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§1. Introduction

Statistical 2D turbulence is described by small-viscosity 2D Navier-Stokes equation (NSE),

perturbed by a random force:

u′t − ν∆u+ (u · ∇)u+∇p = η(t, x),

x ∈ Γ, div u = 0 ; 0 < ν ≤ 1.

Here u(t, x) ∈ R2 – velocity, p(t, x) ∈ R – pressure, η(t, x) ∈ R2 – random force.

Γ is either the sphere, Γ = S2, or a torus

Γ = T2 = {(x1, x2) | 0 ≤ x1 ≤ a, 0 ≤ x2 ≤ b}. Or

Γ b R2 and u |∂Γ= 0.

Below, for simplicity of notation, Γ = T2 or Γ b R2. So

(u · ∇)u = u1
∂

∂x1
u+ u2

∂

∂x2
u.
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Remarks

1) Another way to introduce randomness in Navier-Stokes equations would be through

random initial data. For that model it is more difficult to get physically interesting results. I

will not discuss it.

2) The random force in Navier-Stokes equations may be of the form

deterministic force + small random perturbation
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Leray Projection. Denote

H = {u(x) ∈ L2(Γ,R2), div u = 0}, ‖ · ‖ − the L2-norm.

Then

L2 = H⊕ {u(x) = ∇p}.

Denote Π : L2 → H. Apply Π to the equation. Since Π∇p = 0 and Πu = u, then

u′t − νAu+B(u) = Π η(t) =: η, (NSE)

where Au = Π∆u and B(u) = Π(u · ∇)u.

Let e1, e2, · · · ∈ H be the basis ofH, formed by eigen-functions of A,

Aej = λjej ∀ j ≥ 1

(if Γ = T2, this the sin/cos basis).
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Random Force. The force η has the form η(t, x) =
∑
j bjβj(t)ej(x), where {βj(t)}

are i.i.d. random processes and the constants bj ≥ 0 fast enough decay to zero. We can

handle 3 classes of forces:

1) (random kicks). Fix any T > 0 (period between the kicks)

ηω(t, x) =
∞∑
l=1

(kickl) · δ(t− lT ), (kickl) =
∞∑
j=1

bjξ
ω
jlej(x)

Here ξωjl are i.i.d. random variables with some mild restrictions on their distribution; not

necessarily Eξjl = 0. How to obtain a solution u(t, x) (NSE) with such a force? For

0 < t < T , u(t, x) is a solution of the free equation. At t = T the first kick comes and u

instantly changes from u(T, x) to u(T, x) + kick 1, for T < t < 2T again u is a solution

of the free equation, at t = 2T the second kick kick 2 comes, etc.

2) (a Levi process)

ηω(t, x) =
∑∞
l=1 (kickl)δ(t− Tωl ).

Here Tω1 , T
ω
2 , . . . is a Poisson sequence.
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3) (white noise).

βωj (t) = d
dtwj(t) + fj ,

where f1, f2, . . . are constants and w1(t), w2(t), . . . are standard independent Wiener

processes.
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Solutions. A solution u is a random process uω(t) ∈ H. We are interested NOT in

individual trajectories t 7→ uω(t), but in distribution (=the law) of a solution u,

Du(t) =: µt. This is a probability measure in the function spaceH:

µt(Q) = P(u(t) ∈ Q), Q ⊂ H;
∫
H
f(u)µt(du) = Ef(u(t)).

For all 3 types of forces, considered above, u(t) is a Markov process. Therefore

µt = S∗t (µ0),

where the operators S∗t (µ0) form a semi-group of linear operators in the space of

measures inH.

Task: Study qualitative properties of distributions of solutions, i.e. of the measures

µt = D(u(t)), t ≥ 0.
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Definition: a measure µ onH is called a stationary measure for (NSE) if

S∗t µ ≡ µ.

If u(t) is a solution such thatDu(0) = µ, thenDu(t) ≡ µ. It is called a stationary

solution.

Existence of a stationary measure is an easy fact (it follows from the Bogoliubov-Krylov

compactness arguments). Not its uniqueness! – That is complicated.
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§2. Limit “time to infinity” (mixing).

[1] “Randomly Forced Nonlinear PDEs and Statistical Hydrodynamics in 2 Space

Dimensions”, Europ. Math. Soc. Publ. House, 2006

Recall that we consider

u′t − νAu+B(u) = η, η(t, x) =
∑

bjβj(t)ej(x), (NSE)

x ∈ Γ, Γ as above. Coefficients bj fast decay with j: B0 =
∑
b2j <∞.

Condition (C). bj 6= 0 for each j ≤ N , where N = N(B0, ν,Γ).

For example, (C) holds if bj 6= 0 for all j.

THEOREM 1. If (C) holds, then: 1) there exists a unique stationary measure µ.

2) For any solution u(t) of (NSE) we have

dist(Du(t), µ) ≤ Ce−ct, c, C > 0.

Here dist is one of the ‘usual’ distances in the space of measures (e.g., Prokhorov’s or

Wasserstein’s).

