Sergei Kuksin

(CMLS, Ecole Polytechnique, Palaiseau)

Mathematics of 2d Turbulence

Oberwolfach, 14 December 2009

$\S1$. Introduction

Statistical 2D turbulence is described by small-viscosity 2D Navier-Stokes equation (NSE), perturbed by a random force:

$$u'_t - \nu \Delta u + (u \cdot \nabla)u + \nabla p = \eta(t, x),$$
$$x \in \Gamma, \quad \text{div} \, u = 0; \quad 0 < \nu \le 1.$$

Here $u(t, x) \in \mathbb{R}^2$ - velocity, $p(t, x) \in \mathbb{R}$ - pressure, $\eta(t, x) \in \mathbb{R}^2$ - random force. Γ is either the sphere, $\Gamma = S^2$, or a torus $\Gamma = \mathbb{T}^2 = \{(x_1, x_2) \mid 0 \le x_1 \le a, \ 0 \le x_2 \le b\}$. Or $\Gamma \Subset \mathbb{R}^2$ and $u \mid_{\partial \Gamma} = 0$.

Below, for simplicity of notation, $\Gamma=\mathbb{T}^2$ or $\Gamma\Subset\mathbb{R}^2.$ So

$$(u \cdot \nabla)u = u_1 \frac{\partial}{\partial x_1} u + u_2 \frac{\partial}{\partial x_2} u.$$

Remarks

1) Another way to introduce randomness in Navier-Stokes equations would be through random initial data. For that model it is more difficult to get physically interesting results. I will not discuss it.

2) The random force in Navier-Stokes equations may be of the form

deterministic force + small random perturbation

Leray Projection. Denote

$$\mathcal{H} = \{u(x) \in L^2(\Gamma, \mathbb{R}^2), \text{ div } u = 0\}, \|\cdot\| - \text{the } L^2\text{-norm.}$$

Then

$$L^2 = \mathcal{H} \oplus \{u(x) = \nabla p\}.$$

Denote $\Pi: L^2 \to \mathcal{H}$. Apply Π to the equation. Since $\Pi \nabla p = 0$ and $\Pi u = u$, then

$$u'_t - \nu A u + B(u) = \Pi \eta(t) =: \eta, \qquad (NSE)$$

where $Au = \Pi \Delta u$ and $B(u) = \Pi (u \cdot \nabla) u$.

Let $e_1, e_2, \dots \in \mathcal{H}$ be the basis of \mathcal{H} , formed by eigen-functions of A,

 $Ae_j = \lambda_j e_j \quad \forall j \ge 1$

(if $\Gamma = \mathbb{T}^2$, this the sin/cos basis).

Random Force. The force η has the form $\eta(t, x) = \sum_{j} b_{j} \beta_{j}(t) e_{j}(x)$, where $\{\beta_{j}(t)\}$ are i.i.d. random processes and the constants $b_{j} \ge 0$ fast enough decay to zero. We can handle 3 classes of forces:

1) (random kicks). Fix any T > 0 (period between the kicks)

$$\eta^{\omega}(t,x) = \sum_{l=1}^{\infty} (\operatorname{kick}_l) \cdot \delta(t-lT), \qquad (\operatorname{kick}_l) = \sum_{j=1}^{\infty} b_j \xi_{jl}^{\omega} e_j(x)$$

Here ξ_{jl}^{ω} are i.i.d. random variables with some mild restrictions on their distribution; not necessarily $\mathbf{E}\xi_{jl} = 0$. How to obtain a solution u(t, x) (NSE) with such a force? For 0 < t < T, u(t, x) is a solution of the free equation. At t = T the first kick comes and u instantly changes from u(T, x) to $u(T, x) + \text{kick}_1$, for T < t < 2T again u is a solution of the free equation, at t = 2T the second kick kick 2 comes, etc.

2) (a Levi process)

$$\eta^{\omega}(t,x) = \sum_{l=1}^{\infty} (\operatorname{kick}_l) \delta(t - T_l^{\omega}).$$

Here $T_1^{\omega}, T_2^{\omega}, \ldots$ is a Poisson sequence.

