11 o ug has an (integrable) density with respect to the
N-dimensional Lebesgue measure, 11y o 1o = py(y) dy, y € RY.

Corollary. dimy supp (o) = oo.

That is, a) Distribution of the integrals of motion is non-singular.

b) The measure i IS genuinely infinite-dimensional.

See SK, CMP 284 (2008).
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Main Problem. Study the limiting measure(s) (ig. In particular:
1) is the limit g unique?

2) Study the correlation

K (y) = /H a2 (2 + y) poldu).
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36. The balance relations (universality of 2d turbulence).

These are my results, obtained jointly with O. Penrose, see in [1].
Let the force 7)(¢, ) be homogeneous in . Then the stationary solution of (N.SFE,,)
u, (t, ) is homogeneous in x, and the stationary measure Du,, (t) = u, is a

homogeneous measure in space H. We have My, — o (Eulerian limit).

Fix any £. Denote &, () =rotu, (¢, x) and set
Fy(r)={zeT?|&(x) =7}, T€R.

Theorem 7. Foranyv > Qand 7 € R

E Vel dy = = E Ve, |t dy:
Vel =g e B Vel

d~y — the length element on ', (7).

These are infinitely-many relations, satisfied by measures rot oy, v > 0. We call them

balance relations.
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The balance relations admit an equivalent form. Recall that &, () =rotu, (¢, x).

Theorem 7. For any x € T2,

1 B
2 Areaof T2’

E(|VE(@)] | Few)) = BIVE(2)* (%)

Relation (>|<) means that for any point  and any function f, the random variables
IVE(x)|? and f(£(x)) are non-correlated:

E(|VE(@) f(¢(2))) = EIVE(@)” - E(f(5(2))) -

Corollary. The stationary measures 1, 0 < v < 1, and the Eulerian limit 1o satisfy the
exponential estimates

/ el Tt u@l () < C, / 1@l (du) < C. / AT () < O
H H H

for any z, withsome o > 0, C > 1.
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37. Remark on anisotropic 3d turbulence.

Consider 3d NSE in the thin domain (21, x2,x3) € I' X (0, ), perturbed by a random
force. Assume free boundary conditions in the thin direction x5

U3 |z5=0,e = 0, O3U12 |z3=0, = 0.

Then the law of (w1, us)(t, 1, T2, x3) converges, as € — 0, to the law of a solution of
randomly forced 2d NSE in I and we have

E (normalised energy of 3d flow) — E ( energy of 2d flow) (%)

(so e~ [|us]? dz — 0). It seems that (in non-trivial situations) (*) does not hold for
enstrophy, and that ¢~ ! f |Vu3\2 dx does not converge to zero.

So randomly forced 2d NSE describe a class of anisotropic 3d turbulence.

For these results for randomly forced NSE see
Chuyeshov and Kuksin, ARMA 188 (2008) and Physica D 237 (2008).

Cf. well known related results for deterministic 3d NSE in thin domains.
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