3) If force η(t, x) is smooth in x, then µ is supported by smooth functions.

9



So, “statistical properties of solutions for t� 1 are universal and are described by a

unique stationary measure µ.”

History of the result’s proof:

(2000), Kuksin-Shirikyan in CMP 213. For any Γ and for kick-forces η assertions 1) and 2)

are established, without proving that the rate of convergence is exponentional.

(2001), E-Mattingly-Sinai in CMP 224. For Γ = T2 and white forces η such that (C) holds

and also bj = 0 for very large j, proved 1) (but not 2)) .

(2002), Bricmont-Kupiainen-Lefevere in CMP 230. For Γ = T2 and white forces η such

that (C) holds and also bj = 0 for very large j, proved 1) and 2).

Etc, see in [1].
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§3. Consequence of the mixing.

Ergodicity:

THEOREM 2 (SLLN). For any solution u(t) of (NSE) and any ‘good’ f(u) we have

1
T

∫ T

0

f(u(s)) ds→ 〈µ, f〉, a.s.

All important functionals f(u) are good.

So “for a 2d turbulent flow time-average equals ensemble-average”. See in [1].
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THEOREM 3 (CLT). Let 〈µ, f〉 = 0. Then

D
( 1√

T

∫ T

0

f(u(s)) ds
)
⇀ N(0, σf ),

for some σf ≥ 0.

EXAMPLE: Fix any point x0 and take f(u) = u(x0). If the force is homogeneous, then σ

is independent from x0. It would be very good to calculate it.

So “on large time-scales a turbulent flow is Gaussian”.

12



§4. Eulerian limit.

Below Γ = T2 = {1 ≤ x1 ≤ a, 0 ≤ x2 ≤ b} and the force η is white in time.

Statistical 2d turbulence is described by solutions of (NSE) with ν � 1. Consider the

equation with small ν and with the force, multiplied by some degree of ν:

u′t − νAu+B(u) = νaη, a ∈ R (maybe a = 0). (∗)

Proposition (see [1]). Solutions of (∗) remain∼ 1 as ν → 0 if and only if a = 1
2 .

Accordingly, below we discuss equation

u′t − νAu+B(u) =
√
ν η, 0 < ν ≤ 1. (NSEν)

Remark. By suitable scaling of u, t and ν, for any a we can reduce eq. (∗) to

eq. (NSEν).
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Let (C) holds. Then eq. (NSEν) has a unique stationary measure µν , and

• Du(t) ⇀ µν as t→∞ exponentially fast, for any solution u(t).

• There is a solution uν(t, x) s.t. Duν(t) ≡ µν .

• uν(t, x) is stationary in t. It is homogeneous in x if the force η(t, x) is and is smooth

in x if the force η is.

• Reynolds number of uν is Re(uν) ∼ ν−1.

Task: study µν and uν as ν → 0.

Fact: E ‖∇uν(t)‖2 = B0, E ‖∆uν(t)‖2 = B1, where

B0 =
∑

b2j , B1 =
∑

b2jλj

.

λj ’s – eigenvalues of the Stokes operator.

Below I always assume that the force η(t, x) is homogeneous in x.
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Theorem 4 (Eulerian Limit), see [1]. Every sequence ν′j → 0 has a subsequence

νj → 0 such that the process uνj (t, x) converges in distribution to a limiting process

U(t, x) . The process U(t, x) is stationary in t and homogeneous in x. Moreover,

a) every its trajectory U(t, x) is such that U(·) ∈ L2 loc(0,∞;H ∩H2), and satisfies

the free Euler equation

u̇+ (u · ∇)u+∇p = 0, div u = 0. (Eu)

b) The energy E(U) = 1
2‖U(t)‖2 = 1

2

∫
|U(t, x)|2 dx is time-independent. If g(·) is

a bounded continuous function, then
∫
g(rot U(t, x)) dx also is time-independent.

c) µ0 = limµνj = DU(t) is an invariant measure for (Eu).

d)
∫
H ‖∇u‖

2 µ0(du) = B0,
∫
H ‖∆u‖

2 µ0(du) ≤ B1,
∫
H e

σ‖∇u‖2 µ0(du) <∞.
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z µ0 andDU(·) are called the Eulerian limit (for eq. (NSEν)). They describe the 2D

turbulence since they describe solutions of (NSE) with ν � 1 and Re� 1.

Measure µ0 is supported by Sobolev space H2. If we write

u(x) =
∑
s∈Z2

us
s⊥

|s|
eis·x, Es =

∫
|us|2µ0(du), s ∈ Z2.

then ∑
s∈Z2

|s|2Es =
∫
‖u‖2H2 µ0(du) <∞.

I cannot prove a better estimate. Numerics show that the relation above gives the right

level of decay of Es and ∑
|s|2+εEs =∞ for ε > 0.

If so, then it is likely that Es ∼ |s|−4 · (log− correction). Then∑
|s|∼r Es ∼ r−3 · (log− correction), as the Kreichnan theory predicts.