3) (white noise).

$$\beta_j^{\omega}(t) = \frac{d}{dt}w_j(t) + f_j,$$

where f_1, f_2, \ldots are constants and $w_1(t), w_2(t), \ldots$ are standard independent Wiener processes.

Solutions. A solution u is a random process $u^{\omega}(t) \in \mathcal{H}$. We are interested NOT in individual trajectories $t \mapsto u^{\omega}(t)$, but in distribution (=the law) of a solution u, $\mathcal{D}u(t) =: \mu_t$. This is a probability measure in the function space \mathcal{H} :

$$\mu_t(Q) = \mathbf{P}(u(t) \in Q), \quad Q \subset \mathcal{H}; \qquad \int_{\mathcal{H}} f(u) \,\mu_t(du) = \mathbf{E}f(u(t)).$$

For all 3 types of forces, considered above, u(t) is a Markov process. Therefore

$$\mu_t = S_t^*(\mu_0),$$

where the operators $S_t^*(\mu_0)$ form a semi-group of linear operators in the space of measures in \mathcal{H} .

Task: Study qualitative properties of distributions of solutions, i.e. of the measures $\mu_t = \mathcal{D}(u(t)), t \ge 0.$

Definition: a measure μ on \mathcal{H} is called a stationary measure for (NSE) if

$$S_t^* \mu \equiv \mu.$$

If u(t) is a solution such that $\mathcal{D}u(0) = \mu$, then $\mathcal{D}u(t) \equiv \mu$. It is called a stationary solution.

Existence of a stationary measure is an easy fact (it follows from the Bogoliubov-Krylov compactness arguments). Not its uniqueness! – That is complicated.

\S **2. Limit "time to infinity" (mixing).**

[1] "Randomly Forced Nonlinear PDEs and Statistical Hydrodynamics in 2 Space Dimensions", Europ. Math. Soc. Publ. House, 2006 Recall that we consider

$$u'_t - \nu Au + B(u) = \eta, \qquad \eta(t, x) = \sum b_j \beta_j(t) e_j(x), \qquad (NSE)$$

 $x \in \Gamma$, Γ as above. Coefficients b_j fast decay with j: $B_0 = \sum b_j^2 < \infty$.

Condition (C). $b_j \neq 0$ for each $j \leq N$, where $N = N(B_0, \nu, \Gamma)$. For example, (C) holds if $b_j \neq 0$ for all j.

THEOREM 1. If (C) holds, then: 1) there exists a unique stationary measure μ . 2) For any solution u(t) of (NSE) we have

 $\operatorname{dist}(\mathcal{D}u(t),\mu) \le Ce^{-ct}, \quad c,C > 0.$

Here dist is one of the 'usual' distances in the space of measures (e.g., Prokhorov's or Wasserstein's).

3) If force $\eta(t, x)$ is smooth in x, then μ is supported by smooth functions.

So, "statistical properties of solutions for $t\gg 1$ are universal and are described by a unique stationary measure μ ."

History of the result's proof:

(2000), Kuksin-Shirikyan in CMP 213. For any Γ and for kick-forces η assertions 1) and 2) are established, without proving that the rate of convergence is exponentional. (2001), E-Mattingly-Sinai in CMP 224. For $\Gamma = \mathbb{T}^2$ and white forces η such that (C) holds and also $b_j = 0$ for very large j, proved 1) (but not 2)). (2002), Bricmont-Kupiainen-Lefevere in CMP 230. For $\Gamma = \mathbb{T}^2$ and white forces η such that (C) holds and also $b_j = 0$ for very large j, proved 1) and 2). Etc, see in [1].

\S **3. Consequence of the mixing.**

Ergodicity:

THEOREM 2 (SLLN). For any solution u(t) of (NSE) and any 'good' f(u) we have

$$\frac{1}{T}\int_0^T f(u(s)) \, ds \to \langle \mu, f \rangle, \quad a.s.$$

All important functionals f(u) are good.

So "for a 2d turbulent flow time-average equals ensemble-average". See in [1].