But I cannot prove that.
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Task: a) Check if the Eulerian limits µ0 andDU(·) depend on the sequence νj → 0.

b) Study the measure µ0 and the distribution of the process U .
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§5. Properties of the Eulerian limit.

We have µνj ⇀ µ0, where µν – the stationary measure for (NSEν) and µ0 – invariant

measure for (Eu). By the theorem on the Eulerian limit, some exponential moments of the

energy E(u) = 1
2‖u‖

2 are finite. Hence, for some C > 0, σ > 0 we have

µ0{E(u) > K} ≤ Ce−σK
2

for any K ≥ 1.

So the energy of turbulent flow is big with small probability. Can the energy be small? This

also is unlikely:

Theorem 5. µ0{E(u) < δ} ≤ const
√
δ for any δ > 0.

This result is important both physically and mathematically. In particular, it shows that

µ0{E(u) = 0} = 0. This is crucial for further study of the measure µ0 and the Eulerian

limit U .

Theorem 51. Distribution of energy, corresponding to µ0, has an (integrable) density with

respect to the Lebesgue measure, i.e dE = pE(e) de.
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Recall that measure µ0 is supported by H2(T2,R2). Consider functionals

Fj : u(x) 7→
∫

T2
(rotu(x))2j dx, j ≥ 1.

They are integrals of motion for (Eu). Consider the mapping

ΠN : H → RN , u(x) 7→ (F1, . . . , FN ).

Consider ΠN ◦ µ0 – the image of measure µ0 under this map.

Theorem 6. The measure ΠN ◦ µ0 has an (integrable) density with respect to the

N -dimensional Lebesgue measure, ΠN ◦ µ0 = pN (y) dy, y ∈ RN .

Corollary. dimH supp (µ0) =∞.

That is, a) Distribution of the integrals of motion is non-singular.

b) The measure µ0 is genuinely infinite-dimensional.

See SK, CMP 284 (2008).
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Main Problem. Study the limiting measure(s) µ0. In particular:

1) is the limit µ0 unique?

2) Study the correlation

Kij(y) =
∫
H
ui(x)uj(x+ y)µ0(du).
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§6. The balance relations (universality of 2d turbulence).

These are my results, obtained jointly with O. Penrose, see in [1].

Let the force η(t, x) be homogeneous in x. Then the stationary solution of (NSEν)
uν(t, x) is homogeneous in x, and the stationary measure Duν(t) = µν is a

homogeneous measure in spaceH. We have µνj ⇀ µ0 (Eulerian limit).

Fix any t. Denote ξν(x) = rotuν(t, x) and set

Γν(τ) = {x ∈ T2 | ξν(x) = τ}, τ ∈ R .

Theorem 71. For any ν > 0 and τ ∈ R

E
∫

Γν(τ)

|∇ξν | dγ =
1
2

B1

Area of T2
E
∫

Γν(τ)

|∇ξν |−1 dγ;

dγ – the length element on Γν(τ).

These are infinitely-many relations, satisfied by measures rot ◦µν , ν > 0. We call them

balance relations.
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The balance relations admit an equivalent form. Recall that ξν(x) = rotuν(t, x).

Theorem 72. For any x ∈ T2,

E
(
|∇ξ(x)|2 | Fξ(x)

)
= E|∇ξ(x)|2 =

1
2

B1

Area of T2
. (∗)

Relation (∗) means that for any point x and any function f , the random variables

|∇ξ(x)|2 and f(ξ(x)) are non-correlated:

E
(
|∇ξ(x)|2 f(ξ(x))

)
= E|∇ξ(x)|2 ·E

(
f(ξ(x))

)
.

Corollary. The stationary measures µν , 0 < ν ≤ 1, and the Eulerian limit µ0 satisfy the

exponential estimates∫
H
eσ| rotu(x)| µν(du) ≤ C,

∫
H
eσ|u(x)| µν(du) ≤ C,

∫
H
eσ|∇u(x)|1/2 µν(du) ≤ C

for any x, with some σ > 0, C ≥ 1.
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§7. Remark on anisotropic 3d turbulence.

Consider 3d NSE in the thin domain (x1, x2, x3) ∈ Γ× (0, ε), perturbed by a random

force. Assume free boundary conditions in the thin direction x3:

u3 |x3=0, ε = 0, ∂3u1,2 |x3=0, ε = 0.

Then the law of (u1, u2)(t, x1, x2, x3) converges, as ε→ 0, to the law of a solution of

randomly forced 2d NSE in Γ and we have

E 〈normalised energy of 3d flow〉 → E 〈 energy of 2d flow〉 (∗)

(so ε−1
∫
|u3|2 dx→ 0). It seems that (in non-trivial situations) (∗) does not hold for

enstrophy, and that ε−1
∫
|∇u3|2 dx does not converge to zero.

So randomly forced 2d NSE describe a class of anisotropic 3d turbulence.

For these results for randomly forced NSE see

Chuyeshov and Kuksin, ARMA 188 (2008) and Physica D 237 (2008).

Cf. well known related results for deterministic 3d NSE in thin domains.
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