THEOREM 3 (CLT). Let $\langle \mu, f \rangle = 0$. Then

$$\mathcal{D}\left(\frac{1}{\sqrt{T}}\int_0^T f(u(s))\,ds\right) \rightharpoonup N(0,\sigma_f),$$

for some $\sigma_f \ge 0$.

EXAMPLE: Fix any point x_0 and take $f(u) = u(x_0)$. If the force is homogeneous, then σ is independent from x_0 . It would be very good to calculate it.

So "on large time-scales a turbulent flow is Gaussian".

§4. Eulerian limit.

Below $\Gamma = \mathbb{T}^2 = \{1 \le x_1 \le a, 0 \le x_2 \le b\}$ and the force η is white in time.

Statistical 2d turbulence is described by solutions of (NSE) with $\nu \ll 1$. Consider the equation with small ν and with the force, multiplied by some degree of ν :

$$u'_t - \nu A u + B(u) = \nu^a \eta, \quad a \in \mathbb{R} \quad (\text{maybe } a = 0).$$
 (*)

Proposition (see [1]). Solutions of (*) remain ~ 1 as $\nu \to 0$ if and only if $a = \frac{1}{2}$.

Accordingly, below we discuss equation

$$u'_t - \nu A u + B(u) = \sqrt{\nu} \eta, \qquad 0 < \nu \le 1. \tag{NSE}_{\nu}$$

Remark. By suitable scaling of u, t and ν , for any a we can reduce eq. (*) to eq. (NSE_{ν}) .

Let (C) holds. Then eq. (NSE_{ν}) has a unique stationary measure μ_{ν} , and

- $\mathcal{D}u(t) \rightharpoonup \mu_{\nu}$ as $t \rightarrow \infty$ exponentially fast, for any solution u(t).
- There is a solution $u_{\nu}(t, x)$ s.t. $\mathcal{D}u_{\nu}(t) \equiv \mu_{\nu}$.
- $u_{\nu}(t,x)$ is stationary in t. It is homogeneous in x if the force $\eta(t,x)$ is and is smooth in x if the force η is.
- Reynolds number of u_{ν} is $Re(u_{\nu}) \sim \nu^{-1}$.

Task: study μ_{ν} and u_{ν} as $\nu \to 0$.

Fact: $\mathbf{E} \| \nabla u_{\nu}(t) \|^2 = B_0, \quad \mathbf{E} \| \Delta u_{\nu}(t) \|^2 = B_1, \text{ where}$ $B_0 = \sum b_j^2, \quad B_1 = \sum b_j^2 \lambda_j$

 λ_i 's – eigenvalues of the Stokes operator.

Below I always assume that the force $\eta(t, x)$ is homogeneous in x.

Theorem 4 (Eulerian Limit), see [1]. Every sequence $\nu'_j \to 0$ has a subsequence $\nu_j \to 0$ such that the process $u_{\nu_j}(t, x)$ converges in distribution to a limiting process U(t, x). The process U(t, x) is stationary in t and homogeneous in x. Moreover, a) every its trajectory U(t, x) is such that $U(\cdot) \in L_{2loc}(0, \infty; \mathcal{H} \cap H^2)$, and satisfies the free Euler equation

$$\dot{u} + (u \cdot \nabla)u + \nabla p = 0, \text{ div } u = 0.$$
 (Eu)

b) The energy $E(U) = \frac{1}{2} ||U(t)||^2 = \frac{1}{2} \int |U(t,x)|^2 dx$ is time-independent. If $g(\cdot)$ is a bounded continuous function, then $\int g(\operatorname{rot} U(t,x)) dx$ also is time-independent.

c) $\mu_0 = \lim \mu_{\nu_i} = \mathcal{D}U(t)$ is an invariant measure for (Eu).

d) $\int_{\mathcal{H}} \|\nabla u\|^2 \mu_0(du) = B_0, \ \int_{\mathcal{H}} \|\Delta u\|^2 \mu_0(du) \le B_1, \ \int_{\mathcal{H}} e^{\sigma \|\nabla u\|^2} \mu_0(du) < \infty.$

 $\bigstar \mu_0$ and $\mathcal{D}U(\cdot)$ are called the Eulerian limit (for eq. (NSE_{ν})). They describe the 2D turbulence since they describe solutions of (NSE) with $\nu \ll 1$ and Re $\gg 1$.

Measure μ_0 is supported by Sobolev space H^2 . If we write

$$u(x) = \sum_{s \in \mathbb{Z}^2} u_s \frac{s^{\perp}}{|s|} e^{is \cdot x}, \qquad E_s = \int |u_s|^2 \mu_0(du), \quad s \in \mathbb{Z}^2.$$

then

$$\sum_{s \in \mathbb{Z}^2} |s|^2 E_s = \int ||u||_{H^2}^2 \,\mu_0(du) < \infty.$$

I cannot prove a better estimate. Numerics show that the relation above gives the right level of decay of E_s and

$$\sum |s|^{2+\varepsilon} E_s = \infty \quad \text{for} \quad \varepsilon > 0.$$

If so, then it is likely that $E_s \sim |s|^{-4} \cdot (log - correction)$. Then $\sum_{|s|\sim r} E_s \sim r^{-3} \cdot (log - correction)$, as the Kreichnan theory predicts.

But I cannot prove that.

Task: a) Check if the Eulerian limits μ_0 and $\mathcal{D}U(\cdot)$ depend on the sequence $\nu_j \to 0$.

b) Study the measure μ_0 and the distribution of the process U.

\S 5. Properties of the Eulerian limit.

We have $\mu_{\nu_j} \rightharpoonup \mu_0$, where μ_{ν} – the stationary measure for (NSE_{ν}) and μ_0 – invariant measure for (Eu). By the theorem on the Eulerian limit, some exponential moments of the energy $E(u) = \frac{1}{2} ||u||^2$ are finite. Hence, for some $C > 0, \sigma > 0$ we have

$$\mu_0\{E(u) > K\} \le Ce^{-\sigma K^2} \quad \text{for any} \quad K \ge 1.$$

So the energy of turbulent flow is big with small probability. Can the energy be small? This also is unlikely:

Theorem 5. $\mu_0 \{ E(u) < \delta \} \le \operatorname{const} \sqrt{\delta}$ for any $\delta > 0$.

This result is important both physically and mathematically. In particular, it shows that $\mu_0 \{ E(u) = 0 \} = 0$. This is crucial for further study of the measure μ_0 and the Eulerian limit U.

Theorem 5₁. Distribution of energy, corresponding to μ_0 , has an (integrable) density with respect to the Lebesgue measure, i.e. $dE = p_E(e) de$.

Recall that measure μ_0 is supported by $H^2(\mathbb{T}^2, \mathbb{R}^2)$. Consider functionals

$$F_j: u(x) \mapsto \int_{\mathbb{T}^2} (\operatorname{rot} u(x))^{2j} dx, \quad j \ge 1.$$

They are integrals of motion for (Eu). Consider the mapping

$$\Pi_N: \mathcal{H} \to \mathbb{R}^N, \quad u(x) \mapsto (F_1, \dots, F_N).$$

Consider $\Pi_N \circ \mu_0$ – the image of measure μ_0 under this map.

Theorem 6. The measure $\Pi_N \circ \mu_0$ has an (integrable) density with respect to the N-dimensional Lebesgue measure, $\Pi_N \circ \mu_0 = p_N(y) \, dy, \ y \in \mathbb{R}^N$.

Corollary. dim_{\mathcal{H}} supp $(\mu_0) = \infty$.

That is, a) Distribution of the integrals of motion is non-singular. b) The measure μ_0 is genuinely infinite-dimensional.

See SK, CMP 284 (2008).

Main Problem. Study the limiting measure(s) μ_0 . In particular:

- 1) is the limit μ_0 unique?
- 2) Study the correlation

$$K^{ij}(y) = \int_{\mathcal{H}} u^i(x) u^j(x+y) \,\mu_0(du).$$

\S 6. The balance relations (universality of 2d turbulence).

These are my results, obtained jointly with O. Penrose, see in [1]. Let the force $\eta(t, x)$ be homogeneous in x. Then the stationary solution of (NSE_{ν}) $u_{\nu}(t, x)$ is homogeneous in x, and the stationary measure $\mathcal{D}u_{\nu}(t) = \mu_{\nu}$ is a homogeneous measure in space \mathcal{H} . We have $\mu_{\nu_j} \rightharpoonup \mu_0$ (Eulerian limit).

Fix any t. Denote $\xi_{\nu}(x) = \operatorname{rot} u_{\nu}(t, x)$ and set

$$\Gamma_{\nu}(\tau) = \{ x \in \mathbb{T}^2 \mid \xi_{\nu}(x) = \tau \}, \ \tau \in \mathbb{R}.$$

Theorem 7_1 . For any $\nu > 0$ and $\tau \in \mathbb{R}$

$$\mathbf{E} \int_{\Gamma_{\nu}(\tau)} |\nabla \xi_{\nu}| \, d\gamma = \frac{1}{2} \, \frac{B_1}{\text{Area of } \mathbb{T}^2} \, \mathbf{E} \int_{\Gamma_{\nu}(\tau)} |\nabla \xi_{\nu}|^{-1} \, d\gamma;$$

 $d\gamma$ – the length element on $\Gamma_{\nu}(\tau)$.

These are infinitely-many relations, satisfied by measures rot $\circ \mu_{\nu}$, $\nu > 0$. We call them balance relations.

The balance relations admit an equivalent form. Recall that $\xi_{\nu}(x) = \operatorname{rot} u_{\nu}(t, x)$. **Theorem** 7₂. For any $x \in \mathbb{T}^2$,

$$\mathbf{E}\left(|\nabla\xi(x)|^2 \mid \mathcal{F}_{\xi(x)}\right) = \mathbf{E}|\nabla\xi(x)|^2 = \frac{1}{2} \frac{B_1}{\text{Area of } \mathbb{T}^2} \,. \tag{*}$$

Relation (*) means that for any point x and any function f, the random variables $|\nabla \xi(x)|^2$ and $f(\xi(x))$ are non-correlated:

$$\mathbf{E}(|\nabla\xi(x)|^2 f(\xi(x))) = \mathbf{E}|\nabla\xi(x)|^2 \cdot \mathbf{E}(f(\xi(x)))$$

Corollary. The stationary measures μ_{ν} , $0 < \nu \leq 1$, and the Eulerian limit μ_0 satisfy the exponential estimates

 $\int_{\mathcal{H}} e^{\sigma |\operatorname{rot} u(x)|} \mu_{\nu}(du) \leq C, \quad \int_{\mathcal{H}} e^{\sigma |u(x)|} \mu_{\nu}(du) \leq C, \quad \int_{\mathcal{H}} e^{\sigma |\nabla u(x)|^{1/2}} \mu_{\nu}(du) \leq C$

for any x, with some $\sigma>0,$ $C\geq1.$

\S 7. Remark on anisotropic 3d turbulence.

Consider 3d NSE in the thin domain $(x_1, x_2, x_3) \in \Gamma \times (0, \varepsilon)$, perturbed by a random force. Assume free boundary conditions in the thin direction x_3 :

$$u_3 \mid_{x_3=0, \varepsilon} = 0, \quad \partial_3 u_{1,2} \mid_{x_3=0, \varepsilon} = 0.$$

Then the law of $(u_1, u_2)(t, x_1, x_2, x_3)$ converges, as $\varepsilon \to 0$, to the law of a solution of randomly forced 2d NSE in Γ and we have

 $\mathbf{E} \left< \text{normalised energy of 3d flow} \right> \rightarrow \mathbf{E} \left< \text{ energy of 2d flow} \right> \qquad (*)$

(so $\varepsilon^{-1} \int |u_3|^2 dx \to 0$). It seems that (in non-trivial situations) (*) does not hold for enstrophy, and that $\varepsilon^{-1} \int |\nabla u_3|^2 dx$ does not converge to zero.

So randomly forced 2d NSE describe a class of anisotropic 3d turbulence.

For these results for randomly forced NSE see

Chuyeshov and Kuksin, ARMA 188 (2008) and Physica D 237 (2008).

Cf. well known related results for deterministic 3d NSE in thin domains.